JP4665289B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP4665289B2
JP4665289B2 JP2000140454A JP2000140454A JP4665289B2 JP 4665289 B2 JP4665289 B2 JP 4665289B2 JP 2000140454 A JP2000140454 A JP 2000140454A JP 2000140454 A JP2000140454 A JP 2000140454A JP 4665289 B2 JP4665289 B2 JP 4665289B2
Authority
JP
Japan
Prior art keywords
cells
fluid
unit cell
row
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000140454A
Other languages
Japanese (ja)
Other versions
JP2001319697A (en
Inventor
英樹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2000140454A priority Critical patent/JP4665289B2/en
Publication of JP2001319697A publication Critical patent/JP2001319697A/en
Application granted granted Critical
Publication of JP4665289B2 publication Critical patent/JP4665289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、複数セルの単電池をモジュールケースに収納した組電池に関する。
【0002】
【従来の技術】
電気自動車には、複数セルのリチウムイオン二次電池をモジュールケースに収納した組電池が用いられることがある。図6にリチウムイオン二次電池の単電池1を30セル用いた従来の組電池の例を示す。ここで用いられる単電池1は、図7に示すように、長円筒型のリチウムイオン二次電池であり、底付きの長円筒形容器状の電池ケース1aの内部に長円筒形の巻回型の電池エレメントを収納して、上端開口部を長円形の蓋板1bで封口したものである。また、この単電池1には、蓋板1bから上方に向けて正負の端子1c,1dが突出している。
【0003】
組電池は、図6に示すように、上記単電池1を10セルずつ3列に並べてモジュールケース2に収納している。モジュールケース2は、平行四辺形の底板2aと、この底板2a上の周囲を囲むように立設された4枚の側板2bと、この側板2bで囲まれた内部を細長い平行四辺形状の3箇所の領域に区切る2枚の仕切り板2cとを備えた合成樹脂製の筐体である。そして、各単電池1は、このモジュールケース2の側板2bや仕切り板2cで仕切られた3箇所の各領域にそれぞれ10セルずつの列として配置される。各列の単電池1は、手前側(図6に示す下側)と奥側(図6に示す上側)の側板2bに長円筒形の側面の平坦な面が平行になるような向きで配置され、この平坦な面に直交する方向に少しずつ間隔を開けて真っ直ぐに並べられる。従って、これらの単電池1の列は、側板2bや仕切り板2cで仕切られた平行四辺形状の領域内で、図6に示す左側には、左側の側板2bや仕切り板2cの側壁との間の空間による導入通路5が形成されると共に、図6に示す右側には、仕切り板2cや右側の側板2bの側壁との間の空間による排出通路6が形成される。また、これら左右の側板2bや仕切り板2cが奥に向かうほど右側に傾斜しているので、各導入通路5は、側壁が奥に進むほど単電池1の列に接近することにより通路の幅が狭くなり、各排出通路6は、側壁が奥に進むほど単電池1の列から遠ざかることにより通路の幅が広くなる。そして、モジュールケース2の手前側の側板2bには、3箇所に導入口3が開口され、それぞれ3箇所の各領域の導入通路5に通じるようになると共に、奥側の側板2bにも、3箇所に排出口4が開口され、それぞれ3箇所の各領域の排出通路6に通じるようになっている。
【0004】
上記モジュールケース2の側板2bで囲まれた上方は、底板2aとほぼ同じ平行四辺形の図示しない天板で塞がれていて、この天板上には、図示しないカバーが取り付けられる。そして、各単電池1は、底部が底板2aに形成された凹部に嵌め込まれると共に、上部が天板に形成された凹部に嵌め込まれることにより、それぞれ上記所定の位置に位置決めされるようになっている。また、天板の凹部にはそれぞれ2箇所の貫通孔が形成され、各単電池1の端子1c,1dがこれらの貫通孔に嵌入し、天板の上面で各単電池1間の配線が行われるようになっている。天板上のカバーは、この配線を覆い隠し保護するためのものである。
【0005】
上記構成の組電池は、モジュールケース2を図示しないバッテリボックスに収納して固定することにより電気自動車等に搭載される。また、バッテリボックスには、モジュールケース2の各導入口3と向かい合う位置にファンが設けられ、外気をこの導入口3に冷却風として送り込むようになっている。
【0006】
上記バッテリボックスのファンにより各導入口3から導入された冷却風Aは、側板2bや仕切り板2cで仕切られた3箇所の各領域の導入通路5に流れ込み、順次一列に並んだ各単電池1の間に分岐して通り抜け、排出通路6で再び合流して、排出口4から出てバッテリボックスの外部に排出される。そして、この冷却風Aが各単電池1の間を流れることにより、これらの単電池1がそれぞれ新鮮な冷却風Aの流れを受けて空冷により冷却されることになる。
【0007】
ここで、もし導入通路5の幅が一定であれば、この通路上の手前側と奥側の圧力損失がほぼ等しくなるため、冷却風Aが手前側の各単電池1の間にはわずかしか分岐せず、ほとんどがそのまま奥まで達して、この奥側の各単電池1の間だけを通り抜けることになるので、奥側に比べて手前側の単電池1の冷却が不十分になる。しかし、図6に示す組電池では、各導入通路5の幅が奥に進むほど狭くなる。従って、導入通路5に流れ込んだ冷却風Aは、奥に進むほど圧力損失が高くなるので、奥側の各単電池1の間だけでなく手前側の各単電池1の間にも十分に分岐して流れるようになり、各単電池1が均一に冷却されることになる。
【0008】
また、各単電池1の間を通り抜けた冷却風Aは、排出通路6で合流することになるが、この排出通路6の幅も奥に進むほど広くなるので、合流により順次増加する流量に応じてこの通路の幅が徐々に広がり、排出を円滑に行うことができるようになる。しかも、このように排出通路6の手前側の幅が狭いと、これに隣接する領域の導入口3の幅の変化と逆になるので、モジュールケース2内にこれらの領域をスペースの無駄なく配置できるようになる。
【0009】
【発明が解決しようとする課題】
ところが、上記従来の組電池は、使用時に列ごとの各単電池1の温度を実際に測定してみると、ほとんどの単電池1の温度はほぼ均一となるが、最も手前側の数セルの単電池1だけが他の単電池1に比べて温度が十分に低下しないという問題が発生していた。
【0010】
例えば図8に示す測定結果では、手前側から3番目以降の奥側の単電池1(セル3〜セル10)の温度は31〜33°Cでほぼ均一であるが、一番手前側の単電池1(セル1)は40°C近くの高温となり、手前側から2番目の単電池1(セル2)も、35°Cを超える高温となる。これは、導入口3から導入通路5に導入されたばかりの冷却風Aが、この導入通路5を直進する方向の風向きベクトルが強いために、導入部付近でわずかに通路が狭くなるだけでは、側方にある単電池1の間に十分に分岐して流れないからであると考えられる。
【0011】
本発明は、かかる事情に対処するためになされたものであり、導入通路の入り口付近に流体方向ガイドを設けることにより、手前側の単電池も確実に冷却し、各単電池の温度を均一に保つことができる組電池を提供することを目的としている。
【0012】
【課題を解決するための手段】
請求項1の発明は、相互に間隔を開けて並んだ複数セルの単電池の列の側方に、単電池の並び方向の一端側から導入された流体がこの単電池の列の側面に沿って流れるように形成された流体通路であって、単電池の並び方向に沿って他端側に進むほど流体の通路が狭くなる導入通路が設けられた組電池において、導入通路における流体の導入部付近に、導入された流体の一部をガイドして流れの向きを単電池の列側に向かわせる流体方向ガイドを設けたことを特徴とする。
【0013】
請求項1の発明によれば、導入通路に導入された冷却風等の流体は、一部がすぐに流体方向ガイドにガイドされて単電池の列側に向かうことになるので、この列の一端側の端に並んだ単電池の間にも確実に流体が分岐して流れることになる。また、残りの流体は、従来通り徐々に狭くなる導入通路を他端側に進み、各単電池の間にほぼ均等に分岐して流れる。従って、列の最も手前側の数セルの単電池の間に冷却用の流体が流れ難くなるようなことがないので、全ての単電池を均一に冷却することができるようになる。
【0014】
請求項2の発明は、前記単電池の列の導入通路とは反対側の側方に、単電池の並び方向の一端側からこの単電池の列の側面に沿って流体が流れ他端側から排出されるように形成された流体通路であって、単電池の並び方向に沿って他端側に進むほど流体の通路が広くなる排出通路が形成されたことを特徴とする。
【0015】
請求項2の発明によれば、導入通路から各単電池の間に分岐して流れ込んだ冷却風等の流体が単電池の列の反対側の側方に設けられた排出通路で合流して他端側から排出される。この際、排出通路は、他端側に進むほど幅が広くなるので、徐々に流量が増大する流体を円滑に排出することができるようになる。また、単電池の列を複数列配置した場合に、この排出通路を隣の列の導入通路と仕切りを介して隣接させることにより、通路の幅の広い部分と狭い部分が組み合わさって、スペースの無駄をなくすことができるようになる。
【0016】
請求項3の発明は、単電池の列の一方の側方に、流体の導入側となる一端側から他端側にかけて、この他端側に向かうほど単電池の列の側面に近づく側壁が設けられることにより前記導入通路が形成され、前記流体方向ガイドが、この側壁の一端側付近に設けられた導入通路側への突起であることを特徴とする。
【0017】
請求項3の発明によれば、複数セルの単電池を列状に並べて筐体等に収納するだけで、この単電池の側方に導入通路等を形成することができ、流体の通路を容易に形成できるようになる。しかも、この筐体等を囲む板の内面や内部を仕切る板の面が側壁となるので、ここに突起を設けるだけで流体方向ガイドを形成することができる。なお、導入通路や排出通路の幅を変化させるには、筐体を平行四辺形にしたり、単電池の並びを斜めにずらして配置すればよい。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0019】
図1〜図4は本発明の一実施形態を示すものであって、図1はモジュールケースに単電池を収納した組電池の横断面平面図、図2は列ごとの各単電池の温度を測定した結果を示す図、図3は風向ガイドの他の形状を示す組電池の部分拡大横断面平面図、図4は斜めにずらして並べた単電池を1列だけモジュールケースに収納した場合の組電池の横断面平面図、図5は冷却風を単電池の列の下方から送り込む場合の組電池の縦断面側面図である。なお、図6〜図8に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0020】
本実施形態の組電池は、図7に示した従来例と同じ長円筒型のリチウムイオン二次電池を単電池1として用いる場合について説明する。この組電池は、図1に示すようなモジュールケース2に30セルの単電池1を収納している。モジュールケース2は、図6に示した従来例とほぼ同様の構成であり、平行四辺形の底板2aと、この底板2a上に立設された4枚の側板2b及び2枚の仕切り板2cと、図示しない天板及びカバーとを備えた合成樹脂製の筐体である。また、このモジュールケース2の側板2b内を仕切り板2cで区切った3箇所の領域には、それぞれ少しずつ間隔を開けて真っ直ぐに一列に並べられた10セルずつの単電池1が配置されている。そして、これらの3箇所の各領域には、単電池1の列の両側に導入通路5と排出通路6が形成され、手前側(図1に示す下側)の側板2bには、外部から冷却風Aを導入通路5に導入するための導入口3が設けられると共に、奥側(図1に示す上側)の側板2bには、排出通路6から冷却風Aを排出するための排出口4が設けられている。
【0021】
図1に示す左側の側板2bと各仕切り板2cにおける上記各導入通路5に面する側壁には、導入口3付近に風向ガイド7が設けられている。風向ガイド7は、導入口3から導入通路5に導入された冷却風Aをガイドして、この冷却風Aの風向きに単電池1の列側に向かう方向成分を加えるようにした流体のガイドであり、ここでは、側板2bや仕切り板2cの側壁から導入通路5側に突出した突起として形成されている。即ち、この風向ガイド7の突起は、側板2bや仕切り板2cの側壁における単電池1の列の最も手前側と2番目のものの間付近の位置に、この側壁の上下にわたって突設され、突出部の手前側の面に、先端ほど奥側に傾斜したやや凹状に湾曲する傾斜面を形成している。従って、導入口3から導入され導入通路5を奥側に直進しようとする冷却風Aの一部がこの風向ガイド7の手前側の傾斜面に衝突することにより、風向きを斜め右方向に向けるようになる。
【0022】
上記構成の組電池は、従来例の場合と同様に、モジュールケース2を図示しないバッテリボックスに収納して固定することにより電気自動車等に搭載される。また、バッテリボックスには、モジュールケース2の各導入口3と向かい合う位置にファンが設けられ、外気をこの導入口3に冷却風として送り込むようになっている。
【0023】
上記バッテリボックスのファンにより冷却風Aがモジュールケース2の各導入口3に送り込まれると、この冷却風Aは、側板2bや仕切り板2cで仕切られた3箇所の各領域の導入通路5に導入され、一列に並んだ各単電池1の間を分岐して通り抜ける。この際、導入口3から導入された冷却風Aは、従来であれば導入通路5を直進しようとする風向きが強いため、そのまま奥に進もうとするが、本実施形態では、この導入口3付近ですぐに一部が風向ガイド7に衝突し風向きを単電池1の列側に向ける。しかも、このように導入通路5の入り口付近に通路を大きく塞ぐ風向ガイド7があると、この入り口付近の圧力損失が急激に高くなる。すると、冷却風Aは、導入口3を設けた下側の側板2bと一番手前側の単電池1との間やこの単電池1と手前から2番目の単電池1との間にも十分に分岐して流れるようになる。また、この風向ガイド7を超えてさらに導入通路5の奥に進んだ冷却風Aは、従来と同様に、この導入通路5の幅が徐々に狭くなるので、奥の単電池1の間だけでなく、手前側の単電池1の間にも十分に分岐して流れ込む。従って、各領域の導入通路5に導入された冷却風Aは、ここに並んだ10セルの単電池1の間にほぼ均等に分岐して流れるようになる。
【0024】
このようにして各単電池1の間にほぼ均等に分岐して流れ込んだ冷却風Aは、排出通路6で再び手前側から順に合流し、この合流による流量の増加に伴って排出通路6の幅が奥に進むほど広くなるので、この排出通路6を円滑に流れ、一番奥の排出口4から出てバッテリボックスの外部に排出される。また、このように排出通路6が奥に進むほど広くなっていると、仕切り板2cを境として隣接する隣の領域の導入通路5が奥に進むほど狭くなるので、これらの狭い部分と広い部分とが隣り合うことになり、モジュールケース2の内部でのスペースの無駄を省くことにもなる。
【0025】
以上説明したように、本実施形態の組電池によれば、冷却風Aの導入通路5の入り口付近に風向ガイド7が設けられているので、最も手前側の数セルの単電池1の間にも確実に冷却風Aが分岐して流れるようになり、また、この導入通路5の幅が奥に進むほど徐々に狭くなるので、これより奥側の各単電池の間にもほぼ均一に分岐して流れるようになる。このため、列状に並んだ全ての単電池1の間に新鮮な冷却風Aがほぼ均一に流れるので、これらの単電池1をムラなく冷却することができるようになる。実際にこの組電池の使用時における列ごとの各単電池1の温度を測定してみると、図2の太い実線で示すように、手前側の単電池1(セル1やセル2等)も含めて全ての単電池1(セル1〜セル10)の温度が31〜34°Cの範囲内でほぼ均一となる。
【0026】
風向ガイド7は、導入通路5側への突出量を大きくして、より多くの冷却風Aの風向きを単電池1の列側に向けるようにするほど、手前側の単電池1の間を通り抜ける冷却風Aの風量が大きくなるが、この手前側の単電池1の間の風量を大きくしすぎると、風向ガイド7よりすぐ奥側に配置された単電池1の間に流れる冷却風Aの風量が極端に低下するおそれがある。実際に風向ガイド7の突出量を本実施形態よりも大きくして冷却風Aの大部分をガイドするようにした場合の各単電池1の温度を測定してみると、図2の破線で示すように、手前側から3番目や4番目の単電池1(セル3やセル4)の温度が35°Cを超える高温となる。このため、風向ガイド7は、突出量を調整して、冷却風Aの一部だけを適量分だけガイドするようにしなければならない。また、この風向ガイド7は、導入通路5の導入部付近であれば、位置は必ずしも限定しないが、本実施形態のように単電池1の列の最も手前側のセルと2番目のセルの間に設けるのが好ましい。
【0027】
上記風向ガイド7は、1箇所だけに限らず、導入通路5の入り口付近の複数箇所に設けることもできる。また、本実施形態では、手前側の面が凹状に湾曲した横断面がほぼ直角三角形状のものを示したが、この突起形状も任意であり、例えば図3に示すように、突端に丸みを付けて、奥側の面もなだらかに形成すれば、冷却風Aの流れを円滑にすることができる。さらに、この風向ガイド7は、冷却風Aの風向きを単電池1の列側に向ければよいので、側板2bや仕切り板2cの側壁から突出させる構造に限定されず、例えば導入通路5の入り口付近の中央部等に、単電池1の列に近づくほど奥側に傾斜する傾斜面を有する風向板等を配置するだけでもよい。また、この風向ガイド7は、必ずしも単電池1の列に近づくほど奥側に傾斜する傾斜面を有する必要もない。例えば、風向ガイド7が導入通路5の進路に直交する平面を有する場合であっても、これによって冷却風Aが遮られると、渦等の流れの乱れが発生するので、その一部の風向きが単電池1の列側を向くことにより、手前側の単電池1の間を通り抜ける流量を増加させることができるからである。
【0028】
なお、上記実施形態では、10セルの単電池1を一列に並べる場合について説明したが、各列の単電池1は複数セルあれば何セルであってもよい。ただし、本発明は、実際には多数の単電池1を並べた場合に、手前側の数セルへの冷却風Aの流れが悪くなるのを解消するためのものであるため、セル数は十分に多いことが好ましい。
【0029】
また、上記実施形態では、モジュールケース2内に3列の単電池1の列を収納する場合について説明したが、この列の数も限定されず、例えば図4に示すように、仕切り板2cをなくし、側板2bだけで囲んだ1箇所の細長い領域に単電池1を一列だけを収納することもできる。
【0030】
さらに、上記実施形態では、左右の側板2bや仕切り板2cを単電池1の列に対して斜めに配置することにより、導入通路5や排出通路6の幅が変化するようにしたが、各単電池1間を少しずつずらして一列に並べるようにしてもよい。例えば図4の場合、長方形の底板2a上の周囲を直交する4枚の側板2bで囲むようにした1箇所の矩形の領域に、各単電池1を奥のものほど左側にずれるように配置することにより、導入通路5は奥ほど狭くなり、排出通路6は奥ほど広くなるようにしている。
【0031】
さらに、上記実施形態では、各単電池1の上端部と下端部を支持して、側面に冷却風Aを流すようにした場合の例を示したが、この冷却風Aを流す方向は特に限定されず、例えば図5に示すように、単電池1の列の下方から冷却風Aを導入し上方から排出させるようにすることもできる。この場合、単電池1の列の側方とは、実際にはこの単電池1の列の下方となり、この側方に設けられた側壁は、底板2aの上面となる。そして、モジュールケース2の底板2aと天板2dを傾斜させて配置することにより、単電池1の列の下方の導入通路5が奥(図5の右側)ほど狭くなり、単電池1の列の上方の排出通路6が奥ほど広くなるようにしている。
【0032】
さらに、上記実施形態では、底板2a上の周囲を側板2bで囲み、場合によって内部を仕切り板2cで仕切ったモジュールケース2を用いる場合について説明したが、複数セルの単電池1を1列や複数列に並べて、その周囲に導入通路5や排出通路6を形成した構成であれば、必ずしもこのようなモジュールケース2を用いる必要はない。また、上記実施形態では、バッテリボックスに設けたファンによって導入口3から冷却風Aを導入する場合について説明したが、この冷却風Aを送り込む手段は、他のどのような手段を用いてもよい。例えば、この導入口3を電気自動車の進行方向に向けておけば、この電気自動車の走行時に自然に冷却風Aが導入口3から導入される。さらに、上記実施形態では、単電池1の冷却のために空気の冷却風Aを用いたが、冷却用の流体であれば、不活性ガス等の他の気体や、水や有機溶媒又はオイル等の液体を用いることも可能である。
【0033】
さらに、上記実施形態では、長円筒型の単電池1について説明したが、角型や円筒型等の単電池1を用いることも可能である。また、上記実施形態では、リチウムイオン二次電池の単電池1を用いる場合について説明したが、この単電池1の電池の種類も任意である。
【0034】
【発明の効果】
以上の説明から明らかなように、本発明の組電池によれば、導入通路に導入された冷却風等の流体の一部が流体方向ガイドによって単電池の列側に向かうので、この列の手前側に並んだ単電池の間にも確実に流体が分岐して流れ、この列の全ての単電池を均一に冷却することができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すものであって、モジュールケースに単電池を収納した組電池の横断面平面図である。
【図2】本発明の一実施形態を示すものであって、列ごとの各単電池の温度を測定した結果を示す図である。
【図3】本発明の一実施形態を示すものであって、風向ガイドの他の形状を示す組電池の部分拡大横断面平面図である。
【図4】本発明の一実施形態を示すものであって、斜めにずらして並べた単電池を1列だけモジュールケースに収納した場合の組電池の横断面平面図である。
【図5】本発明の一実施形態を示すものであって、冷却風を単電池の列の下方から送り込む場合の組電池の縦断面側面図である。
【図6】従来例を示すものであって、モジュールケースに単電池を収納した組電池の横断面平面図である。
【図7】長円筒型のリチウムイオン二次電池の単電池の斜視図である。
【図8】従来例を示すものであって、列ごとの各単電池の温度を測定した結果を示す図である。
【符号の説明】
1 単電池
2 モジュールケース
2a 底板
2b 側板
2c 仕切り板
3 導入口
4 排出口
5 導入通路
6 排出通路
7 風向ガイド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery in which a plurality of cells are housed in a module case.
[0002]
[Prior art]
In an electric vehicle, an assembled battery in which a plurality of cells of lithium ion secondary batteries are housed in a module case may be used. FIG. 6 shows an example of a conventional assembled battery using 30 cells 1 of a lithium ion secondary battery. The unit cell 1 used here is a long cylindrical lithium ion secondary battery as shown in FIG. 7, and is a long cylindrical winding type inside a battery case 1a having a bottomed long cylindrical container shape. And the upper end opening is sealed with an oblong lid plate 1b. Further, positive and negative terminals 1c and 1d project upward from the cover plate 1b in the unit cell 1.
[0003]
As shown in FIG. 6, the assembled battery has the unit cells 1 arranged in three rows of 10 cells and housed in a module case 2. The module case 2 includes a parallelogram-shaped bottom plate 2a, four side plates 2b erected so as to surround the periphery of the bottom plate 2a, and three elongated parallelogram-shaped interiors surrounded by the side plate 2b. It is a synthetic resin housing provided with two partition plates 2c that are divided into regions. Each unit cell 1 is arranged in a row of 10 cells in each of three regions partitioned by the side plate 2b and the partition plate 2c of the module case 2. The cells 1 in each row are arranged so that the flat surfaces of the long cylindrical side surfaces are parallel to the side plates 2b on the front side (the lower side shown in FIG. 6) and the back side (the upper side shown in FIG. 6). Then, they are arranged in a straight line at intervals in a direction perpendicular to the flat surface. Accordingly, these cells 1 are arranged in a parallelogram-shaped region partitioned by the side plate 2b and the partition plate 2c, and between the left side plate 2b and the side wall of the partition plate 2c on the left side shown in FIG. 6 is formed, and a discharge passage 6 is formed on the right side shown in FIG. 6 by a space between the partition plate 2c and the side wall of the right side plate 2b. In addition, since these left and right side plates 2b and partition plates 2c are inclined to the right as they go deeper, each introduction passage 5 approaches the row of the cells 1 as the side wall goes deeper, so that the width of the passage becomes smaller. Each discharge passage 6 becomes narrower, and the width of the passage becomes wider by moving away from the row of the cells 1 as the side wall advances. The side plate 2b on the front side of the module case 2 is provided with three inlets 3 that lead to the introduction passages 5 in each of the three regions, and the back side plate 2b also has 3 A discharge port 4 is opened at each location, and leads to the discharge passages 6 in each of the three locations.
[0004]
The upper part of the module case 2 surrounded by the side plate 2b is closed by a parallelogram top plate (not shown) that is substantially the same as the bottom plate 2a, and a cover (not shown) is attached on the top plate. Each unit cell 1 is positioned at the predetermined position by fitting the bottom portion into the recess formed in the bottom plate 2a and the upper portion into the recess formed in the top plate. Yes. Moreover, two through holes are formed in the recesses of the top plate, and the terminals 1c and 1d of each unit cell 1 are fitted into these through holes, and wiring between the unit cells 1 is performed on the top surface of the top plate. It has come to be. The cover on the top plate is for covering and protecting the wiring.
[0005]
The assembled battery having the above configuration is mounted on an electric vehicle or the like by housing and fixing the module case 2 in a battery box (not shown). Also, the battery box is provided with a fan at a position facing each inlet 3 of the module case 2 so that outside air is sent to the inlet 3 as cooling air.
[0006]
The cooling air A introduced from each introduction port 3 by the fan of the battery box flows into the introduction passages 5 in each of the three regions partitioned by the side plate 2b and the partition plate 2c, and the single cells 1 sequentially arranged in a row. Branching between the two and passing through, the discharge passage 6 joins again, exits the discharge port 4 and is discharged outside the battery box. And when this cooling wind A flows between each unit cell 1, these unit cells 1 receive the flow of the fresh cooling air A, respectively, and are cooled by air cooling.
[0007]
Here, if the width of the introduction passage 5 is constant, the pressure loss on the near side and the far side on this passage becomes almost equal, so that the cooling air A is little between the single cells 1 on the near side. Since most of them reach the back without branching and pass only between the cells 1 on the back side, cooling of the front side cells 1 becomes insufficient compared to the back side. However, in the assembled battery shown in FIG. 6, the width of each introduction passage 5 becomes narrower as it goes deeper. Therefore, since the cooling air A flowing into the introduction passage 5 increases in pressure loss as it goes deeper, it is sufficiently branched not only between the single cells 1 on the back side but also between the single cells 1 on the near side. Thus, each unit cell 1 is cooled uniformly.
[0008]
In addition, the cooling air A that has passed between the single cells 1 merges in the discharge passage 6, but the width of the discharge passage 6 becomes wider as it goes deeper. The width of the lever passage is gradually increased, and the discharge can be performed smoothly. Moreover, if the width on the front side of the discharge passage 6 is narrow in this way, the change in the width of the introduction port 3 in the area adjacent to the discharge passage 6 is reversed. Therefore, these areas are disposed in the module case 2 without wasting space. become able to.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional assembled battery, when the temperature of each unit cell 1 for each column is actually measured at the time of use, the temperature of most of the unit cells 1 is substantially uniform, but the number of cells on the foremost side is almost the same. There has been a problem that only the unit cell 1 does not have a sufficiently lower temperature than the other unit cells 1.
[0010]
For example, in the measurement result shown in FIG. 8, the temperature of the third unit cell 1 (cell 3 to cell 10) from the front side to the third and subsequent sides is substantially uniform at 31 to 33 ° C. 1 (cell 1) has a high temperature close to 40 ° C, and the second unit cell 1 (cell 2) from the front side also has a high temperature exceeding 35 ° C. This is because the cooling air A that has just been introduced into the introduction passage 5 from the introduction port 3 has a strong wind direction vector in the direction of going straight through the introduction passage 5, so that the side of the cooling air A is slightly narrowed near the introduction portion. It is thought that this is because the cells 1 are not sufficiently branched and flow between the single cells 1 located on the other side.
[0011]
The present invention has been made to cope with such a situation, and by providing a fluid direction guide near the entrance of the introduction passage, the unit cell on the near side can be reliably cooled, and the temperature of each unit cell can be made uniform. It aims at providing the assembled battery which can be maintained.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, the fluid introduced from one end side of the unit cell in the arrangement direction of the unit cells to the side of the column of the unit cells of the plurality of cells arranged at intervals from each other along the side surface of the unit cell column. In the assembled battery provided with an introduction passage that is formed so that the fluid passage becomes narrower toward the other end along the arrangement direction of the cells, the fluid introduction portion in the introduction passage A fluid direction guide is provided in the vicinity for guiding a part of the introduced fluid so as to direct the flow direction to the row side of the unit cells.
[0013]
According to the first aspect of the present invention, a part of the fluid such as cooling air introduced into the introduction passage is immediately guided by the fluid direction guide toward the row side of the unit cells. The fluid surely branches and flows between the cells arranged at the end of the side. Further, the remaining fluid flows through the introduction passage gradually narrowing as usual to the other end side, and flows almost evenly between the individual cells. Therefore, it is not difficult for the cooling fluid to flow between the single cells in the foremost side of the row, so that all the single cells can be uniformly cooled.
[0014]
According to a second aspect of the present invention, fluid flows from one end side of the unit cells in the arrangement direction of the unit cells to the side opposite to the introduction passage of the unit cell rows from the other end side. It is a fluid passage formed so as to be discharged, and a discharge passage is formed in which the fluid passage becomes wider toward the other end side in the arrangement direction of the cells.
[0015]
According to the second aspect of the present invention, the fluid such as the cooling air branched and flowing between the single cells from the introduction passage joins in the discharge passage provided on the opposite side of the row of the single cells. It is discharged from the end side. At this time, since the width of the discharge passage increases toward the other end side, the fluid whose flow rate gradually increases can be discharged smoothly. In addition, when a plurality of rows of cells are arranged, this discharge passage is adjacent to the introduction passage of the adjacent row via a partition, so that the wide portion and the narrow portion of the passage are combined to reduce the space. It will be possible to eliminate waste.
[0016]
According to the invention of claim 3, a side wall that is closer to the side surface of the unit cell row is provided on one side of the unit cell row from one end side to the other end side as the fluid introduction side toward the other end side. Thus, the introduction passage is formed, and the fluid direction guide is a protrusion toward the introduction passage provided near one end of the side wall.
[0017]
According to the third aspect of the present invention, it is possible to form an introduction passage or the like on the side of the unit cell by simply arranging the cells of a plurality of cells in a row and storing it in a housing or the like, thereby facilitating the passage of the fluid. Can be formed. In addition, since the inner surface of the plate surrounding the housing or the like or the surface of the plate partitioning the inside serves as a side wall, the fluid direction guide can be formed simply by providing a protrusion here. In order to change the widths of the introduction passage and the discharge passage, the casing may be formed into a parallelogram or the cells may be arranged obliquely.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
1 to 4 show an embodiment of the present invention. FIG. 1 is a cross-sectional plan view of an assembled battery in which a unit cell is housed in a module case, and FIG. 2 shows the temperature of each unit cell in each column. FIG. 3 is a partially enlarged cross-sectional plan view of an assembled battery showing another shape of the wind direction guide, and FIG. 4 is a case where only one row of cells arranged obliquely is stored in a module case. FIG. 5 is a cross-sectional plan view of the assembled battery, and FIG. 5 is a longitudinal sectional side view of the assembled battery when cooling air is sent from below the row of unit cells. In addition, the same number is attached | subjected to the structural member which has the same function as the prior art example shown in FIGS.
[0020]
In the assembled battery of this embodiment, a case where the same long cylindrical lithium ion secondary battery as the conventional example shown in FIG. In this assembled battery, a single cell 1 of 30 cells is housed in a module case 2 as shown in FIG. The module case 2 has substantially the same configuration as the conventional example shown in FIG. 6, and includes a parallelogram-shaped bottom plate 2a, four side plates 2b and two partition plates 2c erected on the bottom plate 2a. A casing made of synthetic resin provided with a top plate and a cover (not shown). Further, in the three regions where the inside of the side plate 2b of the module case 2 is divided by the partition plate 2c, the single cells 1 of 10 cells arranged in a straight line with a little space between them are arranged. . In each of these three regions, the introduction passages 5 and the discharge passages 6 are formed on both sides of the row of the cells 1, and the side plate 2 b on the front side (the lower side in FIG. 1) is cooled from the outside. An introduction port 3 for introducing the wind A into the introduction passage 5 is provided, and a discharge port 4 for discharging the cooling air A from the discharge passage 6 is provided in the side plate 2b on the back side (upper side shown in FIG. 1). Is provided.
[0021]
A wind direction guide 7 is provided in the vicinity of the inlet 3 on the side wall of the left side plate 2b and each partition plate 2c shown in FIG. The wind direction guide 7 is a fluid guide that guides the cooling air A introduced into the introduction passage 5 from the introduction port 3 and adds a directional component toward the row side of the cells 1 in the direction of the cooling air A. Yes, here, it is formed as a protrusion protruding toward the introduction passage 5 from the side wall of the side plate 2b or the partition plate 2c. That is, the projections of the wind direction guide 7 are projected over the top and bottom of the side wall 2b and the partition plate 2c at the position between the foremost side of the row of the cells 1 and the second one on the side wall of the side plate 2b and the partition plate 2c. An inclined surface that is slightly concavely curved toward the back side is formed on the surface on the near side. Therefore, a part of the cooling air A introduced from the inlet 3 and going straight through the introduction passage 5 collides with the inclined surface on the near side of the wind direction guide 7 so that the wind direction is directed diagonally to the right. become.
[0022]
As in the case of the conventional example, the assembled battery having the above configuration is mounted on an electric vehicle or the like by housing the module case 2 in a battery box (not shown) and fixing it. Also, the battery box is provided with a fan at a position facing each inlet 3 of the module case 2 so that outside air is sent to the inlet 3 as cooling air.
[0023]
When the cooling air A is sent to each introduction port 3 of the module case 2 by the fan of the battery box, the cooling air A is introduced into the introduction passages 5 in the three areas partitioned by the side plate 2b and the partition plate 2c. Then, it branches between the cells 1 arranged in a row and passes through. At this time, the cooling air A introduced from the introduction port 3 has a strong wind direction to go straight through the introduction passage 5 in the prior art, and therefore proceeds to the back as it is. In the present embodiment, this introduction port 3 A part immediately collides with the wind direction guide 7 in the vicinity and directs the wind direction to the row side of the cells 1. In addition, when there is a wind direction guide 7 that largely closes the passage in the vicinity of the entrance of the introduction passage 5 in this way, the pressure loss near the entrance increases rapidly. Then, the cooling air A is sufficiently passed between the lower side plate 2b provided with the introduction port 3 and the front cell 1 or between the unit cell 1 and the second unit cell 1 from the front. Branch and flow. Further, the cooling air A that has further advanced to the back of the introduction passage 5 beyond the wind direction guide 7 has the width of the introduction passage 5 gradually narrowed in the same manner as in the prior art. However, it also flows sufficiently between the single cells 1 on the front side. Therefore, the cooling air A introduced into the introduction passages 5 in the respective regions flows almost evenly between the 10 cells of cells 10 arranged here.
[0024]
In this way, the cooling air A that has flowed almost equally between the single cells 1 joins again from the near side again in the discharge passage 6, and the width of the discharge passage 6 increases as the flow rate increases due to this joining. Since it becomes wider as it goes deeper, it flows smoothly through this discharge passage 6, exits from the innermost discharge port 4, and is discharged outside the battery box. In addition, when the discharge passage 6 becomes wider as it goes deeper in this way, the introduction passage 5 in the adjacent region adjacent to the partition plate 2c becomes narrower as it goes deeper. And the space inside the module case 2 is not wasted.
[0025]
As described above, according to the assembled battery of the present embodiment, the wind direction guide 7 is provided in the vicinity of the entrance of the introduction passage 5 for the cooling air A. However, since the cooling air A is surely branched and flows, and the width of the introduction passage 5 is gradually narrowed toward the back, the air is branched evenly between the cells on the back side. And will begin to flow. For this reason, since the fresh cooling air A flows almost uniformly between all the cells 1 arranged in a row, these cells 1 can be cooled evenly. When actually measuring the temperature of each unit cell 1 for each row when using this assembled battery, as shown by the thick solid line in FIG. 2, the front unit cell 1 (cell 1 or cell 2 etc.) is also shown. Including the temperature of all the single cells 1 (cell 1 to cell 10) is substantially uniform within a range of 31 to 34 ° C.
[0026]
The wind direction guide 7 passes between the single cells 1 on the near side as the amount of protrusion toward the introduction passage 5 is increased and the direction of more cooling air A is directed to the row side of the single cells 1. Although the air volume of the cooling air A becomes large, the air volume of the cooling air A flowing between the single cells 1 arranged immediately behind the wind direction guide 7 if the air volume between the front cells 1 is excessively increased. May be drastically reduced. When actually measuring the temperature of each cell 1 when the amount of protrusion of the wind direction guide 7 is made larger than that of the present embodiment to guide most of the cooling air A, it is shown by the broken line in FIG. Thus, the temperature of the third or fourth unit cell 1 (cell 3 or cell 4) from the front side becomes a high temperature exceeding 35 ° C. For this reason, the wind direction guide 7 must adjust the protrusion amount to guide only a part of the cooling air A by an appropriate amount. Further, the position of the wind direction guide 7 is not necessarily limited as long as it is in the vicinity of the introduction portion of the introduction passage 5, but as in the present embodiment, it is between the frontmost cell and the second cell in the row of the cells 1. It is preferable to provide in.
[0027]
The wind direction guide 7 can be provided not only at one place but also at a plurality of places near the entrance of the introduction passage 5. Further, in the present embodiment, the cross section in which the front surface is curved in a concave shape is shown as a substantially right triangle shape, but this protrusion shape is also arbitrary, for example, as shown in FIG. In addition, if the back side surface is also gently formed, the flow of the cooling air A can be made smooth. Further, the wind direction guide 7 is not limited to a structure in which the wind direction of the cooling air A is directed to the row side of the cells 1, and is not limited to a structure protruding from the side wall of the side plate 2 b or the partition plate 2 c, for example, near the entrance of the introduction passage 5 The wind direction board etc. which have the inclined surface which inclines to the back | inner side, so that it approaches the row | line | column of the cell 1 may be arrange | positioned only in the center part. Further, the wind direction guide 7 does not necessarily need to have an inclined surface that inclines toward the back as it approaches the row of the cells 1. For example, even when the wind direction guide 7 has a plane orthogonal to the path of the introduction passage 5, if the cooling air A is blocked by this, a flow disturbance such as a vortex occurs, so that the wind direction of a part of the wind direction guide 7 This is because the flow rate passing through the front side cells 1 can be increased by facing the row side of the cells 1.
[0028]
In addition, although the case where the 10 cells of the single cells 1 were arranged in a row was described in the above embodiment, the number of the cells 1 in each row may be any number as long as there are a plurality of cells. However, the present invention is intended to eliminate the deterioration of the flow of the cooling air A to several cells on the near side when a large number of single cells 1 are actually arranged, so that the number of cells is sufficient. It is preferable that the amount is too large.
[0029]
Moreover, although the said embodiment demonstrated the case where the row | line | column of the cell cell 1 of 3 rows was accommodated in the module case 2, the number of this row | line | column is not limited, for example, as shown in FIG. Alternatively, only one row of the cells 1 can be accommodated in one elongated region surrounded only by the side plate 2b.
[0030]
Further, in the above embodiment, the width of the introduction passage 5 and the discharge passage 6 is changed by arranging the left and right side plates 2b and the partition plates 2c obliquely with respect to the row of the unit cells 1, but each unit The batteries 1 may be arranged in a line while being shifted little by little. For example, in the case of FIG. 4, each unit cell 1 is arranged so as to be shifted to the left side toward the back in one rectangular area surrounded by four side plates 2 b orthogonal to each other on the rectangular bottom plate 2 a. Thus, the introduction passage 5 is made narrower toward the back and the discharge passage 6 is made wider toward the back.
[0031]
Furthermore, in the said embodiment, although the example at the time of supporting the upper end part and lower end part of each cell 1 and flowing the cooling air A to a side surface was shown, the direction which flows this cooling air A is especially limited. Instead, for example, as shown in FIG. 5, the cooling air A can be introduced from below the row of the cells 1 and discharged from above. In this case, the side of the row of the cells 1 is actually below the row of the cells 1, and the side wall provided on the side is the upper surface of the bottom plate 2 a. Then, by arranging the bottom plate 2a and the top plate 2d of the module case 2 to be inclined, the introduction passage 5 below the row of the cells 1 becomes narrower toward the back (right side in FIG. 5), and the row of the cells 1 is reduced. The upper discharge passage 6 is made wider toward the back.
[0032]
Furthermore, in the above embodiment, the case where the module case 2 in which the periphery on the bottom plate 2a is surrounded by the side plate 2b and the inside thereof is partitioned by the partition plate 2c is used has been described. Such a module case 2 does not necessarily have to be used as long as the introduction passage 5 and the discharge passage 6 are formed around the row. Moreover, although the said embodiment demonstrated the case where the cooling air A was introduce | transduced from the inlet 3 with the fan provided in the battery box, the means to send this cooling air A may use what kind of other means. . For example, if the introduction port 3 is directed in the traveling direction of the electric vehicle, the cooling air A is naturally introduced from the introduction port 3 when the electric vehicle is traveling. Furthermore, in the said embodiment, although the cooling air A of air was used for the cooling of the cell 1, if it is a fluid for cooling, other gas, such as an inert gas, water, an organic solvent, oil, etc. It is also possible to use other liquids.
[0033]
Furthermore, in the above-described embodiment, the long cylindrical unit cell 1 has been described. However, it is also possible to use a unit cell 1 such as a square type or a cylindrical type. Moreover, although the said embodiment demonstrated the case where the cell 1 of a lithium ion secondary battery was used, the kind of battery of this cell 1 is also arbitrary.
[0034]
【The invention's effect】
As is clear from the above description, according to the assembled battery of the present invention, a part of the fluid such as cooling air introduced into the introduction passage is directed to the row side of the unit cells by the fluid direction guide. The fluid reliably branches and flows between the cells arranged on the side, and all the cells in this row can be cooled uniformly.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention and is a cross-sectional plan view of an assembled battery in which unit cells are housed in a module case.
FIG. 2, showing an embodiment of the present invention, is a diagram showing the results of measuring the temperature of each unit cell for each column.
FIG. 3 is a partially enlarged cross-sectional plan view of a battery pack showing another embodiment of the wind direction guide according to the embodiment of the present invention.
FIG. 4 shows an embodiment of the present invention, and is a cross-sectional plan view of an assembled battery in a case where only one row of unit cells arranged obliquely is stored in a module case.
FIG. 5 shows an embodiment of the present invention, and is a longitudinal cross-sectional side view of an assembled battery when cooling air is sent from below a row of unit cells.
FIG. 6 is a cross-sectional plan view of an assembled battery in which a unit cell is housed in a module case, showing a conventional example.
FIG. 7 is a perspective view of a unit cell of a long cylindrical lithium ion secondary battery.
FIG. 8 is a view showing a conventional example and showing the result of measuring the temperature of each unit cell for each column.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cell 2 Module case 2a Bottom plate 2b Side plate 2c Partition plate 3 Inlet 4 Outlet 5 Inlet passage 6 Outlet passage 7 Wind direction guide

Claims (3)

相互に間隔を開けて並んだ複数セルの単電池の列の側方に、単電池の並び方向の一端側から導入された流体がこの単電池の列の側面に沿って流れるように形成された流体通路であって、単電池の並び方向に沿って他端側に進むほど流体の通路が狭くなる導入通路が設けられた組電池において、
導入通路における流体の導入部付近に、導入された流体の一部をガイドして流れの向きを単電池の列側に向かわせる流体方向ガイドを設けたことを特徴とする組電池。
Formed so that the fluid introduced from one end side of the unit cell arrangement direction flows along the side surface of the unit cell column on the side of the unit cell column of the plurality of cells arranged at intervals from each other. In the assembled battery provided with an introduction passage that is a fluid passage and the fluid passage becomes narrower toward the other end side along the cell arrangement direction,
An assembled battery comprising a fluid direction guide provided near the fluid introduction portion in the introduction passage to guide a part of the introduced fluid and to direct the flow direction to the row side of the unit cells.
前記単電池の列の導入通路とは反対側の側方に、単電池の並び方向の一端側からこの単電池の列の側面に沿って流体が流れ他端側から排出されるように形成された流体通路であって、単電池の並び方向に沿って他端側に進むほど流体の通路が広くなる排出通路が形成されたことを特徴とする請求項1に記載の組電池。On the side opposite to the introduction passage of the unit cell row, the fluid flows from one end side of the unit cell arrangement direction along the side surface of the unit cell row and is discharged from the other end side. 2. The assembled battery according to claim 1, wherein a discharge passage is formed in which the fluid passage becomes wider toward the other end side along the cell arrangement direction. 単電池の列の一方の側方に、流体の導入側となる一端側から他端側にかけて、この他端側に向かうほど単電池の列の側面に近づく側壁が設けられることにより前記導入通路が形成され、前記流体方向ガイドが、この側壁の一端側付近に設けられた導入通路側への突起であることを特徴とする請求項1又は2に記載の組電池。A side wall that is closer to the side surface of the unit cell row is provided on one side of the unit cell row from one end side to the other end side, which is the fluid introduction side, toward the other end side. The assembled battery according to claim 1 or 2, wherein the fluid direction guide formed is a protrusion toward the introduction passage provided near one end of the side wall.
JP2000140454A 2000-05-12 2000-05-12 Assembled battery Expired - Fee Related JP4665289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140454A JP4665289B2 (en) 2000-05-12 2000-05-12 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140454A JP4665289B2 (en) 2000-05-12 2000-05-12 Assembled battery

Publications (2)

Publication Number Publication Date
JP2001319697A JP2001319697A (en) 2001-11-16
JP4665289B2 true JP4665289B2 (en) 2011-04-06

Family

ID=18647743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140454A Expired - Fee Related JP4665289B2 (en) 2000-05-12 2000-05-12 Assembled battery

Country Status (1)

Country Link
JP (1) JP4665289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663766A (en) * 2014-09-30 2017-05-10 谷歌公司 Battery module
CN109962191A (en) * 2018-11-07 2019-07-02 蔚来汽车有限公司 Battery pack housing, battery pack and electric car

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067859A (en) * 2002-02-08 2003-08-19 현대자동차주식회사 Cooling structure for electric automobile
JP4243334B2 (en) 2002-06-11 2009-03-25 パナソニック株式会社 Assembled battery
JP4707923B2 (en) 2002-06-17 2011-06-22 パナソニック株式会社 Assembled battery
DE10238235A1 (en) * 2002-08-21 2004-03-04 Daimlerchrysler Ag Electrochemical energy store with heat exchanger structure has channel component between rows of electrochemical cells with adjacent longitudinal heat exchanger channels in adjacent cell rows
JP4574979B2 (en) * 2003-12-05 2010-11-04 パナソニック株式会社 Battery pack
JP4485187B2 (en) * 2003-12-24 2010-06-16 本田技研工業株式会社 Battery case
JP4576931B2 (en) * 2004-08-27 2010-11-10 トヨタ自動車株式会社 Electrical equipment mounting structure
US7662508B2 (en) * 2004-11-30 2010-02-16 Samsung Sdi Co., Ltd. Secondary battery module
JP4721944B2 (en) * 2005-04-13 2011-07-13 パナソニック株式会社 Large power supply
JP5109559B2 (en) * 2007-09-28 2012-12-26 三菱自動車工業株式会社 Battery unit
JP5109560B2 (en) * 2007-09-28 2012-12-26 三菱自動車工業株式会社 Battery unit
JP4787279B2 (en) * 2008-01-31 2011-10-05 三菱自動車工業株式会社 Battery module case and method of using battery module case
JP5415118B2 (en) * 2009-03-27 2014-02-12 本田技研工業株式会社 Battery mounting structure
JP5436924B2 (en) * 2009-05-08 2014-03-05 三洋電機株式会社 Battery system
JP5461341B2 (en) * 2010-08-18 2014-04-02 タイガースポリマー株式会社 Battery cooling structure
JP5690108B2 (en) * 2010-10-08 2015-03-25 日野自動車株式会社 Internal cooling structure of electrical storage box
JP2012113874A (en) * 2010-11-22 2012-06-14 Toshiba Corp Battery pack device
JP6045198B2 (en) * 2011-06-08 2016-12-14 株式会社Gsユアサ Battery pack
US8722223B2 (en) * 2011-09-01 2014-05-13 Samsung Sdi Co., Ltd. Battery pack
JP5766596B2 (en) * 2011-12-26 2015-08-19 タイガースポリマー株式会社 Battery cooling structure
JP5762942B2 (en) * 2011-12-26 2015-08-12 タイガースポリマー株式会社 Battery cooling structure
JP5744714B2 (en) * 2011-12-26 2015-07-08 タイガースポリマー株式会社 Battery cooling structure
JP5787091B2 (en) * 2012-01-24 2015-09-30 株式会社豊田自動織機 Channel forming member and battery module
JP6224321B2 (en) * 2013-01-11 2017-11-01 フタバ産業株式会社 Battery assembly restraint, battery assembly restraint member, battery
US10121997B1 (en) * 2014-07-30 2018-11-06 Google Llc Battery module
CN104466299B (en) * 2014-12-02 2017-02-08 重庆长安汽车股份有限公司 Medium hybrid automobile and power battery thermal management system thereof
JP6612169B2 (en) * 2016-03-31 2019-11-27 プライムアースEvエナジー株式会社 Battery pack cooling structure
JP7319040B2 (en) * 2018-11-29 2023-08-01 旭化成株式会社 battery case
CN110323387B (en) * 2019-07-10 2022-01-14 湖北亿纬动力有限公司 Battery box
CN113611952B (en) * 2021-08-25 2023-12-05 合肥召洋电子科技有限公司 Battery pack heat dissipation system and heat dissipation channel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171476A (en) * 1982-12-24 1984-09-27 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト High temperature storage battery
JPH05190213A (en) * 1991-05-17 1993-07-30 Deutsche Automobil Gmbh Battery box
JPH07320794A (en) * 1994-05-27 1995-12-08 Honda Motor Co Ltd Battery for electric motor vehicle
JP2000067934A (en) * 1998-08-24 2000-03-03 Toyota Motor Corp Battery cooling device
JP2000133225A (en) * 1998-10-30 2000-05-12 Sanyo Electric Co Ltd Battery pack
JP2000243461A (en) * 1999-02-23 2000-09-08 Toyota Motor Corp Battery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171476A (en) * 1982-12-24 1984-09-27 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト High temperature storage battery
JPH05190213A (en) * 1991-05-17 1993-07-30 Deutsche Automobil Gmbh Battery box
JPH07320794A (en) * 1994-05-27 1995-12-08 Honda Motor Co Ltd Battery for electric motor vehicle
JP2000067934A (en) * 1998-08-24 2000-03-03 Toyota Motor Corp Battery cooling device
JP2000133225A (en) * 1998-10-30 2000-05-12 Sanyo Electric Co Ltd Battery pack
JP2000243461A (en) * 1999-02-23 2000-09-08 Toyota Motor Corp Battery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663766A (en) * 2014-09-30 2017-05-10 谷歌公司 Battery module
CN106663766B (en) * 2014-09-30 2019-11-05 谷歌有限责任公司 Battery module
CN109962191A (en) * 2018-11-07 2019-07-02 蔚来汽车有限公司 Battery pack housing, battery pack and electric car
CN109962191B (en) * 2018-11-07 2021-11-16 蔚来(安徽)控股有限公司 Battery pack shell, battery pack and electric automobile

Also Published As

Publication number Publication date
JP2001319697A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP4665289B2 (en) Assembled battery
JP2001283940A (en) Set battery
JP5639835B2 (en) Battery pack and electric vehicle equipped with the same
KR102142669B1 (en) Air cooling type Battery Module having Guide vane
JP5556491B2 (en) Battery pack
US7905308B2 (en) Vehicle battery cooling device
KR100987565B1 (en) Power Supply for Vehicle
CN106471643B (en) For accommodating the shell of multiple battery cells with the cooling device being integrated in shell
JP6045198B2 (en) Battery pack
JP4136269B2 (en) Power supply
JP5409635B2 (en) Uniform air cooling structure for high capacity battery system
JP2010503976A (en) Modular battery device
JP3574175B2 (en) Battery for electric vehicle
KR20130035962A (en) Battery pack
KR101564439B1 (en) Battery cover
CN110386032B (en) Battery cooling device for electric vehicle
JP2007276583A (en) Power source device for vehicle
WO2006129340A1 (en) Lead battery
GB2589227A (en) Cooling system
KR101799238B1 (en) Battery cover assembly
CN210092927U (en) Charging device
JP2007123147A (en) Power source device
JP2001291533A (en) Battery pack
JP5183985B2 (en) Storage battery
JP2000294302A (en) Storage battery unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees