JP4660034B2 - A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less. - Google Patents

A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less. Download PDF

Info

Publication number
JP4660034B2
JP4660034B2 JP2001255600A JP2001255600A JP4660034B2 JP 4660034 B2 JP4660034 B2 JP 4660034B2 JP 2001255600 A JP2001255600 A JP 2001255600A JP 2001255600 A JP2001255600 A JP 2001255600A JP 4660034 B2 JP4660034 B2 JP 4660034B2
Authority
JP
Japan
Prior art keywords
less
steel
rolling
thickness
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001255600A
Other languages
Japanese (ja)
Other versions
JP2003064418A (en
Inventor
明彦 児島
嘉秀 長井
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001255600A priority Critical patent/JP4660034B2/en
Publication of JP2003064418A publication Critical patent/JP2003064418A/en
Application granted granted Critical
Publication of JP4660034B2 publication Critical patent/JP4660034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、延性破壊時に高い吸収エネルギーを有する板厚15mm以下のX70級鋼板を高い生産性のもとで製造するための技術である。鉄鋼業では厚板製造工程に適用される。本発明によって製造される鋼板は主に原油や天然ガス等の輸送用ラインパイプに使用される。このほかにも、延性破壊特性が重視される各種の鋼構造物に適用することが可能である。
【0002】
【従来の技術】
ラインパイプを現地溶接する際に、溶接能率の観点から溶接パス数が少なくてすむ薄手化の要求がある。一方で、輸送効率の観点からラインパイプの操業圧力を高めるために高強度化の要求がある。加えて近年では、ラインパイプの安全性の観点から不安定延性破壊に対する抵抗力を高める要求がある。これらが高い次元で要求されるラインパイプ用鋼板として、例えば下記の仕様を満たす鋼板の提供が求められている。
板厚≦15mm
X70級強度(API規格)
−20℃での2mmVノッチフルサイズシャルピー衝撃試験の吸収エネルギー(vE-20)≧250J
【0003】
本発明は上記三つの仕様を満たす鋼板を高い生産性のもとで厚板製造する技術である。
【0004】
厚板製造工程において、鋼板の強度と靭性を高めるために圧延後に加速冷却を適用することは広く行われている。このような加速冷却技術を駆使すれば、上記の要求特性を兼ね備える鋼板の製造は不可能ではない。しかしながら、板厚が15mm以下のような非常に薄い鋼板に加速冷却を適用すると、冷却が不均一になって鋼板形状が劣化する問題がある。その結果、鋼板形状を矯正するための余分な作業工程が発生し、生産現場での生産性が著しく阻害されることが課題であった。このような背景のもと、上記の要求特性を兼ね備える鋼板を加速冷却を使わずに非水冷圧延ままで高生産に製造する新たな大量生産技術が求められている(以後、圧延終了後に水冷による冷却を行わない製造方法を非水冷圧延或いは非水冷型圧延と称する)。
【0005】
【発明が解決しようとする課題】
本発明は、板厚が15mm以下で、X70級の強度を有し、250J以上のvE-20を有する鋼板を非水冷圧延ままで製造する方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者は、鋼成分、圧延条件の両面から鋼板の金属組織を制御することにより、−20℃での延性破面率を100%にでき、かつ、延性破面率100%のもとで破壊抵抗を高めることができること、そして、その結果高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板が製造できることを見出し、本発明を完成した。
【0007】
本発明の要旨は以下の通りである。
【0008】
(1) 質量%で
C :0.03〜0.06%、
Mn:1.4〜2.0%、
Mo:0.05〜0.5%、
Nb:0.01〜0.1%、
P :≦0.01%、
S :≦0.003%、
O :≦0.005%
を含有し、さらに
Si:0.05〜0.5%、
Al:0.001〜0.05%、
Ti:0.005〜0.05%
の1種または2種以上を含有し、残部が鉄および不可避的不純物である化学成分の鋼片を、1000℃以上に加熱して熱間圧延を行うにあたって、圧延前の鋼片厚みを圧延後の鋼板厚みの10倍以上とし、Ar3〜Ar3+100℃の温度範囲の中で累積圧下量が20%以上60%未満となるように圧延を終了し、その後空冷することを特徴とする、高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
【0009】
(2) 質量%で
Cu:≦1%、
Ni:≦1%、
Cr:≦1%、
V:≦0.1%、
B:≦0.005%
の1種または2種以上を含有することを特徴とする、上記(1)に記載の高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
【0010】
(3) 質量%で
Ca:≦0.005%、
Mg:≦0.005%、
REM:≦0.01%、
Zr:≦0.01%
の1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
【0011】
【発明の実施の形態】
本発明における最大の技術的課題は250J以上のvE-20を大量生産のもとで安定に獲得することである。このための技術的思想を(1)と(2)の二つに大別して説明する。
【0012】
(1) まず、シャルピー試験温度である−20℃での破壊形態を完全な延性破壊にすることが高いvE-20を得るための最低条件となる。つまり、−20℃での延性破面率を100%にしなければならない。このためには、本発明が対象とする鋼材においては、破面遷移温度を−60℃以下にする必要がある。これを実現するために、本発明では下記の三つの条件によって鋼板の金属組織を微細化する。
▲1▼Nbを0.01%以上添加した鋼片を1000℃以上に加熱した後に熱間圧延する。
▲2▼熱間圧延におけるAr3〜Ar3+100℃での累積圧下量を20%以上とする。
▲3▼熱間圧延前の鋼片厚みは熱間圧延後の鋼板厚みの10倍以上とする。
【0013】
これら三つの条件を同時に満たすことで圧延時のオーステナイト(γ)組織が微細化され、その後の放冷過程で生成する変態組織が微細化し、−60℃以下の破面遷移温度が達成され、−20℃での延性破面率が安定に100%となる。これら三つの条件が揃わないと、鋼板の破面遷移温度が−60℃よりも高くなってしまい、−20℃で100%の延性破面率を安定して確保することが困難となる。▲1▼について、Nbが0.01%未満であったり、鋼片加熱温度が1000℃未満であると、γ中に固溶するNbが不足するためにγ再結晶温度域とγ未再結晶温度域での圧延を通じてγ組織が十分に微細化しない。▲2▼について、Ar3〜Ar3+100℃での累積圧下量が20%未満であると、γ未再結晶温度域でのγの加工度が不足するためにγが十分に微細化しない。▲3▼について、圧延前の鋼片厚みが圧延後の鋼板厚みの10倍未満であると、Ar3+100℃以上の高温での加工量が不足してγが十分に微細化しない。
【0014】
(2) 次ぎに、延性破面率が100%のもとで破壊抵抗を高めなければならない。このために本発明では、セパレーションの抑制に着眼して鋼成分と圧延条件の両面から金属組織を制御することを考案した。セパレーションとは破面に垂直で圧延面に平行なわれである。セパレーションが発生すると吸収エネルギーが低下することが広く知られている。本発明が対象とする15mm以下の薄手鋼板を非水冷圧延ままで製造する場合、従来のように破面遷移温度を重視して強力な制御圧延を施すと、多数のセパレーションが発生し、延性破面率がたとえ100%であっても250Jを超えるような高い吸収エネルギーを安定に獲得することは困難であった。セパレーションの発生原因として、例えば「鉄と鋼、68(1982)、435」に記載されているように、圧延集合組織の関与が広く知られている。そして、圧延集合組織の発達を抑制するためにAr3以上で圧延を終了することがセパレーション抑制に効果的であることが知られている。しかしながら、セパレーションの発生に及ぼす鋼成分の影響に関して知見はなかった。
【0015】
そこで発明者らは、セパレーションに及ぼす鋼成分の影響を詳細に検討した結果、C量が非常に大きな影響を及ぼす実験事実を発見した。図1はC量を変化させた12mm厚みX70級鋼板におけるシャルピー衝撃特性の遷移曲線を示す。これらの鋼板は全ての鋼のAr3よりも高い同一の温度で圧延が終了され空冷された。
【0016】
これらの全ての鋼は−60℃以下の破面遷移温度を有しており、−20℃での延性破面率は全ての鋼板で100%である。しかしながら、vE-20の値はC量に依存して大きく異なる。C量が0.055%以下では300Jを超え、C量が0.074%以上では250Jを下回る。このようにC量に依存してvE-20が変動する理由は、セパレーションの発生量がC量に依存するからである。
【0017】
−20℃でのセパレーション発生量(Is:破面上に現れたセパレーション長さの総長)をみると、0.055%以下の低いC量ではセパレーションは全く発生していない。一方、0.074%以上の高いC量になるとセパレーションは発生する。−40℃でみるとC量の増加に伴ってセパレーション発生量が順次増加する傾向が明らかである。つまり、延性破面率が100%のもとでセパレーションを抑制して高い吸収エネルギーを獲得するためには、C量を低減することが極めて有効であることがわかった。
【0018】
C量が少なくなると、圧延集合組織の発達が抑制されてセパレーションが発生しにくくなるのである。C量を低減することの第二の効果は、鋼板の中心偏析部に沿って発生するセパレーションが抑制されることである。このような形態のセパレーションは破面に対して垂直に深く生成するために、吸収エネルギーを大きく損なう。C量が少なくなると連続鋳造鋼片における中心偏析が軽減されるので、鋼板の中心偏析部に生成するバンド組織の発達が抑制され、中心偏析起因の深いセパレーションが発生しにくくなるのである。
【0019】
このように、C量を低減することで、板厚方向の表層から内部にわたる全域にわたってセパレーションの発生を強力に抑制できることを突き止めた。この全く新しい知見に基づき、本発明ではC量を0.06%以下に制御することが技術的な柱である。
【0020】
さらに、圧延条件とセパレーションの関係を検討した結果、従来知られているようにAr3以上で圧延を終了することで圧延集合組織の回避を試みても、Ar3〜Ar3+100℃の累積圧下量が60%以上になると、γの圧延集合組織が変態組織に遺伝してセパレーションが発生しやくなることがわかった。従って、本発明ではこの温度域での累積圧下量を60%未満に抑えて徹底的にセパレーションの発生を抑制する。
【0021】
次に各化学成分の限定理由について説明する。
【0022】
Cは本発明で最も重要な元素である。強度を確保するためには0.03%以上のCが必要である。しかし、Cが多くなるとセパレーションが発生しやすくなり吸収エネルギーが低下する。また、Cが多くなると中心偏析が助長されて、これに起因する深いセパレーションが発生して吸収エネルギーが低下する。さらに、Cが多くなるとセメンタイト粒子やパーライト相の体積率が増加し、これらが延性破壊におけるボイド発生の芽となって破壊を促し、吸収エネルギーが低下する。以上から、Cの上限を0.06%としなければならない。
【0023】
Mnは強度、靭性の確保に不可欠な元素であり、特に強度の観点から本発明の低いCに代替して積極的に添加する必要がある。X70級の強度を低いCのもとで確保するために1.4%以上のMnを添加する必要がある。Mnが2.0%を超えると中心偏析が助長されて、これに起因する深いセパレーションが発生して吸収エネルギーが低下する。従って、Mnの上限を2.0%とする。
【0024】
Moは本発明で非常に重要な元素である。Moは圧延後の変態において焼入れ性を高め、針状フェライトとベイナイトが混じった微細組織の生成を促す。同時に、圧延方向に平行なバンド組織が形成されることを食い止め、より等方的な組織の生成を促す。セメンタイト粒子の分散状態も微細化される。その結果、組織微細化によって破面遷移温度が低下して強度が増加する。さらに、セパレーションとボイドが発生しにくくなって吸収エネルギーが向上する。これらの効果を享受するためには0.05%以上のMoが必要である。Moが0.5%を超えると焼入性が過剰となってMA(Martensite austenite constituent)と呼ばれる硬化相が増えて吸収エネルギーが低下する。従って、Moの上限を0.5%とする。
【0025】
Nbは本発明で重要な元素である。Nbは圧延によるγ組織の微細化を促して変態組織を微細化する。その結果、破面遷移温度の低下と強度の増加をもたらす。析出硬化によっても強度を増加させる。これらのためには0.01%以上のNbが必要である。Nbが0.1%を超えると中心偏析が助長されて、これに起因する深いセパレーションが発生して吸収エネルギーが低下する。従って、Nbの上限を0.1%とする。
【0026】
Pは本発明では好ましくない元素である。Pは中心偏析を助長したり粒界偏析することで靭性の著しい劣化を引き起こす。高い吸収エネルギーを得るためには、Pを0.01%以下にしなければならない。
【0027】
SとOは本発明で好ましくない元素である。これらは非金属介在物を形成してボイドの発生を促し、吸収エネルギーを低下させる。Sは0.003%以下、Oは0.005%以下にしなければならない。
【0028】
Si、Al、Tiは脱酸元素として作用する。Oを0.005%以下にするためには、これらの1種以上を添加する必要がある。このために、Siは0.05%以上、Alは0.001%以上、Tiは0.005%以上が必要である。これらの脱酸元素が多すぎると酸化物が粗大化して破壊の起点として悪影響を及ぼすため、Siは0.5%、Alは0.05%、Tiは0.05%を上限とする。
【0029】
Cu、Ni、Cr、V、Bは強度の増加に有効である。これらの添加量が多すぎるとHAZ靭性が損なわれるので、Cuは1%、Niは1%、Crは1%、Vは0.1%、Bは0.005%を上限とする。
【0030】
Ca、Mg、REM、ZrはMnに優先して硫化物を形成し、圧延で延伸化しにくい球状介在物をつくる。その結果、セパレーションとボイドが発生しにくくなって吸収エネルギーが向上する。これらの脱硫元素が多すぎると硫化物が粗大化して破壊の起点として悪影響を及ぼすため、Caは0.005%、Mgは0.005%、REMは0.01%、Zrは0.01%を上限とする。
【0031】
以上のような低C−高Mn−Mo−Nb成分を特徴とする鋼片を熱間圧延する際の条件を説明する。まず、鋼片の加熱温度を1000℃以上にする。この理由は、加熱温度が1000℃未満であると、γ中に固溶するNbが不足するため、圧延によるγ組織の微細化が不十分となるうえ、Nbの析出硬化も小さくなるからである。つまり、強度と破面遷移温度がともに劣化するからである。次ぎに、Ar3〜Ar3+100℃での累積圧下量を20%以上60%未満とする。この理由は、この温度域での累積圧下量が20%未満のときには、圧延によるγ組織の微細化が不十分となって破面遷移温度が劣化するからである。また、この温度域での累積圧下量が60%以上のときには、圧延によるγの集合組織が発達して変態組織に遺伝し、セパレーションが発生しやすくなって吸収エネルギーが劣化するからである。次ぎに、Ar3以上で圧延を終了する。この理由は、Ar3未満で圧延を終えると、加工フェライトの形成によって圧延集合組織の発達が著しくなり、セパレーションが多量に発生して吸収エネルギーが劇的に低下するからである。次ぎに、圧延終了後は空冷する。この理由は、板厚が15mm以下のような非常に薄い鋼板に加速冷却を適用すると、冷却が不均一になって鋼板形状が劣化し、これを矯正するための余分な作業工程が発生して生産性が著しく阻害されるからである。以上の熱間圧延において、圧延前の鋼片厚みは圧延後の鋼板厚みの10倍以上である。この理由は、圧延前の鋼片厚みが圧延後の鋼板厚みの10倍未満であると、Ar3+100℃以上での加工量が不足してγが十分に微細化しないため、破面遷移温度が劣化するためである。
【0032】
【実施例】
表1に示す化学成分を有する連続鋳造鋼片を素材として、表2に示す厚板製造条件で板厚15mm以下の鋼板を非水冷圧延ままで製造した。表3は鋼板の機械的性質を示す。
【0033】
【表1】

Figure 0004660034
【0034】
【表2】
Figure 0004660034
【0035】
【表3】
Figure 0004660034
【0036】
鋼1〜8は本発明鋼であり、化学成分と製造条件を特定の狭い範囲に最適化することで、X70級の強度と250J以上の高いvE-20を同時に満足している。非水冷圧延ままであるからこのときの生産性は高い。一方、鋼9〜24は従来鋼であり、化学成分あるいは製造条件が最適な範囲から外れるために、上記の強度あるいは吸収エネルギーを達成することができない。鋼9はCが少ないためにYSが不足している。鋼10はCが多いためにvE-20が不足している。鋼11はMnが少ないためにYSが不足している。鋼12はMnが多いためにvE-20が不足している。鋼13はMoが少ないためにvE-20が不足している。鋼14はMoが多いためにvE-20が不足している。鋼15はNbが少ないためにYS、FATT、SA-20、vE-20が劣化している。鋼16はNbが多いためにvE-20が不足している。鋼17はPが多いためにFATTとSA-20が劣化してvE-20も不足している。鋼18はSが多いためにvE-20が不足している。鋼19は脱酸元素であるSiが少ないためにOが多くなってしまい、vE-20が不足している。鋼20は圧延前の鋼片厚みが圧延後の鋼板厚みに対して小さいためにFATTとSA-20が劣化してvE-20が不足している。鋼21は加熱温度が低いためにYS、FATT、SA-20、vE-20が劣化している。鋼22はAr3〜Ar3+100℃での累積圧下量が少ないためにYS、FATT、SA-20、vE-20が劣化している。鋼23はAr3〜Ar3+100℃での累積圧下量が多いためにvE-20が劣化している。鋼24は圧延終了温度がAr3未満であるためにvE-20が不足している。
【0037】
【発明の効果】
本発明により、板厚が15mm以下で、X70級の強度を有し、250J以上のvE-20を有する鋼板を高い生産性のもとで製造することが可能になった。その結果、鋼板製造者は製造コストを低く抑え、製造納期を短縮することが可能となった。本発明によって製造された鋼板は、原油や天然ガス等の輸送用ラインパイプをはじめ、延性破壊特性が重視される各種の鋼構造物に適用され、鋼構造物の安全性を高めることに貢献する。
【図面の簡単な説明】
【図1】C量を変化させた12mm厚みX70級鋼板におけるシャルピー衝撃特性の遷移曲線を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a technique for producing an X70 grade steel sheet having a plate thickness of 15 mm or less having high absorbed energy at the time of ductile fracture with high productivity. In the steel industry, it is applied to the plate manufacturing process. The steel sheet produced according to the present invention is mainly used for transportation line pipes for crude oil, natural gas and the like. In addition, it can be applied to various steel structures where ductile fracture characteristics are important.
[0002]
[Prior art]
When line pipes are welded on site, there is a demand for thinning that requires fewer welding passes from the viewpoint of welding efficiency. On the other hand, there is a demand for higher strength in order to increase the operating pressure of the line pipe from the viewpoint of transportation efficiency. In addition, in recent years, there is a demand to increase resistance to unstable ductile fracture from the viewpoint of safety of line pipes. As steel plates for line pipes that are required at a high level, for example, provision of steel plates that satisfy the following specifications is required.
Plate thickness ≤15mm
X70 grade strength (API standard)
Absorbed energy (vE -20 ) ≧ 250 J in 2 mm V notch full size Charpy impact test at −20 ° C.
[0003]
The present invention is a technique for manufacturing a steel plate satisfying the above three specifications with high productivity.
[0004]
In the plate manufacturing process, applying accelerated cooling after rolling in order to increase the strength and toughness of the steel sheet is widely performed. By making full use of such accelerated cooling technology, it is not impossible to manufacture a steel sheet having the above required characteristics. However, when accelerated cooling is applied to a very thin steel plate having a plate thickness of 15 mm or less, there is a problem that the cooling becomes uneven and the shape of the steel plate deteriorates. As a result, an extra work process for correcting the shape of the steel sheet occurs, and the problem is that productivity at the production site is significantly hindered. Against this background, there is a need for a new mass production technology for manufacturing steel plates that have the above required characteristics in high production without using accelerated cooling without using accelerated cooling. A production method without cooling is referred to as non-water-cooled rolling or non-water-cooled rolling).
[0005]
[Problems to be solved by the invention]
The present invention provides a method for producing a steel sheet having a plate thickness of 15 mm or less, an X70 grade strength, and a vE- 20 of 250 J or more as it is non-water-cooled.
[0006]
[Means for Solving the Problems]
The present inventor can make the ductile fracture surface ratio at −20 ° C. 100% by controlling the metal structure of the steel sheet from both the steel component and rolling conditions, and the ductile fracture surface ratio is 100%. The inventors have found that the fracture resistance can be increased, and as a result, an X70 grade steel sheet having a thickness of 15 mm or less having high impact absorption energy can be produced, and the present invention has been completed.
[0007]
The gist of the present invention is as follows.
[0008]
(1) C: 0.03 to 0.06% by mass%,
Mn: 1.4 to 2.0%,
Mo: 0.05-0.5%
Nb: 0.01 to 0.1%,
P: ≦ 0.01%
S: ≦ 0.003%,
O: ≦ 0.005%
Further Si: 0.05-0.5%,
Al: 0.001 to 0.05%,
Ti: 0.005 to 0.05%
In the case of carrying out hot rolling by heating a steel slab of chemical components containing one or more of the above, the balance being iron and inevitable impurities to 1000 ° C. or higher, the thickness of the steel slab before rolling is rolled. The rolling is finished so that the cumulative reduction amount is 20% or more and less than 60% in the temperature range of Ar 3 to Ar 3 + 100 ° C., and then air-cooled. A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less.
[0009]
(2) Cu: ≦ 1% by mass%
Ni: ≦ 1%
Cr: ≦ 1%
V: ≦ 0.1%
B: ≦ 0.005%
1 type or 2 types or more of these, The non-water-cooled type manufacturing method of X70 grade steel plate with a plate | board thickness of 15 mm or less which has the high impact absorption energy as described in said (1) characterized by the above-mentioned.
[0010]
(3) By mass%, Ca: ≦ 0.005%,
Mg: ≦ 0.005%,
REM: ≦ 0.01%
Zr: ≦ 0.01%
1 type or 2 types or more of these, The non-water-cooled type manufacturing method of the X70 grade steel plate with a plate | board thickness of 15 mm or less which has the high impact absorption energy as described in said (1) or (2) characterized by the above-mentioned.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The greatest technical problem in the present invention is to stably acquire vE- 20 of 250 J or more under mass production. The technical idea for this purpose will be broadly divided into (1) and (2).
[0012]
(1) First, making the fracture mode at −20 ° C., which is the Charpy test temperature, completely ductile fracture is the minimum condition for obtaining high vE- 20 . That is, the ductile fracture surface rate at -20 ° C must be 100%. For this purpose, in the steel material to which the present invention is directed, the fracture surface transition temperature needs to be −60 ° C. or lower. In order to realize this, the present invention refines the metal structure of the steel sheet under the following three conditions.
(1) A steel slab to which 0.01% or more of Nb has been added is heated to 1000 ° C. or higher and then hot-rolled.
(2) The cumulative reduction amount at Ar 3 to Ar 3 + 100 ° C. in hot rolling is set to 20% or more.
(3) The thickness of the steel slab before hot rolling is at least 10 times the thickness of the steel plate after hot rolling.
[0013]
By simultaneously satisfying these three conditions, the austenite (γ) structure at the time of rolling is refined, the transformation structure generated in the subsequent cooling process is refined, and a fracture surface transition temperature of −60 ° C. or less is achieved. The ductile fracture surface rate at 20 ° C. is stably 100%. If these three conditions are not met, the fracture surface transition temperature of the steel sheet becomes higher than −60 ° C., and it becomes difficult to stably ensure a ductile fracture surface ratio of 100% at −20 ° C. Regarding (1), if Nb is less than 0.01% or the steel slab heating temperature is less than 1000 ° C., the amount of Nb that dissolves in γ is insufficient, so the γ recrystallization temperature range and γ unrecrystallization The γ structure is not sufficiently refined through rolling in the temperature range. Regarding {circle around (2)}, when the cumulative reduction amount at Ar 3 to Ar 3 + 100 ° C. is less than 20%, γ is not sufficiently refined because the degree of processing of γ in the γ non-recrystallization temperature range is insufficient. Regarding (3), if the thickness of the steel slab before rolling is less than 10 times the thickness of the steel sheet after rolling, the processing amount at a high temperature of Ar 3 + 100 ° C. or more is insufficient and γ is not sufficiently refined.
[0014]
(2) Next, the fracture resistance must be increased with a ductile fracture surface ratio of 100%. For this purpose, the present invention has been devised to control the metal structure from both the steel component and rolling conditions, focusing on the suppression of separation. Separation is a crack perpendicular to the fracture surface and parallel to the rolling surface. It is widely known that the absorption energy decreases when separation occurs. When manufacturing a thin steel sheet of 15 mm or less targeted by the present invention as it is with non-water-cooled rolling, if strong controlled rolling is performed with emphasis on the fracture surface transition temperature as in the prior art, a large number of separations occur and ductile fracture occurs. Even if the area ratio is 100%, it has been difficult to stably obtain high absorbed energy exceeding 250 J. As described above, for example, “Iron and Steel, 68 (1982), 435” is widely known as a cause of separation. In order to suppress the development of the rolling texture, it is known that it is effective for suppressing the separation to end the rolling at Ar 3 or more. However, there was no knowledge regarding the influence of steel components on the occurrence of separation.
[0015]
Thus, the inventors have studied in detail the influence of the steel component on the separation, and as a result, have found experimental facts in which the C content has a very large effect. FIG. 1 shows a transition curve of Charpy impact characteristics in a 12 mm thick X70 grade steel sheet with varying C content. These steel sheets were rolled and air cooled at the same temperature higher than Ar 3 of all steels.
[0016]
All these steels have a fracture surface transition temperature of −60 ° C. or lower, and the ductile fracture surface ratio at −20 ° C. is 100% for all steel plates. However, the value of vE- 20 varies greatly depending on the amount of C. When the C content is 0.055% or less, it exceeds 300J, and when the C content is 0.074% or more, it is less than 250J. The reason why vE -20 varies depending on the amount of C in this way is that the amount of separation generated depends on the amount of C.
[0017]
When the amount of separation generated at −20 ° C. (Is: the total length of the separation length appearing on the fracture surface) is observed, no separation occurs at a low C amount of 0.055% or less. On the other hand, separation occurs when the amount of C is as high as 0.074% or more. When the temperature is −40 ° C., it is clear that the amount of separation generated increases with increasing C content. That is, it was found that reducing the amount of C is extremely effective in order to suppress separation under a ductile fracture surface ratio of 100% and obtain high absorbed energy.
[0018]
When the amount of C decreases, the development of the rolling texture is suppressed and separation is less likely to occur. The second effect of reducing the amount of C is that the separation that occurs along the center segregation portion of the steel sheet is suppressed. Since this type of separation is deeply generated perpendicular to the fracture surface, the absorbed energy is greatly impaired. When the C content is reduced, the center segregation in the continuously cast steel slab is reduced, so that the development of the band structure generated at the center segregation portion of the steel sheet is suppressed, and the deep separation caused by the center segregation is less likely to occur.
[0019]
Thus, it has been found that by reducing the amount of C, it is possible to strongly suppress the occurrence of separation over the entire region from the surface layer in the thickness direction to the inside. Based on this completely new knowledge, in the present invention, it is a technical pillar to control the C amount to 0.06% or less.
[0020]
Furthermore, as a result of examining the relationship between the rolling conditions and the separation, even if it is attempted to avoid the rolling texture by ending rolling at Ar 3 or higher as conventionally known, the cumulative reduction of Ar 3 to Ar 3 + 100 ° C. It has been found that when the amount exceeds 60%, the rolled texture of γ is inherited to the transformed structure, and separation is likely to occur. Therefore, in the present invention, the cumulative reduction amount in this temperature range is suppressed to less than 60%, and the occurrence of separation is thoroughly suppressed.
[0021]
Next, the reasons for limiting each chemical component will be described.
[0022]
C is the most important element in the present invention. In order to ensure the strength, C of 0.03% or more is necessary. However, when C increases, separation easily occurs and the absorbed energy decreases. Further, when C increases, center segregation is promoted, deep separation resulting from this occurs, and the absorbed energy decreases. Furthermore, when the amount of C increases, the volume fraction of cementite particles and pearlite phase increases, and these become the buds of void generation in ductile fracture, which promotes destruction and the absorbed energy decreases. From the above, the upper limit of C must be 0.06%.
[0023]
Mn is an element indispensable for securing strength and toughness, and it is necessary to actively add it instead of the low C of the present invention, particularly from the viewpoint of strength. In order to ensure the strength of X70 grade under low C, it is necessary to add 1.4% or more of Mn. When Mn exceeds 2.0%, center segregation is promoted, deep separation resulting from this occurs, and the absorbed energy decreases. Therefore, the upper limit of Mn is set to 2.0%.
[0024]
Mo is an extremely important element in the present invention. Mo enhances hardenability in the transformation after rolling, and promotes the formation of a fine structure in which acicular ferrite and bainite are mixed. At the same time, the formation of a band structure parallel to the rolling direction is prevented, and the generation of a more isotropic structure is promoted. The dispersion state of the cementite particles is also refined. As a result, the fracture surface transition temperature decreases due to the refinement of the structure, and the strength increases. Furthermore, separation and voids are less likely to occur and the absorbed energy is improved. In order to enjoy these effects, 0.05% or more of Mo is necessary. When Mo exceeds 0.5%, the hardenability becomes excessive, and a hardening phase called MA (Martensite Austenite constituent) increases and the absorbed energy decreases. Therefore, the upper limit of Mo is 0.5%.
[0025]
Nb is an important element in the present invention. Nb promotes refinement of the γ structure by rolling to refine the transformation structure. As a result, the fracture surface transition temperature is lowered and the strength is increased. Strength is also increased by precipitation hardening. For these, 0.01% or more of Nb is necessary. When Nb exceeds 0.1%, center segregation is promoted, deep separation resulting from this occurs, and the absorbed energy decreases. Therefore, the upper limit of Nb is set to 0.1%.
[0026]
P is an element which is not preferable in the present invention. P promotes center segregation or causes grain boundary segregation to cause significant deterioration in toughness. In order to obtain high absorbed energy, P must be 0.01% or less.
[0027]
S and O are undesirable elements in the present invention. These form non-metallic inclusions, promote the generation of voids, and reduce the absorbed energy. S must be 0.003% or less, and O must be 0.005% or less.
[0028]
Si, Al, and Ti act as deoxidizing elements. In order to make O into 0.005% or less, it is necessary to add one or more of these. Therefore, it is necessary that Si is 0.05% or more, Al is 0.001% or more, and Ti is 0.005% or more. If there are too many of these deoxidizing elements, the oxide becomes coarse and adversely affects the starting point of destruction, so the upper limit is set to 0.5% for Si, 0.05% for Al, and 0.05% for Ti.
[0029]
Cu, Ni, Cr, V, and B are effective for increasing the strength. If these amounts are too large, the HAZ toughness is impaired, so the upper limit is 1% for Cu, 1% for Ni, 1% for Cr, 0.1% for V, and 0.005% for B.
[0030]
Ca, Mg, REM, and Zr form sulfides in preference to Mn, and form spherical inclusions that are difficult to stretch by rolling. As a result, separation and voids are less likely to occur and the absorbed energy is improved. If too much of these desulfurization elements are present, the sulfides become coarse and adversely affect the starting point of destruction. Therefore, Ca is 0.005%, Mg is 0.005%, REM is 0.01%, and Zr is 0.01%. Is the upper limit.
[0031]
The conditions at the time of hot rolling the steel slab characterized by the above low C-high Mn-Mo-Nb component are demonstrated. First, the heating temperature of the steel slab is set to 1000 ° C. or higher. The reason is that if the heating temperature is less than 1000 ° C., Nb that is solid-solved in γ is insufficient, so that the γ structure is not sufficiently refined by rolling and the precipitation hardening of Nb is also reduced. . That is, both strength and fracture surface transition temperature deteriorate. Next, the cumulative reduction amount at Ar 3 to Ar 3 + 100 ° C. is set to 20% or more and less than 60%. This is because when the cumulative reduction amount in this temperature region is less than 20%, the γ structure is not sufficiently refined by rolling and the fracture surface transition temperature is deteriorated. Further, when the cumulative reduction amount in this temperature range is 60% or more, the texture of γ due to rolling develops and is inherited in the transformation structure, so that the separation easily occurs and the absorbed energy deteriorates. Next, rolling is completed at Ar 3 or more. The reason for this is that when rolling is finished at less than Ar 3 , the development of the rolled texture becomes remarkable due to the formation of processed ferrite, a large amount of separation occurs, and the absorbed energy decreases dramatically. Next, air cooling is performed after rolling. The reason for this is that if accelerated cooling is applied to a very thin steel plate with a plate thickness of 15 mm or less, the cooling becomes non-uniform and the steel plate shape deteriorates, and an extra work step is required to correct this. This is because productivity is significantly inhibited. In the above hot rolling, the thickness of the steel slab before rolling is at least 10 times the thickness of the steel plate after rolling. The reason for this is that if the thickness of the steel slab before rolling is less than 10 times the thickness of the steel sheet after rolling, the processing amount at Ar 3 + 100 ° C. or more will be insufficient and γ will not be sufficiently refined. This is because of deterioration.
[0032]
【Example】
A steel plate having a thickness of 15 mm or less was manufactured as a non-water-cooled rolling under the thick plate manufacturing conditions shown in Table 2 using a continuously cast steel piece having chemical components shown in Table 1 as a raw material. Table 3 shows the mechanical properties of the steel sheet.
[0033]
[Table 1]
Figure 0004660034
[0034]
[Table 2]
Figure 0004660034
[0035]
[Table 3]
Figure 0004660034
[0036]
Steels 1 to 8 are steels of the present invention, and by simultaneously satisfying X70 grade strength and high vE- 20 of 250 J or more by optimizing chemical components and production conditions in a specific narrow range. Productivity at this time is high because it is still non-water-cooled. On the other hand, steels 9 to 24 are conventional steels, and the above-described strength or absorbed energy cannot be achieved because the chemical components or production conditions deviate from the optimum range. Since Steel 9 has a small amount of C, YS is insufficient. Steel 10 has a large amount of C, so vE- 20 is insufficient. Steel 11 is deficient in YS due to its low Mn content. Steel 12 is deficient in vE- 20 due to its high Mn content. Since the steel 13 has a small amount of Mo, vE- 20 is insufficient. Steel 14 is deficient in vE- 20 due to its high Mo content. Since Steel 15 has a small amount of Nb, YS, FATT, SA- 20 , and vE- 20 are deteriorated. Steel 16 lacks vE -20 due to the high Nb content. Since Steel 17 has a large amount of P, FATT and SA- 20 deteriorate and vE- 20 is also insufficient. Since steel 18 has a large amount of S, vE- 20 is insufficient. Steel 19 has a small amount of Si, which is a deoxidizing element, and therefore O is increased, and vE- 20 is insufficient. In Steel 20, the thickness of the steel slab before rolling is smaller than the thickness of the steel plate after rolling, so that FATT and SA- 20 deteriorate and vE- 20 is insufficient. Since the heating temperature of the steel 21 is low, YS, FATT, SA- 20 , and vE- 20 are deteriorated. Since the steel 22 has a small cumulative reduction amount at Ar 3 to Ar 3 + 100 ° C., YS, FATT, SA −20 , and vE −20 are deteriorated. In Steel 23, vE- 20 is deteriorated due to a large cumulative rolling amount at Ar 3 to Ar 3 + 100 ° C. Steel 24 has an insufficient vE -20 for rolling end temperature is less than Ar 3.
[0037]
【The invention's effect】
According to the present invention, it is possible to manufacture a steel plate having a plate thickness of 15 mm or less, an X70 grade strength, and a vE- 20 of 250 J or more with high productivity. As a result, the steel sheet manufacturer can keep the production cost low and shorten the production delivery time. The steel sheet produced by the present invention is applied to various steel structures where ductile fracture characteristics are important, including transportation line pipes for crude oil, natural gas, etc., and contributes to improving the safety of steel structures. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a transition curve of Charpy impact characteristics in a 12 mm thick X70 grade steel plate with varying C content.

Claims (3)

質量%で
C :0.03〜0.06%、
Mn:1.4〜2.0%、
Mo:0.05〜0.5%、
Nb:0.01〜0.1%、
P :≦0.01%、
S :≦0.003%、
O :≦0.005%
を含有し、さらに
Si:0.05〜0.5%、
Al:0.001〜0.05%、
Ti:0.005〜0.05%
の1種または2種以上を含有し、残部が鉄および不可避的不純物である化学成分の鋼片を、1000℃以上に加熱して熱間圧延を行うにあたって、圧延前の鋼片厚みを圧延後の鋼板厚みの10倍以上とし、Ar3〜Ar3+100℃の温度範囲の中で累積圧下量が20%以上60%未満となるように圧延を終了し、その後空冷することを特徴とする、高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
C: 0.03 to 0.06% by mass%,
Mn: 1.4 to 2.0%,
Mo: 0.05-0.5%
Nb: 0.01 to 0.1%,
P: ≦ 0.01%
S: ≦ 0.003%,
O: ≦ 0.005%
Further Si: 0.05-0.5%,
Al: 0.001 to 0.05%,
Ti: 0.005 to 0.05%
In the case of carrying out hot rolling by heating a steel slab of chemical components containing one or more of the above, the balance being iron and inevitable impurities to 1000 ° C. or higher, the thickness of the steel slab before rolling is rolled. The rolling is finished so that the cumulative reduction amount is 20% or more and less than 60% in the temperature range of Ar 3 to Ar 3 + 100 ° C., and then air-cooled. A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less.
質量%で
Cu:≦1%、
Ni:≦1%、
Cr:≦1%、
V:≦0.1%、
B:≦0.005%
の1種または2種以上を含有することを特徴とする、請求項1に記載の高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
Cu in the mass%: ≦ 1%,
Ni: ≦ 1%
Cr: ≦ 1%
V: ≦ 0.1%
B: ≦ 0.005%
The non-water-cooled manufacturing method of X70 grade steel plate with a plate | board thickness of 15 mm or less which has the high impact absorption energy of Claim 1 characterized by containing 1 type, or 2 or more types of these.
質量%で
Ca:≦0.005%、
Mg:≦0.005%、
REM:≦0.01%、
Zr:≦0.01%
の1種または2種以上を含有することを特徴とする、請求項1または請求項2に記載の高い衝撃吸収エネルギーを有する板厚15mm以下のX70級鋼板の非水冷型製造方法。
In mass%, Ca: ≦ 0.005%,
Mg: ≦ 0.005%,
REM: ≦ 0.01%
Zr: ≦ 0.01%
The non-water-cooled manufacturing method of the X70 grade steel plate with a plate | board thickness of 15 mm or less which has the high impact absorption energy of Claim 1 or Claim 2 characterized by containing 1 type, or 2 or more types of these.
JP2001255600A 2001-08-27 2001-08-27 A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less. Expired - Fee Related JP4660034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255600A JP4660034B2 (en) 2001-08-27 2001-08-27 A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255600A JP4660034B2 (en) 2001-08-27 2001-08-27 A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less.

Publications (2)

Publication Number Publication Date
JP2003064418A JP2003064418A (en) 2003-03-05
JP4660034B2 true JP4660034B2 (en) 2011-03-30

Family

ID=19083542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255600A Expired - Fee Related JP4660034B2 (en) 2001-08-27 2001-08-27 A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less.

Country Status (1)

Country Link
JP (1) JP4660034B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465345C1 (en) * 2011-08-31 2012-10-27 Открытое акционерное общество "Магнитогорский металлургический комбинат" Manufacturing method of plates from low-alloy pipe steel with strength class k60
RU2479639C1 (en) * 2012-02-17 2013-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Manufacturing method of plates from low-alloy pipe steel with strength class k60
RU2479641C1 (en) * 2012-02-22 2013-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Manufacturing method of cold-rolled strip from low-carbon steel grades
JP6343472B2 (en) * 2014-03-28 2018-06-13 株式会社神戸製鋼所 Steel sheets for high-strength line pipes and steel pipes for high-strength line pipes with excellent low-temperature toughness
CN105886912B (en) * 2016-04-27 2017-12-29 武汉钢铁有限公司 A kind of low compression ratio think gauge X70 levels steel for gas delivering pipeline and production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123714A (en) * 1984-07-12 1986-02-01 Nippon Steel Corp Manufacture of steel having superior toughness at low temperature in weld heat-affected zone
JPH05255744A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Production of high tensile strength steel plate excellent in toughness at low temperature
JPH07268457A (en) * 1994-03-28 1995-10-17 Sumitomo Metal Ind Ltd Production of thick steel plate for line pipe, having high strength and high toughness
JP2001152248A (en) * 1999-11-24 2001-06-05 Nippon Steel Corp Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123714A (en) * 1984-07-12 1986-02-01 Nippon Steel Corp Manufacture of steel having superior toughness at low temperature in weld heat-affected zone
JPH05255744A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Production of high tensile strength steel plate excellent in toughness at low temperature
JPH07268457A (en) * 1994-03-28 1995-10-17 Sumitomo Metal Ind Ltd Production of thick steel plate for line pipe, having high strength and high toughness
JP2001152248A (en) * 1999-11-24 2001-06-05 Nippon Steel Corp Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness

Also Published As

Publication number Publication date
JP2003064418A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP5776860B1 (en) Steel plates and line pipes for thick-walled high-strength line pipes with excellent sour resistance, crush resistance and low temperature toughness
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
KR101603461B1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
KR101368604B1 (en) Electric resistance welded(erw) steel pipe for oil well use and process for producing erw steel pipe for oil well use
WO2011040622A1 (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
WO2013145771A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
WO2013145770A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JP2003293089A (en) High strength steel sheet having excellent deformability, high strength steel pipe and production method thereof
JP2007519819A (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
WO2003006699A1 (en) High strength steel pipe having strength higher than that of api x65 grade
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP2015189984A (en) Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
JP2001020039A (en) High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production
JP4719313B2 (en) Steel plate and line pipe steel pipe with excellent sour resistance
JP2004131799A (en) High strength steel pipe excellent in deformability, low-temperature toughness and haz toughness, and its manufacturing method
JP4660034B2 (en) A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less.
JP6736959B2 (en) Steel plate manufacturing method
JP2510187B2 (en) Method for producing hot-rolled steel sheet for low-yield ratio high-strength line pipe with excellent low temperature toughness
JP4705287B2 (en) Non-water-cooled manufacturing method for thin high-strength steel sheet with high absorbed energy
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP2006144037A (en) High strength steel pipe for pipe line having excellent deformation property after aging and its production method
JP5472423B2 (en) High-strength, high-toughness steel plate with excellent cutting crack resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4660034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees