JP4657486B2 - Continuous crystallization method for crystalline resin pellet molding - Google Patents

Continuous crystallization method for crystalline resin pellet molding Download PDF

Info

Publication number
JP4657486B2
JP4657486B2 JP2001114596A JP2001114596A JP4657486B2 JP 4657486 B2 JP4657486 B2 JP 4657486B2 JP 2001114596 A JP2001114596 A JP 2001114596A JP 2001114596 A JP2001114596 A JP 2001114596A JP 4657486 B2 JP4657486 B2 JP 4657486B2
Authority
JP
Japan
Prior art keywords
strand
crystallization
slow cooling
resin
crystalline resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001114596A
Other languages
Japanese (ja)
Other versions
JP2002264127A (en
Inventor
十四男 市川
Original Assignee
十四男 市川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 十四男 市川 filed Critical 十四男 市川
Priority to JP2001114596A priority Critical patent/JP4657486B2/en
Publication of JP2002264127A publication Critical patent/JP2002264127A/en
Application granted granted Critical
Publication of JP4657486B2 publication Critical patent/JP4657486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結晶性樹脂を溶融し、ストランドに成形してからペレット化する成形加工用原料の結晶化技術に係り、ストランドを最適徐冷状態に保持して連続して結晶化し、良質のペレットを製造する技術に関するものである。
【0002】
【従来の技術】
結晶性樹脂を用いた成形加工原料の結晶化技術の一つに、押し出し成形によって溶融樹脂に延伸外力を加えて紐状のストランド形状に変え、この加工によって内部組織の高分子配列を整えて結晶化を進展させ、引き続いてペレットに加工する従来技術がある。その一例を図4に示す。同図(A)に示すように、溶融装置1内の溶融樹脂は高圧で加圧されてダイス1aにより、ストランド加工して押し出し、図示右方に配設する動輪3の間を走行させる。この走行過程でここに記載しない徐冷用の常温空気又はガスの一ヶ所からの吹き付け操作により、外周から内部に漸次冷却して行う結晶化操作を行うものである。この操作中に同図(B)に実線で示すように、該動輪の回転速度によって生ずる適度な引張力が、ストランドcへの延伸力として作用して分子配向性を高め、同図(C)に実線で示すように、溶融樹脂が有する結晶化率に従って溶融状から結晶状態への結晶化が完成する。結晶化率100%から成る完全結晶構造の高分子樹脂や一種類の構造単位から成る分子構造のホモポリマーなどはこの結晶化の最適状態を保持できる結晶化樹脂である。
【0003】
【発明が解決しようとする課題】
図4に図示した結晶化が容易な事例では、押し出し圧、搬送速度、一ヶ所からのガス等吹き付けが操作要素であったが、これら3要素のみでは、他の多種類の結晶性樹脂に対して同じ様な好結果が得られなかった。例えば、ストランドの搬送速度を適切に速めれば延伸力と伸張速度は大きくなり結晶性の良い結晶化物が得られる。しかし動輪3部分で多少の粘着性を残さないと巻き取り時の摩擦力が減少してストランドと動輪間に滑りが生じ、ストランドの走行速度が低下し、操作が安定しない。同様に適正操作の狭い範囲を逸脱して、結晶化の進行が速すぎると結晶化が進んだ部分の上流側にあって、未だ溶融状態を多く含むストランドにとっては、延伸力が大きくなり過ぎて、図4(B)に示す破断(1)のようになり、同図(C)の(1)に示すように結晶化状態が終了してしまう。一方、ストランド搬送速度を余りにも遅く操作すると同図(B)に示すように延伸力が不足して未結晶(2)状態が継続し、同図(C)の(2)に示すように分子が再び元の状態に戻ろうとして結晶化出来ない(参考資料▲1▼:呉祐吉他「流動による高分子の結晶化」p27.下2行−p28.2行,s55.6.高分子刊行会)。
結晶化は樹脂を高圧操作することにより生じるextended chaincrystalや、低温で比較的ゆっくり熱処理すると生じる厚化現象によって進行する(参考資料▲2▼:和田八三久「高分子の固体物性」p91.下10行−下4行、及びp94.10行−下2行、s46.1.培風館)。従って結晶化が進行しているストランドの各部分は少し距離をおいた別の部分とは、結晶化形成の程度が変化し、その前段階の徐冷操作とは最適条件が異なるので、一様の操作で律し切れない。即ち、ストランドを搬送しなながら徐冷対象全区間を1種類の徐冷手段によって操作して、結晶化のため必要なストランドの各部分に一様でない温度降下を適切に実現するには無理があり、一ヶ所から行う徐冷操作によってはストランド全体の最適徐冷速度を調整、制御できない。
一般にホモポリマーより分子量が多いオリゴマーや、異種ポリマーを合成したコポリマーで結晶化度100%未満を呈示する結晶性樹脂は、非晶質分を構造中に含むので、前記方法で結晶化操作しても結晶化操作は難しく、適切に結晶性乳白色化が起こるストランドが得られない。
【0004】
ここで結晶化し易いホモポリマーより、従来法では結晶し難いコポリマー等等の方が市場流通性が高く、再生機会も多い。さらに商品の質として、結晶性樹脂特有の結晶化率を充分達成した結晶性が高いペレットやグラッシュ程、その市場価値は高い。一方、前記結晶化率の達成不十分な結晶性樹脂は保有粘性の残留割合が高く、ストランドをペレットやチップに成形する際に生ずる切断の不均一、隣接ペレットとの付着や団塊化の現象が生じ、商品価値を低下させている。
本発明は、上記した問題点に鑑み開発したもので、フレークやフラフ状の樹脂原料を溶融、押し出し、ストランド成形からペレット化に至る工程中に、試行で確認済の最適操作要素を結晶化状態に合わせて加え、必要に応じ数段階に分けて徐冷手段を配設して最適な結晶化を行うもので、高価値製品を製造する、結晶性樹脂のペレット成形用連続結晶化技術を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明に係る結晶性樹脂のペレット成形用連続結晶化方法は、結晶性樹脂のフレークを水分を除いて溶融し、その溶融樹脂を加圧し、ダイスより押し出して搬送手段に受け、搬送終端にてペレット成形するようにしたストランドに対して、ほぼ全周囲が曝気可能の搬送手段上に静置して、当初のストランドの透明色から乳白色化して徐冷を完了させる位置を前記搬送終端とする最適操作を予め結晶性樹脂毎に試行し、試行によってストランドの搬送速度、結晶化操作区間距離、搬送区間に沿って一ないし複数区域に分けて選択的に配設し、かく個別に徐冷制御可能な熱風発生手段、送風手段あるいは加熱手段へ、供給する熱量ないし電力量を介して、ストランドの放散熱量を制御しながらストランドの結晶化状態と徐冷速度を適正操作するようにしたものである。
【0007】
【作用】
以上のように構成した本発明の結晶性樹脂の連続結晶化方法は、曝気状態で静置したストランドの搬送中に、結晶化状態に対応して試行によって得た適正条件を決める供給側エネルギー操作を介して、結晶化操作対象が異なる結晶性樹脂毎に変えられるように徐冷速度を制御、調整するようにしたので、厚化現象を含む結晶化に伴う樹脂構造の内部変化に対応した追従操作が行えると共に、ストランドの外面に生じる粘着性を過度に失う部分には、選択的に部分加熱して適度な粘性を復活できる。
本発明方法を実施する装置は、ストランドを部分毎に分割して支え、その表裏が通風可能の載置ベルトを巻装するメッシュコンベアを搬送手段とした上で、その搬送区間に選択的に送風機と加熱手段を制御装置を介して配設する徐冷手段とし、それを調整することにより、結晶化し易いホモポリマー用には簡便構造の結晶化装置を、あるいは結晶化に微妙な徐冷操作を必要とする結晶性樹脂には、搬送手段に沿って縦列させた複数の加熱手段と送風機を選択的に配設し、また操作することにより、搬送過程に結晶化操作に適切な温度降下の環境を作り出せるので、結晶化操作が異なる樹脂の徐冷制御に対応した徐冷環境を形成できる。
【0008】
【発明の実施の形態】
以下、本発明に係る結晶性樹脂のペレット成形用連続結晶化方法とその装置を図によって説明する。ここに、図1は、本発明方法を説明するもので、(A)は本結晶化方法を示す工程図、(B)は(A)におけるストランドの徐冷手段を示す模式図、図2は、同じく徐冷操作方法を説明するもので、(A)は結晶化過程の徐冷手段の最適操作状態を示すストランドの徐冷曲線図、(B)は(A)の操作過程のストランドに発生する結晶化変化模式図、図3は、本発明装置を説明するもので、(A)はその1実施例を示す部分側面図、(B)は(A)のA−A′矢視図、(C)は徐冷手段制御の1実施例を示すブロック図である。
【0009】
本発明方法は、図1(A)において4段階に分けて示すように、1)の結晶化対象の樹脂について予め結晶化のための最適結晶化操作の試行(試験操作)を行うことにより、その樹脂に特有の徐冷速度の決定操作値、即ち徐冷操作区間である搬送長、その搬送手段の搬送速度、適切に温度降下させながら搬送する各区間におけるストランド温度を決定する供給熱量等の最適操作値を選定する。
本操作において同図(A)の2)に示すように、樹脂フレークaの溶融操作、溶融樹脂を延伸する樹脂bへの加圧、押し出し、紐状のストランドcに変える成形、搬送中に全周を曝気状態に該ストランドを静置する操作を進め、次いで3)に示すように搬送手段上に載置したストランドcを、温度範囲が結晶化対象樹脂のほぼガラス質変位点から常温まで、温度制御を複数段に分けて送風手段5又は加熱手段6によって徐冷する供給熱量操作を行う徐冷速度を調整しながら、該ストランドが硝子質から乳白色化する位置を搬送終端に設定し、その結晶化終了位置で、4)に示すストランドcの細断加工を行ってペレットdに成形する。
同図(B)に示すように、ストランドcの温度を徐冷する加熱板6a、あるいは調和空気Amを供給する熱風発生手段4に対して、直接加熱又は間接加熱あるいはそれらの併用による加熱方式によって供給熱量を供給して良い。加熱源として、電力、電子線加熱、レーザーなど電気系のものや、排熱を含む工場全体の熱制御管理下で有効利用出来るものを用いてよい。同図において一実施例を実線、他の実施例を破線で、一点鎖線は風道ないし通風空間7aを、加熱手段は熱風発生手段4へ熱量供給する加熱手段6を、それぞれ示す。なお、ここに図示しないが、徐冷手段に供給する熱種類には、常温以上の熱と、ペルチェ効果による電子冷却熱や工場内発生の冷却熱(排熱も含む)など常温以下の冷熱がある。
【0010】
本発明にかかる方法を実施するための装置は、図3(A)に示すように、除水樹脂を溶融し、加圧する溶融装置1とその終端に付設し、溶融樹脂を連続的に押し出し、ストランドcに成形するダイス1a、押し出された該ストランドを結晶化しながら搬送する結晶化装置8、結晶化したストランドcを細断加工する併設したペレタイザ装置9によって構成する。結晶化装置8は、その初端で溶融状のストランドcを載置するメッシュコンベア2、該コンベア周りに通風空間7aを形成しストランドcの全周囲を冷却可能にする風道ケース7、該ケースに保持してメッシュコンベア2の上方に配設する風道内温度検知センサー5b及び加熱板温度検知センサー6bを付設するストランドを徐冷するための加熱手段6、搬送終端側の風道内上部ケースに設置する送風機5、及び該メッシュコンベアの下部に電源回路10と制御装置11とを配設して本体ケース内に収納し、該加熱手段と該送風機とを連係してストランドcを徐冷制御可能にしている。
【0011】
【実施例】
本発明の、結晶性樹脂のペレット成形用連続結晶化方法の実施例を説明する。結晶化を行う対象樹脂の結晶化が試行によって、全搬送区間におけるストランドの結晶化の状態変化が図2(B)に示すように得られる場合、ストランドの最適徐冷曲線は、同図(A)に示すようになる。従って同図(A)に示す、例えばaないしdの4ヶ所の位置に徐冷手段4、5、6を配分して配置する。該徐冷手段に加熱板6aを用いる場合は、徐冷終端位置dには送風機を配置し、常温で冷却する。熱風発風発生手段4を用いる場合には、その吹出し調和空気Amは、ストランドcの表面温度Tより低めに調節され、各吹出し空気は個別に温度調節される。ここに数段に分ける該調和空気の吹出し位置は、前記終端を加えたaないしdである。なお特定のホモポリマーに対する前記徐冷手段に、加熱板や調和空気を用いないで、常温空気を吹き出す送風機5のみを1台又は縦列に数台、風道7a内の徐冷可能位置に配設し、ストランドcを温度制御することが出来る。
【0012】
本発明方法の実施例1として、結晶化に時間のかかる結晶化樹脂(イーストマン社:製品番号9921)粉砕材コポリマーを溶融して結晶化操作をした。試行して、押し出し溶融樹脂量120L/Hr、押し出し時樹指圧250kg/cmG、押し出し直前樹脂温度300°C、ストランドcの搬送速度12m/minにおいて、徐冷手段をプレートヒーター6a、搬送区間距離5mとするとき、第1段目の該ヒーター下約3cmのストランド表面温度260°C、プレートヒーター6aの搬送初端温度350°C、コンベアの初端部ベルト表面温度180°C、該終端送風温度は常温、搬送終端に発生させた送風量500m3/Hr、このとき搬送手段に縦列させる徐冷区画段数は4、ストランドc径4mmを各々設定したときに、最適結晶化操作が得られた。
同じく実施例2として、ホモポリマー性の結晶化樹脂(イーストマン社:製品番031A)粉砕材を前記同様に試行し、全ての徐冷手段を前記プレートヒーター6aから、常温で冷却する送風機5に置き換えて2000m3/Hrによって徐冷しその他の操作条件を実施例1と同様にした場合に、最適結晶化操作が得られた。該搬送終端隣接区域にはストランドの粘着性減少によるベルトからの離脱防止のために、ここに図示しないスポット加熱用電熱手段を構成して配設した。なお前記両実施例において、搬送手段2に用いたベルトのスクリーンメッシュは約5mm角、段数毎に温度降下の徐冷制御を行う操作値は、試行によって得られた最適操作温度ないし供給電力量により操作した。これらの制御は、ここに記載しないI/O機器、記憶手段、CPU、コントローラを含むコンピュータシステムを用い、適宜に搬送路に沿って乳白色化位置検知センサーを配置してシーケンス又はフィードバック制御による自動化をしてよい。
【0013】
本発明にかかる方法を実施するための装置の実施例を図3によって説明する。同図(A)に示すように、溶融樹脂は、図示右側の溶融装置1から樹脂圧検知センサー1bが示す設定圧(約200−250kg/cm2G)に従って、ダイス1aから左側に配設するペレタイザ装置9へ向かって押し出され、成形されて両装置の中間に配設する結晶化装置8に静置するストランドcになって搬送され、該結晶化装置の終端を出てペレット加工される。前記結晶化装置は、同図(B)に示すメッシュコンベア2が周回走行し、該コンベアの無端状有孔スクリーンベルトの上に、ストランドcを載置して、ダイス1aの開口径(約3−4mm)と開孔数(約20以下)によって決まるストランド本数分の樹脂量を搬送する。該ストランド搬送ベルトは、図示左右の両端の開口を除いて風道ケース7によって通風空間7aを形成する。該通風空間上部のストランド上手側には、加熱手段(プレートヒーターないし赤外線ヒーター)6を縦列に数段に分けて配置し、該加熱板下手側に隣接し通風空間7a上部から徐冷風を発生する送風機5を配設する。徐冷手段5、6を配設する前記縦列に分けた通風空間の各区画毎に、温度検知センサー5bを設け、各加熱手段6には直接、そのヒーター温度を検知する加熱板温度検知センサー6bを付設する。
【0014】
なお前記送風機と加熱板は、ストランドcの上方、約20〜50mmの風道ケース7に装着、保持し、かつ風道ケースと共に前記装置類の点検が可能であるように、ケーシングによって全体を覆っている。該ケーシングの下部にはメッシュコンベア2を含む結晶化装置8の全体を支える本体ケースを設けて、該本体ケース内に電源回路10と制御装置11を格納し、格納する前面パネルに操作盤を形成している。なお同図(B)に示す矢印は本体ケースの点検開放方向である。
同図(C)に示すように、制御装置11には、風道内温度検知センサー5bと加熱板温度検知センサー6bからの信号を受けて電源回路10への制御信号を発生して、送風機5と加熱板6aのそれぞれの出力管理を行う。
【0015】
このように構成した本発明の、結晶性樹脂のペレット成形用連続結晶化装置は、次のように動作する。結晶化操作の対象となる結晶性樹脂ごとに特定する樹脂圧に管理して溶融装置1より押し出されるストランドcは、ガラス質の透明色が有する状態、又は比較的多くの物質では融点から約30%温度降下するといわれる時点で該透明色に代わる公知の状態で押し出されて分子配列調整が行われる(参考資料▲2▼:p67.4行−6行)。コンベア2に従動した該ストランドは、その上方配置の加熱板6から、直接放射ないし対流熱による除熱調整を受ける。このときストランドcは全周曝気状態にあるので、徐冷作用は偏らず、またコンベア2上に静置するストランドの各部分は、隣接する前後部分で変化する内部応力の影響を強く受けることがない。従って、内部で生じる結晶化成長現象が狭い構造範囲でほぼ個別に生成し、結晶配列が拡大する。押し出し当初のストランドcは、外表壁面に粘着性を有して該メッシュコンベアに付着し易いが、充分乳白色化し結晶化が完了する位置の該ストランドの外表面壁は、搬送終端区域での常温空気による徐冷操作が加わって粘着性を失い、切断に好適な硬化性が確保されてペレット成形切断を容易にする。
【0016】
【発明の効果】
本発明の、結晶性樹脂のペレット成形用連続結晶化方法によれば、ストランド状に成形して行う特定の結晶化樹脂にとり、構造内部に進行する結晶化作用を複数段に分けて供給熱量側からの制御操作により進める結晶化操作であるので、ストランドの連続結晶化と結晶化ペレットの成形を最良な条件下で達成でき、継続的操業が安定して続けられる。また本発明技術はその結晶化が困難、不安定であったコポリマーに対して信頼性の高い結晶化工法を確立するものなので、社会的に広く流通する高分子製品を再生するリサイクル工法に有用であり、本発明は、成形原料用加工品の製品価値を高める結晶化技術一般の向上に著しく寄与する。
【図面の簡単な説明】
【図1】本発明のペレット成形用の再生用樹脂連続結晶化方法を説明するもので、(A)は本結晶化方法を示す工程図、(B)は(A)におけるストランドの徐冷手段を示す模式図である。
【図2】本発明による徐冷操作方法を説明するもので、(A)は結晶化過程の徐冷手段の最適操作状態を示すストランドの徐冷曲線図、(B)は(A)の操作過程のストランドに発生する結晶化変化模式図である。
【図3】本発明のペレット成形用の再生用樹脂連続結晶化装置を説明するもので、(A)はその1実施例を示す部分側面図、(B)は(A)のA−A′矢視図、(C)は徐冷手段制御の1実施例を示すブロック図である。
【図4】ペレット成形用の再生用樹脂連続結晶化に係る従来技術を説明するもので、(A)はストランド徐冷操作を示す部分側断面図、(B)は(A)の操作過程のストランドに発生する応力を示す状態模式図、(C)は(B)に対応するストランドの結晶化変化模式図である。
【符号の説明】
1 溶融装置
1a ダイス
1b 樹脂圧検知センサー
2 メッシュコンベア
3 動輪
4 熱風発生手段
5 送風機
5b 風道内温度検知センサー
6 加熱手段
6a 加熱板(プレートヒーター)
6b 加熱板温度検知センサー
7 風道ケース
7a 風道、通風空間
8 結晶化装置
9 ペレタイザ装置
10 電源回路
11 制御装置
a フレーク
b 溶融樹脂
c ストランド
d ペレット
(1) 破断が生じる状態のストランド
(2) 未結晶化状態が続くストランド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystallization technique of a raw material for molding processing in which a crystalline resin is melted, formed into a strand, and then pelletized, and the strand is maintained in an optimal slow cooling state to continuously crystallize and produce high quality pellets. It relates to the technology of manufacturing.
[0002]
[Prior art]
One of the crystallization technologies for forming raw materials using crystalline resins is to apply a stretching external force to the molten resin by extrusion to change it into a string-like strand shape. There is a conventional technique that advances the process and subsequently processes into pellets. An example is shown in FIG. As shown in FIG. 2A, the molten resin in the melting apparatus 1 is pressurized at a high pressure, and is processed into a strand by a die 1a so as to be extruded and run between the moving wheels 3 arranged on the right side in the drawing. In this traveling process, a crystallization operation is performed by gradually cooling from the outer periphery to the inside by a blowing operation from one place of room temperature air or gas for slow cooling not described here. During this operation, as indicated by a solid line in FIG. 5B, an appropriate tensile force generated by the rotational speed of the moving wheel acts as a stretching force on the strand c to increase the molecular orientation, and FIG. As shown by the solid line, the crystallization from the molten state to the crystalline state is completed according to the crystallization rate of the molten resin. Like homopolymers of molecular structure comprising a polymer resin and one kind of structural units of the perfect crystal structure consisting of the crystallization rate of 100% Ru crystallized resin der to hold the optimal condition of the crystallization.
[0003]
[Problems to be solved by the invention]
In the case of easy crystallization illustrated in FIG. 4, the extrusion pressure, the conveying speed, and the gas blowing from one place are the operation elements. However, these three elements alone are different from other types of crystalline resins. The same good results were not obtained. For example, if the conveying speed of the strand is appropriately increased, the stretching force and the stretching speed are increased, and a crystallized product with good crystallinity can be obtained. However, if some stickiness is not left in the moving wheel 3 portion, the frictional force at the time of winding is reduced, slippage occurs between the strand and the driving wheel, the running speed of the strand is lowered, and the operation is not stable. Similarly, if the progress of crystallization is too fast, deviating from the narrow range of proper operation, the stretching force is too large for the strand that is upstream of the portion where crystallization has progressed and that still contains a lot of molten state. FIG. 4B shows a fracture (1), and the crystallization state ends as shown in FIG. 4C (1). On the other hand, if the strand conveying speed is operated too slowly, the drawing force is insufficient and the uncrystallized (2) state continues as shown in FIG. 5B, and the molecular as shown in FIG. Cannot be crystallized in order to return to the original state (Reference Material (1): Yukichi Kure et al. “Polymer Crystallization by Flow” p27. 2nd line-p28.2 line, s55.6. Meeting).
Crystallization proceeds by an extended chain crystal generated by high-pressure operation of the resin or by a thickening phenomenon generated by relatively slow heat treatment at a low temperature (reference material (2): Yasuhisa Wada “Polymer solid physical properties” p91. Line 10-line 4 below, and line 94.10-line 2 below, s46.1. Baifukan). Therefore, each part of the strand where crystallization is proceeding is different from the other part at a slight distance, because the degree of crystallization formation changes, and the optimum conditions are different from the slow cooling operation in the previous stage. It cannot be ruled out by the operation. In other words, it is impossible to properly realize a non-uniform temperature drop in each part of the strand necessary for crystallization by operating the entire section to be slowly cooled by one kind of slow cooling means while conveying the strand. Yes, the optimum slow cooling rate of the entire strand cannot be adjusted or controlled by the slow cooling operation performed from one place.
In general, an oligomer having a higher molecular weight than a homopolymer or a copolymer obtained by synthesizing a heterogeneous polymer and exhibiting a crystallinity of less than 100% contains an amorphous component in the structure. However, the crystallization operation is difficult, and a strand in which the crystallized milky whitening occurs appropriately cannot be obtained.
[0004]
Here, compared to homopolymers that are easily crystallized, copolymers that are difficult to crystallize by conventional methods have higher market distribution and more opportunities for regeneration. Furthermore, as the quality of products, pellets and rushes with high crystallinity that have sufficiently achieved the crystallization rate peculiar to crystalline resins have higher market value. On the other hand, a crystalline resin with insufficient achievement of the crystallization rate has a high residual ratio of retained viscosity, causing non-uniform cutting when the strand is formed into pellets and chips, and adhesion and agglomeration with adjacent pellets. Resulting in a decline in commercial value.
The present invention has been developed in view of the above-described problems, and melts and extrudes flakes and fluff-like resin raw materials, and in the process from strand molding to pelletization, the optimum operating elements that have been confirmed by trial are crystallized. In addition to this, in order to perform optimum crystallization by arranging slow cooling means in several stages as necessary, we provide continuous crystallization technology for pellet molding of crystalline resin to produce high value products It is intended to do.
[0005]
[Means for Solving the Problems]
In the continuous crystallization method for forming a crystalline resin pellet according to the present invention, the crystalline resin flakes are melted by removing moisture, the molten resin is pressurized, extruded from a die and received by a conveying means, and at the conveying end. For the strands to be pelletized, the rest is placed on a conveying means that can be aerated on the entire circumference, and the position where milky whitening is completed from the transparent color of the original strand to complete the slow cooling is the optimum at the end of conveyance. The operation is tried for each crystalline resin in advance, and by the trial, the strand transport speed, the crystallization operation section distance, and one or more sections along the transport section are selectively arranged, and the cooling control can be made individually. The crystallization state of the strand and the slow cooling rate are properly controlled while controlling the amount of heat dissipated in the strand through the amount of heat or power supplied to the hot air generating means, air blowing means or heating means. It is obtained by the.
[0007]
[Action]
The continuous crystallization method of the crystalline resin of the present invention configured as described above is the supply-side energy operation for determining the appropriate conditions obtained by trials corresponding to the crystallization state during the transport of the strands left in the aerated state. Since the slow cooling rate is controlled and adjusted so that the crystallization operation target can be changed for each different crystalline resin, the follow-up corresponding to the internal change of the resin structure accompanying the crystallization including the thickening phenomenon In addition to being able to perform the operation, the portion that loses excessively the tackiness generated on the outer surface of the strand can be selectively partially heated to restore an appropriate viscosity.
The apparatus for carrying out the method of the present invention comprises a mesh conveyor around which a strand is divided and supported and the front and back of which is circulated, and a conveyor belt is wound around. The heating means is a slow cooling means that is arranged via a control device, and by adjusting it, a crystallization device with a simple structure is used for homopolymers that are easily crystallized, or a delicate slow cooling operation for crystallization. In the required crystalline resin, a plurality of heating means and blowers arranged in a row along the conveying means are selectively provided and operated, so that an environment with a temperature drop suitable for the crystallization operation in the conveying process can be obtained. Therefore, a slow cooling environment corresponding to the slow cooling control of resins with different crystallization operations can be formed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the continuous crystallization method for pellet molding of crystalline resin and its apparatus according to the present invention will be described with reference to the drawings. Here, FIG. 1 explains the method of the present invention, (A) is a process diagram showing the present crystallization method, (B) is a schematic diagram showing a strand slow cooling means in (A), and FIG. In the same way, the slow cooling operation method is explained, (A) is a slow cooling curve diagram of the strand showing the optimum operating state of the slow cooling means in the crystallization process, and (B) is generated in the strand in the operating process of (A). FIG. 3 illustrates the apparatus of the present invention, (A) is a partial side view showing one embodiment thereof, (B) is a view taken along the line A-A 'in (A), (C) is a block diagram showing one embodiment of slow cooling means control.
[0009]
As shown in FIG. 1A, the method of the present invention is divided into four stages in FIG. 1A, by performing trial (test operation) of the optimal crystallization operation for crystallization in advance for the resin to be crystallized in 1). The operation value for determining the slow cooling speed peculiar to the resin, that is, the transport length of the slow cooling operation section, the transport speed of the transport means, the supply heat amount for determining the strand temperature in each section transported while appropriately lowering the temperature, etc. Select the optimum operating value.
In this operation, as shown in 2) of the same figure (A), the resin flake a is melted, the molten resin is pressurized to the resin b to be stretched, extruded, formed into a string-like strand c, and completely transferred. Proceeding with the operation of allowing the strand to stand in an aerated state, and then the strand c placed on the conveying means as shown in 3), the temperature range is from almost the glassy displacement point of the resin to be crystallized to room temperature, The position where the strand turns milky white from the vitreous material is set as the conveyance end while adjusting the slow cooling speed for performing the supply heat amount operation for cooling slowly by the air blowing means 5 or the heating means 6 in a plurality of stages. At the crystallization end position, the strand c shown in 4) is shredded and formed into pellets d.
As shown in FIG. 5B, the heating plate 6a for gradually cooling the temperature of the strand c or the hot air generating means 4 for supplying the conditioned air Am is directly heated or indirectly heated, or by a heating method using them in combination. The amount of heat supplied may be supplied. As a heat source, an electric system such as electric power, electron beam heating, or a laser, or an apparatus that can be effectively used under the thermal control management of the whole factory including exhaust heat may be used. In the drawing, one embodiment is shown by a solid line, another embodiment is shown by a broken line, an alternate long and short dash line shows an air passage or a ventilation space 7a, and a heating means shows a heating means 6 for supplying heat to the hot air generating means 4. Although not shown here, the types of heat supplied to the slow cooling means include heat above room temperature and cold heat below room temperature such as electronic cooling heat due to the Peltier effect and cooling heat generated in the factory (including exhaust heat). is there.
[0010]
As shown in FIG. 3 (A), an apparatus for carrying out the method according to the present invention is attached to the melting device 1 for melting and pressurizing the dewatered resin and its end, and continuously extruding the molten resin. A die 1a to be formed into a strand c, a crystallization device 8 that conveys the extruded strand while crystallization, and a pelletizer device 9 that shreds the crystallized strand c are provided. The crystallization device 8 includes a mesh conveyor 2 on which a melted strand c is placed at the initial end, an air passage case 7 that forms a ventilation space 7a around the conveyor and that can cool the entire periphery of the strand c, and the case The heating means 6 for gradually cooling the strands to which the temperature detecting sensor 5b and the heating plate temperature detecting sensor 6b attached to the mesh conveyor 2 are provided, and installed in the upper case in the wind path on the conveyance end side. The power supply circuit 10 and the control device 11 are arranged in the lower part of the mesh conveyor and stored in the main body case, and the heating means and the blower are linked so that the cooling of the strand c can be controlled. ing.
[0011]
【Example】
Examples of the continuous crystallization method for forming a crystalline resin pellet according to the present invention will be described. When the crystallization of the target resin to be crystallized is a trial, and the change in the crystallization state of the strands in the entire conveyance section is obtained as shown in FIG. 2B, the optimum slow cooling curve of the strand is shown in FIG. ) As shown. Accordingly, the slow cooling means 4, 5, 6 are distributed and arranged at, for example, four positions a to d shown in FIG. When the heating plate 6a is used as the slow cooling means, a blower is disposed at the slow cooling end position d and cooled at room temperature. When the hot air generating means 4 is used, the blown conditioned air Am is adjusted to be lower than the surface temperature T of the strand c, and the temperature of each blown air is individually adjusted. The blown-out position of the conditioned air divided into several stages is a to d with the end added. The slow cooling means for a specific homopolymer is not provided with a heating plate or conditioned air, but only one blower 5 that blows out normal temperature air, or several in a row, are arranged at a slow cooling position in the air passage 7a. The temperature of the strand c can be controlled.
[0012]
As Example 1 of the method of the present invention, a crystallization resin (Eastman Co., Ltd .: product number 9921) pulverized material copolymer, which takes time for crystallization, was melted and subjected to a crystallization operation. At trial, the extrusion molten resin amount is 120 L / Hr, the extrusion pressure is 250 kg / cm 2 G, the resin temperature just before extrusion is 300 ° C., and the conveying speed of the strand c is 12 m / min. When the distance is 5 m, the strand surface temperature of about 3 cm below the heater in the first stage is 260 ° C., the conveying end temperature of the plate heater 6 a is 350 ° C., the conveyor belt belt surface temperature is 180 ° C. Optimum crystallization operation was obtained when the air blowing temperature was set to room temperature, the amount of air blown generated at the conveyance end 500 m <3> / Hr, the number of slow cooling compartments to be cascaded by the conveying means at this time, and the strand c diameter 4 mm were set. .
Similarly, as Example 2, homopolymeric crystallized resin (Eastman: product number 031A) pulverized material was tried in the same manner as described above, and all the slow cooling means were transferred from the plate heater 6a to the blower 5 that cooled at room temperature. When it was replaced and gradually cooled at 2000 m 3 / Hr and the other operating conditions were the same as in Example 1, the optimum crystallization operation was obtained. In order to prevent detachment from the belt due to a decrease in the stickiness of the strand, a spot heating electric heating means (not shown) is configured and arranged in the area adjacent to the conveyance end. In both of the above embodiments, the screen mesh of the belt used for the conveying means 2 is about 5 mm square, and the operation value for performing the slow cooling control of the temperature drop for each number of stages depends on the optimum operation temperature or the amount of supplied power obtained by trial. Operated. These controls are performed by using a computer system including I / O equipment, storage means, CPU, and controller not described here, and by appropriately arranging milky whitening position detection sensors along the conveyance path and performing automation by sequence or feedback control. You can do it.
[0013]
An embodiment of an apparatus for carrying out the method according to the invention will be described with reference to FIG. As shown in FIG. 6A, the molten resin is disposed on the left side from the die 1a according to the set pressure (about 200-250 kg / cm 2 G) indicated by the resin pressure detection sensor 1b from the melting device 1 on the right side of the figure. It is extruded toward 9 and formed into a strand c that is molded and placed in a crystallization apparatus 8 disposed in the middle of both apparatuses. The strand c is then conveyed out of the terminal of the crystallization apparatus. In the crystallization apparatus, a mesh conveyor 2 shown in FIG. 1B travels around, a strand c is placed on an endless perforated screen belt of the conveyor, and an opening diameter of the die 1a (about 3 mm). -4 mm) and the number of holes (about 20 or less), the amount of resin corresponding to the number of strands is conveyed. The strand conveying belt forms a ventilation space 7a by an air passage case 7 except for openings at both left and right ends in the figure. Heating means (plate heater or infrared heater) 6 is arranged in several stages in the upper row of the strand in the upper part of the ventilation space, and gradually cooled air is generated from the upper part of the ventilation space 7a adjacent to the lower side of the heating plate. A blower 5 is provided. A temperature detection sensor 5b is provided for each section of the ventilation space divided into the columns where the slow cooling means 5 and 6 are arranged, and each heating means 6 directly detects a heater plate temperature detection sensor 6b. Is attached.
[0014]
The blower and the heating plate are attached to and held in an airway case 7 of about 20 to 50 mm above the strand c, and are covered with a casing so that the devices can be inspected together with the airway case. ing. A main body case that supports the entire crystallization apparatus 8 including the mesh conveyor 2 is provided at the lower part of the casing, and the power supply circuit 10 and the control device 11 are stored in the main body case, and an operation panel is formed on the front panel to be stored. is doing. In addition, the arrow shown to the figure (B) is an inspection opening direction of a main body case.
As shown in FIG. 5C, the control device 11 receives signals from the airway temperature detection sensor 5b and the heating plate temperature detection sensor 6b, generates a control signal to the power supply circuit 10, and Each output management of the heating plate 6a is performed.
[0015]
The thus-configured continuous crystallization apparatus for crystalline resin pellet molding of the present invention operates as follows. The strand c, which is controlled by the resin pressure specified for each crystalline resin to be crystallized and is extruded from the melting apparatus 1, has a glassy transparent color, or about 30 from the melting point in a relatively large number of substances. When the temperature is said to drop, the molecular arrangement is adjusted by extruding in a known state instead of the transparent color (reference material (2): lines 67.4-6). The strand driven by the conveyor 2 is subjected to heat removal adjustment by direct radiation or convection heat from the heating plate 6 disposed above. At this time, since the strand c is in the entire aeration state, the slow cooling action is not biased, and each part of the strand placed on the conveyor 2 is strongly affected by the internal stress that changes in the adjacent front and rear parts. Absent. Therefore, the crystallization growth phenomenon occurring inside is generated almost individually in a narrow structural range, and the crystal arrangement is expanded. The strand c at the beginning of extrusion has adhesiveness on the outer surface wall surface and easily adheres to the mesh conveyor. However, the outer surface wall of the strand at a position where the milky whitening and crystallization are completed is caused by room temperature air in the conveyance termination area. A slow cooling operation is added to lose the adhesiveness, and the curability suitable for cutting is ensured to facilitate pellet forming cutting.
[0016]
【The invention's effect】
Of the present invention, according to the crystalline resin pellets for molding a continuous crystallization how, taken up in specific crystalline resin performed by forming into strands, supplying heat separately crystallization effect of progression to the internal structure in a plurality of stages Since it is a crystallization operation advanced by a control operation from the side, continuous crystallization of strands and formation of crystallization pellets can be achieved under the best conditions, and continuous operation can be stably continued. In addition, since the technology of the present invention establishes a highly reliable crystallization method for a copolymer that has been difficult to crystallize and is unstable, it is useful for a recycling method for recycling a polymer product widely distributed in society. The present invention significantly contributes to the general improvement of the crystallization technology that increases the product value of the processed product for forming raw materials.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 illustrates a continuous resin crystallization method for regenerating resin for molding pellets according to the present invention, wherein (A) is a process diagram showing the crystallization method, and (B) is a method for slowly cooling a strand in (A). It is a schematic diagram which shows.
FIGS. 2A and 2B are diagrams for explaining the method of slow cooling operation according to the present invention, in which FIG. 2A is a strand slow cooling curve diagram showing the optimum operating state of the slow cooling means in the crystallization process, and FIG. It is a crystallization change schematic diagram which generate | occur | produces in the strand of a process.
FIGS. 3A and 3B are diagrams for explaining a continuous resin crystallization apparatus for recycling pellet molding according to the present invention, in which FIG. 3A is a partial side view showing one embodiment thereof, and FIG. 3B is AA ′ of FIG. An arrow view and (C) are block diagrams which show one Example of slow cooling means control.
FIGS. 4A and 4B are diagrams for explaining a conventional technique related to continuous crystallization of a regenerating resin for pellet molding, in which FIG. 4A is a partial cross-sectional view showing a strand slow cooling operation, and FIG. 4B is an operation process of FIG. The state schematic diagram which shows the stress which generate | occur | produces in a strand, (C) is a crystallization change schematic diagram of the strand corresponding to (B).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Melting apparatus 1a Dies 1b Resin pressure detection sensor 2 Mesh conveyor 3 Driving wheel 4 Hot air generating means 5 Blower 5b Temperature detection sensor 6 in an air passage 6 Heating means 6a Heating plate (plate heater)
6b Heating plate temperature detection sensor 7 Air passage case 7a Air passage, ventilation space 8 Crystallizer 9 Pelletizer device 10 Power supply circuit 11 Controller a Flakes b Molten resin c Strand d Pellet (1) Strand in a state where breakage occurs (2) Strands that remain uncrystallized

Claims (1)

結晶性樹脂のフレーク(a)を水分を除いて溶融し、その溶融樹脂(b)を加圧し、ダイス(1a)より押し出して搬送手段(2)に受け、搬送終端にてペレット成形するようにしたストランド(c)に対して、ほぼ全周囲が曝気可能の該搬送手段上に静置して、当初の該ストランドの透明色から乳白色化して徐冷を完了させる位置を前記搬送終端とする最適操作を予め結晶性樹脂毎に試行し、該試行によってストランド(c)の搬送速度、結晶化操作区間距離、搬送区間に沿って一ないし複数区域に分けて選択的に配設し、かく個別に徐冷制御可能な熱風発生手段(4)、送風手段(5)あるいは加熱手段(6)へ、供給する熱量ないし電力量を介して、ストランド(c)の放散熱量を制御しながら該ストランドの結晶化状態と徐冷速度を適正操作するようにしたことを特徴とする結晶性樹脂のペレット成形用連続結晶化方法。The crystalline resin flakes (a) are melted by removing moisture, the molten resin (b) is pressurized, extruded from the die (1a), received by the conveying means (2), and pelletized at the conveying end. The position where the entire end of the strand (c) is left on the conveying means that can be aerated and milky whitened from the transparent color of the original strand to complete the slow cooling is the optimum at the end of conveyance. The operation is tried for each crystalline resin in advance, and by the trial, it is selectively arranged in one or a plurality of sections along the transport speed of the strand (c), the crystallization operation section distance, and the transport section. While controlling the amount of heat dissipated in the strand (c) through the amount of heat or power supplied to the hot air generating means (4), the blowing means (5) or the heating means (6) capable of slow cooling, the strand crystals are controlled. The cooling state and slow cooling rate Continuous crystallization method for pelletization of the crystalline resin, characterized in that so as to positively operated.
JP2001114596A 2001-03-09 2001-03-09 Continuous crystallization method for crystalline resin pellet molding Expired - Lifetime JP4657486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114596A JP4657486B2 (en) 2001-03-09 2001-03-09 Continuous crystallization method for crystalline resin pellet molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114596A JP4657486B2 (en) 2001-03-09 2001-03-09 Continuous crystallization method for crystalline resin pellet molding

Publications (2)

Publication Number Publication Date
JP2002264127A JP2002264127A (en) 2002-09-18
JP4657486B2 true JP4657486B2 (en) 2011-03-23

Family

ID=18965638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114596A Expired - Lifetime JP4657486B2 (en) 2001-03-09 2001-03-09 Continuous crystallization method for crystalline resin pellet molding

Country Status (1)

Country Link
JP (1) JP4657486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807697A (en) * 2017-10-26 2018-03-16 合肥超越电器有限责任公司 A kind of temperature controller of flexible lift exterior protection cover

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574821A (en) * 1978-12-01 1980-06-05 Toray Ind Inc Pelletizer for syhthetic resin
JPH0336243U (en) * 1989-08-22 1991-04-09
JPH07505101A (en) * 1993-04-29 1995-06-08 リーター・アウトマーティク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Process for simultaneous drying and crystallization of crystallizable thermoplastics
WO2000046004A1 (en) * 1999-02-04 2000-08-10 Bühler AG Process for upgrading plastic material
WO2000071320A1 (en) * 1999-05-25 2000-11-30 Eastman Chemical Company A process for rapid crystallization of polyesters and co-polyesters via in-line drafting and flow-induced crystallization
JP2001026015A (en) * 1999-07-16 2001-01-30 Toshio Ichikawa Pellet regenerating apparatus having for continuously crystallizing mechanism of pet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574821A (en) * 1978-12-01 1980-06-05 Toray Ind Inc Pelletizer for syhthetic resin
JPH0336243U (en) * 1989-08-22 1991-04-09
JPH07505101A (en) * 1993-04-29 1995-06-08 リーター・アウトマーティク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Process for simultaneous drying and crystallization of crystallizable thermoplastics
WO2000046004A1 (en) * 1999-02-04 2000-08-10 Bühler AG Process for upgrading plastic material
WO2000071320A1 (en) * 1999-05-25 2000-11-30 Eastman Chemical Company A process for rapid crystallization of polyesters and co-polyesters via in-line drafting and flow-induced crystallization
JP2001026015A (en) * 1999-07-16 2001-01-30 Toshio Ichikawa Pellet regenerating apparatus having for continuously crystallizing mechanism of pet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807697A (en) * 2017-10-26 2018-03-16 合肥超越电器有限责任公司 A kind of temperature controller of flexible lift exterior protection cover

Also Published As

Publication number Publication date
JP2002264127A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
CA2138261C (en) Process for the simultaneous drying and crystallization of crystallizable thermoplastic synthetic material
JP4724654B2 (en) Method and apparatus for heat treatment of polyester pellets
US20050062186A1 (en) Method and device for increasing the limiting viscosty of polyester
JP2579874B2 (en) Method for cooling and pelletizing molten strands
US8147738B2 (en) Extrusion granulation method and device, and granulate produced therefrom
EP0944468B1 (en) Film bead heating for simultaneous stretching
JP2006504553A (en) Method for extruding a peroxide crosslinkable molded article made of plastic
JP2005512851A5 (en)
JP4657486B2 (en) Continuous crystallization method for crystalline resin pellet molding
US6039905A (en) Apparatus and method for granulating plastic strands
CN114131804A (en) Crystallization process of PLA straw
KR20050095081A (en) Method of manufacturing recycle synthetic resin pellet adopting hot cutting and plant therefor
KR101839722B1 (en) Cooling treatment system of nonferrous metal
JPS63114623A (en) Method and device for cooling melting film
JP3205908B2 (en) Pellet regeneration device equipped with a continuous crystallization mechanism for PET
JP2001334528A (en) Pellet regeneration apparatus equipped with pet continuous crystallizing mechanism
KR20050048359A (en) Method of producing recycle synthetic resin pellet from thermoplastic waste and plant therefor
JPH0725132B2 (en) Inflation molding method and apparatus therefor
JPH0639127B2 (en) Extruding and stretching equipment for crystalline thermoplastic materials
JP7531482B2 (en) Preform temperature control device and temperature control method
KR20180085173A (en) Super engineering plastic recycle system
JP2001293769A (en) Method for manufacturing thermoplastic resin film
EP3771540A1 (en) Method and apparatus for crystallizing polylactide (pla) granules
JPH091636A (en) Extrusion molding method for plastic sheet
JP4419511B2 (en) Production method of polyester film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term