JP4658911B2 - Air-fuel ratio control device for generator driving engine - Google Patents

Air-fuel ratio control device for generator driving engine Download PDF

Info

Publication number
JP4658911B2
JP4658911B2 JP2006324642A JP2006324642A JP4658911B2 JP 4658911 B2 JP4658911 B2 JP 4658911B2 JP 2006324642 A JP2006324642 A JP 2006324642A JP 2006324642 A JP2006324642 A JP 2006324642A JP 4658911 B2 JP4658911 B2 JP 4658911B2
Authority
JP
Japan
Prior art keywords
fuel ratio
engine
air
load
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006324642A
Other languages
Japanese (ja)
Other versions
JP2008138568A (en
Inventor
裕介 山本
貴生 藤若
昌幸 飯泉
知宏 野口
幹夫 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Osaka Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006324642A priority Critical patent/JP4658911B2/en
Publication of JP2008138568A publication Critical patent/JP2008138568A/en
Application granted granted Critical
Publication of JP4658911B2 publication Critical patent/JP4658911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、排気通路に触媒装置を設置した発電機駆動用エンジンであって、エンジンの負荷遮断装置及び発電機の発電電力と商用電力と同期させる同期装置をそなえた発電機駆動用エンジンの空燃比制御装置に関する。   The present invention relates to an engine for driving a generator having a catalyst device installed in an exhaust passage, the engine driving engine having an engine load shut-off device and a synchronizer for synchronizing the generated power of the generator and commercial power. The present invention relates to a fuel ratio control device.

エンジン(内燃機関)においては、過給機出口の排気通路のNOx還元触媒装置、HC等の酸化触媒装置が装備されており、かかる触媒装置の活性化を促進する手段として多くの技術が提供されている。
かかる触媒装置の活性化技術の一つに、特許文献1(特開2000−257479号公報)の技術がある。
An engine (internal combustion engine) is equipped with a NOx reduction catalyst device in an exhaust passage at a supercharger outlet and an oxidation catalyst device such as HC, and many techniques are provided as means for promoting the activation of the catalyst device. ing.
One of the activation techniques of such a catalyst device is a technique disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2000-257479).

かかる技術においては、排気通路に設置した触媒の温度を検出するとともに、エンジン負荷等のエンジン運転状態を検出し、該エンジン運転状態によってエンジンの目標空燃比を制御する空燃比制御手段を設け、触媒温度が目標の活性温度よりも低い場合には目標空燃比を通常時の空燃比よりも高く且つ理論空燃比よりも高い活性化リーン空燃比に設定するようにして、エンジンの始動時に触媒温度を上昇させ、触媒機能の立ち上がり性を良化し、触媒装置の排気ガス浄化性能を向上せしめている。   In such a technique, the temperature of the catalyst installed in the exhaust passage is detected, the engine operating state such as the engine load is detected, and air-fuel ratio control means for controlling the target air-fuel ratio of the engine according to the engine operating state is provided, and the catalyst When the temperature is lower than the target activation temperature, the target air-fuel ratio is set to an activated lean air-fuel ratio that is higher than the normal air-fuel ratio and higher than the stoichiometric air-fuel ratio. The catalyst function is improved to improve the startability of the catalyst function, and the exhaust gas purification performance of the catalyst device is improved.

特開2000−257479号公報JP 2000-257479 A

ガスエンジン駆動の発電システムでは、エンジン停止操作の際は、通常、無負荷運転を一定時間行ってからエンジンを停止している。かかるエンジンでは、無負荷から軽負荷運転に移行する移動領域において、余剰出力を稼ぐために空燃比を無負荷定常時要求空燃比に対して過濃側(高リッチ側)に設定しているため、前記のようなエンジン停止操作の際の無負荷領域での空燃比は要求空燃比に対して過濃側(高リッチ側)に寄っている。   In a gas engine-driven power generation system, when the engine is stopped, the engine is normally stopped after a no-load operation is performed for a certain period of time. In such an engine, the air-fuel ratio is set to the rich side (high rich side) with respect to the required air-fuel ratio at the time of no-load steady state in order to earn surplus output in the moving region where the load is shifted from no load to light load operation. The air-fuel ratio in the no-load region during the engine stop operation as described above is closer to the rich side (high rich side) than the required air-fuel ratio.

然るに、排気通路に酸化触媒装置を設置したガスエンジン駆動発電システムにおいて、前記のようにエンジン停止操作の際に無負荷運転を一定時間行うと、空燃比がエンジン要求空燃比に対して過濃側(高リッチ側)に寄っているため、かかる無負荷運転時にエンジンからの未燃ガス排出量が増加し、この未燃ガスが酸化触媒装置内で急速に反応して酸化触媒の温度が急上昇し、酸化触媒の機能低下をもたらすとともに、酸化触媒の耐久性を大きく低下させる。   However, in a gas engine-driven power generation system in which an oxidation catalyst device is installed in the exhaust passage, if the no-load operation is performed for a certain period of time during the engine stop operation as described above, the air-fuel ratio becomes excessive on the engine-required air-fuel ratio side. Because it is close to the (high-rich side), unburned gas emissions from the engine increase during such no-load operation, and this unburned gas reacts rapidly in the oxidation catalyst device, causing the temperature of the oxidation catalyst to rise rapidly. In addition to reducing the function of the oxidation catalyst, the durability of the oxidation catalyst is greatly reduced.

前述の問題の発生を回避するため、当該無負荷運転域での空燃比を前記エンジン要求空燃比に合わせて希薄化(リーン化)すれば、前記のような酸化触媒の温度急上昇は回避できるが、このように空燃比をリーン化すると、無負荷から軽負荷運転に移行する移動領域における余剰出力が減少して、エンジンにスムーズに負荷が掛けられなくなって、発電システムの運転性能の低下をもたらす。   In order to avoid the occurrence of the above-mentioned problem, if the air-fuel ratio in the no-load operation range is diluted (lean) in accordance with the engine required air-fuel ratio, the temperature increase of the oxidation catalyst as described above can be avoided. In this way, when the air-fuel ratio is made lean, the surplus output in the moving region where the load is shifted from no load to light load decreases, and the engine cannot be loaded smoothly, resulting in a decrease in the operating performance of the power generation system. .

本発明はこのような従来技術の課題に鑑み、エンジン停止操作の際に負荷遮断装置からの負荷遮断信号により無負荷運転を行う際において、排気通路に設置した触媒装置の過大な温度上昇を回避して触媒の機能低下を防止しその持久性を向上させるとともに、無負荷から軽負荷運転への移動領域における余剰出力を確保しスムーズに負荷運転に移行できて、発電システムの運転性能を高く保持可能とした発電機駆動用エンジンの空燃比制御装置を提供することを目的とする。   In view of the problems of the prior art, the present invention avoids an excessive temperature rise of the catalyst device installed in the exhaust passage when performing no-load operation by a load cutoff signal from the load cutoff device during engine stop operation. In addition to preventing the catalyst from degrading and improving its durability, it is possible to ensure a surplus output in the moving range from no-load to light-load operation and smoothly shift to load operation, maintaining high operating performance of the power generation system. An object of the present invention is to provide an air-fuel ratio control device for an engine for driving a generator.

本発明は前述の目的を達成するもので、排気通路に触媒装置を設置するとともに、エンジンの負荷を遮断する負荷遮断装置及び商用電力との同期装置をそなえた発電機駆動用エンジンにおいて、前記負荷遮断装置からのエンジンの負荷遮断信号が発信されたとき、前記エンジンの空燃比を一定空燃比を超えるリーン空燃比に設定し、前記同期装置からの前記発電機の発電電力と商用電力とを同期させる同期信号が発信されたとき前記空燃比を前記一定空燃比以下のノーマル空燃比に設定するコントローラをそなえ、さらに、前記エンジンの排気温度を検出して前記コントローラに入力する排気温度センサと、前記エンジンの油温を検出して前記コントローラに入力するエンジン油温センサとを設け、前記コントローラは、前記排気温度の検出値が予め設定された基準排気温度以上、あるいは前記エンジン油温の検出値が予め設定された基準エンジン油温以上のいずれかの場合または双方の場合に前記エンジンの負荷を遮断しての無負荷運転が可能であると判断し、前記負荷遮断信号が入力されたとき前記リーン空燃比制御に移行するように構成されたことを特徴とする。 The present invention achieves the above-mentioned object. In the engine for driving a generator provided with a catalyst device in an exhaust passage, and equipped with a load interrupting device for interrupting the engine load and a synchronizer with commercial power, the load When an engine load cut-off signal is transmitted from the shut-off device, the engine air-fuel ratio is set to a lean air-fuel ratio exceeding a certain air-fuel ratio, and the generated power of the generator from the synchronizer and the commercial power are synchronized. A controller for setting the air-fuel ratio to a normal air-fuel ratio equal to or lower than the constant air-fuel ratio when a synchronization signal to be transmitted is transmitted ; and an exhaust temperature sensor for detecting an exhaust temperature of the engine and inputting the detected temperature to the controller; An engine oil temperature sensor that detects an oil temperature of the engine and inputs the detected oil temperature to the controller, and the controller detects the exhaust temperature. No-load operation with the engine load cut off when either is higher than a preset reference exhaust temperature or the detected value of the engine oil temperature is higher than a preset reference engine oil temperature or both When the load cut-off signal is input, the lean air-fuel ratio control is entered .

かかる発明に加えて、次のように構成するのが好ましい。 In addition to such invention, not the preferred constructed as follows.

前記酸化触媒装置における排気温度上昇度を検出して前記コントローラに入力する触媒装置温度上昇検出手段を設け、前記コントローラは、前記排気温度上昇度が予め設定された基準排気温度上昇度以下のとき、負荷遮断後の前記リーン空燃比運転から同期信号が発信された後のノーマル空燃比運転に移行させるように構成される。 The exhaust catalyst temperature rise detection means for input to the controller to detect the exhaust gas temperature increase degree of the oxidation catalyst device is provided, said controller, said when the exhaust temperature increase degree of the reference exhaust temperature rise of less that is set in advance, synchronizing signal from the lean air-fuel ratio operation after load rejection is Ru is configured to transition to the normal air-fuel ratio operation after being originated.

本発明によれば、コントローラは、負荷遮断装置からの負荷遮断信号の発信を受けてエンジンの空燃比を一定空燃比を超えるリーン空燃比に設定することにより、排気温度の上昇を抑えた無負荷運転を行うことが可能となってエンジンからの未燃ガス排出量を減少でき、これによって触媒装置内での未燃ガスの燃焼に伴う触媒の温度上昇を防止できる。
一方、同期装置からの発電機の発電電力と商用電力と同期させる同期信号が発信されたとき無負荷運転から負荷運転への移行と同時に、一定空燃比を超えるリーン空燃比から該一定空燃比以下のノーマル空燃比に移行してエンジンが運転されるので、無負荷運転から商用電力と同期しての負荷運転に移行する移動領域における余剰出力を確保することが可能となって、スムーズに負荷運転に移行でき、これにより発電システムの運転性能を高く保持することができる。
According to the present invention, the controller receives the transmission of a load cutoff signal from the load cutoff device and sets the air / fuel ratio of the engine to a lean air / fuel ratio that exceeds a certain air / fuel ratio, thereby suppressing an increase in exhaust gas temperature. It becomes possible to perform the operation, and the amount of unburned gas discharged from the engine can be reduced, whereby the temperature rise of the catalyst accompanying the combustion of unburned gas in the catalyst device can be prevented.
On the other hand, when a synchronization signal is generated to synchronize the generated power of the generator and the commercial power from the synchronizer, simultaneously with the transition from no-load operation to load operation, the lean air-fuel ratio exceeding a certain air-fuel ratio is less than the certain air-fuel ratio Since the engine is operated by shifting to the normal air-fuel ratio, it is possible to ensure surplus output in the moving region where the operation shifts from no-load operation to load operation in synchronization with commercial power, and smooth load operation Thus, the operation performance of the power generation system can be kept high.

従って本発明によれば、負荷遮断装置からの負荷遮断信号により無負荷運転を行う際において、排気通路に設置した触媒装置の過大な温度上昇を回避できて触媒の機能低下を防止できるとともにその耐久性を向上させることが可能となり、且つ無負荷から負荷運転への移動領域における余剰出力を確保でき、スムーズに負荷運転に移行可能となって、発電システムの運転性能を高く保持することができる。   Therefore, according to the present invention, when performing no-load operation by the load cutoff signal from the load cutoff device, it is possible to avoid an excessive temperature rise of the catalyst device installed in the exhaust passage and to prevent a deterioration in the function of the catalyst, and its durability. The surplus output in the movement region from no load to load operation can be secured, and the operation can be smoothly shifted to the load operation, so that the operation performance of the power generation system can be kept high.

また、本発明によれば、エンジンの排気温度の検出値が予め設定された基準排気温度以上、あるいはエンジン油温の検出値が予め設定された基準エンジン油温以上のいずれかの場合または双方を満足することを確認してから、エンジンの負荷遮断信号を受けてリーン空燃比制御に移行するように構成するので、排気温度及びエンジン油温が基準温度以上となり、失火等の発生の無いた安定した状態でリーン空燃比での無負荷運転に移行できる。
さらには、触媒装置における排気温度上昇度を検知しておき、実際の排気温度上昇度が基準排気温度上昇度つまり許容排気上昇度以下になるように保持しながら、リーン空燃比での無負荷運転からノーマル空燃比での負荷運転に移行させるように構成すれば、触媒装置の温度を常時許容温度以下に保持して負荷運転を行うことが可能となる。
According to the present invention, either or both of the case where the detected value of the engine exhaust temperature is equal to or higher than a preset reference exhaust temperature, or the detected value of the engine oil temperature is equal to or higher than a preset reference engine oil temperature. After confirming that it is satisfied, the engine is configured to shift to lean air-fuel ratio control in response to an engine load cutoff signal, so the exhaust temperature and engine oil temperature will be above the reference temperature, and stable operation without occurrence of misfire etc. In this state, it is possible to shift to a no-load operation at a lean air-fuel ratio.
Furthermore, the exhaust gas temperature rise degree in the catalyst device is detected, and the actual exhaust gas temperature rise degree is maintained so as to be equal to or lower than the reference exhaust gas temperature rise degree, that is, the allowable exhaust gas rise degree. If it is configured to shift to the load operation at the normal air-fuel ratio, the load operation can be performed while the temperature of the catalyst device is always kept below the allowable temperature.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は本発明の実施例に係る発電機駆動用ガスエンジンの制御システムの全体構成図である。
図1において、ガスエンジン(以下エンジンという)は符号100で示され、該エンジン100の排気出口管102を通った排気ガスは過給機107のタービン107aに導かれた該タービン107aを駆動する。該過給機107においてはタービン107aによりこれと同軸のコンプレッサ107bが回転駆動されて、後述するように過給機入口給気管105aを通って導入された給気を加圧する。そして、空気冷却器104を通してエンジン100のシリンダ内に供給する。
FIG. 1 is an overall configuration diagram of a generator drive gas engine control system according to an embodiment of the present invention.
In FIG. 1, a gas engine (hereinafter referred to as an engine) is denoted by reference numeral 100, and the exhaust gas that has passed through the exhaust outlet pipe 102 of the engine 100 drives the turbine 107 a guided to the turbine 107 a of the supercharger 107. In the supercharger 107, a compressor 107b coaxial with the turbine 107a is rotationally driven to pressurize the intake air introduced through the supercharger inlet air supply pipe 105a as will be described later. Then, the air is supplied into the cylinder of the engine 100 through the air cooler 104.

前記過給機入口給気管105aの途中にはガスミキサー105が設置され、燃料ガス管106a及びガス量調整弁106を通して供給された燃料ガスと、前記過給機入口給気管105aを通して該ガスミキサー105に供給された空気とを混合する。そして、該ガスミキサー105からの燃料ガスと空気との混合気である給気は、前記過給機107のコンプレッサ107bで加圧され、空気冷却器104で冷却された後、給気管101を通してエンジン100のシリンダ内に供給される。
また、前記過給機107のタービン107aを駆動した後の排気ガスは、排気管103を通って酸化触媒装置104に導入され、該酸化触媒装置104において、HC等の未燃分が燃焼、除去されて浄化され、外気中に排出される。
A gas mixer 105 is installed in the middle of the supercharger inlet air supply pipe 105a, the fuel gas supplied through the fuel gas pipe 106a and the gas amount adjusting valve 106, and the gas mixer 105 through the supercharger inlet air supply pipe 105a. Mix with the air supplied to The supply air, which is a mixture of fuel gas and air from the gas mixer 105, is pressurized by the compressor 107b of the supercharger 107, cooled by the air cooler 104, and then passed through the supply air pipe 101. 100 cylinders are supplied.
The exhaust gas after driving the turbine 107a of the supercharger 107 is introduced into the oxidation catalyst device 104 through the exhaust pipe 103, and unburned components such as HC are burned and removed in the oxidation catalyst device 104. It is purified and discharged into the outside air.

前記エンジンおよびこれに直結駆動される発電機(図示省略)の制御用として、エンジン制御装置12及び発電機制御盤11が装備され、両者は制御回線で接続されている。
前記エンジン制御装置12及び発電機制御盤11によってコントローラ10を構成し、該コントローラ10には、排気温度センサ3からのエンジン1出口排気温度の検出値、酸化触媒入口排気温度センサ1からの酸化触媒装置104入口排気温度の検出値、酸化触媒出口排気温度センサ2からの酸化触媒装置104出口排気温度の検出値、エンジン油温センサ4からのエンジン油温の検出値がそれぞれ入力されている。
尚、図1には前記各検出値が、発電機制御盤11に入力されるように示されているが、要するにこれらの検出値は、前記発電機制御盤11及びエンジン制御装置12を含むコントローラ10に入力されて、後述する制御演算に用いられればよい。
An engine controller 12 and a generator control panel 11 are provided for controlling the engine and a generator (not shown) that is directly connected to the engine, and both are connected by a control line.
The engine control device 12 and the generator control panel 11 constitute a controller 10, which includes the detected value of the exhaust temperature at the outlet of the engine 1 from the exhaust temperature sensor 3, and the oxidation catalyst from the exhaust temperature sensor 1 at the oxidation catalyst inlet. The detected value of the exhaust gas temperature at the inlet of the device 104, the detected value of the exhaust gas temperature at the outlet of the oxidation catalyst device 104 from the oxidation catalyst outlet exhaust temperature sensor 2, and the detected value of the engine oil temperature from the engine oil temperature sensor 4 are input.
FIG. 1 shows that the detected values are input to the generator control panel 11. In short, the detected values are a controller including the generator control panel 11 and the engine control device 12. 10 may be used for the control calculation described later.

前記発電機制御盤11には、発電機負荷即ちエンジン100に掛かる負荷を遮断する負荷遮断装置5及び発電機の発電電力と商用電力と同期させる同期信号を発信する同期装置6が設けられ、負荷遮断装置からの負荷遮断信号及び同期装置6からの発電機の発電電力と商用電力との同期信号は前記エンジン制御装置12に入力される。
そして、前記エンジン制御装置12においては、後述する演算、制御を行って、その出力信号によって前記ガス量調整弁106の開度を制御する。
The generator control panel 11 is provided with a load interrupting device 5 for interrupting a generator load, that is, a load applied to the engine 100, and a synchronizing device 6 for transmitting a synchronizing signal for synchronizing the generated power and commercial power of the generator. A load cutoff signal from the cutoff device and a synchronization signal between the generated power of the generator and the commercial power from the synchronization device 6 are input to the engine control device 12.
Then, the engine control device 12 performs calculation and control, which will be described later, and controls the opening of the gas amount adjusting valve 106 based on the output signal.

次に、図2〜4に基づきかかる実施例の動作について説明する。
図2は前記実施例における空燃比制御装置の制御ブロック図である。
図2において、前記排気温度センサ3からのエンジン出口排気温度の検出値は前記コントローラ10の排気温度判断手段110に入力される。また、前記エンジン油温センサ4からのエンジン油温の検出値は前記コントローラ10のエンジン油温判断手段120に入力される。
前記排気温度判断手段110においては、予め設定された基準排気温度以上つまりエンジンが安定してリーン空燃比制御による無負荷運転可能な最低排気温度以上のとき該無負荷運転可能と判断する。また、前記エンジン油温判断手段120においては、予め設定された基準エンジン油温以上つまりエンジンが安定してリーン空燃比制御による無負荷運転可能な最低エンジン油温以上のとき該無負荷運転可能と判断する。
Next, the operation of this embodiment will be described with reference to FIGS.
FIG. 2 is a control block diagram of the air-fuel ratio control apparatus in the embodiment.
In FIG. 2, the detected value of the engine outlet exhaust temperature from the exhaust temperature sensor 3 is input to the exhaust temperature determination means 110 of the controller 10. The detected value of the engine oil temperature from the engine oil temperature sensor 4 is input to the engine oil temperature determining means 120 of the controller 10.
The exhaust temperature determination means 110 determines that the no-load operation is possible when the exhaust gas temperature is equal to or higher than a preset reference exhaust temperature, that is, the minimum exhaust temperature at which the engine can stably operate without load by lean air-fuel ratio control. Further, the engine oil temperature determination means 120 can perform the no-load operation when the engine oil temperature is equal to or higher than a preset reference engine oil temperature, that is, the engine oil temperature is equal to or higher than a minimum engine oil temperature at which the engine can be stably driven without load by lean air-fuel ratio control. to decide.

前記排気温度判断手段110での判断結果及びエンジン油温判断手段120での判断結果は、空燃比制御要否判断手段13に入力され、該空燃比制御要否判断手段13においては、前記排気温度判断手段110での判断結果あるいはエンジン油温判断手段120での判断結果のいずれかまたは双方がリーン空燃比制御による無負荷運転可能の判断結果であった場合にリーン空燃比制御による無負荷運転可能の判断結果を空燃比設定手段14に出力する。
このように制御することにより、排気温度及びエンジン油温が基準温度以上となり、失火等の発生の無い安定した状態でリーン空燃比での無負荷運転に移行できる。
The judgment result by the exhaust temperature judgment means 110 and the judgment result by the engine oil temperature judgment means 120 are input to the air / fuel ratio control necessity judgment means 13, and the air / fuel ratio control necessity judgment means 13 inputs the exhaust temperature. When either or both of the determination result by the determination unit 110 and the determination result by the engine oil temperature determination unit 120 are the determination result that the no-load operation is possible by the lean air-fuel ratio control, the no-load operation by the lean air-fuel ratio control is possible. Is output to the air-fuel ratio setting means 14.
By controlling in this way, the exhaust temperature and the engine oil temperature become equal to or higher than the reference temperature, and it is possible to shift to a no-load operation at a lean air-fuel ratio in a stable state without occurrence of misfire or the like.

そして、前記負荷遮断装置5からの負荷遮断信号が前記コントローラ10の空燃比設定手段14に入力されると、該空燃比設定手段14においては、エンジン1の空燃比を、図3の左欄に示すように、無負荷運転可能な一定空燃比を超えるリーン空燃比に設定して空燃比補正手段16に入力する。該空燃比補正手段16は無負荷運転時には後述する触媒温度での補正を行わずに、リーン空燃比の設定値をガス量調整弁開度算出手段17に入力する。
該ガス量調整弁開度算出手段17においては、前記リーン空燃比に相当するガス量調整弁106の開度を算出してガス量調整弁106に入力し、該ガス量調整弁106はかかるリーン空燃比に相当する開度に制御される。
When a load cutoff signal from the load cutoff device 5 is input to the air-fuel ratio setting means 14 of the controller 10, the air-fuel ratio setting means 14 sets the air-fuel ratio of the engine 1 in the left column of FIG. As shown , a lean air-fuel ratio exceeding a certain air-fuel ratio capable of no-load operation is set and input to the air-fuel ratio correcting means 16. The air-fuel ratio correction means 16 inputs the set value of the lean air-fuel ratio to the gas amount adjustment valve opening calculation means 17 without performing correction at the catalyst temperature described later during no-load operation.
In the gas amount adjusting valve opening calculating means 17, the opening of the gas amount adjusting valve 106 corresponding to the lean air-fuel ratio is calculated and inputted to the gas amount adjusting valve 106. The opening is controlled to correspond to the air-fuel ratio.

そして、かかる無負荷運転状態で、前記同期装置6から発電機の発電電力と商用電力と同期させる同期信号が発信されると、該空燃比設定手段14においては、エンジン1の空燃比を、図3の中央欄に示すように、前記一定空燃比を超えるリーン空燃比をノーマル空燃比に移行する。次いで、前記エンジン制御装置12は、エンジン100を前記ノーマル空燃比で一定時間無負荷運転してから、図3の右欄に示すように負荷運転に移行させる。 When a synchronization signal for synchronizing the generated power of the generator and the commercial power is transmitted from the synchronization device 6 in such a no-load operation state, the air-fuel ratio setting means 14 displays the air-fuel ratio of the engine 1 as a graph. As shown in the middle column of 3, the lean air-fuel ratio exceeding the constant air-fuel ratio is shifted to the normal air-fuel ratio. Next, the engine control device 12 causes the engine 100 to perform a no-load operation for a predetermined time at the normal air-fuel ratio, and then shifts to a load operation as shown in the right column of FIG.

また酸化触媒入口排気温度センサ1からの酸化触媒装置104入口排気温度の検出値、及び酸化触媒出口排気温度センサ2からの酸化触媒装置104出口排気温度の検出値は前記コントローラ10の触媒温度上昇算出手段15に入力される。該触媒温度上昇算出手段15においては、前記酸化触媒装置出口排気温度と酸化触媒装置入口排気温度との温度差から、酸化触媒装置104内における排気ガスの温度上昇を算出して前記空燃比補正手段16に入力する。
前記空燃比補正手段17には、図4のように、酸化触媒装置104における排気ガスの温度上昇つまり触媒温度上昇と空燃比との関係が設定されている。かかる設定値は図4のA線のように触媒温度上昇に従い空燃比をリーンにするか、あるいは、図4のB線のように許容(基準)排気温度上昇Tcxを超えたとき階段的に空燃比をリーンにするかを選択可能としている。
The detected value of the oxidation catalyst device 104 inlet exhaust temperature from the oxidation catalyst inlet exhaust temperature sensor 1 and the detected value of the oxidation catalyst device 104 outlet exhaust temperature from the oxidation catalyst outlet exhaust temperature sensor 2 are calculated by calculating the catalyst temperature of the controller 10. Input to means 15. The catalyst temperature increase calculating means 15 calculates the temperature increase of the exhaust gas in the oxidation catalyst device 104 from the temperature difference between the oxidation catalyst device outlet exhaust temperature and the oxidation catalyst device inlet exhaust temperature, and the air-fuel ratio correction means. 16
As shown in FIG. 4, the air-fuel ratio correction means 17 is set with a relationship between the temperature rise of the exhaust gas in the oxidation catalyst device 104, that is, the catalyst temperature rise and the air-fuel ratio. Such a set value is stepwise empty when the air-fuel ratio is made lean as the catalyst temperature rises as shown in line A in FIG. 4, or when the allowable (reference) exhaust gas temperature rise Tcx is exceeded as shown in line B in FIG. It is possible to select whether the fuel ratio is lean.

前記空燃比補正手段16においては、前記排気ガスの温度上昇(触媒温度上昇)が許容(基準)排気温度上昇Tcxを超えているときには、該排気ガスの温度上昇が前記許容排気温度上昇Tcx以下になるように空燃比をリーン側に補正して、前記ガス量調整弁開度算出手段17に入力する。該ガス量調整弁開度算出手段17においては、前記補正後の空燃比に相当するガス量調整弁106の開度を算出してガス量調整弁106に入力し、該ガス量調整弁106はかかるリーン空燃比に相当する開度に制御される。
このように構成すれば、酸化触媒装置104における排気温度上昇度を検知しておき、実際の排気温度上昇度が基準排気温度上昇度つまり前記許容排気上昇度Tcx以下になるように保持しながら、リーン空燃比での無負荷運転からノーマル空燃比での負荷運転に移行させることができて、酸化触媒装置104の温度を常時許容温度以下に保持して負荷運転を行うことが可能となる。
In the air-fuel ratio correcting means 16, when the exhaust gas temperature rise (catalyst temperature rise) exceeds the allowable (reference) exhaust gas temperature rise Tcx, the exhaust gas temperature rise falls below the allowable exhaust gas temperature rise Tcx. Thus, the air-fuel ratio is corrected to the lean side and input to the gas amount adjusting valve opening calculating means 17. In the gas amount adjusting valve opening calculating means 17, the opening of the gas amount adjusting valve 106 corresponding to the corrected air-fuel ratio is calculated and input to the gas amount adjusting valve 106, and the gas amount adjusting valve 106 The degree of opening corresponding to the lean air-fuel ratio is controlled.
If comprised in this way, while detecting the exhaust gas temperature rise degree in the oxidation catalyst apparatus 104, and hold | maintaining so that an actual exhaust gas temperature rise degree may become below the reference | standard exhaust gas temperature rise degree, ie, the said allowable exhaust gas rise degree Tcx, It is possible to shift from the no-load operation at the lean air-fuel ratio to the load operation at the normal air-fuel ratio, and the load operation can be performed while the temperature of the oxidation catalyst device 104 is always kept below the allowable temperature.

以上の実施例によれば、コントローラ10は、負荷遮断装置5からの負荷遮断信号の発信を受けてエンジン100の空燃比を一定空燃比を超えるリーン空燃比に設定することにより、排気温度の上昇を抑えた無負荷運転を行うことが可能となって、エンジン100からの未燃ガス排出量を減少でき、これによって酸化触媒装置104内での未燃ガスの燃焼に伴う触媒の温度上昇を防止できる。
一方、同期装置6からの発電機の発電電力と商用電力と同期させる同期信号が発信されたときには、無負荷運転から負荷運転への移行と同時に、一定空燃比を超えるリーン空燃比から該一定空燃比以下のノーマル空燃比に移行してエンジン100が運転されるので、無負荷運転から商用電力と同期しての負荷運転に移行する移動領域における余剰出力を確保することが可能となって、スムーズに負荷運転に移行でき、これにより発電システムの運転性能を高く保持することができる。
According to the above embodiment, the controller 10 increases the exhaust gas temperature by setting the air / fuel ratio of the engine 100 to a lean air / fuel ratio exceeding a certain air / fuel ratio in response to the transmission of the load cutoff signal from the load interrupting device 5. This makes it possible to perform no-load operation while suppressing the amount of unburned gas discharged from the engine 100, thereby preventing the temperature of the catalyst from increasing due to the combustion of unburned gas in the oxidation catalyst device 104. it can.
On the other hand, when a synchronization signal for synchronizing the generated power of the generator and the commercial power is transmitted from the synchronization device 6, simultaneously with the transition from the no-load operation to the load operation, the lean air-fuel ratio exceeding the constant air-fuel ratio is changed to the constant air-fuel ratio. Since the engine 100 is operated by shifting to a normal air-fuel ratio equal to or lower than the fuel ratio, it is possible to ensure surplus output in a moving region in which the operation shifts from no-load operation to load operation in synchronization with commercial power. Therefore, the operation performance of the power generation system can be kept high.

従ってかかる実施例によれば、負荷遮断装置5からの負荷遮断信号により無負荷運転を行う際において、排気管103に設置した酸化触媒装置104の過大な温度上昇を回避できて触媒の機能低下を防止できるとともにその耐久性を向上させることが可能となし、且つ無負荷から負荷運転への移動領域における余剰出力を確保でき、スムーズに負荷運転に移行可能となって、発電システムの運転性能を高く保持することができる。   Therefore, according to this embodiment, when performing no-load operation by the load cutoff signal from the load cutoff device 5, it is possible to avoid an excessive temperature rise of the oxidation catalyst device 104 installed in the exhaust pipe 103 and to reduce the function of the catalyst. It is possible to prevent and improve the durability, and it is possible to secure a surplus output in the movement region from no load to load operation, and to smoothly shift to load operation, thereby improving the operation performance of the power generation system. Can be held.

本発明によれば、エンジン停止操作の際に負荷遮断装置からの負荷遮断信号により無負荷運転を行う際において、排気通路に設置した触媒装置の過大な温度上昇を回避して触媒の機能低下を防止しその久性を向上させるとともに、無負荷から軽負荷運転への移動領域における余剰出力を確保しスムーズに負荷運転に移行できて発電システムの運転性能を高く保持可能とした発電機駆動用エンジンの空燃比制御装置を提供できる。   According to the present invention, when performing no-load operation with a load cutoff signal from the load cutoff device during engine stop operation, the excessive deterioration of the temperature of the catalyst device installed in the exhaust passage is avoided to reduce the function of the catalyst. A generator-driven engine that can prevent and improve its durability, and can ensure a surplus output in the moving area from no-load to light-load operation so that it can smoothly shift to load operation and maintain high operating performance of the power generation system. The air-fuel ratio control apparatus can be provided.

本発明の実施例に係る発電機駆動用ガスエンジンの制御システムの全体構成図である。1 is an overall configuration diagram of a generator drive gas engine control system according to an embodiment of the present invention. 前記実施例における空燃比制御装置の制御ブロック図である。It is a control block diagram of the air-fuel ratio control apparatus in the embodiment. 前記実施例におけるエンジンの空燃比制御条件を示す表である。It is a table | surface which shows the air fuel ratio control conditions of the engine in the said Example. 前記実施例における酸化触媒温度と空燃比との関係線図である。FIG. 3 is a relationship diagram between an oxidation catalyst temperature and an air-fuel ratio in the embodiment.

1 酸化触媒入口排気温度センサ
2 酸化触媒出口排気温度センサ
3 排気温度センサ
4 エンジン油温センサ
5 負荷遮断装置
6 同期装置
10 コントローラ
11 発電機制御盤
12 エンジン制御装置
100 ガスエンジン(エンジン)
101 給気管
102 排気出口管
103 排気管
104 酸化触媒装置
105 ガスミキサー
106 ガス量調整弁
107 過給機
DESCRIPTION OF SYMBOLS 1 Oxidation catalyst inlet exhaust temperature sensor 2 Oxidation catalyst outlet exhaust temperature sensor 3 Exhaust temperature sensor 4 Engine oil temperature sensor 5 Load shut-off device 6 Synchronous device 10 Controller 11 Generator control panel 12 Engine control device 100 Gas engine (engine)
DESCRIPTION OF SYMBOLS 101 Supply pipe 102 Exhaust outlet pipe 103 Exhaust pipe 104 Oxidation catalyst apparatus 105 Gas mixer 106 Gas quantity adjustment valve 107 Supercharger

Claims (3)

排気通路に触媒装置を設置するとともに、エンジンの負荷を遮断する負荷遮断装置及び商用電力との同期装置をそなえた発電機駆動用エンジンにおいて、
前記負荷遮断装置からのエンジンの負荷遮断信号が発信されたとき、前記エンジンの空燃比を一定空燃比を超えるリーン空燃比に設定し、前記同期装置からの前記発電機の発電電力と商用電力とを同期させる同期信号が発信されたとき前記空燃比を前記一定空燃比以下のノーマル空燃比に設定するコントローラをそなえ
さらに、前記エンジンの排気温度を検出して前記コントローラに入力する排気温度センサと、前記エンジンの油温を検出して前記コントローラに入力するエンジン油温センサとを設け、前記コントローラは、前記排気温度の検出値が予め設定された基準排気温度以上、あるいは前記エンジン油温の検出値が予め設定された基準エンジン油温以上のいずれかの場合または双方の場合に前記エンジンの負荷を遮断しての無負荷運転が可能であると判断し、前記負荷遮断信号が入力されたとき前記リーン空燃比制御に移行するように構成されたことを特徴とする発電機駆動用エンジンの空燃比制御装置。
In a generator driving engine having a catalyst device in the exhaust passage and a load interrupting device for interrupting the engine load and a synchronizer with commercial power,
When an engine load shut-off signal is transmitted from the load shut-off device, the engine air-fuel ratio is set to a lean air-fuel ratio exceeding a certain air-fuel ratio, and the generator generated power and commercial power from the synchronizer A controller for setting the air-fuel ratio to a normal air-fuel ratio equal to or lower than the constant air-fuel ratio when a synchronization signal for synchronizing the
Further, an exhaust temperature sensor that detects an exhaust temperature of the engine and inputs the detected temperature to the controller, and an engine oil temperature sensor that detects an oil temperature of the engine and inputs the detected temperature to the controller are provided. When the detected value of the engine is higher than a preset reference exhaust temperature or the detected value of the engine oil temperature is higher than a preset reference engine oil temperature or both, the engine load is shut off. An air-fuel ratio control apparatus for an engine for driving a generator, which is configured to shift to the lean air-fuel ratio control when it is determined that no-load operation is possible and the load cutoff signal is input .
前記酸化触媒装置における排気温度上昇度を検出して前記コントローラに入力する触媒装置温度上昇検出手段を設け、前記コントローラは、前記排気温度上昇度が予め設定された基準排気温度上昇度以下のとき、負荷遮断後の前記リーン空燃比運転から同期信号が発信された後のノーマル空燃比運転に移行させるように構成されたことを特徴とする請求項1記載の発電機駆動用エンジンの空燃比制御装置。 Catalytic device temperature rise detection means for detecting the exhaust gas temperature rise degree in the oxidation catalyst device and inputting it to the controller is provided, the controller, when the exhaust temperature rise degree is less than or equal to a preset reference exhaust temperature rise degree, 2. The air-fuel ratio control device for an engine for driving a generator according to claim 1 , wherein the lean air-fuel ratio operation after the load is interrupted is shifted to a normal air-fuel ratio operation after a synchronization signal is transmitted. . 請求項1または2に記載の空燃比制御装置を備えたことを特徴とする発電機駆動用エンジン。A generator driving engine comprising the air-fuel ratio control device according to claim 1.
JP2006324642A 2006-11-30 2006-11-30 Air-fuel ratio control device for generator driving engine Active JP4658911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324642A JP4658911B2 (en) 2006-11-30 2006-11-30 Air-fuel ratio control device for generator driving engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324642A JP4658911B2 (en) 2006-11-30 2006-11-30 Air-fuel ratio control device for generator driving engine

Publications (2)

Publication Number Publication Date
JP2008138568A JP2008138568A (en) 2008-06-19
JP4658911B2 true JP4658911B2 (en) 2011-03-23

Family

ID=39600307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324642A Active JP4658911B2 (en) 2006-11-30 2006-11-30 Air-fuel ratio control device for generator driving engine

Country Status (1)

Country Link
JP (1) JP4658911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054051B2 (en) * 2009-03-04 2012-10-24 三井造船株式会社 Engine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070607A (en) * 2000-08-28 2002-03-08 Honda Motor Co Ltd Engine power generator and cogeneration device
JP2002291295A (en) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd Internal combustion engine power generator with exhaust gas purifying function
JP2005171890A (en) * 2003-12-11 2005-06-30 Osaka Gas Co Ltd Power generation facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070607A (en) * 2000-08-28 2002-03-08 Honda Motor Co Ltd Engine power generator and cogeneration device
JP2002291295A (en) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd Internal combustion engine power generator with exhaust gas purifying function
JP2005171890A (en) * 2003-12-11 2005-06-30 Osaka Gas Co Ltd Power generation facility

Also Published As

Publication number Publication date
JP2008138568A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4755154B2 (en) Gas engine start control method and apparatus
JP4615491B2 (en) Operation method of premixed compression self-ignition engine
WO2012157041A1 (en) Method and device for controlling internal combustion engine
JPH0942016A (en) Control device for internal combustion engine
JP2008088848A (en) Egr system for internal combustion engine
JP2007211612A (en) Engine control method and engine control system
JP2008014249A (en) Combustion control system for compression ignition type internal combustion engine
JP2007170222A (en) Combustion control method and device of internal combustion engine, and vehicle
JP2005171818A (en) Premixed compression ignition internal combustion engine
JP4658911B2 (en) Air-fuel ratio control device for generator driving engine
JP4419860B2 (en) Combustion control system for compression ignition internal combustion engine
JP6467170B2 (en) Engine control apparatus equipped with turbocharger and control method using the same
JP2008150978A (en) Exhaust gas recirculating device of internal combustion engine
JP2008088910A (en) Operation stop control device for compression ignition type internal combustion engine
US9121363B2 (en) Fuel injection pattern and timing
KR101697852B1 (en) Exhaust purification system of gas heat pump engine
JP4738426B2 (en) Gas engine control method and apparatus
JP2017155662A (en) Control device of internal combustion engine
JP4923803B2 (en) Fuel injection control system for internal combustion engine
JP2008002270A (en) Gas engine and control method
JP4654952B2 (en) Output control device for internal combustion engine
JP4645471B2 (en) Sulfur poisoning recovery control device
JP4325505B2 (en) Combustion control system for compression ignition internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2006233915A (en) Gas engine with egr system and method for operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250