JP4653832B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4653832B2
JP4653832B2 JP2008280246A JP2008280246A JP4653832B2 JP 4653832 B2 JP4653832 B2 JP 4653832B2 JP 2008280246 A JP2008280246 A JP 2008280246A JP 2008280246 A JP2008280246 A JP 2008280246A JP 4653832 B2 JP4653832 B2 JP 4653832B2
Authority
JP
Japan
Prior art keywords
groove
tire
circumferential
inclined lateral
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008280246A
Other languages
Japanese (ja)
Other versions
JP2010105561A (en
Inventor
賢悟 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2008280246A priority Critical patent/JP4653832B2/en
Priority to CN 200910172057 priority patent/CN101722793B/en
Publication of JP2010105561A publication Critical patent/JP2010105561A/en
Application granted granted Critical
Publication of JP4653832B2 publication Critical patent/JP4653832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タイヤ軸方向外側に向かってタイヤ回転方向後着側に傾斜してのびる傾斜横溝と、この傾斜横溝間を継ぐ周方向継ぎ溝とによって、トレッド部に、多数の平行四辺形状のブロックを形成した方向性パターンを有する空気入りタイヤに関する。   The present invention provides a plurality of parallelogram-shaped blocks in a tread portion by an inclined lateral groove that inclines toward the rear side in the tire rotation direction toward the outer side in the tire axial direction and a circumferential joint groove that connects between the inclined lateral grooves. The present invention relates to a pneumatic tire having a directional pattern.

例えば図10(A)に例示するように、トレッド部に、タイヤ赤道Cの近傍位置からタイヤ軸方向外側に向かってタイヤ回転方向後着側に傾斜してのびる傾斜横溝aと、タイヤ周方向に隣り合う前記傾斜横溝a、a間を継ぐ周方向継ぎ溝bとを設け、しかも前記傾斜横溝aのタイヤ周方向に対する傾斜角度αをタイヤ軸方向外側に向かって順次増加させた方向性パターンを有するタイヤが知られている(例えば特許文献1参照。)。   For example, as illustrated in FIG. 10A, in the tread portion, an inclined lateral groove a extending from the position near the tire equator C toward the rear side in the tire rotation direction toward the outer side in the tire axial direction, and in the tire circumferential direction. A circumferential joint groove b that connects between the adjacent inclined lateral grooves a and a, and a directional pattern in which the inclination angle α of the inclined lateral groove a with respect to the tire circumferential direction is sequentially increased outward in the tire axial direction. Tires are known (see, for example, Patent Document 1).

特開平5−246214号公報(図1)JP-A-5-246214 (FIG. 1)

このようなパターンのタイヤは、タイヤ回転時、前記傾斜横溝aがそのタイヤ軸方向内端a1から順次接地するため、溝内の水を、タイヤ赤道側からトレッド端側に向かって流水線に沿って効率よく排出することが可能であり、優れたウエットグリップ性能を発揮できる。しかも、傾斜横溝aの傾斜角度αがタイヤ軸方向外側に向かって順次増加するため、タイヤ赤道側では周方向のパターン剛性が高く、又トレッド端側では横方向のパターン剛性が高く設定されるため、優れたドライ操縦安定性も発揮しうるという利点を有する。   In the tire having such a pattern, when the tire rotates, the inclined lateral groove a sequentially contacts the tire axial direction inner end a1, so that the water in the groove flows along the streamline from the tire equator side to the tread end side. It can be discharged efficiently and can exhibit excellent wet grip performance. In addition, since the inclination angle α of the inclined lateral groove a sequentially increases toward the outer side in the tire axial direction, the pattern rigidity in the circumferential direction is high on the tire equator side, and the pattern rigidity in the lateral direction is set high on the tread end side. , It has the advantage that it can also exhibit excellent dry handling stability.

しかしながら、前記パターンでは、傾斜横溝aと周方向継ぎ溝bによって区分されるブロックjが、図10(B)に拡大する如く、鋭角コーナ部d1と、鈍角コーナ部d2とを有する平行四辺形状に形成されることとなる。そして前記鋭角コーナ部d1では、必然的に剛性が低下するため、この鋭角コーナ部d1を起点として偏摩耗を誘発するという問題がある。特に、先着側の鋭角コーナ部d1fは、圧縮歪みを受けるため、引張歪みを受ける後着側の鋭角コーナ部d1rに比して、偏摩耗がより顕著に発生するという問題がある。   However, in the pattern, the block j divided by the inclined lateral groove a and the circumferential joint groove b has a parallelogram shape having an acute corner portion d1 and an obtuse corner portion d2, as shown in FIG. 10B. Will be formed. Further, since the rigidity is inevitably lowered at the acute corner portion d1, there is a problem that uneven wear is induced from the acute corner portion d1. In particular, since the acute angle corner portion d1f on the first arrival side is subjected to compressive strain, there is a problem that uneven wear occurs more significantly than the acute angle corner portion d1r on the rear arrival side that receives tensile strain.

なお従来においては、前記鋭角コーナ部d1に面取りeを施すことで、鋭角コーナ部d1の剛性確保を図っているが、この面取りeが小さいと偏摩耗抑制が不充分となり、逆に大きいと、接地面積が減少して操縦安定性を低下させるという問題がある。   In the prior art, the chamfer e is applied to the acute angle corner part d1 to secure the rigidity of the acute angle corner part d1, but if the chamfer e is small, the uneven wear suppression is insufficient, and conversely, There is a problem that the ground contact area is reduced and the steering stability is lowered.

そこで本発明は、優れたウエットグリップ性能を発揮しつつ、特に偏摩耗が顕著となる先着側の鋭角コーナ部において、面取りを小さく抑えながら該鋭角コーナ部の剛性を確保でき、操縦安定性と耐偏摩耗性とを改善しうる空気入りタイヤを提供することを目的としている。   Therefore, the present invention can ensure the rigidity of the acute corner corner portion while suppressing chamfering while maintaining excellent wet grip performance and suppressing chamfering particularly in the acute corner portion where uneven wear is particularly noticeable. An object of the present invention is to provide a pneumatic tire capable of improving uneven wear.

前記目的を達成するために、本願請求項1の発明は、トレッド部に、
タイヤ赤道の近傍位置からトレッド接地端を越えた位置まで、タイヤ軸方向外側に向かってタイヤ回転方向後着側に傾斜してのび、かつタイヤ周方向に隔置される複数の傾斜横溝と、
タイヤ周方向に隣り合う前記傾斜横溝間を継、かつタイヤ軸方向に隔置される4本の周方向継ぎ溝とを設けることにより、
前記トレッド部に、前記傾斜横溝と周方向継ぎ溝とで区分される多数の平行四辺形状のブロックを形成した空気入りタイヤであって、
前記傾斜横溝のタイヤ周方向に対する傾斜角度αは、タイヤ軸方向外側に向かって順次増加し、
かつ前記傾斜横溝が、前記複数本の周方向継ぎ溝のうちで最もタイヤ赤道側に配される最内の周方向継ぎ溝と交わる最内交差位置よりもタイヤ軸方向外側かつ最もトレッド接地端側に配される最外の周方向継ぎ溝と交わる最外交差位置よりもタイヤ軸方向内側の領域範囲において、前記傾斜横溝の溝深さは、実質的に一定をなすとともに、
前記最内の周方向継ぎ溝及び前記最外の周方向継ぎ溝は、先着側端から後着側端に至り溝深さDgが一定であり、かつ
前記最内の周方向継ぎ溝及び前記最外の周方向継ぎ溝の間の周方向継ぎ溝は、タイヤ回転方向の先着側端の溝深さDgfを、後着側端の溝深さDgrよりも小とし、かつ先着側端に向かって溝深さを漸減させたことを特徴としている。
In order to achieve the object, the invention of claim 1 of the present application provides
A plurality of inclined lateral grooves that incline toward the rear side in the tire rotation direction toward the outer side in the tire axial direction from the vicinity of the tire equator to a position beyond the tread contact edge, and spaced apart in the tire circumferential direction;
TECHNICAL joint between the inclined lateral grooves adjacent in the tire circumferential direction, and by providing a four circumferential connecting grooves which are spaced axially,
A pneumatic tire in which a plurality of parallelogram blocks divided by the inclined lateral grooves and the circumferential joint grooves are formed in the tread portion,
The inclination angle α of the inclined lateral groove with respect to the tire circumferential direction sequentially increases toward the outer side in the tire axial direction,
Further, the inclined lateral groove is on the outer side in the tire axial direction and on the most tread grounding end side with respect to the innermost intersection position intersecting with the innermost circumferential joint groove arranged on the tire equator side among the plurality of circumferential joint grooves. In the range of the region on the inner side in the tire axial direction than the outermost intersection position intersecting with the outermost circumferential joint groove arranged in the groove depth of the inclined lateral groove is substantially constant,
The innermost circumferential joint groove and the outermost circumferential joint groove extend from the first arrival side end to the rear arrival side end and have a constant groove depth Dg, and
The circumferential joint groove between the innermost circumferential joint groove and the outermost circumferential joint groove has a groove depth Dgf at the first arrival side end in the tire rotation direction from a groove depth Dgr at the rear arrival side end. The groove depth is gradually reduced toward the first arrival side end.

又請求項2の発明では、前記周方向継ぎ溝の先着側端の溝深さDgfは、後着側端の溝深さDgrの20〜80%としたことを特徴としている。   In the invention of claim 2, the groove depth Dgf at the first arrival side end of the circumferential joint groove is 20 to 80% of the groove depth Dgr at the rear arrival side end.

又請求項3の発明では、前記傾斜横溝は、タイヤ軸方向内端におけるタイヤ周方向に対する傾斜角度αiを10〜35°、かつ前記トレッド接地端の位置におけるタイヤ周方向に対する傾斜角度αoを40〜90°としたことを特徴としている。   In the invention of claim 3, the inclined lateral groove has an inclination angle αi of 10 to 35 ° with respect to the tire circumferential direction at the inner end in the tire axial direction, and an inclination angle αo with respect to the tire circumferential direction of the tread ground contact end of 40 to 40 °. It is characterized by 90 °.

又請求項4の発明では、前記最内の周方向継ぎ溝溝深さDgを、前記最内交差位置における傾斜横溝3の溝深さDyの90〜100%の範囲としたことを特徴としている。
In the invention of claim 4, the groove depth Dg of the innermost circumferential joint groove is in the range of 90 to 100 % of the groove depth Dy of the inclined lateral groove 3 at the innermost intersection position. Yes.

又請求項5の発明では、前記周方向継ぎ溝のタイヤ周方向に対する角度βは、タイヤ軸方向外側の周方向継ぎ溝ほど大としたことを特徴としている。
The invention of claim 5, wherein the circumferential joint angle β with respect to the tire circumferential direction of the groove, is characterized in that it has a large enough circumferential dovetail groove of the outer tire axial direction.

又請求項6の発明では、前記傾斜横溝の溝巾Wyは、前記最外交差位置における溝巾Wyoが、前記最内交差位置における溝巾Wyiの1.0倍より大かつ3倍以下であることを特徴としている。   In the invention of claim 6, the groove width Wy of the inclined lateral groove is such that the groove width Wyo at the outermost intersection position is larger than 1.0 times and less than three times the groove width Wyi at the innermost intersection position. It is characterized by that.

又請求項7の発明では、前記平行四辺形状のブロックは、鋭角側コーナ部と鈍角側コーナ部とを有し、しかも前記傾斜横溝は、その後着側の溝壁面のトレッド踏面の法線に対する傾斜角度θrを、前記鈍角側コーナ部から鋭角側コーナ部に向かって漸増させたことを特徴としている。   In the invention according to claim 7, the parallelogram-shaped block has an acute angle corner portion and an obtuse angle corner portion, and the inclined lateral groove is inclined with respect to the normal line of the tread surface of the groove wall on the subsequent wear side. The angle θr is gradually increased from the obtuse angle side corner portion toward the acute angle side corner portion.

又請求項8の発明では、前記平行四辺形状のブロックは、鋭角側コーナ部と鈍角側コーナ部とを有し、しかも前記傾斜横溝は、その後着側の溝壁面のトレッド踏面の法線に対する傾斜角度θrを、前記鋭角側コーナ部から鈍角側コーナ部に向かって漸増させたことを特徴としている。又請求項9の発明では、タイヤ赤道の両側に一対の前記最内の周方向継ぎ溝が形成され、この最内の周方向継ぎ溝間に、タイヤ赤道上を連続してのびる周方向リブが形成されることを特徴としている。
In the invention of claim 8, the parallelogram-shaped block has an acute angle corner portion and an obtuse angle corner portion, and the inclined lateral groove is inclined with respect to the normal line of the tread surface of the groove wall on the landing side. The angle θr is gradually increased from the acute angle corner portion toward the obtuse angle side corner portion. In the invention of claim 9, a pair of innermost circumferential seam grooves are formed on both sides of the tire equator, and circumferential ribs extending continuously on the tire equator are formed between the innermost circumferential seam grooves. It is characterized by being formed.

又前記傾斜横溝の傾斜角度α、溝巾Wy等は、トレッド踏面側にて特定された値とする。   Further, the inclination angle α, the groove width Wy and the like of the inclined lateral groove are values specified on the tread surface side.

なお前記「トレッド接地端」とは、正規リムにリム組みしかつ正規内圧を充填した状態のタイヤに正規荷重を負荷した時に接地するトレッド接地面のタイヤ軸方向外端を意味する。又前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば "Design Rim" 、或いはETRTOであれば "Measuring Rim"を意味する。前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE"を意味するが、乗用車用タイヤの場合には180kPaとする。前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。   The “tread grounding end” means the outer end in the tire axial direction of the tread grounding surface that comes into contact when a regular load is applied to a tire in a state where a rim is assembled on a regular rim and filled with a regular internal pressure. The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO means "Measuring Rim". The “regular internal pressure” is the air pressure defined by the standard for each tire. If JATMA, the maximum air pressure is specified. If TRA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”, ETRTO Means "INFLATION PRESSURE", but in the case of passenger car tires, it is 180 kPa. The “regular load” is a load determined by the standard for each tire. The maximum load capacity in the case of JATMA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in the case of TRA, If it is ETRTO, it is "LOAD CAPACITY".

叙上の如く、傾斜横溝は、タイヤ赤道の近傍位置からタイヤ軸方向外側に向かってタイヤ回転方向後着側に傾斜してのび、そのとき、タイヤ周方向に対する傾斜角度αをタイヤ軸方向外側に向かって増加させている。従って、この傾斜横溝間を継ぐ周方向継ぎ溝と協働して、ウエットグリップ性能とドライ操縦安定性とを高レベルで発揮することができる。   As described above, the inclined lateral grooves incline toward the rear side in the tire rotation direction from the position near the tire equator toward the outer side in the tire axial direction, and at that time, the inclination angle α with respect to the tire circumferential direction is set to the outer side in the tire axial direction. It is increasing towards. Accordingly, the wet grip performance and the dry steering stability can be exhibited at a high level in cooperation with the circumferential joint groove that connects between the inclined lateral grooves.

他方、周方向継ぎ溝のうちの少なくとも1本は、周方向継ぎ溝の先着側端の溝深さDgfを、後着側端の溝深さDgrよりも小とし、しかも先着側端に向かって溝深さを漸減している。これにより、平行四辺形状をなすブロックにおける先着側の鋭角側コーナ部の剛性を相対的に高めることができ、耐偏摩耗性を改善しうる。又面取りの大きさを最小限に抑えうるため、その分、操縦安定性の低下を抑制できる。さらに、周方向継ぎ溝における溝深さの変化が滑らかであるため、優れたウエットグリップ性能を維持することが可能となる。   On the other hand, at least one of the circumferential joint grooves has a groove depth Dgf at the first arrival side end of the circumferential joint groove that is smaller than the groove depth Dgr at the rear arrival side end, and further toward the first arrival side end. The groove depth is gradually reduced. Thereby, the rigidity of the acute angle corner portion on the first arrival side in the parallelogram block can be relatively increased, and uneven wear resistance can be improved. In addition, since the size of the chamfer can be minimized, a decrease in steering stability can be suppressed accordingly. Furthermore, since the change of the groove depth in the circumferential joint groove is smooth, it is possible to maintain excellent wet grip performance.

以下、本発明の実施の一形態を、図示例とともに説明する。図1は本発明の空気入りタイヤのトレッド面を平面に展開した展開図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a development view in which the tread surface of the pneumatic tire of the present invention is developed on a plane.

図1において、本実施形態の空気入りタイヤ1は、トレッド部2に、タイヤ赤道Cの近傍位置からトレッド接地端Teを越えた位置までのびかつタイヤ周方向に隔置される複数の傾斜横溝3と、タイヤ周方向に隣り合う前記傾斜横溝3,3間を継かつタイヤ軸方向に隔置される複数本の周方向継ぎ溝4とを設けている。
In FIG. 1, the pneumatic tire 1 according to the present embodiment includes a plurality of inclined lateral grooves 3 that extend from a position near the tire equator C to a position beyond the tread ground contact Te in the tread portion 2 and spaced apart in the tire circumferential direction. When, it is provided and the circumferential connecting grooves 4 of the plurality of which are spaced between the inclined lateral grooves 3, 3 adjacent in the tire circumferential direction in adoptive and axially.

なお前記「タイヤ赤道Cの近傍位置」とは、タイヤ赤道Cを中心としたトレッド接地巾TWの10%以下の巾Yの領域を意味する。タイヤ赤道Cから前記傾斜横溝3のタイヤ軸方向内端3iまでの距離hが、Y/2を越えると、タイヤ赤道側で排水性が不足し、ウエットグリップ性能の低下を招く。   The “position in the vicinity of the tire equator C” means a region having a width Y of 10% or less of the tread contact width TW with the tire equator C as the center. If the distance h from the tire equator C to the inner end 3i of the inclined lateral groove 3 in the tire axial direction exceeds Y / 2, the drainage is insufficient on the tire equator side, and the wet grip performance is deteriorated.

次に、各前記傾斜横溝3は、タイヤ軸方向外側に向かってタイヤ回転方向後着側Rに傾斜してのび、そのとき傾斜横溝3のタイヤ周方向に対する傾斜角度αは、タイヤ軸方向外側に向かって順次増加している。従って、傾斜横溝3は、タイヤ回転時、タイヤ軸方向内端3i側から外端3o側に向かって順次接地し、溝内の水を、流水線に沿ってトレッド接地端Teの外側に効率よく排出しうる。即ち、優れたウエットグリップ性能を発揮できる。しかも、前記傾斜角度αがタイヤ軸方向外側に向かって順次増加するため、タイヤ赤道側では周方向のパターン剛性が、又トレッド接地端側では横方向のパターン剛性が夫々高く設定でき、ドライ操縦安定性も高レベルで設定しうる。   Next, each of the inclined lateral grooves 3 inclines toward the outer side in the tire rotational direction toward the outer side in the tire axial direction, and then the inclination angle α of the inclined lateral grooves 3 with respect to the tire circumferential direction increases outward in the tire axial direction. It is increasing gradually. Therefore, the inclined lateral groove 3 is grounded sequentially from the tire axial inner end 3i side to the outer end 3o side during tire rotation, and the water in the groove is efficiently discharged to the outside of the tread grounding end Te along the streamline. Yes. That is, excellent wet grip performance can be exhibited. Moreover, since the inclination angle α gradually increases toward the outer side in the tire axial direction, the circumferential pattern rigidity can be set higher on the tire equator side, and the lateral pattern rigidity can be set higher on the tread grounding end side. Sex can also be set at a high level.

本例では図2、3に示すように、前記傾斜横溝3が、前記傾斜角度αを段階的に増加させた場合が例示される。具体的には、傾斜横溝3が、前記傾斜角度をα1とした最もタイヤ赤道側の第1の傾斜部3Aと、その外側で連なる傾斜角度がα2の第2の傾斜部3Bと、その外側で連なる傾斜角度がα3の第3の傾斜部3Cと、そのさらに外側で連なる傾斜角度がα4の第4の傾斜部3Dとからなる屈曲溝として形成される。前記傾斜角度αは、α1<α2<α3<α4である。なお傾斜横溝3としては、傾斜角度αが連続的に変化する円弧状溝であっても良い。   In this example, as shown in FIGS. 2 and 3, the case where the inclined lateral groove 3 increases the inclination angle α stepwise is exemplified. Specifically, the inclined lateral groove 3 includes a first inclined portion 3A closest to the tire equator with the inclination angle α1 and a second inclined portion 3B having an inclination angle α2 continuous on the outer side thereof and on the outer side thereof. It is formed as a bent groove composed of a third inclined portion 3C having a continuous inclination angle α3 and a fourth inclined portion 3D having a continuous inclination angle α4. The inclination angle α satisfies α1 <α2 <α3 <α4. The inclined lateral groove 3 may be an arc-shaped groove whose inclination angle α changes continuously.

次に、タイヤ周方向で隣り合う傾斜横溝3,3間には、この隣り合う傾斜横溝3,3同士を互いに連結する複数本の周方向継ぎ溝4がタイヤ軸方向に隔設される。これによりトレッド部2には、前記傾斜横溝3と周方向継ぎ溝4とで区分される多数の平行四辺形状のブロック6が形成される。   Next, between the inclined lateral grooves 3 and 3 adjacent in the tire circumferential direction, a plurality of circumferential joint grooves 4 that connect the adjacent inclined lateral grooves 3 and 3 to each other are provided in the tire axial direction. As a result, a large number of parallelogram blocks 6 are formed in the tread portion 2, which are divided by the inclined lateral grooves 3 and the circumferential joint grooves 4.

排水性の観点から、傾斜横溝3,3間に配する周方向継ぎ溝4の本数は、特に排水性とブロック剛性とのバランスの観点から、4本であるのが好ましい。
From the viewpoint of drainage performance, the number of the circumferential connecting grooves 4 disposed between the inclined lateral grooves 3, 3, from the viewpoint of balance between the drainage and block rigidity in particular, is preferably four.

本例では4本の周方向継ぎ溝4が配される場合を例示する。具体的には、傾斜横溝3,3間に、
・前記第1の傾斜部3Aの内端3i同士を継ぐ第1の周方向継ぎ溝4A、
・前記第1の傾斜部3Aと第2の傾斜部3Bとの屈曲部の近傍同士を継ぐ第2の周方向継ぎ溝4B、
・前記第2の傾斜部3Bと第3の傾斜部3Cとの屈曲部の近傍同士を継ぐ第3の周方向継ぎ溝4C、及び
・前記第3の傾斜部3Cと第4の傾斜部3Dとの屈曲部の近傍同士を継ぐ第4の周方向継ぎ溝4Dを形成している。
In this example, a case where four circumferential splice grooves 4 are arranged is illustrated. Specifically, between the inclined lateral grooves 3 and 3,
A first circumferential joint groove 4A that joins the inner ends 3i of the first inclined portion 3A;
A second circumferential joint groove 4B that joins the vicinity of the bent portions of the first inclined portion 3A and the second inclined portion 3B;
A third circumferential joint groove 4C that connects the vicinity of the bent portions of the second inclined portion 3B and the third inclined portion 3C, and the third inclined portion 3C and the fourth inclined portion 3D. A fourth circumferential joint groove 4D that joins the vicinity of the bent portions is formed.

これにより、前記第1の周方向継ぎ溝4A,4A間には、タイヤ赤道C上を連続してのびる周方向リブ5が形成される。又第1,第2の周方向継ぎ溝4A,4B間、第2,第3の周方向継ぎ溝4B,4C間、および第3,第4の周方向継ぎ溝4C,4D間には、それぞれ、頂角が90°より小の鋭角側コーナ部C1と、頂角が90°以上の鈍角側コーナ部C2とを有する平行四辺形状をなす第1のブロック6A,第2のブロック6B,および第3のブロック6Cが形成される。   As a result, circumferential ribs 5 extending continuously on the tire equator C are formed between the first circumferential joint grooves 4A and 4A. Between the first and second circumferential joint grooves 4A and 4B, between the second and third circumferential joint grooves 4B and 4C, and between the third and fourth circumferential joint grooves 4C and 4D, respectively. The first block 6A, the second block 6B, and the second block 6B having a parallelogram shape having an acute angle corner portion C1 having an apex angle smaller than 90 ° and an obtuse angle side corner portion C2 having an apex angle of 90 ° or more. 3 blocks 6C are formed.

本例のトレッドパターンの場合、各傾斜部3A〜3Dが、水流への抵抗が小さい直線状をなす一方、抵抗が増加する屈曲部の近傍同士が、周方向継ぎ溝4によって連結される。そのため、この屈曲部における抵抗の影響が緩和され、溝全体として水の流れを円滑化しうるなど、より優れた排水性を確保できるという利点が得られる。なお屈曲部の近傍とは、図3に示すように、傾斜横溝3の溝中心線iが屈曲する屈曲点ipをそれぞれ中心とした、トレッド接地巾Twの11%以下の巾の領域範囲Jを意味する。   In the case of the tread pattern of this example, the inclined portions 3 </ b> A to 3 </ b> D form a straight line having a small resistance to water flow, while the vicinity of the bent portion where the resistance increases is connected by the circumferential joint groove 4. For this reason, the effect of resistance at the bent portion is alleviated, and it is possible to obtain an advantage that more excellent drainage can be ensured, such as smoothing the flow of water as a whole groove. As shown in FIG. 3, the vicinity of the bent portion means a region range J having a width equal to or less than 11% of the tread grounding width Tw around the bending point ip where the groove center line i of the inclined lateral groove 3 is bent. means.

又図4に示すように、前記傾斜横溝3が、最もタイヤ赤道側に配される最内の周方向継ぎ溝4iと交わる位置を最内交差位置Piと定義し、かつ前記傾斜横溝3が、最もトレッド接地端側に配される最外の周方向継ぎ溝4oと交わる位置を最外交差位置Poと定義する。このとき、排水性の観点から、前記傾斜横溝3は、前記最内交差位置Piよりもタイヤ軸方向外側、かつ最外交差位置Poよりもタイヤ軸方向内側の領域範囲において、溝深さDy(図5に示す)を実質的に一定としている。即ち、傾斜横溝3は、前記領域範囲内においては、水の抵抗となりうる例えばタイバーなどの部分的な隆起部がなく、溝底が一定深さで平滑に形成されている。本例では、前記最内の周方向継ぎ溝4iは、第1の周方向継ぎ溝4Aに相当し、又前記最外の周方向継ぎ溝4oは、第4の周方向継ぎ溝4Dに相当する。   As shown in FIG. 4, the position where the inclined lateral groove 3 intersects with the innermost circumferential joint groove 4 i arranged on the tire equator side is defined as the innermost intersection position Pi, and the inclined lateral groove 3 is A position that intersects with the outermost circumferential joint groove 4o arranged on the most tread grounding end side is defined as an outermost intersection position Po. At this time, from the viewpoint of drainage, the inclined lateral groove 3 has a groove depth Dy (in a region range outside the innermost intersection position Pi and outside the outermost intersection position Po and inside the tire axis direction Po. (Shown in FIG. 5) is substantially constant. That is, the inclined lateral groove 3 does not have a partial raised portion such as a tie bar that can become water resistance within the region range, and the groove bottom is formed smoothly with a constant depth. In this example, the innermost circumferential joint groove 4i corresponds to the first circumferential joint groove 4A, and the outermost circumferential joint groove 4o corresponds to the fourth circumferential joint groove 4D. .

ここで、本例の如く、前記最外の周方向継ぎ溝4oがタイヤ周方向に対して傾斜し、その先着側端Efでの傾斜横溝3との交差位置Pofと、後着側端Erでの傾斜横溝3との交差位置Porとがタイヤ軸方向に位置ズレする場合には、よりタイヤ軸方向外側に位置する交差位置(本例では、後着側端Erでの交差位置Por)を、最外交差位置Poとして採用する。又本例では、前記最内の周方向継ぎ溝4iがタイヤ周方向と平行に配されている場合が例示されているが、もし傾斜している場合には、よりタイヤ軸方向内側に位置する交差位置を、最内交差位置Piとして採用する。   Here, as in this example, the outermost circumferential joint groove 4o is inclined with respect to the tire circumferential direction, and at the intersection position Pof with the inclined lateral groove 3 at the first arrival side end Ef and at the rear arrival side end Er. When the crossing position Por with the inclined lateral groove 3 is displaced in the tire axial direction, the crossing position located more outward in the tire axial direction (in this example, the crossing position Por at the rear landing side end Er) It is adopted as the outermost intersection position Po. Also, in this example, the case where the innermost circumferential joint groove 4i is arranged in parallel with the tire circumferential direction is illustrated, but if it is inclined, it is located more inside in the tire axial direction. The intersection position is adopted as the innermost intersection position Pi.

又傾斜横溝3では、タイヤ軸方向内端3iにおける傾斜角度αi(本例では、前記傾斜角度α1に相当する。)が10〜35°の範囲であり、かつ前記トレッド接地端Teの位置におけるタイヤ周方向に対する傾斜角度αo(本例では、前記傾斜角度α4に相当する。)が40〜90°の範囲であることも、水を流水線に沿ってより円滑に排出する上で好ましい。このとき、前記傾斜角度αi、αoの差(αo−αi)が、20°以上であるのがさらに好ましい。   Further, in the inclined lateral groove 3, the inclination angle αi at the inner end 3i in the tire axial direction (corresponding to the inclination angle α1 in this example) is in the range of 10 to 35 °, and the tire at the position of the tread ground contact end Te. It is also preferable that the inclination angle αo with respect to the circumferential direction (corresponding to the inclination angle α4 in this example) is in the range of 40 to 90 ° in order to discharge water more smoothly along the streamline. At this time, the difference (αo−αi) between the inclination angles αi and αo is more preferably 20 ° or more.

次に、本実施形態のタイヤでは、第2,第3の周方向継ぎ溝4B,4Cは、それぞれ、先着側端Efの溝深さDgfを、後着側端Erの溝深さDgrよりも小とし、かつ先着側端Efに向かって溝深さDgを漸減させた、深さ変化溝10として形成している。
Next, in the tire of the present embodiment , the second and third circumferential joint grooves 4B and 4C each have a groove depth Dgf of the first arrival side end Ef greater than a groove depth Dgr of the rear arrival side end Er. The depth change groove 10 is formed to be small and the groove depth Dg is gradually decreased toward the first arrival side end Ef.

図5に、第2の周方向継ぎ溝4Bの溝中心線に沿った断面図(図4のI−I断面図)を代表して示す。図5の如く、深さ変化溝10の先着側端Efの溝深さDgfは、後着側端Erの溝深さDgrよりも小であり、かつ溝深さDgは、後着側端Erから先着側端Efに向かって漸減している。なお漸減として、本例の如く、減少の比率が一定、即ち一次関数的に溝深さDgを変化させることができるが、例えば二次関数的に溝深さDgを変化させることもできる。   FIG. 5 representatively shows a cross-sectional view (cross-sectional view taken along the line II in FIG. 4) along the groove center line of the second circumferential joint groove 4B. As shown in FIG. 5, the groove depth Dgf of the first arrival side end Ef of the depth changing groove 10 is smaller than the groove depth Dgr of the rear arrival side end Er, and the groove depth Dg is equal to the rear arrival side end Er. It gradually decreases from the first end Ef toward the first arrival side. As the gradual decrease, as in this example, the reduction ratio is constant, that is, the groove depth Dg can be changed in a linear function. For example, the groove depth Dg can be changed in a quadratic function.

このように、第2の周方向継ぎ溝4Bを前記深さ変化溝10とすることで、前記第2のブロック6Bにおける4つのコーナ部のうち、先着側の鋭角側コーナ部C1fの剛性を相対的に高めることができる。又第3の周方向継ぎ溝4Cを深さ変化溝10とすることにより、前記第3のブロック6Cにおける先着側の鋭角側コーナ部C1fの剛性を相対的に高めることができる。そしてこの剛性アップにより、前記先着側の鋭角側コーナ部C1fの偏摩耗の発生を抑制しうる。又、前記深さ変化溝10における溝深さDgの変化が滑らかであるため、ウエットグリップ性能を高く維持することができる。   Thus, by setting the second circumferential joint groove 4B as the depth change groove 10, the rigidity of the acute-angle corner section C1f on the first arrival side among the four corner sections in the second block 6B is relatively set. Can be enhanced. Further, by using the third circumferential joint groove 4C as the depth changing groove 10, the rigidity of the acute corner portion C1f on the first arrival side in the third block 6C can be relatively increased. And by this rigidity improvement, generation | occurrence | production of the uneven wear of the said acute angle side corner part C1f of the said arrival side can be suppressed. Moreover, since the change of the groove depth Dg in the depth change groove 10 is smooth, the wet grip performance can be maintained high.

前記効果のために、深さ変化溝10において、先着側端の溝深さDgfを、後着側端の溝深さDgrの20〜80%とするのが好ましい。もし80%を越えた場合には、鋭角側コーナ部C1fへの剛性アップが不充分となる。逆に20%未満の場合、傾斜横溝3からの水が流れ込み難くなるなど排水性能が低下する傾向となる。そのため、前記溝深さDgfの下限値は、溝深さDgrの40%以上がより好ましく、上限値は、溝深さDgrの60%以下がより好ましい。なお後着側端の溝深さDgrは、前記傾斜横溝3の溝深さDyの90〜100%の範囲であって、特に、Dgr=Dyとすることが、排水性とブロック剛性とのバランスの観点からより好ましい。   For the above effect, in the depth changing groove 10, the groove depth Dgf at the first arrival side end is preferably 20 to 80% of the groove depth Dgr at the rear arrival side end. If it exceeds 80%, the rigidity of the sharp corner C1f is not sufficiently increased. Conversely, if it is less than 20%, the drainage performance tends to decrease, for example, it becomes difficult for water from the inclined lateral groove 3 to flow. Therefore, the lower limit value of the groove depth Dgf is more preferably 40% or more of the groove depth Dgr, and the upper limit value is more preferably 60% or less of the groove depth Dgr. The groove depth Dgr at the rear arrival side end is in the range of 90 to 100% of the groove depth Dy of the inclined lateral groove 3, and in particular, Dgr = Dy is a balance between drainage and block rigidity. From the viewpoint of

他方、本例では、第1の周方向継ぎ溝4A(最内の周方向継ぎ溝4iに相当する。)として、先着側端Efから後着側端Erに至り溝深さDgを一定とした深さ一定溝11で形成している。この深さ一定溝11の溝深さDgは、前記最内交差位置Piにおける傾斜横溝3の溝深さDyの90〜100%の範囲、本例では100%に設定される。これは、排水性の重要度が、タイヤ赤道側で最も高いためであり、従って、本例では、第1のブロック6Aにおける先着側の鋭角側コーナ部C1fの偏摩耗は、従来と同様の面取り13に委ね、敢えて第1の周方向継ぎ溝4Aを深さ一定溝11とすることで、排水性、ひいてはウエットグリップ性能の確保を図っている。   On the other hand, in this example, as the first circumferential joint groove 4A (corresponding to the innermost circumferential joint groove 4i), the groove depth Dg is constant from the first arrival side end Ef to the rear arrival side end Er. It is formed by a constant depth groove 11. The groove depth Dg of the constant depth groove 11 is set to a range of 90 to 100% of the groove depth Dy of the inclined lateral groove 3 at the innermost intersection position Pi, in this example, 100%. This is because the importance of drainage is the highest on the tire equator side. Therefore, in this example, the uneven wear of the acute angle corner portion C1f on the first arrival side in the first block 6A is the same as the conventional chamfering. 13, the first circumferential joint groove 4 </ b> A is made to have a constant depth groove 11, thereby ensuring drainage and, in turn, wet grip performance.

なお本例では、第4の周方向継ぎ溝4D(最外の周方向継ぎ溝4oに相当する。)も、深さ一定溝11にて形成している。これは、前記傾斜横溝3の傾斜角度αが、タイヤ軸方向外側に向かって増加するためである。即ち、前記第4の周方向継ぎ溝4Dとトレッド接地端Teとの間に形成される台形状のショルダブロック14における先着側の鋭角側コーナ部C1fの頂角は、他のブロック6A〜6Cにおける鋭角側コーナ部C1fの頂角よりも大であり、剛性が高く偏摩耗が起こり難いからである。しかしながら、要求により、この第4の周方向継ぎ溝4Dを、前記第2,第3の周方向継ぎ溝4B,4Cと同様、深さ変化溝10にて形成することもできる。   In this example, the fourth circumferential joint groove 4D (corresponding to the outermost circumferential joint groove 4o) is also formed by the constant depth groove 11. This is because the inclination angle α of the inclined lateral groove 3 increases toward the outer side in the tire axial direction. That is, the apex angle of the acute corner corner portion C1f on the first arrival side in the trapezoidal shoulder block 14 formed between the fourth circumferential joint groove 4D and the tread ground contact Te is the same in the other blocks 6A to 6C. This is because it is larger than the apex angle of the acute-angle corner portion C1f, has high rigidity, and is difficult to cause uneven wear. However, the fourth circumferential joint groove 4D can be formed by the depth changing groove 10 as in the case of the second and third circumferential joint grooves 4B and 4C.

又本例では、4本の周方向継ぎ溝4A〜4Dにおいて、その溝巾中心のタイヤ周方向に対する角度βは、タイヤ軸方向外側の周方向継ぎ溝ほど大に設定している。これにより、ブロック6A〜6C、14のタイヤ軸方向のブロック剛性がタイヤ軸方向外側のブロックほど順次高まり、旋回性能が増すなど操縦安定性を向上させることができる。なお第1の周方向継ぎ溝4Aの前記角度βaは0〜5°の範囲であって、本例では0°とし、第4の周方向継ぎ溝4Dの前記角度βdは8〜20°の範囲であって、本例では10°としている。   In the present example, in the four circumferential joint grooves 4A to 4D, the angle β of the groove width center with respect to the tire circumferential direction is set to be larger as the circumferential joint groove on the outer side in the tire axial direction. As a result, the block rigidity in the tire axial direction of the blocks 6A to 6C, 14 increases sequentially toward the outer side in the tire axial direction, and steering stability can be improved, for example, turning performance can be improved. The angle βa of the first circumferential joint groove 4A is in the range of 0 to 5 °, and in this example, 0 °, and the angle βd of the fourth circumferential joint groove 4D is in the range of 8 to 20 °. In this example, the angle is 10 °.

又図6に、前記深さ変化溝10の溝中心線と直角な断面図(図4のII−II線断面図である。)を例示する。この図6に示すように、本例では、深さ変化溝10に配される両側の溝壁面10sのうち、トレッド接地端側の溝壁面10sbの、トレッド踏面の法線に対する傾斜角度γbを、タイヤ赤道側の溝壁面10saの傾斜角度γaに比して小に設定している。これにより第2,第3のブロック6B,6Cにおける先着側の鋭角側コーナ部C1fの剛性を確保しつつウエットグリップ性を向上しうる。なお前記深さ変化溝10と同様、深さ一定溝11においても、トレッド接地端の溝壁面の傾斜角度γbを、タイヤ赤道側の溝壁面の傾斜角度γaに比して小に設定することも好ましい。   FIG. 6 illustrates a cross-sectional view perpendicular to the groove center line of the depth changing groove 10 (a cross-sectional view taken along the line II-II in FIG. 4). As shown in FIG. 6, in this example, the inclination angle γb of the groove wall surface 10 sb on the tread ground end side with respect to the normal line of the tread surface among the groove wall surfaces 10 s on both sides arranged in the depth change groove 10 is It is set smaller than the inclination angle γa of the groove wall surface 10sa on the tire equator side. As a result, wet grip properties can be improved while ensuring the rigidity of the acute corner corner C1f on the first arrival side in the second and third blocks 6B and 6C. As in the case of the depth changing groove 10, also in the constant depth groove 11, the inclination angle γb of the groove wall surface at the tread contact end may be set smaller than the inclination angle γa of the groove wall surface on the tire equator side. preferable.

次に、排水性の観点から、前記傾斜横溝3の溝巾Wyにおいては、図3のように、前記最外交差位置Poにおける溝巾Wyoが、前記最内交差位置Piにおける溝巾Wyiの1.0倍より大かつ3倍以下であることが好ましい。このとき前記溝巾Wyは、タイヤ軸方向外側に向かって順次増加させるのが好ましい。本例では、第2の傾斜部3Bの溝巾WyBが、第3の傾斜部3Cの溝巾WyCと等しく、しかも、第1の傾斜部3Aの溝巾WyAより大、かつ第4の傾斜部3Dの溝巾WyDより小とした場合が示されている。WyA<WyB=WyC<WyD。なお溝巾の比(WyD/WyA)即ち比(Wyo/Wyi)が1.0より小の場合、排水性が低下し、3.0を越えると、ショルダーブロック14の剛性が減じて操縦安定性の低下を招く。   Next, from the viewpoint of drainage, in the groove width Wy of the inclined lateral groove 3, as shown in FIG. 3, the groove width Wyo at the outermost intersection position Po is 1 of the groove width Wyi at the innermost intersection position Pi. It is preferable that it is larger than 0.0 times and not larger than 3 times. At this time, it is preferable that the groove width Wy is sequentially increased toward the outer side in the tire axial direction. In this example, the groove width WyB of the second inclined portion 3B is equal to the groove width WyC of the third inclined portion 3C, and is larger than the groove width WyA of the first inclined portion 3A, and the fourth inclined portion. The case where it is smaller than the 3D groove width WyD is shown. WyA <WyB = WyC <WyD. If the groove width ratio (WyD / WyA), that is, the ratio (Wyo / Wyi) is less than 1.0, the drainage performance decreases. If it exceeds 3.0, the rigidity of the shoulder block 14 decreases and the steering stability decreases. Cause a decline.

次に、図7(A)、(B)に、前記第2のブロック6Bを代表して示すように、各ブロック6A〜6C,14の鋭角側コーナ部C1には、それぞれ、その頂部pを斜めに切除した面取り13を形成し、鋭角側コーナ部C1の剛性を高めている。しかしながら前記第2,第3のブロック6B,6Cにおいては、前述の如く、第2,第3の周方向継ぎ溝4B,4Cを深さ変化溝10とすることで、先着側の鋭角側コーナ部C1fの剛性が高められている。従って、第2,第3のブロック6B,6Cの先着側の鋭角側コーナ部C1fに形成される面取り13fは、後着側の鋭角側コーナ部C1rに形成される面取り13r、或いは他のブロック6A,14の鋭角側コーナ部C1に形成される面取り13に比して、充分小に形成できる。これにより、接地面積を高めることができ、操縦安定性の向上に役立つ。   Next, as shown as a representative of the second block 6B in FIGS. 7A and 7B, each of the acute corner corner portions C1 of the blocks 6A to 6C and 14 has its apex p. A chamfer 13 cut obliquely is formed to increase the rigidity of the acute corner portion C1. However, in the second and third blocks 6B and 6C, as described above, the second and third circumferential joint grooves 4B and 4C are the depth change grooves 10, so that the acute angle corner portion on the first arrival side is formed. The rigidity of C1f is increased. Therefore, the chamfer 13f formed at the acute corner corner C1f on the first arrival side of the second and third blocks 6B and 6C is the chamfer 13r formed on the acute corner corner C1r on the rear arrival side, or another block 6A. , 14 can be formed sufficiently smaller than the chamfer 13 formed at the acute-angle corner portion C1. Thereby, the ground contact area can be increased, which helps to improve the steering stability.

なお図8に傾斜横溝3の他の実施例を示す。図8(A)は、傾斜横溝3の一部を示す平面図、図8(B)はそのIII−III断面図である。図8のように、本例では、傾斜横溝3に配される両側の溝壁面3sのうち、少なくとも後着側の溝壁面3srの、トレッド踏面の法線に対する傾斜角度θrを、前記鈍角側コーナ部C2fから鋭角側コーナ部C1fに向かって漸増させている。これにより先着側の鋭角側コーナ部C1fの剛性をさらに高めることができる。このとき、先着側の溝壁面3sfの、トレッド踏面の法線に対する傾斜角度θfも、前記鈍角側コーナ部C2rから鋭角側コーナ部C1rに向かって漸増させることが好ましい。これにより後着側の鋭角側コーナ部C1rの剛性を高めることができる。     FIG. 8 shows another embodiment of the inclined lateral groove 3. 8A is a plan view showing a part of the inclined lateral groove 3, and FIG. 8B is a sectional view taken along line III-III. As shown in FIG. 8, in this example, among the groove wall surfaces 3s on both sides arranged in the inclined lateral groove 3, at least the inclination angle θr of the groove wall surface 3sr on the rear arrival side with respect to the normal line of the tread surface is set to the obtuse angle side corner. It is gradually increased from the portion C2f toward the acute angle corner portion C1f. Thereby, the rigidity of the acute angle corner portion C1f on the first arrival side can be further increased. At this time, it is preferable that the inclination angle θf of the groove wall surface 3sf on the first arrival side with respect to the normal line of the tread surface is gradually increased from the obtuse angle side corner portion C2r toward the acute angle side corner portion C1r. Thereby, the rigidity of the acute angle corner portion C1r on the rear arrival side can be increased.

しかしながら、図9(A)、(B)に示すように、後着側の溝壁面3srの、トレッド踏面の法線に対する傾斜角度θrを、前記鋭角側コーナ部C1fから鈍角側コーナ部C2fに向かって漸増させることもできる。この場合、前記鋭角側コーナ部C1fによる水膜の除去効果がアップされ、ウエットグリップ性が向上されるとともに、鋭角側コーナ部C2fにおける剛性を向上しうる。排水性のために、先着側の溝壁面3sfの、トレッド踏面の法線に対する傾斜角度θfも、前記鋭角側コーナ部C1rから鈍角側コーナ部C2rに向かって漸増させることが好ましい。   However, as shown in FIGS. 9A and 9B, the inclination angle θr of the groove wall surface 3sr on the rear landing side with respect to the normal line of the tread surface is directed from the acute corner portion C1f to the obtuse corner portion C2f. Can be increased gradually. In this case, the removal effect of the water film by the acute angle side corner portion C1f is improved, wet grip properties are improved, and rigidity at the acute angle side corner portion C2f can be improved. For drainage, it is preferable that the inclination angle θf of the groove wall surface 3sf on the first arrival side with respect to the normal line of the tread surface is gradually increased from the acute corner portion C1r toward the obtuse corner portion C2r.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1に示すトレッドパターンを基準パターンとし、表1に示す仕様にてタイヤサイズが225/45R17の乗用車用ラジアルタイヤを試作した。そして、各試供タイヤについて、ウエットグリップ性能、および耐偏摩耗性をテストし、その結果を互いに比較した。   Using the tread pattern shown in FIG. 1 as a reference pattern, a passenger car radial tire having a tire size of 225 / 45R17 according to the specifications shown in Table 1 was prototyped. Each sample tire was tested for wet grip performance and uneven wear resistance, and the results were compared with each other.

なお表1の仕様以外は、各タイヤとも実質的に同仕様であり、その一部を以下に示す。
<傾斜横溝>
・傾斜角度α1(=αi):20度
・傾斜角度α2:38度
・傾斜角度α3:55度
・傾斜角度α4(=αo):80度
(差αo−αi):60度
・溝深さDy:8.0mm
<周方向継ぎ溝>
・本数:4本
<ブロック>
・第1のブロック(平行四辺形状)
・・・鋭角側コーナ部C1fの頂角:20度
・第2のブロック(平行四辺形状)
・・・鋭角側コーナ部C1fの頂角:33度
・第3のブロック(平行四辺形状)
・・・鋭角側コーナ部C1fの頂角:47度
・ショルダブロック(台形形状)
・・・鋭角側コーナ部C1fの頂角:70度
Except for the specifications shown in Table 1, each tire has substantially the same specifications, and a part thereof is shown below.
<Inclined lateral groove>
Inclination angle α1 (= αi): 20 degrees Inclination angle α2: 38 degrees Inclination angle α3: 55 degrees Inclination angle α4 (= αo): 80 degrees (difference αo-αi): 60 degrees Groove depth Dy : 8.0mm
<Circumferential seam>
・ Number: 4 <block>
・ First block (parallelogram shape)
... Vertical angle of acute corner part C1f: 20 degrees-Second block (parallelogram shape)
... Vertical angle of acute corner C1f: 33 degrees ・ Third block (parallelogram shape)
... Vertical angle of sharp corner C1f: 47 degrees -Shoulder block (trapezoidal shape)
... Vertical angle of sharp corner C1f: 70 degrees

表1において、ブロックにおける「先着側の鋭角コーナ部の面取りの大きさ」については、比較例1のタイヤに形成した面取りの大きさを基準として、大小で比較した。   In Table 1, “the size of the chamfer of the acute corner portion on the first arrival side” in the block was compared based on the size of the chamfer formed on the tire of Comparative Example 1.

(1)ウエットグリップ性能:
試供タイヤを、リム(7.5×17)、内圧(180kPa)の条件にて、車両(3000CC、FR車)の全輪に装着し、半径100mのアスファルト路面に、水深5mm、長さ20mの水たまりを設けたコース上を、速度を段階的に増加させながら進入させ、横加速度(横G)を計測し、50〜80km/hの速度における前輪の平均横Gを算出した(ラテラル・ハイドロプレーニングテスト)。結果は、比較例1を100とする指数で表示し、数値が大きい程良好である。
(1) Wet grip performance:
A sample tire is mounted on all wheels of a vehicle (3000 CC, FR vehicle) under the conditions of a rim (7.5 × 17) and internal pressure (180 kPa), and a water depth of 5 mm and a length of 20 m on an asphalt road surface with a radius of 100 m. On the course with a puddle, the speed was increased stepwise, the lateral acceleration (lateral G) was measured, and the average lateral G of the front wheels at a speed of 50-80 km / h was calculated (lateral hydroplaning) test). A result is displayed by the index | exponent which sets the comparative example 1 to 100, and it is so favorable that a numerical value is large.

(2)耐偏摩耗性:
前記車両を用い、ドライアスファルト路面のテストコースを8000km走行し、走行後の偏摩耗状態を目視によって評価した。結果は、比較例1を100とする指数で表示し、数値が大きい程、耐偏摩耗性に優れている。
(2) Uneven wear resistance:
Using the vehicle, the test course on the dry asphalt road surface was run for 8000 km, and the uneven wear state after running was visually evaluated. A result is displayed by the index | exponent which sets the comparative example 1 to 100, and it is excellent in uneven wear resistance, so that a numerical value is large.

Figure 0004653832
Figure 0004653832

本発明の空気入りタイヤのトレッドパターンの一実施例を平面に展開して示す展開図である。It is an expanded view which expands and shows one Example of the tread pattern of the pneumatic tire of this invention. その一部を拡大して示す展開図である。It is an expanded view which expands and shows a part. 傾斜横溝の形状を説明する略図である。It is the schematic explaining the shape of an inclination horizontal groove. 傾斜横溝および周方向継ぎ溝をさらに説明するトレッドパターンの展開図である。It is a development view of a tread pattern for further explaining the inclined lateral groove and the circumferential joint groove. 周方向継ぎ溝の溝中心線に沿った断面を示す図4のI−I断面図である。It is II sectional drawing of FIG. 4 which shows the cross section along the groove | channel centerline of the circumferential joint groove. 深さ変化溝の溝中心線と直角な断面を示す図4のII−II断面図である。It is II-II sectional drawing of FIG. 4 which shows a cross section orthogonal to the groove | channel centerline of a depth change groove | channel. (A)は、第2のブロックを拡大した平面図、(B)はその面取り13を示す部分斜視図である。(A) is the top view to which the 2nd block was expanded, (B) is the fragmentary perspective view which shows the chamfering 13. FIG. (A)は傾斜横溝の他の実施例を示す平面図、(B)はそのIII−III断面図である。(A) is a top view which shows the other Example of an inclination horizontal groove, (B) is the III-III sectional drawing. (A)は傾斜横溝のさらに他の実施例を示す平面図、(B)はそのIV−IV断面図である。(A) is a top view which shows the further another Example of an inclination horizontal groove, (B) is the IV-IV sectional drawing. (A)は、従来のトレッドパターンの一例を示す展開図、(B)はその問題点を説明するブロックの拡大図である。(A) is a developed view showing an example of a conventional tread pattern, and (B) is an enlarged view of a block for explaining the problem.

符号の説明Explanation of symbols

2 トレッド部
3 傾斜横溝
4 周方向継ぎ溝
4i 最内の周方向継ぎ溝
4o 最外の周方向継ぎ溝
6 ブロック
C タイヤ赤道
C1 鋭角側コーナ部
C2 鈍角側コーナ部
Ef 先着側端
Er 後着側端
Te トレッド接地端
Pi 最内交差位置
Po 最外交差位置
2 Tread portion 3 Inclined transverse groove 4 Circumferential seam groove 4i Inner circumferential seam groove 4o Outermost circumferential seam groove 6 Block C Tire equator C1 Acute angle corner C2 Obtuse corner area Ef First arrival side Er Last arrival side End Te Tread grounding end Pi Innermost intersection position Po Outermost intersection position

Claims (9)

トレッド部に、
タイヤ赤道の近傍位置からトレッド接地端を越えた位置まで、タイヤ軸方向外側に向かってタイヤ回転方向後着側に傾斜してのび、かつタイヤ周方向に隔置される複数の傾斜横溝と、
タイヤ周方向に隣り合う前記傾斜横溝間を継、かつタイヤ軸方向に隔置される4本の周方向継ぎ溝とを設けることにより、
前記トレッド部に、前記傾斜横溝と周方向継ぎ溝とで区分される多数の平行四辺形状のブロックを形成した空気入りタイヤであって、
前記傾斜横溝のタイヤ周方向に対する傾斜角度αは、タイヤ軸方向外側に向かって順次増加し、
かつ前記傾斜横溝が、前記複数本の周方向継ぎ溝のうちで最もタイヤ赤道側に配される最内の周方向継ぎ溝と交わる最内交差位置よりもタイヤ軸方向外側かつ最もトレッド接地端側に配される最外の周方向継ぎ溝と交わる最外交差位置よりもタイヤ軸方向内側の領域範囲において、前記傾斜横溝の溝深さは、実質的に一定をなすとともに、
前記最内の周方向継ぎ溝及び前記最外の周方向継ぎ溝は、先着側端から後着側端に至り溝深さDgが一定であり、かつ
前記最内の周方向継ぎ溝及び前記最外の周方向継ぎ溝の間の周方向継ぎ溝は、タイヤ回転方向の先着側端の溝深さDgfを、後着側端の溝深さDgrよりも小とし、かつ先着側端に向かって溝深さを漸減させたことを特徴とする空気入りタイヤ。
In the tread part,
A plurality of inclined lateral grooves that incline toward the rear arrival side in the tire rotation direction toward the outer side in the tire axial direction from the position near the tire equator to the position beyond the tread ground contact edge, and spaced apart in the tire circumferential direction,
TECHNICAL joint between the inclined lateral grooves adjacent in the tire circumferential direction, and by providing a four circumferential connecting grooves which are spaced axially,
A pneumatic tire in which a plurality of parallelogram blocks divided by the inclined lateral grooves and the circumferential joint grooves are formed in the tread portion,
The inclination angle α of the inclined lateral groove with respect to the tire circumferential direction sequentially increases toward the outer side in the tire axial direction,
Further, the inclined lateral groove is on the outer side in the tire axial direction and on the most tread ground contact end side with respect to the innermost intersection position intersecting with the innermost circumferential joint groove arranged on the tire equator side among the plurality of circumferential joint grooves. In the range of the region on the inner side in the tire axial direction from the outermost intersection position intersecting with the outermost circumferential joint groove arranged in the groove depth of the inclined lateral groove is substantially constant,
The innermost circumferential joint groove and the outermost circumferential joint groove extend from the first arrival side end to the rear arrival side end and have a constant groove depth Dg, and
The circumferential joint groove between the innermost circumferential joint groove and the outermost circumferential joint groove has a groove depth Dgf at the first arrival side end in the tire rotation direction, and a groove depth Dgr at the rear arrival side end. A pneumatic tire characterized in that the groove depth is gradually reduced toward the first arrival side end.
前記周方向継ぎ溝の先着側端の溝深さDgfは、後着側端の溝深さDgrの20〜80%としたことを特徴とする請求項1記載の空気入りタイヤ。   2. The pneumatic tire according to claim 1, wherein a groove depth Dgf of a first arrival side end of the circumferential joint groove is 20 to 80% of a groove depth Dgr of a second arrival end. 前記傾斜横溝は、タイヤ軸方向内端におけるタイヤ周方向に対する傾斜角度αiを10〜35°、かつ前記トレッド接地端の位置におけるタイヤ周方向に対する傾斜角度αoを40〜90°としたことを特徴とする請求項1又は2記載の空気入りタイヤ。   The inclined lateral grooves have an inclination angle αi with respect to the tire circumferential direction at the inner end in the tire axial direction of 10 to 35 °, and an inclination angle αo with respect to the tire circumferential direction at the position of the tread ground contact end of 40 to 90 °. The pneumatic tire according to claim 1 or 2. 前記最内の周方向継ぎ溝溝深さDgを、前記最内交差位置における傾斜横溝3の溝深さDyの90〜100%の範囲としたことを特徴とする請求項1〜3の何れかに記載の空気入りタイヤ。 Any said groove depth Dg of the circumferential connecting grooves in the uppermost, the of claims 1 to 3, characterized in that 90 to 100% of the slope lateral groove 3 depth Dy of the innermost intersection The pneumatic tire according to Crab. 前記周方向継ぎ溝のタイヤ周方向に対する角度βは、タイヤ軸方向外側の周方向継ぎ溝ほど大としたことを特徴とする請求項1〜4の何れかに記載の空気入りタイヤ。 5. The pneumatic tire according to claim 1, wherein an angle β of the circumferential joint groove with respect to the tire circumferential direction is larger as the circumferential joint groove on the outer side in the tire axial direction is larger. 前記傾斜横溝の溝巾Wyは、前記最外交差位置における溝巾Wyoが、前記最内交差位置における溝巾Wyiの1.0倍より大かつ3倍以下であることを特徴とする請求項1〜5の何れかに記載の空気入りタイヤ。   The groove width Wy of the inclined lateral groove is such that the groove width Wyo at the outermost intersection position is greater than 1.0 times and less than three times the groove width Wyi at the innermost intersection position. The pneumatic tire in any one of -5. 前記平行四辺形状のブロックは、鋭角側コーナ部と鈍角側コーナ部とを有し、しかも前記傾斜横溝は、その後着側の溝壁面のトレッド踏面の法線に対する傾斜角度θrを、前記鈍角側コーナ部から鋭角側コーナ部に向かって漸増させたことを特徴とする請求項1〜6の何れかに記載の空気入りタイヤ。   The parallelogram-shaped block has an acute angle corner portion and an obtuse angle side corner portion, and the inclined lateral groove has an inclination angle θr with respect to the normal line of the tread surface of the groove wall on the landing side, and the obtuse angle side corner. The pneumatic tire according to any one of claims 1 to 6, wherein the pneumatic tire is gradually increased from the portion toward the acute-angle corner portion. 前記平行四辺形状のブロックは、鋭角側コーナ部と鈍角側コーナ部とを有し、しかも前記傾斜横溝は、その後着側の溝壁面のトレッド踏面の法線に対する傾斜角度θrを、前記鋭角側コーナ部から鈍角側コーナ部に向かって漸増させたことを特徴とする請求項1〜6の何れかに記載の空気入りタイヤ。   The parallelogram-shaped block has an acute angle corner portion and an obtuse angle corner portion, and the inclined lateral groove has an inclination angle θr with respect to a normal line of the tread surface of the groove surface on the landing side, and the acute angle corner. The pneumatic tire according to claim 1, wherein the pneumatic tire is gradually increased from the portion toward the obtuse angle side corner portion. タイヤ赤道の両側に一対の前記最内の周方向継ぎ溝が形成され、この最内の周方向継ぎ溝間に、タイヤ赤道上を連続してのびる周方向リブが形成される請求項1乃至8のいずれかに記載の空気入りタイヤ。9. A pair of innermost circumferential seam grooves are formed on both sides of the tire equator, and circumferential ribs extending continuously on the tire equator are formed between the innermost circumferential seam grooves. The pneumatic tire according to any one of the above.
JP2008280246A 2008-10-30 2008-10-30 Pneumatic tire Expired - Fee Related JP4653832B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008280246A JP4653832B2 (en) 2008-10-30 2008-10-30 Pneumatic tire
CN 200910172057 CN101722793B (en) 2008-10-30 2009-09-03 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280246A JP4653832B2 (en) 2008-10-30 2008-10-30 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2010105561A JP2010105561A (en) 2010-05-13
JP4653832B2 true JP4653832B2 (en) 2011-03-16

Family

ID=42295425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280246A Expired - Fee Related JP4653832B2 (en) 2008-10-30 2008-10-30 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP4653832B2 (en)
CN (1) CN101722793B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230147893A1 (en) * 2020-04-14 2023-05-11 The Yokohama Rubber Co., Ltd. Tire

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996661B2 (en) * 2009-10-15 2012-08-08 住友ゴム工業株式会社 Pneumatic tire
CN104271365B (en) * 2012-06-27 2016-01-20 横滨橡胶株式会社 Air-inflation tyre
WO2014083758A1 (en) 2012-11-30 2014-06-05 株式会社ブリヂストン Pneumatic tire
JP6012442B2 (en) * 2012-11-30 2016-10-25 株式会社ブリヂストン Pneumatic tire
CN104015569A (en) * 2014-05-26 2014-09-03 厦门正新橡胶工业有限公司 Special tire tread pattern structure of motorcycle for race in rainy day
JP6278843B2 (en) * 2014-06-12 2018-02-14 株式会社ブリヂストン tire
JP6821995B2 (en) * 2016-07-29 2021-01-27 横浜ゴム株式会社 Pneumatic tires
WO2017169157A1 (en) * 2016-03-31 2017-10-05 横浜ゴム株式会社 Pneumatic tire
JP2023066211A (en) * 2021-10-28 2023-05-15 住友ゴム工業株式会社 tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200007A (en) * 1985-03-02 1986-09-04 Bridgestone Corp Pneumatic tire
JPH0332906A (en) * 1989-06-30 1991-02-13 Bridgestone Corp Pneumatic tire with asymmetric tread
JPH0438208A (en) * 1990-05-31 1992-02-07 Bridgestone Corp Pneumatic tire
JPH06234307A (en) * 1993-01-28 1994-08-23 Semperit Reihen Ag Tire
JP2000225812A (en) * 1999-02-05 2000-08-15 Sumitomo Rubber Ind Ltd Pneumatic tire
WO2005115770A1 (en) * 2004-05-27 2005-12-08 Bridgestone Corporation Pneumatic tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004216B2 (en) * 2003-12-11 2006-02-28 The Goodyear Tire & Rubber Company Tire tread including spaced projections in base of groove
JP4276614B2 (en) * 2004-11-25 2009-06-10 住友ゴム工業株式会社 Pneumatic tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200007A (en) * 1985-03-02 1986-09-04 Bridgestone Corp Pneumatic tire
JPH0332906A (en) * 1989-06-30 1991-02-13 Bridgestone Corp Pneumatic tire with asymmetric tread
JPH0438208A (en) * 1990-05-31 1992-02-07 Bridgestone Corp Pneumatic tire
JPH06234307A (en) * 1993-01-28 1994-08-23 Semperit Reihen Ag Tire
JP2000225812A (en) * 1999-02-05 2000-08-15 Sumitomo Rubber Ind Ltd Pneumatic tire
WO2005115770A1 (en) * 2004-05-27 2005-12-08 Bridgestone Corporation Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230147893A1 (en) * 2020-04-14 2023-05-11 The Yokohama Rubber Co., Ltd. Tire

Also Published As

Publication number Publication date
CN101722793B (en) 2013-09-25
JP2010105561A (en) 2010-05-13
CN101722793A (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4653832B2 (en) Pneumatic tire
JP4214159B2 (en) Pneumatic tire
JP5993406B2 (en) Pneumatic tire
JP5438719B2 (en) Pneumatic tire
JP5667614B2 (en) Pneumatic tire
JP5685237B2 (en) Pneumatic tire
JP5357988B2 (en) Pneumatic tire
JP5266307B2 (en) Pneumatic tire
JP6750358B2 (en) Pneumatic tire
JP5250016B2 (en) Pneumatic tire
JP5890853B2 (en) Pneumatic tire
JP5123980B2 (en) Pneumatic tire
JP6393216B2 (en) Pneumatic tire
JP5200520B2 (en) Pneumatic tire
JP5753375B2 (en) Pneumatic tire
JP6699270B2 (en) Pneumatic tire
JP5140146B2 (en) Pneumatic tire
JP6317942B2 (en) Pneumatic tire
JP7310174B2 (en) tire
JP5386032B2 (en) Pneumatic tire
JP3949939B2 (en) Pneumatic tire
JP5890790B2 (en) Pneumatic tire
JP2020142586A (en) tire
JP5480866B2 (en) Pneumatic tire
JP5181934B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees