JP4654167B2 - Container to be heated - Google Patents

Container to be heated Download PDF

Info

Publication number
JP4654167B2
JP4654167B2 JP2006237140A JP2006237140A JP4654167B2 JP 4654167 B2 JP4654167 B2 JP 4654167B2 JP 2006237140 A JP2006237140 A JP 2006237140A JP 2006237140 A JP2006237140 A JP 2006237140A JP 4654167 B2 JP4654167 B2 JP 4654167B2
Authority
JP
Japan
Prior art keywords
container
heated
heated container
separation insulating
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006237140A
Other languages
Japanese (ja)
Other versions
JP2008055013A (en
Inventor
保男 神長
純平 宇留野
浩幸 庄司
雅之 磯貝
博 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006237140A priority Critical patent/JP4654167B2/en
Publication of JP2008055013A publication Critical patent/JP2008055013A/en
Application granted granted Critical
Publication of JP4654167B2 publication Critical patent/JP4654167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被加熱容器に関し、特に誘導加熱装置用として用いられる被加熱容器に関するものである。   The present invention relates to a heated container, and more particularly to a heated container used for an induction heating apparatus.

最近、非磁性被加熱容器であるアルミニウム製の被加熱容器などでも誘導加熱が可能な誘導加熱装置が開発されている。しかし、この非磁性金属であるアルミニウム製の被加熱容器を加熱する際には、磁性鍋に比べ大きな起磁力を印加するため、磁力による反発力で軽量であるアルミニウム製の被加熱容器などは被加熱容器の浮上やズレが発生し易いという欠点を有している。一方、このアルミニウム製の被加熱容器は調理者にとって負担の少ない軽量被加熱容器であるため、今後も需要は大きいと考えられる。   Recently, an induction heating apparatus has been developed that can perform induction heating even in an aluminum heated container that is a nonmagnetic heated container. However, when heating a heated container made of aluminum, which is a nonmagnetic metal, a larger magnetomotive force is applied compared to a magnetic pan, so heated containers made of aluminum that are lightweight due to the repulsive force of the magnetic force are not covered. There is a drawback that the heating container is liable to float and shift. On the other hand, the heated container made of aluminum is a lightweight heated container that is less burdensome for the cook, and it is considered that the demand will continue to be great in the future.

特許文献1は大きな荷重構成や中央に重心を有する構成のアルミ製の被加熱容器として被加熱容器の浮上を軽減防止させている。   In Patent Document 1, as a heated container made of aluminum having a large load structure and a center of gravity at the center, the floating of the heated container is prevented from being reduced.

特開2006−102084号公報JP 2006-102084 A

本発明では、軽量で低磁性金属であるアルミニウムなどで構成される被加熱容器を誘導加熱装置で加熱した際に発生することのある被加熱容器の浮上を、防止することを課題とする。   It is an object of the present invention to prevent the heated container that may be generated when the heated container made of aluminum, which is a light and low magnetic metal, is heated by an induction heating device.

低磁性金属体により構成される被加熱容器において、誘導加熱装置により該被加熱容器に流れる渦電流を絶縁する分離絶縁部を前記被加熱容器の底部から側面にかけて配置することを特徴とする被加熱容器により上記課題を解決することができる。   A heated container constituted by a low magnetic metal body, wherein a separation insulating part that insulates eddy current flowing through the heated container by an induction heating device is disposed from the bottom to the side of the heated container. The container can solve the above problem.

若しくは、低磁性金属体により構成される被加熱容器において、前記被加熱容器に流れる渦電流を絶縁する分離絶縁部を備え、前記渦電流が前記被加熱容器の底部の表裏両面を逆方向に流れるように、前記分離絶縁部を配置することを特徴とする被加熱容器によっても上記課題を解決することができる。   Alternatively, in a heated container made of a low magnetic metal body, the container includes a separation insulating part that insulates eddy current flowing through the heated container, and the eddy current flows in opposite directions on both front and back surfaces of the bottom of the heated container. Thus, the said subject can be solved also by the to-be-heated container characterized by arrange | positioning the said isolation | separation insulation part.

若しくは、低磁性金属体で構成される被加熱容器において、前記被加熱容器を流れる渦電流を絶縁するスリット状の分離絶縁部を備え、該分離絶縁部は前記被加熱容器が受ける前記誘導加熱装置からの浮力を抑制するように前記渦電流の流路を構成することを特徴とする被加熱容器によっても上記課題を解決することができる。   Alternatively, in a heated container composed of a low magnetic metal body, the induction heating apparatus includes a slit-shaped separation insulating part that insulates eddy current flowing in the heated container, and the separation insulating part is received by the heated container The above-mentioned problem can also be solved by a heated container characterized in that the eddy current flow path is configured to suppress buoyancy from the air.

本発明によれば、誘導加熱装置により低磁性材の被加熱容器を加熱するにあたり、低磁性金属により構成される被加熱容器の浮上を防止することが実現できる。   ADVANTAGE OF THE INVENTION According to this invention, when heating the to-be-heated container of a low magnetic material with an induction heating apparatus, it can implement | achieve prevention of the to-be-heated container comprised with a low magnetic metal.

図1は一般的な被加熱容器の浮上の原理構成である。加熱コイル3へ高周波電流が交互の向きでコイルに印加され、図示の向きにコイル電流31が流れると、コア4から磁力線32が誘起する。この磁力線32は被加熱容器10の底部裏面101の裏面部を磁力線
32に反するように渦電流を発生させる。この裏面渦電流33と被加熱容器10の電力損失により熱を発生させる。同時に、裏面渦電流33の向きと磁力線32の向きによりフレミング左手の法則で被加熱容器10の底部裏面101に上向きに力が生じ、軽量である被加熱容器10は被加熱容器の浮上やずれを生じてしまうことになる。
FIG. 1 shows the principle configuration of a typical heated container. When a high-frequency current is applied to the heating coil 3 in an alternating direction and the coil current 31 flows in the direction shown in the figure, a magnetic force line 32 is induced from the core 4. This magnetic force line 32 generates an eddy current so that the back surface portion of the bottom back surface 101 of the heated container 10 is opposed to the magnetic force line 32. Heat is generated by the backside eddy current 33 and the power loss of the heated container 10. At the same time, the direction of the back surface eddy current 33 and the direction of the magnetic force lines 32 cause an upward force on the bottom back surface 101 of the heated container 10 according to the Fleming left-hand rule. Will occur.

後述の各実施例に示す構成により、前述の被加熱容器の浮上を防止することができる。   With the configuration shown in each example described later, the above-described heated container can be prevented from floating.

(実施例1)
以下に、誘導加熱装置用被加熱容器の実施例1について図を用いて説明する。図2は本発明の実施形態における誘導加熱装置と被加熱容器の構成を示す。図2において、被加熱容器1とその分離絶縁部9,被加熱容器1の台板となるトッププレート2と被加熱容器1を誘導加熱する加熱コイル3と、加熱コイル3の磁力を増強し、被加熱容器1へ磁気誘導する複数のU型あるいはL型,I型のコア4と、加熱コイル3を駆動させる、交流電源5,整流回路6,直流から高周波電力に変換するインバータ回路7,共振コンデンサ8とを備えて構成される。
Example 1
Below, Example 1 of the to-be-heated container for induction heating apparatuses is described using figures. FIG. 2 shows the configuration of the induction heating apparatus and the heated container in the embodiment of the present invention. In FIG. 2, the heated container 1, its separation insulating part 9, the top plate 2 serving as a base plate of the heated container 1, the heating coil 3 for induction heating the heated container 1, and the magnetic force of the heating coil 3 are increased, A plurality of U-type, L-type, and I-type cores 4 for magnetic induction to the heated container 1, an AC power source 5 for driving the heating coil 3, a rectifier circuit 6, an inverter circuit 7 for converting DC to high-frequency power, resonance And a capacitor 8.

被加熱容器1には被加熱容器底部の中央から側面にかけてスリット状(スリットとは板状の部材を分離する隙間の意)に分離絶縁部9が構成され、この分離絶縁部9を設けることにより加熱コイル3,コア4から受ける渦電流を被加熱容器1底部の裏面の他、底部表面にも流すことで軽量の被加熱容器の浮上を防止するものである。その詳細を図3により説明する。   In the heated container 1, a separation insulating part 9 is formed in a slit shape (a slit is a gap for separating a plate-like member) from the center to the side surface of the heated container bottom, and by providing this separation insulating part 9 The eddy current received from the heating coil 3 and the core 4 is caused to flow not only on the back surface of the bottom of the heated container 1 but also on the bottom surface, thereby preventing the lightweight heated container from rising. Details thereof will be described with reference to FIG.

図3は本実施例である被加熱容器の浮上防止の原理構成を示す。加熱コイル3へ高周波電流となるコイル電流31が図示方向に流れるとすると、コア4から磁力線32が誘起される。この磁力線32は被加熱容器1の底部裏面11を通り、この磁力線32に反するように裏面渦電流33を発生させる。裏面渦電流33は分離絶縁部9により、被加熱容器1底部表面12にも裏面渦電流33の反対向きにループして表面渦電流35が流れる。したがって、フレミング左手の法則により裏面渦電流33と表面渦電流35の向きと磁力線
32の向きから被加熱容器底部裏面11に上向きの力が、被加熱容器底部表面12に下向きの力が生じる。この被加熱容器1の底部裏面と底部表面において被加熱容器への力の向きが反対となる力が加わり、被加熱容器1への力は相殺されることになる。これは被加熱容器の浮上の低減でなく被加熱容器の浮上がほぼ解消されたことになる。
FIG. 3 shows a principle configuration for preventing the heated container according to the present embodiment from rising. Assuming that a coil current 31, which is a high-frequency current, flows to the heating coil 3 in the illustrated direction, a magnetic force line 32 is induced from the core 4. The magnetic force lines 32 pass through the bottom rear surface 11 of the heated container 1 and generate a back surface eddy current 33 so as to oppose the magnetic force lines 32. The back surface eddy current 33 loops in the opposite direction of the back surface eddy current 33 on the bottom surface 12 of the heated container 1 by the separation insulating portion 9 and the surface eddy current 35 flows. Therefore, according to the Fleming left-hand rule, an upward force is generated on the heated container bottom surface 11 and a downward force is generated on the heated container bottom surface 12 from the direction of the back surface eddy current 33 and the surface eddy current 35 and the direction of the magnetic force lines 32. A force that reverses the direction of the force to the heated container is applied to the bottom rear surface and the bottom surface of the heated container 1, and the force to the heated container 1 is offset. This is not a reduction in the floating of the heated container, but the floating of the heated container is almost eliminated.

また、渦電流が被加熱容器1の底部裏面11と底部表面12を流れるため、渦電流の流路長が長くなり被加熱容器1の流路抵抗は増加する。したがって、熱となる被加熱容器1への電力は渦電流の2乗と被加熱容器1の抵抗の積に比例するため増加する。これにより、被加熱容器1の抵抗の増加分は加熱コイル3のコイル電流31を低減できるので、加熱コイル3の銅損やインバータ回路7などの回路部での損失低減につながり、加熱効率の向上に寄与することになる。   Further, since the eddy current flows through the bottom back surface 11 and the bottom surface 12 of the heated container 1, the flow length of the eddy current is increased and the flow resistance of the heated container 1 is increased. Therefore, the electric power to the heated container 1 that becomes heat increases because it is proportional to the product of the square of the eddy current and the resistance of the heated container 1. As a result, the increase in the resistance of the heated container 1 can reduce the coil current 31 of the heating coil 3, leading to a reduction in the copper loss of the heating coil 3 and the loss in the circuit section such as the inverter circuit 7, thereby improving the heating efficiency. Will contribute.

図4は被加熱容器底部の断面構成を示す。被加熱容器1に分離絶縁部9を設けることにより、被加熱容器底部裏面11の裏面渦電流33のループは分離絶縁部9により厚み方向へ流れ、被加熱容器底部表面12を逆方向ループして表面渦電流35が流れることになる。この渦電流を被加熱容器底部裏面11と被加熱容器底部表面12の両面に流すためには、被加熱容器底部に表皮深さの約2倍を上回る厚さが必要となる。例えば、駆動周波数
90kHzとすると、アルミニウムの表皮深さは0.266mmで、厚さは約0.53mm以上となる。
FIG. 4 shows a cross-sectional configuration of the heated container bottom. By providing the separation insulating portion 9 in the heated container 1, the loop of the back surface eddy current 33 on the bottom surface 11 of the heated container flows in the thickness direction through the separation insulating portion 9, and loops in the reverse direction on the heated container bottom surface 12. A surface eddy current 35 flows. In order to allow this eddy current to flow on both the bottom surface 11 of the heated container bottom and the bottom surface 12 of the heated container, the bottom of the heated container needs to have a thickness exceeding about twice the skin depth. For example, when the driving frequency is 90 kHz, the skin depth of aluminum is 0.266 mm, and the thickness is about 0.53 mm or more.

上記の分離絶縁部9の絶縁物は被加熱容器1の分離されるスリットに埋設接合,接着され、材料はセラミックなどでも良い。また、図5に示すように分離絶縁部91は絶縁物を被加熱容器1に覆わせる構造でも良い。さらには、被加熱容器底部の表面全体にコーティングを施しても良い。   The insulator of the separation insulating portion 9 is embedded and bonded to the slit to be separated of the heated container 1, and the material may be ceramic. Further, as shown in FIG. 5, the separation insulating portion 91 may have a structure in which an insulator is covered with the heated container 1. Furthermore, the entire surface of the heated container bottom may be coated.

図6は本実施例である被加熱容器の応用例を示す。分離絶縁部9を構成した被加熱容器1の底部の裏面に断熱材40を配置して、被加熱容器1からの伝導熱をトッププレート2の上面へ熱遮蔽し、トッププレート2の上面の伝導熱による温度上昇を防止させる。この構成により、トッププレート2の温度上昇の抑制による安全性向上とさらなる熱効率の向上を可能にする。   FIG. 6 shows an application example of the heated container according to this embodiment. A heat insulating material 40 is disposed on the back surface of the bottom of the heated container 1 that constitutes the separation insulating part 9, and the heat conduction from the heated container 1 is shielded against the upper surface of the top plate 2, and the conduction of the upper surface of the top plate 2 is performed. Prevents temperature rise due to heat. With this configuration, it is possible to improve safety and further improve thermal efficiency by suppressing the temperature rise of the top plate 2.

(実施例2)
図7は実施例2における被加熱容器の構成図を示す。ここでは被加熱容器の底部に渦巻き状の分離絶縁部92を有する構造とする。この渦巻き構造により、底部の裏表両面を逆方向に渦電流が流れることはもちろん、渦電流の流路長を長くして被加熱容器20の抵抗をさらに増加する。これにより、加熱コイル3へのコイル電流をさらに低減することができ、銅損などの損失低減で加熱効率を向上させることができる。
(Example 2)
FIG. 7 is a configuration diagram of a heated container in the second embodiment. Here, a structure having a spiral separation insulating portion 92 at the bottom of the container to be heated is employed. Due to this spiral structure, eddy currents flow in opposite directions on the back and front surfaces of the bottom, as well as increasing the resistance of the heated container 20 by increasing the flow path length of the eddy current. Thereby, the coil current to the heating coil 3 can be further reduced, and the heating efficiency can be improved by reducing losses such as copper loss.

また、図8に示すような被加熱容器の底面に渦巻き状の分離絶縁部92を有し、被加熱容器の側面のも分離絶縁部9を有する構造や、図9に示すような被加熱容器の底部に構成された渦巻き状の分離絶縁部を側面にまで延長した構造とすると、加熱効率がより向上する効果を有する。   Also, a structure having a spiral separation insulating portion 92 on the bottom surface of the heated container as shown in FIG. 8 and a separation insulating portion 9 on the side surface of the heated container, or a heated container as shown in FIG. If the spiral separation insulating portion formed at the bottom of the structure is extended to the side surface, the heating efficiency is further improved.

本実施例においても、分離絶縁部9の絶縁物は被加熱容器1の分離されるスリットに埋設接合,接着され、材料はセラミックなどでも良い。また、図5に示すように分離絶縁部91は絶縁物を被加熱容器1に覆わせる構造でも良い。さらには、被加熱容器底部の表面全体にコーティングを施しても良い。   Also in the present embodiment, the insulator of the separation insulating portion 9 is embedded and bonded and bonded to the slit to be separated of the heated container 1, and the material may be ceramic. Further, as shown in FIG. 5, the separation insulating portion 91 may have a structure in which an insulator is covered with the heated container 1. Furthermore, the entire surface of the heated container bottom may be coated.

また、図8に示す本実施例である被加熱容器の応用例は、分離絶縁部9を構成した被加熱容器1の底部の裏面に断熱材40を配置して、被加熱容器1からの伝導熱をトッププレート2の上面へ熱遮蔽し、トッププレート2の上面の伝導熱による温度上昇を防止させる。この構成も図7に示すような引例1の構成と同様の効果を有する。   Further, in the application example of the heated container which is the present embodiment shown in FIG. 8, the heat insulating material 40 is disposed on the back surface of the bottom of the heated container 1 constituting the separation insulating part 9, and conduction from the heated container 1 is performed. Heat is shielded from heat on the top surface of the top plate 2 to prevent temperature rise due to conduction heat on the top surface of the top plate 2. This configuration also has the same effect as the configuration of Reference 1 as shown in FIG.

本発明によれば、誘導加熱装置に用いることにより、容器の浮上を防止することができる被加熱容器を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the to-be-heated container which can prevent a container's floating by using for an induction heating apparatus.

また、本発明によれば、誘導加熱装置に用いることにより、容器を流れる渦電流の抵抗を増大させることで加熱コイル電流を低減して加熱効率を向上させる被加熱容器を提供することが可能になる。   In addition, according to the present invention, it is possible to provide a heated container that reduces the heating coil current and improves the heating efficiency by increasing the resistance of the eddy current flowing through the container by using the induction heating apparatus. Become.

一般的な被加熱容器の浮上の原理構成図。The principle block diagram of the floating of a general heated container. 本発明の実施形態における誘導加熱装置と被加熱容器の構成図。The block diagram of the induction heating apparatus and to-be-heated container in embodiment of this invention. 本発明の実施例1における被加熱容器の浮上防止の原理構成図。The principle block diagram of the floating prevention of the to-be-heated container in Example 1 of this invention. 本発明の実施形態における被加熱容器底部の第1の断面構成図。The 1st cross-section block diagram of the to-be-heated container bottom part in embodiment of this invention. 本発明の実施形態における被加熱容器底部の第2の断面構成図。The 2nd cross-section block diagram of the to-be-heated container bottom part in embodiment of this invention. 本発明の実施例1における被加熱容器の応用例の構成図。The block diagram of the application example of the to-be-heated container in Example 1 of this invention. 本発明の実施例2における被加熱容器の第1の構成図。The 1st block diagram of the to-be-heated container in Example 2 of this invention. 本発明の実施例2における被加熱容器の第2の構成図。The 2nd block diagram of the to-be-heated container in Example 2 of this invention. 本発明の実施例2における被加熱容器の第3の構成図。The 3rd block diagram of the to-be-heated container in Example 2 of this invention. 本発明の実施例2における被加熱容器の応用例の構成図。The block diagram of the application example of the to-be-heated container in Example 2 of this invention.

符号の説明Explanation of symbols

1,10,20…被加熱容器、2…トッププレート、3…加熱コイル、4…コア、5…交流電源、6…整流回路、7…インバータ回路、8…共振コンデンサ、9,91,92…分離絶縁部、11,101…被加熱容器底部裏面、12,102…被加熱容器底部表面、31…コイル電流、32…磁力線、33…裏面渦電流、35…表面渦電流、40…断熱材。   DESCRIPTION OF SYMBOLS 1,10,20 ... Heated container, 2 ... Top plate, 3 ... Heating coil, 4 ... Core, 5 ... AC power supply, 6 ... Rectifier circuit, 7 ... Inverter circuit, 8 ... Resonance capacitor, 9, 91, 92 ... Separation insulating part 11, 101 ... Heated container bottom back surface, 12, 102 ... Heated container bottom surface, 31 ... Coil current, 32 ... Magnetic field line, 33 ... Back surface eddy current, 35 ... Surface eddy current, 40 ... Heat insulation material.

Claims (20)

低磁性金属体により構成される被加熱容器において、
誘導加熱装置から発生する磁界により前記被加熱容器に流れる渦電流を絶縁する分離絶縁部を、前記被加熱容器の底部の中央部から前記被加熱容器の側面にかけて配置することを特徴とする被加熱容器。
In a heated container composed of a low magnetic metal body,
A separation insulating portion that insulates eddy current flowing in the heated container by a magnetic field generated from an induction heating device is disposed from the center of the bottom of the heated container to the side surface of the heated container. container.
請求項1において、
前記分離絶縁部は前記被加熱容器にスリット状に構成されることを特徴とする被加熱容器。
In claim 1,
The said isolation | separation insulation part is comprised by the said to-be-heated container in slit shape, The to-be-heated container characterized by the above-mentioned.
請求項2において、
前記分離絶縁部は前記低磁性金属体のスリットに埋設するか、若しくは覆うか、若しくは前記被加熱容器の底部の表面全体を覆う構造とすることを特徴とする被加熱容器。
In claim 2,
The container to be heated is characterized in that the separation insulating portion is embedded in or covered in the slit of the low magnetic metal body or covers the entire surface of the bottom of the container to be heated.
請求項1において、
前記分離絶縁部の一部、若しくは全部が渦巻き状に配置されることを特徴とする被加熱容器。
In claim 1,
A container to be heated, wherein a part or all of the separation insulating part is arranged in a spiral shape.
請求項1において、
前記分離絶縁部は前記被加熱容器の底部のみに配置されることを特徴とする被加熱容器。
In claim 1,
The container to be heated is characterized in that the separation insulating part is disposed only at the bottom of the container to be heated.
請求項1において、
前記分離絶縁部が前記渦電流の流路を、長くするように配置されることを特徴とする被加熱容器。
In claim 1,
The heated container, wherein the separation insulating part is disposed so as to lengthen the flow path of the eddy current.
請求項1において、
前記分離絶縁部は前記渦電流を前記被加熱容器の底部の表面と裏面の両方を逆方向に流すように配置されることを特徴とする被加熱容器。
In claim 1,
The container to be heated is characterized in that the separation insulating part is arranged so that the eddy current flows through both the front and back surfaces of the bottom of the container to be heated in opposite directions.
請求項7において、
前記被加熱容器の底部の厚さは、前記低磁性金属体の金属表皮深さの2倍以上であることを特徴とする被加熱容器。
In claim 7,
The heated container is characterized in that the thickness of the bottom of the heated container is at least twice the metal skin depth of the low magnetic metal body.
請求項1において、
前記被加熱容器の底部裏面に断熱材を構成することを特徴とする被加熱容器。
In claim 1,
A heated container comprising a heat insulating material on the bottom rear surface of the heated container.
低磁性金属体により構成される被加熱容器において、
誘導加熱装置から発生する磁界により前記被加熱容器に流れる渦電流を絶縁するスリット状の分離絶縁部を備え、
該分離絶縁部は前記渦電流を前記被加熱容器の底部の表裏両面に逆方向に流れるように配置することを特徴とする被加熱容器。
In a heated container composed of a low magnetic metal body,
Comprising a slit-like isolation insulating part that insulates eddy current flowing in the heated container by a magnetic field generated from an induction heating device;
The container to be heated is arranged so that the eddy current flows in opposite directions on both the front and back surfaces of the bottom of the container to be heated.
請求項10において、
前記分離絶縁部は前記被加熱容器の底部の中央部から前記被加熱容器の側面にかけて配置されることを特徴とする被加熱容器。
In claim 10,
The container to be heated is characterized in that the separation insulating part is arranged from the center of the bottom of the container to be heated to the side surface of the container to be heated.
請求項10において、
前記分離絶縁部の一部、若しくは全部が渦巻き状に配置されることを特徴とする被加熱容器。
In claim 10,
A container to be heated, wherein a part or all of the separation insulating part is arranged in a spiral shape.
請求項10において、
前記分離絶縁部は前記被加熱容器の底部のみに配置されることを特徴とする被加熱容器。
In claim 10,
The container to be heated is characterized in that the separation insulating part is disposed only at the bottom of the container to be heated.
請求項10において、
前記分離絶縁部は前記低磁性金属体のスリットに埋設するか、若しくは覆うか、若しくは前記被加熱容器の底部の表面全体を覆う構造とすることを特徴とする被加熱容器。
In claim 10,
The container to be heated is characterized in that the separation insulating portion is embedded in or covered in the slit of the low magnetic metal body or covers the entire surface of the bottom of the container to be heated.
請求項10において、
前記被加熱容器の底部の厚さは、前記低磁性金属体の金属表皮深さの2倍以上であることを特徴とする被加熱容器。
In claim 10,
The heated container is characterized in that the thickness of the bottom of the heated container is at least twice the metal skin depth of the low magnetic metal body.
請求項10において、
前記被加熱容器の底部裏面に断熱材を構成することを特徴とする被加熱容器。
In claim 10,
A heated container comprising a heat insulating material on the bottom rear surface of the heated container.
低磁性金属体で構成される被加熱容器において、
誘導加熱装置から発生する磁界により前記被加熱容器を流れる渦電流を絶縁するスリット状の分離絶縁部を備え、
該分離絶縁部は前記被加熱容器が受ける前記誘導加熱装置からの浮力を抑制する前記渦電流の流路を構成することを特徴とする被加熱容器。
In a heated container composed of a low magnetic metal body,
Comprising a slit-like isolation insulating part that insulates eddy currents flowing through the heated container by a magnetic field generated from an induction heating device;
The separation insulating portion constitutes a flow path of the eddy current that suppresses buoyancy from the induction heating device received by the heated container.
請求項17において、
前記分離絶縁部は前記被加熱容器の底部の中央部から前記被加熱容器の側面にかけて配置されることを特徴とする被加熱容器。
In claim 17,
The container to be heated is characterized in that the separation insulating part is arranged from the center of the bottom of the container to be heated to the side surface of the container to be heated.
請求項17において、
前記分離絶縁部は前記渦電流を前記被加熱容器の底部の表裏両面に逆方向に流すように配置されることを特徴とする被加熱容器。
In claim 17,
The container to be heated is arranged so that the eddy current flows in opposite directions on both the front and back surfaces of the bottom of the container to be heated.
請求項17において、
前記分離絶縁部の一部、若しくは全部が渦巻き状に配置されることを特徴とする被加熱容器。
In claim 17,
A container to be heated, wherein a part or all of the separation insulating part is arranged in a spiral shape.
JP2006237140A 2006-09-01 2006-09-01 Container to be heated Expired - Fee Related JP4654167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237140A JP4654167B2 (en) 2006-09-01 2006-09-01 Container to be heated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237140A JP4654167B2 (en) 2006-09-01 2006-09-01 Container to be heated

Publications (2)

Publication Number Publication Date
JP2008055013A JP2008055013A (en) 2008-03-13
JP4654167B2 true JP4654167B2 (en) 2011-03-16

Family

ID=39238450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237140A Expired - Fee Related JP4654167B2 (en) 2006-09-01 2006-09-01 Container to be heated

Country Status (1)

Country Link
JP (1) JP4654167B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516362B1 (en) * 2009-05-04 2015-05-04 엘지전자 주식회사 Induction heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611294U (en) * 1984-06-09 1986-01-07 ソニー株式会社 Induction heating container
JPH07211443A (en) * 1994-01-21 1995-08-11 Shimada Phys & Chem Ind Co Ltd Electromagnetic cooker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611294U (en) * 1984-06-09 1986-01-07 ソニー株式会社 Induction heating container
JPH07211443A (en) * 1994-01-21 1995-08-11 Shimada Phys & Chem Ind Co Ltd Electromagnetic cooker

Also Published As

Publication number Publication date
JP2008055013A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
EP1635615B1 (en) Induction heater
JP5751453B2 (en) Induction heating device
AU2011261333B2 (en) Inductive heater humidifier
JP4654167B2 (en) Container to be heated
JP2003272937A (en) Composite core nonlinear reactor and inductive receiving circuit
JP4942571B2 (en) Induction heating device
JP2010171313A (en) Stationary induction electrical apparatus
JP5599376B2 (en) Induction heating cooker
JP4731302B2 (en) Induction heating device
JP4555838B2 (en) Induction heating device
JP4151608B2 (en) Induction heating device
JP2006294787A (en) Reactor
JP2010129175A (en) Induction heating device
JP2015076579A (en) Magnetic iron core and converter circuit
JP5641212B2 (en) Heating toilet seat device
JP2003288976A (en) Induction heater
JP2008237262A (en) Heated container for induction heating equipment
JP4945409B2 (en) Induction heating cooker
JP4784130B2 (en) Induction heating device
JP7050227B2 (en) Induction heating cooker
EP4192194A1 (en) Combined inductor shielding system
JP2009266916A (en) High-frequency induction heating type resistor
JP2005149976A (en) Induction heating cooker
JP5523211B2 (en) Induction heating cooker
JP2008258339A (en) Static induction electrical apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees