JP4647925B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP4647925B2
JP4647925B2 JP2004084470A JP2004084470A JP4647925B2 JP 4647925 B2 JP4647925 B2 JP 4647925B2 JP 2004084470 A JP2004084470 A JP 2004084470A JP 2004084470 A JP2004084470 A JP 2004084470A JP 4647925 B2 JP4647925 B2 JP 4647925B2
Authority
JP
Japan
Prior art keywords
cooling
air
cooling chamber
chamber
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084470A
Other languages
Japanese (ja)
Other versions
JP2005273941A (en
Inventor
健嗣 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004084470A priority Critical patent/JP4647925B2/en
Publication of JP2005273941A publication Critical patent/JP2005273941A/en
Application granted granted Critical
Publication of JP4647925B2 publication Critical patent/JP4647925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、所定の温度に加熱された被処理材を所定の温度パターンに沿って冷却する冷却装置に関する。   The present invention relates to a cooling device that cools a workpiece heated to a predetermined temperature along a predetermined temperature pattern.

加熱区域及び冷却区域が設けられている熱処理炉において、加熱区域で所定の温度に加熱された金属ストリップコイル等の被処理材を、冷却区域で冷却する方法として、例えば以下に示すような二種類の方法がある。
第1の方法は、例えば特許文献1に記載されているものであり、図3に示すように、冷却区域Cを仕切扉6によって複数の冷却室Rに分割し、各冷却室R毎に冷却空気を供給する冷却手段10と冷却室Rの空気を排気する排気手段30とを設ける。そして、各冷却室Rに冷却空気を供給して、各冷却室Rの温度を被処理材2の搬送方向に沿って段階的に低下させ、被処理材2を搬送して各冷却室Rを順に通過させつつ、被処理材2を直接冷却するものである。
In a heat treatment furnace provided with a heating zone and a cooling zone, there are two types of methods for cooling a material to be processed such as a metal strip coil heated to a predetermined temperature in the heating zone in the cooling zone, for example, as shown below. There is a way.
The first method is described in, for example, Patent Document 1, and as shown in FIG. 3, the cooling zone C is divided into a plurality of cooling chambers R by the partition door 6, and cooling is performed for each cooling chamber R. A cooling means 10 for supplying air and an exhaust means 30 for exhausting the air in the cooling chamber R are provided. And cooling air is supplied to each cooling chamber R, the temperature of each cooling chamber R is reduced in steps along the conveyance direction of the to-be-processed material 2, and the to-be-processed material 2 is conveyed, and each cooling chamber R is set. The material to be treated 2 is directly cooled while passing through in order.

また、第2の方法は、冷却区域Cを被処理材の搬送方向に沿って仮想的に複数の冷却室に分割し、分割した冷却室毎に冷却空気等の冷媒が流れる冷却パイプを設け、各冷却室毎に冷媒の流量を制御する。そして、被処理材を搬送して各冷却室を順に通過させつつ、熱交換によって間接的に冷却するものである。
特許2774011号公報(第1図)
Further, the second method virtually divides the cooling zone C into a plurality of cooling chambers along the conveyance direction of the material to be processed, and provides a cooling pipe through which a refrigerant such as cooling air flows for each divided cooling chamber, The flow rate of the refrigerant is controlled for each cooling chamber. And it cools indirectly by heat exchange, conveying a to-be-processed material and passing each cooling chamber in order.
Japanese Patent No. 2774011 (FIG. 1)

しかしながら、第1の方法では、冷却区域Cを複数の冷却室Rに分割するため多くの仕切扉6が必要となるが、仕切扉6は十分なシール性を有し且つ昇降可能な構造とする必要があるとともに、耐火物で形成する必要がある。さらに、各冷却室R毎に排気手段30や排気ダンパー等の設備が必要となるため、設備コストが増加するという問題がある。
また、第2の方法では、各冷却室が物理的に分割されていないため、隣接する冷却室同士は互いに空気の出入りを生じる。このため、隣接する冷却室同士の熱干渉が生じてしまい、冷却効率が低下するという問題がある。さらに、被処理材が搬送された冷却室は高熱環境となり、冷却パイプや支持部品等が高温による熱変形を生じたり、高温酸化による酸化減肉によって損傷するため、部品コスト及び補修コストが増加するという問題がある。また、冷却パイプや支持部品等の補修作業による設備停止によって、設備の稼働率が低下するという問題もある。したがって、冷却室の高熱環境から冷却パイプを保護するために、冷却パイプに一定量の冷媒を流し続ける必要があるため、冷却室の温度制御範囲が制限されてしまうという問題がある。
本発明は、上記のような問題点に着目してなされたもので、被処理材の冷却効率の低下を防止するとともに設備コストを低減し、冷却温度の制御範囲を拡大することが可能な冷却装置を提供することを課題とする。
However, in the first method, a large number of partition doors 6 are required to divide the cooling zone C into a plurality of cooling chambers R, but the partition doors 6 have sufficient sealing properties and can be raised and lowered. It needs to be made of refractory. Furthermore, since equipment such as the exhaust means 30 and the exhaust damper is required for each cooling chamber R, there is a problem that the equipment cost increases.
In the second method, since each cooling chamber is not physically divided, adjacent cooling chambers cause air to enter and exit from each other. For this reason, there is a problem that heat interference occurs between adjacent cooling chambers and cooling efficiency decreases. Furthermore, the cooling chamber in which the material to be treated is transferred becomes a high-temperature environment, and the cooling pipe and supporting parts are thermally deformed due to high temperature or damaged due to oxidation thinning due to high-temperature oxidation, thus increasing the part cost and repair cost. There is a problem. Moreover, there is also a problem that the operating rate of the equipment is lowered due to the equipment stoppage due to the repair work of the cooling pipe and the supporting parts. Therefore, in order to protect the cooling pipe from the high temperature environment of the cooling chamber, it is necessary to keep a certain amount of refrigerant flowing through the cooling pipe, and thus there is a problem that the temperature control range of the cooling chamber is limited.
The present invention has been made paying attention to the above-described problems, and is capable of preventing a decrease in the cooling efficiency of the material to be processed, reducing the equipment cost, and expanding the control range of the cooling temperature. It is an object to provide an apparatus.

上記課題を解決するために、本発明のうち、請求項1に記載した発明は、被処理材の搬送方向に沿って設けられ且つ密閉された空間を形成する冷却区域を備え、
前記冷却区域を、前記被処理材の搬送方向に沿って、前記被処理材の搬送を妨げない大きさの遮蔽板により分割した複数の冷却室から構成し、所定の温度に加熱された前記被処理材を前記複数の冷却室を通過させつつ所定の温度パターンに沿って冷却する冷却装置であって、
前記被処理材を冷却する冷却空気を前記冷却室毎に供給する冷却手段と、前記複数の冷却室の空気が前記被処理材の搬送方向に沿って流れるように前記冷却区域内の空気を排気する排気手段と、を備え、
前記排気手段は、前記最下流側の冷却室からのみ前記冷却区域内の空気を排気することを特徴とするものである。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention includes a cooling section that is provided along the conveying direction of the material to be processed and forms a sealed space,
The cooling zone is composed of a plurality of cooling chambers divided by a shielding plate having a size that does not hinder the conveyance of the material to be processed along the conveyance direction of the material to be processed , and is heated to a predetermined temperature. A cooling device that cools a treatment material along a predetermined temperature pattern while passing through the plurality of cooling chambers,
Cooling means for supplying cooling air for cooling the material to be treated for each of the cooling chambers, and exhausting the air in the cooling area so that the air in the plurality of cooling chambers flows along the conveying direction of the material to be treated. And an exhaust means for
The exhaust means exhausts air in the cooling area only from the cooling chamber on the most downstream side.

本発明によると、全冷却室の空気が被処理材の搬送方向に沿って流れるため、隣接する冷却室同士に生じる熱干渉が低下し、被処理材の冷却効率の低下を防止することが可能となる。
また、本発明によると、冷却区域内の空気を最下流側の冷却室からのみ排気することによって、全冷却室の空気を被処理材の搬送方向に沿って流すことが可能となる。
また、本発明によると、隣接する冷却室同士に生じる熱干渉がさらに低下するため、被処理材の冷却効率の低下を防止することが可能となる。
ここで、「仮想的に分割」とは、冷却区域を互いに通気可能な複数の冷却室に分割することであり、物理的に完全に遮蔽するものではない。また、「所定の温度パターン」とは、各冷却室毎に被処理材の冷却温度(以下、設定温度と示す)を設定し、各冷却室の設定温度を被処理材の搬送方向に沿って段階的に低下させるパターンのことである。
According to the present invention, since the air in all the cooling chambers flows along the conveyance direction of the material to be processed, the thermal interference generated between adjacent cooling chambers can be reduced, and the cooling efficiency of the material to be processed can be prevented from being lowered. It becomes.
In addition, according to the present invention, the air in the cooling area is exhausted only from the cooling chamber on the most downstream side, so that the air in all the cooling chambers can flow along the conveyance direction of the workpiece.
In addition, according to the present invention, since heat interference generated between adjacent cooling chambers is further reduced, it is possible to prevent a decrease in cooling efficiency of the material to be processed.
Here, “virtual division” means to divide the cooling area into a plurality of cooling chambers that can be ventilated to each other, and is not physically shielded completely. In addition, the “predetermined temperature pattern” refers to setting the cooling temperature of the material to be processed (hereinafter referred to as a set temperature) for each cooling chamber, and setting the set temperature of each cooling chamber along the conveyance direction of the material to be processed. It is a pattern that gradually decreases.

次に、請求項に記載した発明は、請求項1に記載した発明であって、各冷却室への前記冷却空気の供給量を制御する供給量制御手段を備え、
前記供給量制御手段は、対象とする冷却室における抜熱量と上流側の冷却室から持ち込まれた熱容量とに基づき各冷却室への冷却空気の供給量を制御することを特徴とするものである。
本発明によると、被処理材を目的の温度まで精度よく冷却することが可能となる。
Next, the invention described in claim 2 is the invention described in claim 1, further comprising supply amount control means for controlling the supply amount of the cooling air to each cooling chamber,
The supply amount control means controls the supply amount of cooling air to each cooling chamber based on the heat removal amount in the target cooling chamber and the heat capacity brought in from the upstream cooling chamber. .
According to the present invention, it is possible to accurately cool a material to be processed to a target temperature.

本発明によれば、被処理材の冷却効率の低下を防止するとともに、設備コスト等の低減及び冷却温度の制御範囲を拡大することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to prevent the fall of the cooling efficiency of a to-be-processed material, to reduce facility cost etc., and to expand the control range of cooling temperature.

本発明の実施の形態を図面を参照しつつ説明する。
まず、図1を参照して本発明の構成を説明する。なお、図3に示したものと同一部分には同一符号を付して説明する。
図1に示すように、本発明の冷却装置1は、冷却区域Cと、冷却手段10と、供給量制御手段20と、排気手段30とを備えている。
本実施形態の冷却区域Cは、被処理材2の搬送方向に沿って、被処理材2を所定の温度に加熱する加熱区域Hと連続して設けられている。また、冷却区域Cは、被処理材2の搬送方向に沿って、図中に破線で示す位置を境に、最上流側の第1室から最下流側の第n室まで仮想的に複数の冷却室Rに分割されている。(以下、第1室を冷却室R1、第n室を冷却室Rnと示し、第1室〜第n室間の各冷却室Rに関しても同様に示す)。隣接する冷却室R同士は、互いに通気可能となっており、隣接する冷却室R間には、固定式の遮蔽板4が設けられている。この遮蔽板4は、被処理材2の搬送を妨げない高さまで天井から下がっている。
Embodiments of the present invention will be described with reference to the drawings.
First, the configuration of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected and demonstrated to the same part as what was shown in FIG.
As shown in FIG. 1, the cooling device 1 of the present invention includes a cooling zone C, a cooling means 10, a supply amount control means 20, and an exhaust means 30.
The cooling zone C of the present embodiment is provided continuously with the heating zone H that heats the workpiece 2 to a predetermined temperature along the conveyance direction of the workpiece 2. In addition, the cooling zone C includes a plurality of virtual sections from the first chamber on the most upstream side to the nth chamber on the most downstream side, with the position indicated by the broken line in the figure along the conveyance direction of the workpiece 2. It is divided into cooling chambers R. (Hereinafter, the cooling chamber R 1 of the first chamber, the first n chamber shown and the cooling chamber R n, shown as well with respect to the cooling chambers R between the first chamber to n-th compartment). Adjacent cooling chambers R can be ventilated with each other, and a fixed shielding plate 4 is provided between the adjacent cooling chambers R. The shielding plate 4 is lowered from the ceiling to a height that does not hinder the conveyance of the workpiece 2.

冷却区域Cの被処理材2の搬送方向に沿った最上流部及び最下流部には、それぞれ仕切扉6が設けられている。仕切扉6は耐火物で形成され、十分なシール性を有し、昇降可能となっている。仕切扉6が上昇した状態では、被処理材2の冷却区域Cへの搬入及び冷却区域Cからの搬出が可能であり、仕切扉6が下降した状態では、冷却区域Cは密閉される。   Partition doors 6 are respectively provided at the most upstream part and the most downstream part along the conveying direction of the workpiece 2 in the cooling zone C. The partition door 6 is formed of a refractory material, has sufficient sealing properties, and can be raised and lowered. When the partition door 6 is raised, the workpiece 2 can be carried into and out of the cooling zone C. When the partition door 6 is lowered, the cooling zone C is sealed.

冷却手段10は、冷却ファン12と、冷却制御弁14と、吹き出しノズル16とを備えている。冷却ファン12は、被処理材2を冷却する冷却空気を発生し、この冷却空気は、冷却制御弁14を介して、各冷却室Rに設けられた吹き出しノズル16から各冷却室Rに供給される。冷却制御弁14は、各冷却室Rに設けられており、供給量制御手段20から送信された信号に基づき、各冷却室Rへの冷却空気の供給量を制御する。   The cooling means 10 includes a cooling fan 12, a cooling control valve 14, and a blowing nozzle 16. The cooling fan 12 generates cooling air that cools the workpiece 2, and this cooling air is supplied to each cooling chamber R from a blowing nozzle 16 provided in each cooling chamber R via a cooling control valve 14. The The cooling control valve 14 is provided in each cooling chamber R, and controls the amount of cooling air supplied to each cooling chamber R based on a signal transmitted from the supply amount control means 20.

温度センサ18は、各冷却室Rに設けられており、各冷却室Rの温度Tを検出して供給量制御手段20へ出力する。
供給量制御手段20は、各冷却室Rにおいて、被処理材2と、冷却室R内と、冷却室Rの内壁(以下、被処理材2等と示す)とが、所定の温度パターンにおける設定温度となるように、各冷却室Rへの冷却空気の供給量を算出する。そして、算出した冷却空気の供給量を供給量制御信号S1として、各冷却室Rに設けられた冷却制御弁14と、排気量制御手段38へ送信する。
The temperature sensor 18 is provided in each cooling chamber R, detects the temperature T of each cooling chamber R, and outputs it to the supply amount control means 20.
In each cooling chamber R, the supply amount control means 20 sets the material 2 to be processed, the inside of the cooling chamber R, and the inner wall of the cooling chamber R (hereinafter referred to as the material 2 to be processed) in a predetermined temperature pattern. The supply amount of the cooling air to each cooling chamber R is calculated so that the temperature is reached. The calculated supply amount of cooling air is transmitted as a supply amount control signal S1 to the cooling control valve 14 provided in each cooling chamber R and the exhaust amount control means 38.

ここで、各冷却室Rへの冷却空気の供給量の算出は、冷却空気を供給する冷却室Rにおける抜熱量と、上流側の冷却室Rから持ち込まれた熱容量とに基づいて行う。冷却空気を供給する冷却室Rにおける抜熱量は、冷却空気を供給する冷却室Rと上流側の冷却室Rとの設定温度の差と、被処理材2の比熱とに基づき算出する。また、上流側の冷却室Rから持ち込まれた熱容量は、冷却空気を供給する冷却室Rと上流側の冷却室Rとの温度差と、上流側の冷却室Rから冷却空気を供給する冷却室Rに持ち込まれた空気の量とに基づき算出する。なお、上流側の冷却室Rから冷却空気を供給する冷却室Rに持ち込まれた空気の量は、例えば上流側の冷却室Rへの冷却空気の供給量から算出する。   Here, the calculation of the supply amount of the cooling air to each cooling chamber R is performed based on the heat removal amount in the cooling chamber R supplying the cooling air and the heat capacity brought in from the upstream cooling chamber R. The amount of heat removal in the cooling chamber R that supplies the cooling air is calculated based on the difference in set temperature between the cooling chamber R that supplies the cooling air and the upstream cooling chamber R and the specific heat of the workpiece 2. The heat capacity brought in from the upstream cooling chamber R depends on the temperature difference between the cooling chamber R that supplies cooling air and the upstream cooling chamber R, and the cooling chamber that supplies cooling air from the upstream cooling chamber R. Calculated based on the amount of air brought into R. The amount of air brought into the cooling chamber R that supplies cooling air from the upstream cooling chamber R is calculated from, for example, the amount of cooling air supplied to the upstream cooling chamber R.

以上のようなフィードフォワード制御を行なえば、例えば、被処理材2の温度や重量等による熱負荷が大きく変化した際にも精度よく炉温制御することができるが、冷却装置1の設計時に上記のようなシミュレーション計算を行ない、必要となる供給空気の制御量に基づき冷却制御弁14や配管径等の冷却手段10の設計を行っておけば、実操業では、単に冷却室Rの炉温が目標値となるように冷却空気の供給量を制御するというフィードバック制御とすることもできる。   If the feedforward control as described above is performed, for example, the furnace temperature can be accurately controlled even when the heat load due to the temperature, weight, etc. of the material to be processed 2 is greatly changed. In the actual operation, the furnace temperature of the cooling chamber R is simply calculated by designing the cooling means 10 such as the cooling control valve 14 and the pipe diameter based on the required control amount of the supply air. It is also possible to perform feedback control in which the amount of cooling air supplied is controlled so as to reach the target value.

記憶部22には、所定の温度パターンにおける各冷却室R毎の設定温度が記憶されている。なお、所定の温度パターンは適宜変更可能である。
排気手段30は、排気ファン32と、排気制御弁34と、排気口36と、排気量制御手段38とを備えている。排気ファン32は、排気制御弁34を介して、排気口36から流れてくる全冷却室R内の空気を排気する。排気制御弁34は、排気量制御手段38から送信された信号に基づき、全冷却室R内の空気の排気量を制御する。排気口36は、冷却室Rnにのみ設けられている。
The storage unit 22 stores a set temperature for each cooling chamber R in a predetermined temperature pattern. The predetermined temperature pattern can be changed as appropriate.
The exhaust unit 30 includes an exhaust fan 32, an exhaust control valve 34, an exhaust port 36, and an exhaust amount control unit 38. The exhaust fan 32 exhausts the air in all the cooling chambers R flowing from the exhaust port 36 via the exhaust control valve 34. The exhaust control valve 34 controls the exhaust amount of air in all the cooling chambers R based on the signal transmitted from the exhaust amount control means 38. Exhaust port 36, only provided in the cooling chamber R n.

排気量制御手段38は、各冷却室Rへの冷却空気の供給量に応じて全冷却室Rの排気量を算出し、この算出した排気量を排気量制御信号S2として排気制御弁34へ送信する。なお、全冷却室Rの排気量は、各冷却室Rへの冷却空気の供給量と等量としてもよく、各冷却室Rへの冷却空気の供給量から増減した量としてもよい。
また、排気量についても以上のようなフィードフォワード制御を行なえば、より精度よく制御を行なうことができるが、冷却装置1の設計時にシミュレーション計算を行なって、各排気手段30の能力を設計しておけば、実操業では、単に冷却室Rの炉圧が目標値となるように排気量を制御するというフィードバック制御とすることもできる。
The exhaust amount control means 38 calculates the exhaust amount of all the cooling chambers R according to the supply amount of the cooling air to each cooling chamber R, and transmits the calculated exhaust amount to the exhaust control valve 34 as the exhaust amount control signal S2. To do. The exhaust amount of all the cooling chambers R may be equal to the amount of cooling air supplied to each cooling chamber R, or may be an amount increased or decreased from the amount of cooling air supplied to each cooling chamber R.
Further, if the feedforward control as described above is performed for the exhaust amount, the control can be performed with higher accuracy. However, a simulation calculation is performed at the time of designing the cooling device 1 to design the capability of each exhaust unit 30. In actual operation, it is possible to simply perform feedback control in which the displacement is controlled so that the furnace pressure in the cooling chamber R becomes a target value.

次に、上記の構成を備えた冷却装置1の作用・効果等について説明する。なお、以下に説明する制御方法は一例であり、本発明はこれに限定されるものではない。
供給量制御手段20は、冷却空気の供給量の制御対象となる冷却室R(以下、冷却室RCと示す)の温度TCと、冷却室Rの前室の冷却室R(以下、冷却室RC-1と示す)の温度TC-1との温度差と、冷却室RC-1から冷却室RCに持ち込まれた空気の量とに基づき、冷却室RC-1から持ち込まれた熱容量を算出する。そして、算出した熱容量と冷却室RCにおける抜熱量とに基づき、冷却室RCにおいて被処理材2等が設定温度となるように、冷却室RCへの冷却空気の供給量を算出し、この冷却空気の供給量を供給量制御信号S1として、冷却室RCに設けられた冷却制御弁14と、排気量制御手段38へ送信する。
Next, the operation and effect of the cooling device 1 having the above configuration will be described. The control method described below is an example, and the present invention is not limited to this.
The supply amount control means 20 includes a temperature T C of a cooling chamber R (hereinafter referred to as a cooling chamber R C ) that is a control target of a cooling air supply amount, and a cooling chamber R (hereinafter referred to as a cooling chamber) in front of the cooling chamber R. based on the temperature difference between the temperature T C-1 of the chamber showing the R C-1), the amount of air brought into the cooling chamber R C from the cooling chamber R C-1, brought from the cooling chamber R C-1 The calculated heat capacity is calculated. Then, based on the dissipation heat amount calculated heat capacity and the cooling chamber R C, in the cooling chamber R C as the material to be treated 2 or the like is the set temperature, and calculates the supply amount of the cooling air into the cooling chamber R C, This supply amount of cooling air is transmitted as a supply amount control signal S1 to the cooling control valve 14 provided in the cooling chamber RC and the exhaust amount control means 38.

冷却室RCに設けられた冷却制御弁14は、冷却室RCへの冷却空気の供給量を制御する。そして、冷却室RCには、被処理材2等を設定温度に冷却するために必要な量の冷却空気が供給される。したがって、冷却室RCにおいては、被処理材2等とともに、冷却室RC-1から持ち込まれた空気も設定温度に冷却されるため、被処理材2等の冷却効率の低下が防止される。
なお、全冷却室Rのうち最上流側の冷却室R1においては、冷却室R1における抜熱量に基づいてのみ冷却空気の供給量が算出され、被処理材2等を設定温度に冷却するために必要な量の冷却空気が供給される。
Cooling chamber R C cooling control valve 14 provided in the controls the supply amount of the cooling air into the cooling chamber R C. The cooling chamber RC is supplied with an amount of cooling air necessary for cooling the workpiece 2 and the like to the set temperature. Therefore, in the cooling chamber R C , the air brought from the cooling chamber R C-1 is also cooled to the set temperature together with the material to be processed 2 and the like, so that the cooling efficiency of the material to be processed 2 and the like is prevented from being lowered. .
In the cooling chamber R 1 on the most upstream side of all the cooling chambers R, the supply amount of the cooling air is calculated only based on the heat removal amount in the cooling chamber R 1 , and the processing object 2 and the like are cooled to the set temperature. Therefore, a necessary amount of cooling air is supplied.

排気量制御手段38は、各冷却室Rへの冷却空気の供給量に応じて全冷却室Rの排気量を算出し、排気制御弁34へ排気量制御信号S2を送信する。排気制御弁34へ排気量制御信号S2が送信されると、全冷却室R内の空気が排気口36から排気され、全冷却室R内の空気が被処理材2の搬送方向に沿って流れるため、設定温度の高い冷却室Rから設定温度の低い冷却室Rへの空気の流れが生じる。このため、隣接する冷却室R同士に生じる熱干渉が低下し、被処理材2等の冷却効率の低下が防止される。また、各冷却室Rへの冷却空気の供給量に応じて全冷却室R内の空気が排気量が制御されるため、全冷却室R内の気圧を任意に制御することが可能となり、被処理材2等の冷却効率の低下を防止することが可能となる。   The exhaust amount control means 38 calculates the exhaust amount of all the cooling chambers R according to the amount of cooling air supplied to each cooling chamber R, and transmits an exhaust amount control signal S2 to the exhaust control valve 34. When the exhaust amount control signal S <b> 2 is transmitted to the exhaust control valve 34, the air in all the cooling chambers R is exhausted from the exhaust port 36, and the air in all the cooling chambers R flows along the conveyance direction of the workpiece 2. Therefore, an air flow is generated from the cooling chamber R having a high set temperature to the cooling chamber R having a low set temperature. For this reason, the heat interference which arises between adjacent cooling chamber R falls, and the fall of the cooling efficiency of the to-be-processed material 2 grade | etc., Is prevented. In addition, since the exhaust amount of the air in all the cooling chambers R is controlled according to the amount of cooling air supplied to each cooling chamber R, the atmospheric pressure in all the cooling chambers R can be arbitrarily controlled. It becomes possible to prevent the cooling efficiency of the treatment material 2 and the like from being lowered.

さらに、遮蔽板4によって、隣接する冷却室R同士に生じる熱干渉がさらに低下するため、被処理材2等の冷却効率の低下を防止することが可能となる。
なお、所定の温度パターンが、例えば各冷却室Rの設定温度に大きな差がある場合には、次に示す方法によって、各冷却室Rへの冷却空気の供給量を算出してもよい。この方法は、あらかじめ各冷却室Rへの冷却空気の供給量を算出しておき、この供給量と各冷却室Rの温度とに基づいて、各冷却室Rへの冷却空気の供給量を再び算出するものである。この方法によれば、各冷却室Rの設定温度に大きな差があっても、各冷却室Rへの冷却空気の供給量が適切な量となるため、冷却装置1の追従性及び応答性が低下することが防止される。
Furthermore, since the heat interference generated between the adjacent cooling chambers R is further reduced by the shielding plate 4, it is possible to prevent the cooling efficiency of the material 2 to be processed from being lowered.
In addition, when a predetermined temperature pattern has a big difference in the set temperature of each cooling chamber R, for example, the supply amount of the cooling air to each cooling chamber R may be calculated by the following method. In this method, the supply amount of cooling air to each cooling chamber R is calculated in advance, and the supply amount of cooling air to each cooling chamber R is again determined based on this supply amount and the temperature of each cooling chamber R. Is to be calculated. According to this method, even if there is a large difference in the set temperature of each cooling chamber R, the amount of cooling air supplied to each cooling chamber R becomes an appropriate amount. Decrease is prevented.

なお、本実施の形態では、冷却室Rnにのみ排気口36を設けたが、冷却室Rn以外の冷却室Rにも排気口36を設け、冷却室Rnに設けた排気口36からの排気を補助してもよい。このとき、冷却室Rn以外の冷却室Rに設けた排気口36からの排気量は、冷却室Rnに設けた排気口36からの排気量よりも少なくし、全冷却室R内の空気が被処理材2の搬送方向に沿って流れるようにする。 In the present embodiment, the exhaust port 36 is provided only in the cooling chamber R n , but the exhaust port 36 is also provided in the cooling chamber R other than the cooling chamber R n , and the exhaust port 36 is provided in the cooling chamber R n. The exhaust may be assisted. At this time, the exhaust amount from the exhaust port 36 provided in the cooling chamber R other than cooling chamber R n is less than the exhaust amount from the exhaust port 36 provided in the cooling chamber R n, air total cooling chamber R Flow along the conveying direction of the material 2 to be processed.

また、各冷却室R毎に温度センサ18を備えたが、例えば、冷却室R1及び冷却室Rnにのみ温度センサ18を備え、冷却室R1の温度T1及び冷却室Rnの温度Tnを検出することにより、冷却室R1及び冷却室Rn以外の各冷却室Rの温度を推定してもよい。
さらに、被処理材2を冷却区域Cへ搬入する前に、あらかじめ各冷却室R内及び各冷却室Rの内壁を設定温度に冷却しておいてもよい。
Although a temperature sensor 18 for each cooling chamber R, for example, the cooling chamber includes a temperature sensor 18 only R 1 and cooling chamber R n, the temperature of the temperature T 1 and cooling chamber R n of the cooling chamber R 1 The temperature of each cooling chamber R other than the cooling chamber R 1 and the cooling chamber R n may be estimated by detecting T n .
Furthermore, before the workpiece 2 is carried into the cooling zone C, the cooling chambers R and the inner walls of the cooling chambers R may be cooled to the set temperature in advance.

本実施の形態で説明したものと同様の構成を有する冷却装置を用いた冷却方法によって、被処理材の冷却を行った。また、比較例として、背景技術で説明した第2の方法と同様の冷却方法によって、被処理材の冷却を行った。
その結果、図2に示されるように、本発明例の冷却方法は、比較例の冷却方法よりも冷却温度の制御範囲が拡大していることが確認された。
The material to be treated was cooled by a cooling method using a cooling device having the same configuration as that described in this embodiment. As a comparative example, the material to be treated was cooled by the same cooling method as the second method described in the background art.
As a result, as shown in FIG. 2, it was confirmed that the cooling method of the example of the present invention had a wider control range of the cooling temperature than the cooling method of the comparative example.

また、本発明例の冷却方法は、冷却空気によって被処理材を直接冷却するため、比較例の冷却方法よりも被処理材の冷却効率が高い。したがって、比較例の冷却方法より冷却ファンの電動機容量を1/6程度まで低下させた場合でも、比較例の冷却方法より急速な冷却が可能である。
さらに、比較例の冷却方法では冷却パイプに一定量の冷媒を流し続ける必要があり、徐冷性能に限界があるが、本発明例の冷却方法では任意の冷却室への冷却空気の供給を停止することが可能であるため、比較例の冷却方法よりも徐冷性能が向上する。
Moreover, since the cooling method of the present invention directly cools the material to be treated by the cooling air, the cooling efficiency of the material to be treated is higher than the cooling method of the comparative example. Therefore, even when the motor capacity of the cooling fan is reduced to about 1/6 as compared with the cooling method of the comparative example, the cooling can be performed more rapidly than the cooling method of the comparative example.
Furthermore, in the cooling method of the comparative example, it is necessary to continuously flow a certain amount of refrigerant through the cooling pipe, and there is a limit to the slow cooling performance. However, in the cooling method of the present invention, the supply of cooling air to any cooling chamber is stopped. Therefore, the slow cooling performance is improved as compared with the cooling method of the comparative example.

本発明の冷却装置を示す概略図である。It is the schematic which shows the cooling device of this invention. 本発明例及び比較例の冷却方法による冷却温度の制御範囲の比較図である。It is a comparison figure of the control range of the cooling temperature by the cooling method of this invention example and a comparative example. 従来の冷却装置を示す概略図である。It is the schematic which shows the conventional cooling device.

符号の説明Explanation of symbols

1 冷却装置
2 被処理材
4 遮蔽板
6 仕切扉
10 冷却手段
12 冷却ファン
14 冷却制御弁
16 吹き出しノズル
18 温度センサ
20 供給量制御手段
22 記憶部
30 排気手段
32 排気ファン
34 排気制御弁
36 排気口
38 排気量制御手段
C 冷却区域
H 加熱区域
R 冷却室
S1 供給量制御信号
S2 排気量制御信号
T 冷却室Rの温度
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Material to be processed 4 Shielding plate 6 Partition door 10 Cooling means 12 Cooling fan 14 Cooling control valve 16 Outlet nozzle 18 Temperature sensor 20 Supply amount control means 22 Storage part 30 Exhaust means 32 Exhaust fan 34 Exhaust control valve 36 Exhaust port 38 Exhaust amount control means C Cooling zone H Heating zone R Cooling chamber S1 Supply amount control signal S2 Exhaust amount control signal T Temperature of cooling chamber R

Claims (2)

被処理材の搬送方向に沿って設けられ且つ密閉された空間を形成する冷却区域を備え、
前記冷却区域を、前記被処理材の搬送方向に沿って、前記被処理材の搬送を妨げない大きさの遮蔽板により分割した複数の冷却室から構成し、所定の温度に加熱された前記被処理材を前記複数の冷却室を通過させつつ所定の温度パターンに沿って冷却する冷却装置であって、
前記被処理材を冷却する冷却空気を前記冷却室毎に供給する冷却手段と、前記複数の冷却室の空気が前記被処理材の搬送方向に沿って流れるように前記冷却区域内の空気を排気する排気手段と、を備え、
前記排気手段は、前記最下流側の冷却室からのみ前記冷却区域内の空気を排気することを特徴とする冷却装置。
Provided with a cooling zone provided along the conveying direction of the material to be processed and forming a sealed space;
The cooling zone is composed of a plurality of cooling chambers divided by a shielding plate having a size that does not hinder the conveyance of the material to be processed along the conveyance direction of the material to be processed , and is heated to a predetermined temperature. A cooling device that cools a treatment material along a predetermined temperature pattern while passing through the plurality of cooling chambers,
Cooling means for supplying cooling air for cooling the material to be treated for each of the cooling chambers, and exhausting the air in the cooling area so that the air in the plurality of cooling chambers flows along the conveying direction of the material to be treated. And an exhaust means for
The cooling device according to claim 1, wherein the exhaust means exhausts air in the cooling section only from the cooling chamber on the most downstream side.
各冷却室への前記冷却空気の供給量を制御する供給量制御手段を備え、
前記供給量制御手段は、対象とする冷却室における抜熱量と上流側の冷却室から持ち込まれた熱容量とに基づき各冷却室への冷却空気の供給量を制御することを特徴とする請求項1に記載した冷却装置。
Supply amount control means for controlling the supply amount of the cooling air to each cooling chamber,
2. The supply amount control means controls the supply amount of cooling air to each cooling chamber based on a heat extraction amount in a target cooling chamber and a heat capacity brought in from an upstream cooling chamber. The cooling device described in 1.
JP2004084470A 2004-03-23 2004-03-23 Cooling system Expired - Fee Related JP4647925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084470A JP4647925B2 (en) 2004-03-23 2004-03-23 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084470A JP4647925B2 (en) 2004-03-23 2004-03-23 Cooling system

Publications (2)

Publication Number Publication Date
JP2005273941A JP2005273941A (en) 2005-10-06
JP4647925B2 true JP4647925B2 (en) 2011-03-09

Family

ID=35173814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084470A Expired - Fee Related JP4647925B2 (en) 2004-03-23 2004-03-23 Cooling system

Country Status (1)

Country Link
JP (1) JP4647925B2 (en)

Also Published As

Publication number Publication date
JP2005273941A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
WO2014017176A1 (en) Furnace for thermal processing of workpieces
JP6596703B2 (en) Multi-chamber heat treatment equipment
JP2008298404A (en) Continuous calcination furnace
JP2009115413A (en) Heat-treatment apparatus
JP4647925B2 (en) Cooling system
JP7106393B2 (en) Continuous heating furnace and its operation method
CN107257865A (en) For carrying out deformation heat treatment method, furnace apparatus and system to workpiece
JP2006213935A (en) Method for quenching workpiece, and quenching device
JP5446653B2 (en) Heat treatment equipment
JP5306970B2 (en) Air conditioning system
JP6336707B2 (en) Reflow device
JP2009084633A (en) Plasma nitriding treatment device, and continuous type plasma nitriding treatment method
JP5407281B2 (en) Heat treatment method
JP4765919B2 (en) Heat treatment apparatus and heat treatment method for aluminum alloy material
JP5819467B2 (en) Continuous furnace
JP2008014616A (en) Heat treatment device
JP5306969B2 (en) Air conditioning system
JP2011196654A (en) Continuous furnace
JP2011056599A (en) Temperature control system
JP2007263480A (en) Muffle furnace
JP7052671B2 (en) Metal band temperature control method and temperature control device
JP2005183596A (en) Manufacturing method of heat treatment apparatus and semiconductor device
JP6046555B2 (en) Quenching method in annealing treatment and quenching equipment in annealing furnace
JP2008056972A (en) Continuous annealing furnace
JP6779587B2 (en) Vertical muffle type heat treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees