JP4643059B2 - Method of recovering metal from electronic / electric parts with resin - Google Patents

Method of recovering metal from electronic / electric parts with resin Download PDF

Info

Publication number
JP4643059B2
JP4643059B2 JP2001165874A JP2001165874A JP4643059B2 JP 4643059 B2 JP4643059 B2 JP 4643059B2 JP 2001165874 A JP2001165874 A JP 2001165874A JP 2001165874 A JP2001165874 A JP 2001165874A JP 4643059 B2 JP4643059 B2 JP 4643059B2
Authority
JP
Japan
Prior art keywords
product
resin
magnetic material
metal
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001165874A
Other languages
Japanese (ja)
Other versions
JP2002355661A (en
Inventor
雄策 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2001165874A priority Critical patent/JP4643059B2/en
Publication of JP2002355661A publication Critical patent/JP2002355661A/en
Application granted granted Critical
Publication of JP4643059B2 publication Critical patent/JP4643059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B9/061General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器に用いられるプリント基板、電子・電気部品、或いは、部品が搭載されたプリント基板などのような樹脂付電子・電気部品から金属を回収する方法に関するものである。
【0002】
【従来の技術】
電気機器に用いられるプリント基板などは、有用な金、銀、銅、パラジウムなどの有価物を有しており、有価物の回収方法としては、種々の方法が提案されている。
【0003】
例えば、プリント基板を加熱して樹脂分を燃焼し、銅などの有価物を分離回収する方法(特開平2−88725号公報)、プリント基板などの微粉砕物を比重分離と静電分離を利用して、銅などの金属成分を多く含有する部分と、樹脂などからなる部分とを分離する方法(特開平7−251154号公報)、などがある。
【0004】
しかしながら、プリント基板を加熱した場合には、樹脂が燃焼することにより有害なガスが発生し、その処理が困難である。又、従来の比重分離及び静電分離などを行なうには大型の設備投資を必要とする。
【0005】
一方、金、銀、銅、パラジウムなどの有価物を有するプリント基板などは、従来、銅製錬の原料として利用することによって、有価物の回収が図られている。
【0006】
プリント基板などを銅製錬の原料として利用する場合には、プリン基板などの樹脂付電子・電気部品は、粉砕され、風力選別などの物理選別により、金属が濃縮した金属濃縮物と樹脂が濃縮した樹脂濃縮物とに選別され、金属濃縮物は、銅製錬プロセスで有価金属を回収し、一方、樹脂濃縮物は、産業廃棄物処理炉の熱エネルギーとして利用されている。
【0007】
【発明が解決しようとする課題】
しかしながら、従来、銅製錬プロセスにおける原料として使用されている金属濃縮物は、金属分の含有量が38%程度とされ、樹脂含有量が大である。そのために、金属濃縮物を銅製錬プロセスにて銅転炉に装入した場合には、多量の有害ガスを発生し、作業環境を悪化する。特に、金属濃縮物が樹脂分として塩化ビニル樹脂を含んでいる場合には、銅製錬プロセスにて生成される硫酸を汚染することになり好ましくない。
【0008】
従って、本発明の目的は、金属が高濃度にて濃縮した金属濃縮物と樹脂が高濃度にて濃縮した樹脂濃縮物とに選別することができ、プリント基板などの樹脂付電子・電気部品から有価金属を効率よく回収することのできる樹脂付電子・電気部品からの金属の回収方法を提供することである。
【0009】
本発明の他の目的は、樹脂付電子・電気部品から金属が高濃度にて濃縮した金属濃縮物を得ることができ、銅製錬の原料として利用して金、銀、銅、パラジウムなどの有価金属を有効に回収することのできる樹脂付電子・電気部品からの金属の回収方法を提供することである。
【0010】
【課題を解決するための手段】
上記目的は本発明に係る樹脂付電子・電気部品からの金属の回収方法にて達成される
【0014】
発明によれば、(a)樹脂付電子・電気部品を破砕機で破砕して−10mmサイズとされる破砕物とダストとし、
(b)前記破砕物を磁選機で磁性物と非磁性物に分け、次いで、
(c)前記工程(b)の非磁性物を篩別機にて+5mm品、−5/+3mm品、−3/+2mm品及び−2mm品に篩別した後、
(d)前記+5mm品、−5/+3mm品、及び−3/+2mm品をそれぞれジグ選別機にて重量物と軽量物とに選別し、更に、
(e)前記ダストは、磁選機にて磁性物と非磁性物に分け、このダストから磁選された非磁性物は、篩別機にて網上品と網下品とに選別し、
(f)前記工程(b)及び(e)の前記磁性物、前記工程(c)の前記−2mm品、前記工程(e)の前記網下品、そして、前記工程(d)の前記各重量物を金属濃縮物として回収し、前記工程(e)の前記網上品及び前記工程(d)の前記各軽量物を樹脂濃縮物として回収する、
ことを特徴とする樹脂付電子・電気部品からの金属の回収方法が提供される。
【0015】
本発明の一実施態様によれば、前記ジグ選別機での選別は、比重を1.2〜1.5に設定して重量物と軽量物とに選別する。
【0016】
発明の他の実施態様によれば、前記金属濃縮物を銅製錬プロセスにおける原料として使用し、金、銀、銅、パラジウムなどの金属を回収する。
【0017】
【発明の実施の形態】
以下、本発明に係る樹脂付電子・電気部品からの金属の回収方法を図面に則して更に詳しく説明する。
【0018】
図1は、本発明に従った樹脂付電子・電気部品からの金属の回収方法の一実施例を示すフロー図である。
【0019】
本発明の回収方法は、本実施例によると、破砕機による破砕工程、磁選機による磁選工程、篩別機による篩別工程、及びジグ選別機によるジグ選別工程を有する。これら各工程は、以下の作用をなす。
【0020】
(1)破砕工程
処理原料であるプリント基板などとされる樹脂付電子・電気部品(以後「金銀滓」という。)を破砕機で−10mmサイズ(10mm以下のサイズ)の破砕物Aに破砕し、発生するダストBは、バグフィルタで捕集する。破砕物Aは1〜10mmサイズのものを言い、ダストBとは1mm以下のサイズのものを言う。
【0021】
(2)磁選工程
破砕物A及びダストBはそれぞれ、磁選機で磁力選別し、それぞれ磁性物C、Eと非磁性物D、Fとに分別し、金属が濃縮した磁性物C、Eを回収する。
【0022】
(3)篩別工程
非磁性物D、Fは、篩別機でそれぞれ所定のサイズに篩別し、金属が濃縮する破砕物側の−2mm品(2mm以下の品)J及びダスト側の網下品Lを回収する。
【0023】
(4)ジグ選別工程
破砕物側の篩別工程で産出する+5mm品(5mm以上10mm以下の品)G、−5/+3mm品(5mm以下3mm以上の品)H、及び−3/+2mm品(3mm以下2mm以上の品)Iをジグ選別機でそれぞれ重量物M、O、Qと軽量物N、P、Rに分別し、金属が濃縮する重量物M、O、Qを回収する。
【0024】
以上の物理選別により金属が濃縮した産物(以下「金濃縮物」という。)C、E、J、L、M、O、Qは、銅製錬プロセスで原料として使用し、有価金属を回収することができる。一方、樹脂が濃縮した産物(以下「樹脂濃縮物」という。)のダスト網上品K及びジグ選別の軽量物N、P、Rは、産業廃棄物処理炉の熱エネルギーとしてサーマルリサイクル化を図る。
【0025】
本発明の金属回収方法の効果を確認するために、以下の実験を行なった。
【0026】
実験例1
本実験例で処理原料として使用した金銀滓の有価金属と樹脂成分は、表1に示す通りであった。
【0027】
【表1】

Figure 0004643059
【0028】
本実験例にて使用した試験装置は、次の通りであった。
【0029】
(1)破砕機
破砕機は、装置上部で衝撃破砕を行ない、下部で摺動破砕する構造になっており、摺動部のクリアランスを調整することにより10mm以下サイズの破砕が可能であった。
【0030】
(2)磁選機
磁選機は、回転ドラムに永久磁石が配置してあるドラム型磁選機であった。
【0031】
(3)篩別機
篩別機は、容器内に網目の異なる2種類のスクリーンを内蔵し、容器を振動させて3種類サイズに選別する機能を有するものであった。
【0032】
(4)ジグ選別機
ジグ選別機の概略構造を図2及び図3に示す。
【0033】
ジグ選別機であるジグ比重選別装置1は、内部に水が貯留された二つの円筒状水槽2、3と、両水槽2、3を底部で連結する連結部4とを備えた概略U字形状の装置本体5を有する。一方の水槽2は、プランジャー室2aを構成し、水槽2には、上下動自在にプランジャー板6が装着される。このプランジャー板6は、連結ロッド7にてエキセントリックと呼ばれる駆動手段の偏芯板8に連結されている。偏芯板8を回転駆動することにより、プランジャー板6をプランジャー室2a内で上下方向に往復駆動し、それによって、水槽2中の水に上下方向の揺動運動を与える。一方、他方の水槽3は、選別室3aを構成し、水槽3には、図3をも参照すると理解されるように、網枠11にて網板12が取付けられている。プランジャー室2aにおける水の揺動は、選別室3aに伝達され、図3に示すように、矢印方向に水が揺動(脈動)する。
【0034】
水槽3の上方開口から選別室3aへと試料が投入される。試料は、網板12より下方へとは沈下しない。選別室3aには網板12上に堆積した重量物を排出するための排出口3bが形成され、通常はダムゲート13にて閉鎖されている。又、ダムゲート13に隣接して、選別室3aからの重量物の排出を制御するスターホイール14が設けられる。
【0035】
図3に示すように、選別室3aに投入された試料は、選別室3aにおける水の上下方向の揺動運動により、重いものは沈み、軽いものは浮くこととなり、それぞれ重量物/軽量物として分別することができる。
【0036】
選別室3aにおける脈動回数は、10〜100回/分、好ましくは、40〜80回/分である。試料投入量は、通常、500〜1500kg/時間とされる。又、試料と水の比率は、1:5〜1:40、好ましくは、1:5〜1:10であり、試料滞留時間は、3分以上とされる。
【0037】
選別室3aには、検出器20が配置されており、選別室3aにおける検出器20の高さを調整することにより、分別される重量物/軽量物の比重を設定することができる。本実験例では、比重を1.2〜1.5に設定することにより、選別室3aに投入された試料を重量物と軽量物とに有効に選別し得ることが分かった。
【0038】
又、検出器20の高さ信号は、高さ検出器LS1、LS2により検出され、設定器21に送信され、重量物の排出口3bに設けたスターホイール14の回転が制御される。即ち、網板12上に堆積した比重の重い産物の層厚が高くなると自動的にスターホイール14が回転し、重量物の排出が行なわれ、回収される。層厚が薄い場合には、スターホイール14は回転せず、重量物の排出、回収は行なわれない。
【0039】
図2にて理解されるように、選別室3aからの軽量物は、モータMにて振動されるスクリーン30により固液分離され、固体分は回収される。液体分は、更に沈降槽31へと送給され、そこで、固体分が沈降分離される。沈降槽31からのオーバーフロー液体分は、受槽32へと送給され、その後、ポンプPにより再度、ジグ選別機本体5へと還流される。
【0040】
上記各工程に使用した諸装置の試験条件は、表2に示す通りであった。
【0041】
【表2】
Figure 0004643059
【0042】
処理原料の金銀滓及び分別後の産物の成分は、表3に示す分析法にて評価した。
【0043】
【表3】
Figure 0004643059
【0044】
上記試験における、破砕後、磁力選別の結果及び非磁性物を篩別した粒度分布と品位は表4に示す通りであった。
【0045】
【表4】
Figure 0004643059
【0046】
つまり、破砕工程における破砕結果は、表4に示すように、破砕物Aが約88%に対し、バグ捕集物のダストBが約12%の重量比であった。
【0047】
破砕後の有価金属の分布状態は、金(Au)16%、銀(Ag)10%、パラジウム(Pd)33%がダストB中に入り、銅(Cu)は2%程度となって大部分の有価物は破砕物Aに入るという結果であった。
【0048】
磁力選別工程における破砕物Aの磁選では、磁性物Cとして分離できるのは、重量比2〜3%、金4%、銀2%、パラジウム1%程度で、銅は1%以下であった。なお、樹脂の磁性物Cへの巻き込みは殆ど見られなかった。
【0049】
ダストBの磁選では、ダストBから磁性物Eとして分離できるのは、重量比6%、金9%、銀5〜6%、パラジウム17%程度で、銅は1%程度であった。樹脂も8%程度が磁性物Eに巻き込まれて磁性物Eの樹脂品位が高くなった。
【0050】
篩別工程における破砕物の非磁性物D及びダストの非磁性物Fの篩別結果を図4及び図5に示す。
【0051】
破砕物(非磁性物)Dの篩別は、図4から明らかなように、−2mmサイズの分布率が約40%を占め、金42%、銀27%、パラジウム60%、銅64%がこのサイズに濃縮された。
【0052】
ダスト(非磁性物)Fの篩別は、−50メッシュサイズの分布率が約70%に達し、細粒になっているのが分かった。
【0053】
又、このサイズへの有価金属の濃縮率も金6.5%、銀4%、パラジウム15%、銅1%以下であった。
【0054】
表5は、ジグ選別工程にて破砕物の非磁性物Dを篩別して粒度調整した+5mm品、−5/+3mm品、−3/+2mm品を原料として、それぞれジグ選別を行なった結果を示す。
【0055】
【表5】
Figure 0004643059
【0056】
いずれのサイズでも、ジグ選別は有効で沈下物下を重量物として分離すれば、重量比50〜65%、金90%(80〜95%)、銀85%(55〜100%)、銅97%(96〜98%)が重量物に濃縮する。一方、樹脂は、40%(37〜43%)程度が重量物に入る。
【0057】
なお、パラジウムについては、このサイズでの品位が低いため、配分は不明であった。
【0058】
又、表5から水分についてみると+5mm品、−5/+3mm品、−3/+2mm品の三種類、いずれの粒度も沈下物の上下で水分含有率が小さいことが分かった。このことから破砕物の比較的粗い粒度については、湿式のジグ選別で行なっても生産物の乾燥工程は不要であることが分かった。
【0059】
実験例2
実験例1で説明したと同じ装置及び手順にて、表6に示す有価金属と樹脂成分を示す金銀滓を処理原料として有価金属を回収した。表7にその結果を示す。
【0060】
又、図6には、破砕物の非磁性物に対する篩別工程処理後及びジグ選別工程処理後の有価金属と樹脂成分の分配率を示す。特に、図6に示すように、ジグ選別工程は、篩別工程処理後の+5mm品、−5/+3mm品、及び−3/+2mm品に対して、ジグ選別機の検出器20の比重設定を、それぞれ1.16、1.21、及び1.32に設定して好結果を得ることができた。
【0061】
【表6】
Figure 0004643059
【0062】
【表7】
Figure 0004643059
【0063】
表7にて理解されるように、本実験例では、ジグ選別工程処理により、金属濃縮物の分配率が、金95.4%、銀96.3%、銅99.0%、樹脂49.8%(品位24.8%)とされ、この分配率から、本実験例での処理工程により、金、銀、銅が回収でき、樹脂についても約60%程度分離することができた。
【0064】
又、各処理工程における分離結果も、実験例1の場合と同様の結果を得ることができ、再現性の確認ができた。
【0065】
本発明によれば、ジグ選別工程での分離効率が良く、ダストについては篩別工程での分離効率が良いことが分かった。
【0066】
これまで行なった実験結果から、破砕物処理工程は、磁選、篩別、ジグ選別で、ダスト処理工程は、磁選、篩別することにより金属と樹脂の分離濃縮ができることが分かった。
【0067】
このようにして回収した表7に示す金属濃縮物を圧縮成型して団鉱とし、この団鉱を、銅製錬プロセスにおける転炉に投入して粗銅を作製した。有害ガスの発生はなく、極めて効率よく粗銅を製造することができた。
【0068】
【発明の効果】
以上説明したように、本発明の樹脂付電子・電気部品からの金属の回収方法によれば、
(1)金属が高濃度にて濃縮した金属濃縮物と樹脂が高濃度にて濃縮した樹脂濃縮物とに選別することができ、プリント基板などの樹脂付電子・電気部品から有価金属を効率よく回収することができる。
(2)樹脂付電子・電気部品から金属が高濃度にて濃縮した金属濃縮物を得ることができ、銅製錬の原料として利用して金、銀、銅、パラジウムなどの有価金属を有効に回収することができる。
という効果を奏し得る。
【図面の簡単な説明】
【図1】本発明に従った樹脂付電子・電気部品からの金属の回収方法の一実施例を示すフロー図である。
【図2】ジグ選別機の概略構成図である。
【図3】ジグ選別機の選別室を示す概略構成図である。
【図4】破砕物の粒度分布を示す図である。
【図5】ダストの粒度分布を示す図である。
【図6】破砕物の非磁性物に対する篩別工程処理後及びジグ選別工程処理後の有価金属と樹脂成分の分配率を説明する図である。
【符号の説明】
1 ジグ選別機
2、3 水槽
2a プランジャー室
3a 選別室
8 偏芯板
12 網板
13 ダムゲート
14 スターホイール
20 検出器
21 設定器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering a metal from a resin-attached electronic / electrical component such as a printed circuit board, an electronic / electrical component, or a printed circuit board on which the component is mounted.
[0002]
[Prior art]
Printed circuit boards and the like used for electrical equipment have valuable materials such as useful gold, silver, copper, and palladium, and various methods have been proposed as methods for recovering valuable materials.
[0003]
For example, a method of heating a printed circuit board to burn off the resin component and separating and recovering valuable materials such as copper (Japanese Patent Laid-Open No. 2-88725), utilizing gravity separation and electrostatic separation of finely pulverized materials such as printed circuit boards In addition, there is a method of separating a portion containing a large amount of a metal component such as copper and a portion made of a resin (Japanese Patent Laid-Open No. 7-251154).
[0004]
However, when the printed circuit board is heated, harmful gases are generated due to the burning of the resin, which makes it difficult to process. In addition, large-scale capital investment is required to perform conventional specific gravity separation and electrostatic separation.
[0005]
On the other hand, a printed circuit board having valuable materials such as gold, silver, copper, and palladium has been conventionally used as a raw material for copper smelting to recover valuable materials.
[0006]
When using printed circuit boards as raw materials for copper smelting, electronic and electrical parts with resin such as pudding boards are crushed, and metal concentrate and resin are concentrated by physical sorting such as wind sorting. Sorted into resin concentrates, metal concentrates recover valuable metals in a copper smelting process, while resin concentrates are used as thermal energy in industrial waste treatment furnaces.
[0007]
[Problems to be solved by the invention]
However, conventionally, the metal concentrate used as a raw material in the copper smelting process has a metal content of about 38% and a high resin content. Therefore, when a metal concentrate is charged into a copper converter by a copper smelting process, a large amount of harmful gas is generated and the working environment is deteriorated. In particular, when the metal concentrate contains a vinyl chloride resin as a resin component, it is not preferable because it contaminates sulfuric acid produced in the copper smelting process.
[0008]
Therefore, the object of the present invention can be classified into a metal concentrate in which the metal is concentrated at a high concentration and a resin concentrate in which the resin is concentrated at a high concentration. It is an object of the present invention to provide a method for recovering metals from resin-attached electronic / electrical components that can recover valuable metals efficiently.
[0009]
Another object of the present invention is to obtain a metal concentrate in which metal is concentrated at a high concentration from resin-equipped electronic / electrical parts, and is used as a raw material for copper smelting, such as gold, silver, copper and palladium. It is an object of the present invention to provide a method for recovering metal from resin-attached electronic / electrical components that can recover metal effectively.
[0010]
[Means for Solving the Problems]
The above object is achieved by the method for recovering metal from resin-attached electronic / electrical parts according to the present invention .
[0014]
According to the present invention, (a) a resin-carrying electronic / electrical part is crushed with a crusher to obtain a crushed material and dust that is -10 mm size,
(B) The crushed material is separated into a magnetic material and a non-magnetic material with a magnetic separator,
(C) After sieving the non-magnetic material of the step (b) into +5 mm product, -5 / + 3 mm product, -3 / + 2 mm product and -2 mm product with a sieving machine,
(D) The +5 mm product, −5 / + 3 mm product, and −3 / + 2 mm product are each sorted into a heavy and a light by a jig sorter,
(E) The dust is separated into a magnetic material and a non-magnetic material by a magnetic separator, and the non-magnetic material magnetically selected from the dust is sorted into a net product and a net product by a sieving machine,
(F) The magnetic material in the steps (b) and (e), the -2 mm product in the step (c), the net product in the step (e), and the heavy items in the step (d). Is recovered as a metal concentrate, and the net product in the step (e) and the respective lightweight materials in the step (d) are recovered as a resin concentrate.
A method for recovering metal from resin-attached electronic / electrical parts is provided.
[0015]
According to one embodiment of the present invention, the sorting by the jig sorter is classified into a heavy object and a light object with a specific gravity of 1.2 to 1.5.
[0016]
According to another embodiment of the present invention, the metal concentrate is used as a raw material in a copper smelting process, and metals such as gold, silver, copper and palladium are recovered.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method for recovering a metal from an electronic / electrical part with resin according to the present invention will be described in more detail with reference to the drawings.
[0018]
FIG. 1 is a flowchart showing one embodiment of a method for recovering metal from resin-attached electronic / electrical parts according to the present invention.
[0019]
According to the present embodiment, the recovery method of the present invention includes a crushing step by a crusher, a magnetic separation step by a magnetic separator, a sieving step by a sieving machine, and a jig sorting step by a jig sorter. Each of these steps performs the following actions.
[0020]
(1) Crushing process Resin-equipped electronic / electrical parts (hereinafter referred to as “gold and silver candy”), which are the raw materials used in the crushing process, are crushed into -10 mm (10 mm or less) crushed material A using a crusher. The generated dust B is collected by a bag filter. The crushed material A refers to those having a size of 1 to 10 mm, and the dust B refers to those having a size of 1 mm or less.
[0021]
(2) Magnetic Separation Process The crushed material A and dust B are each magnetically sorted by a magnetic separator, separated into magnetic materials C and E and non-magnetic materials D and F, respectively, and the magnetic materials C and E concentrated in metal are collected. To do.
[0022]
(3) Sieving process The non-magnetic materials D and F are each sieved to a predetermined size by a sieving machine, and the crushed material side -2 mm product (product of 2 mm or less) J and the dust side net on which the metal is concentrated. Collect vulgar L.
[0023]
(4) Jig sorting process + 5mm product (product of 5mm to 10mm) G, -5 / + 3mm product (product of 5mm or less 3mm or more) H, and -3 / + 2mm product (product of 5mm or less 3mm or more) Articles of 3 mm or less and 2 mm or more) I are separated into heavy objects M, O, and Q and light objects N, P, and R by a jig sorter, respectively, and the heavy objects M, O, and Q where the metal concentrates are collected.
[0024]
More products by physical sorting metal is concentrated (hereinafter referred to as "metallic concentrate".) C, E, J, L, M, O, Q is used as a raw material in a copper smelting process, to recover the valuable metals be able to. On the other hand, the dust net product K of the product (hereinafter referred to as “resin concentrate”) and the light-weight items N, P, and R of the jig selection are thermally recycled as thermal energy of the industrial waste treatment furnace.
[0025]
In order to confirm the effect of the metal recovery method of the present invention, the following experiment was conducted.
[0026]
Experimental example 1
Table 1 shows the valuable metals and resin components of the gold and silver bran used as processing raw materials in this experimental example.
[0027]
[Table 1]
Figure 0004643059
[0028]
The test apparatus used in this experimental example was as follows.
[0029]
(1) The crusher crusher has a structure in which impact crushing is performed at the upper part of the apparatus and sliding crushing is performed at the lower part, and crushing of a size of 10 mm or less was possible by adjusting the clearance of the sliding part.
[0030]
(2) Magnetic separator The magnetic separator is a drum type magnetic separator in which a permanent magnet is arranged on a rotating drum.
[0031]
(3) Sieving machine A sieving machine has a function of incorporating two types of screens with different meshes in a container and sorting the three types by vibrating the container.
[0032]
(4) Jig sorter The schematic structure of the jig sorter is shown in FIGS.
[0033]
A jig specific gravity sorter 1 that is a jig sorter has a substantially U-shape including two cylindrical water tanks 2 and 3 in which water is stored and a connecting part 4 that connects the two water tanks 2 and 3 at the bottom. The apparatus main body 5 is included. One water tank 2 constitutes a plunger chamber 2a, and a plunger plate 6 is mounted on the water tank 2 so as to be movable up and down. The plunger plate 6 is connected by a connecting rod 7 to an eccentric plate 8 of driving means called eccentric. By rotating and driving the eccentric plate 8, the plunger plate 6 is reciprocated in the vertical direction in the plunger chamber 2a, thereby giving the water in the water tank 2 a swinging motion in the vertical direction. On the other hand, the other water tank 3 constitutes a sorting chamber 3a, and a net plate 12 is attached to the water tank 3 by a net frame 11 as understood with reference to FIG. The swing of water in the plunger chamber 2a is transmitted to the sorting chamber 3a, and the water swings (pulsates) in the direction of the arrow as shown in FIG.
[0034]
A sample is put into the sorting chamber 3a from the upper opening of the water tank 3. The sample does not sink below the mesh plate 12. The sorting chamber 3 a is formed with a discharge port 3 b for discharging heavy objects accumulated on the mesh plate 12 and is normally closed by a dam gate 13. Adjacent to the dam gate 13 is provided a star wheel 14 for controlling the discharge of heavy objects from the sorting chamber 3a.
[0035]
As shown in FIG. 3, the sample put into the sorting chamber 3a is sunk in the heavy and floating in the up and down direction of the water in the sorting chamber 3a. Can be separated.
[0036]
The number of pulsations in the sorting chamber 3a is 10 to 100 times / minute, preferably 40 to 80 times / minute. The sample input amount is usually 500 to 1500 kg / hour. The ratio of sample to water is 1: 5 to 1:40, preferably 1: 5 to 1:10, and the sample residence time is 3 minutes or more.
[0037]
A detector 20 is disposed in the sorting chamber 3a. By adjusting the height of the detector 20 in the sorting chamber 3a, it is possible to set the specific gravity of the heavy / lightweight items to be sorted. In this experimental example, it was found that by setting the specific gravity to 1.2 to 1.5, the sample put into the sorting chamber 3a can be effectively sorted into heavy and light.
[0038]
The height signal of the detector 20 is detected by the height detectors LS1 and LS2 and transmitted to the setting device 21 to control the rotation of the star wheel 14 provided at the heavy material discharge port 3b. That is, when the layer thickness of the heavy product deposited on the net 12 increases, the star wheel 14 automatically rotates, and the heavy object is discharged and collected. When the layer thickness is thin, the star wheel 14 does not rotate and heavy objects are not discharged or collected.
[0039]
As understood from FIG. 2, the lightweight material from the sorting chamber 3 a is solid-liquid separated by the screen 30 that is vibrated by the motor M, and the solid content is recovered. The liquid component is further fed to the settling tank 31 where the solid component is separated by settling. The overflow liquid from the settling tank 31 is fed to the receiving tank 32 and then returned to the jig sorter body 5 again by the pump P.
[0040]
Table 2 shows the test conditions of the devices used in the above steps.
[0041]
[Table 2]
Figure 0004643059
[0042]
The components of the raw material gold and silver cake and the product after fractionation were evaluated by the analytical methods shown in Table 3.
[0043]
[Table 3]
Figure 0004643059
[0044]
Table 4 shows the results of magnetic force sorting and the particle size distribution and quality obtained by screening non-magnetic materials after crushing.
[0045]
[Table 4]
Figure 0004643059
[0046]
That is, as shown in Table 4, the crushing result in the crushing process was about 88% of the crushed material A and about 12% of the weight B of the dust B of the collected bug.
[0047]
The distribution of valuable metals after crushing is mostly composed of 16% gold (Au), 10% silver (Ag), 33% palladium (Pd) in dust B, and about 2% copper (Cu). As a result, the valuable material entered the crushed material A.
[0048]
In the magnetic separation of the crushed material A in the magnetic separation process, the magnetic material C can be separated by a weight ratio of 2 to 3%, gold 4%, silver 2%, palladium 1%, and copper 1% or less. In addition, almost no entrainment of the resin in the magnetic substance C was observed.
[0049]
In the magnetic separation of the dust B, the magnetic substance E can be separated from the dust B as a magnetic material 6%, gold 9%, silver 5-6%, palladium 17%, and copper 1%. About 8% of the resin was caught in the magnetic material E, and the resin quality of the magnetic material E increased.
[0050]
The sieving results of the nonmagnetic material D of crushed material and the nonmagnetic material F of dust in the sieving step are shown in FIGS.
[0051]
As is clear from FIG. 4, the crushed material (non-magnetic material) D has a distribution rate of −2 mm size occupying about 40%, gold 42%, silver 27%, palladium 60%, and copper 64%. Concentrated to this size.
[0052]
As a result of sieving of dust (non-magnetic material) F, it was found that the distribution rate of the -50 mesh size reached about 70% and became fine particles.
[0053]
The concentration ratio of valuable metals to this size was 6.5% gold, 4% silver, 15% palladium, and 1% copper or less.
[0054]
Table 5 shows the results of performing the jig selection using a +5 mm product, a −5 / + 3 mm product, and a −3 / + 2 mm product obtained by sieving the non-magnetic material D of the crushed material in the jig selection process and adjusting the particle size.
[0055]
[Table 5]
Figure 0004643059
[0056]
In any size, jig sorting is effective, and if the bottom of the sediment is separated as a heavy object, the weight ratio is 50 to 65%, gold 90% (80 to 95%), silver 85% (55 to 100%), copper 97 % (96-98%) concentrates to heavy weight. On the other hand, about 40% (37 to 43%) of the resin is in the weight.
[0057]
In addition, about palladium, since the quality in this size is low, distribution is unknown.
[0058]
From Table 5, it was found that the moisture content was small at the top and bottom of the subsidence for each of the three types of +5 mm product, -5 / + 3 mm product, and -3 / + 2 mm product. From this, it was found that the product drying step is not required even when the crushed material has a relatively coarse particle size by wet jig sorting.
[0059]
Experimental example 2
In the same apparatus and procedure as described in Experimental Example 1, valuable metals were recovered using the valuable metals shown in Table 6 and the gold and silver bran indicating the resin component as processing raw materials. Table 7 shows the results.
[0060]
Moreover, in FIG. 6, the distribution rate of the valuable metal and the resin component after the sieving process and the jig selection process for the nonmagnetic material of the crushed material is shown. In particular, as shown in FIG. 6, in the jig sorting process, the specific gravity setting of the detector 20 of the jig sorter is set for +5 mm products, −5 / + 3 mm products, and −3 / + 2 mm products after the screening process. , Set to 1.16, 1.21, and 1.32 respectively, and good results were obtained.
[0061]
[Table 6]
Figure 0004643059
[0062]
[Table 7]
Figure 0004643059
[0063]
As understood from Table 7, in this experimental example, the distribution ratio of the metal concentrate was 95.4% gold, 96.3% silver, 99.0% copper, 49. From this distribution rate, gold, silver and copper could be recovered from this distribution rate, and about 60% of the resin could be separated from this distribution rate.
[0064]
In addition, the separation results in each processing step were the same as those in Experimental Example 1, and the reproducibility could be confirmed.
[0065]
According to the present invention, it has been found that the separation efficiency in the jig sorting step is good, and that the dust has a good separation efficiency in the sieving step.
[0066]
From the experimental results conducted so far, it was found that the crushed material treatment process can be separated by magnetic separation, sieving, and jig sorting, and the dust treatment process can be separated and concentrated by metal separation and sieving.
[0067]
The metal concentrate shown in Table 7 recovered in this manner was compression molded into briquettes, and the briquettes were put into a converter in a copper smelting process to produce crude copper. There was no generation of harmful gas, and it was possible to produce crude copper extremely efficiently.
[0068]
【The invention's effect】
As explained above , according to the method for recovering metal from resin-attached electronic / electrical parts of the present invention ,
(1) It is possible to sort into metal concentrates with high metal concentration and resin concentrates with high resin concentration, enabling efficient utilization of valuable metals from electronic and electrical parts with resin such as printed circuit boards. It can be recovered.
(2) Metal concentrates with high concentration of metal can be obtained from resin-equipped electronic and electrical parts, and valuable metals such as gold, silver, copper, and palladium are effectively recovered by using them as raw materials for copper smelting. can do.
It can have the effect.
[Brief description of the drawings]
FIG. 1 is a flowchart showing one embodiment of a method for recovering metal from resin-attached electronic / electrical parts according to the present invention.
FIG. 2 is a schematic configuration diagram of a jig sorter.
FIG. 3 is a schematic configuration diagram showing a sorting chamber of a jig sorter.
FIG. 4 is a diagram showing the particle size distribution of crushed material.
FIG. 5 is a diagram showing a particle size distribution of dust.
FIG. 6 is a diagram for explaining the distribution ratio of valuable metals and resin components after the sieving process and the jig selection process for the non-magnetic crushed material.
[Explanation of symbols]
1 Jig sorter 2, 3 Water tank 2a Plunger chamber 3a Sorting chamber 8 Eccentric plate 12 Mesh plate 13 Dam gate 14 Star wheel 20 Detector 21 Setting device

Claims (3)

(a)樹脂付電子・電気部品を破砕機で破砕して−10mmサイズとされる破砕物とダストとし、
(b)前記破砕物を磁選機で磁性物と非磁性物に分け、次いで、
(c)前記工程(b)の非磁性物を篩別機にて+5mm品、−5/+3mm品、−3/+2mm品及び−2mm品に篩別した後、
(d)前記+5mm品、−5/+3mm品、及び−3/+2mm品をそれぞれジグ選別機にて重量物と軽量物とに選別し、更に、
(e)前記ダストは、磁選機にて磁性物と非磁性物に分け、このダストから磁選された非磁性物は、篩別機にて網上品と網下品とに選別し、
(f)前記工程(b)及び(e)の前記磁性物、前記工程(c)の前記−2mm品、前記工程(e)の前記網下品、そして、前記工程(d)の前記各重量物を金属濃縮物として回収し、前記工程(e)の前記網上品及び前記工程(d)の前記各軽量物を樹脂濃縮物として回収する、
ことを特徴とする樹脂付電子・電気部品からの金属の回収方法。
(A) Crushing electronic / electrical parts with resin with a crusher to make -10 mm size crushed material and dust,
(B) The crushed material is separated into a magnetic material and a non-magnetic material with a magnetic separator,
(C) After sieving the non-magnetic material of the step (b) into +5 mm product, -5 / + 3 mm product, -3 / + 2 mm product and -2 mm product with a sieving machine,
(D) The +5 mm product, −5 / + 3 mm product, and −3 / + 2 mm product are each sorted into a heavy and a light by a jig sorter,
(E) The dust is separated into a magnetic material and a non-magnetic material by a magnetic separator, and the non-magnetic material magnetically selected from the dust is sorted into a net product and a net product by a sieving machine,
(F) The magnetic material in the steps (b) and (e), the -2 mm product in the step (c), the net product in the step (e), and the heavy items in the step (d). Is recovered as a metal concentrate, and the net product in the step (e) and the respective lightweight materials in the step (d) are recovered as a resin concentrate.
A method for recovering metal from resin-attached electronic / electrical parts.
前記ジグ選別機での選別は、比重を1.2〜1.5に設定して重量物と軽量物とに選別することを特徴とする請求項の樹脂付電子・電気部品からの金属の回収方法。Screened at the jig sorter of metals from the resin with electronic and electrical components of claim 1, characterized in that sorting in the heavy and light matter to set the specific gravity to 1.2 to 1.5 Collection method. 前記金属濃縮物を銅製錬プロセスにおける原料として使用し、金、銀、銅、パラジウムなどの金属を回収することを特徴とする請求項1又は2の樹脂付電子・電気部品からの金属の回収方法。 3. The method for recovering metals from resin-equipped electronic / electric parts according to claim 1 or 2 , wherein the metal concentrate is used as a raw material in a copper smelting process, and metals such as gold, silver, copper, and palladium are recovered. .
JP2001165874A 2001-05-31 2001-05-31 Method of recovering metal from electronic / electric parts with resin Expired - Fee Related JP4643059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165874A JP4643059B2 (en) 2001-05-31 2001-05-31 Method of recovering metal from electronic / electric parts with resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165874A JP4643059B2 (en) 2001-05-31 2001-05-31 Method of recovering metal from electronic / electric parts with resin

Publications (2)

Publication Number Publication Date
JP2002355661A JP2002355661A (en) 2002-12-10
JP4643059B2 true JP4643059B2 (en) 2011-03-02

Family

ID=19008493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165874A Expired - Fee Related JP4643059B2 (en) 2001-05-31 2001-05-31 Method of recovering metal from electronic / electric parts with resin

Country Status (1)

Country Link
JP (1) JP4643059B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551152B2 (en) * 2004-07-27 2010-09-22 三井金属鉱業株式会社 Specific gravity sorter and specific gravity sorting method
JP4953254B2 (en) * 2008-08-05 2012-06-13 シャープ株式会社 Processing methods for LED products
FR2938457B1 (en) * 2008-11-14 2011-01-07 Terra Nova PROCESS FOR RECOVERING METALS CONTAINED IN ELECTRONIC WASTE
JP2010119906A (en) * 2008-11-17 2010-06-03 National Institute For Materials Science Crushed mass of electronic equipment
CN102172597B (en) * 2010-12-24 2013-04-10 广州有色金属研究院 Discarded circuit board full-value recycling method
JP5816449B2 (en) * 2011-03-31 2015-11-18 三井金属鉱業株式会社 Method for producing valuable metal raw materials for recycling from printed wiring boards
CN103506368B (en) * 2012-06-29 2015-08-19 格林美股份有限公司 Controlled fragmentation is separated method and the device of low-value materials and your material
CN105214831A (en) * 2015-11-12 2016-01-06 福州大学 A kind of low grade gold ore dump leaching process pulverized based on high pressure roller
CN105498952B (en) * 2016-02-02 2017-05-03 大连地拓重工有限公司 Gold tailing processing system and method
JP6938414B2 (en) * 2018-03-28 2021-09-22 Jx金属株式会社 How to dispose of parts waste
CA3102588A1 (en) * 2018-05-18 2019-11-21 Francisco Javier JIMENEZ GUZMAN System for physical-mechanical recovery and refining of non-ferrous met als from electronic scrap
CN110373547A (en) * 2019-08-20 2019-10-25 中国兵器科学研究院宁波分院 The method for extracting metal in electronic waste processing flue gas based on physical-chemical process
CN111663045B (en) * 2020-06-16 2021-05-14 中南大学 Comprehensive waste circuit board resource recovery process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502187A (en) * 1989-06-19 1993-04-22 インテル―リサイクリング・アクチエンゲゼルシヤフト How to utilize equipment scrap and its equipment
JP2001020019A (en) * 1999-07-06 2001-01-23 Sintokogio Ltd Method for recovering metal from metal-containing resin composition or product
JP2001096261A (en) * 1999-10-01 2001-04-10 Matsushita Electric Ind Co Ltd Method of recycling waste electric appliance resource
JP2002194448A (en) * 2000-12-28 2002-07-10 Nippon Mining & Metals Co Ltd Method for recovering metal from electronic or electric parts with resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502187A (en) * 1989-06-19 1993-04-22 インテル―リサイクリング・アクチエンゲゼルシヤフト How to utilize equipment scrap and its equipment
JP2001020019A (en) * 1999-07-06 2001-01-23 Sintokogio Ltd Method for recovering metal from metal-containing resin composition or product
JP2001096261A (en) * 1999-10-01 2001-04-10 Matsushita Electric Ind Co Ltd Method of recycling waste electric appliance resource
JP2002194448A (en) * 2000-12-28 2002-07-10 Nippon Mining & Metals Co Ltd Method for recovering metal from electronic or electric parts with resin

Also Published As

Publication number Publication date
JP2002355661A (en) 2002-12-10

Similar Documents

Publication Publication Date Title
JP4643059B2 (en) Method of recovering metal from electronic / electric parts with resin
JP5775752B2 (en) Method for recovering valuable metals from home appliances
JPH0763691B2 (en) Method for utilizing scrap of equipment and its equipment
WO2018233382A1 (en) Dry separation and recovery process for recovering valuable constituent from waste circuit board
JP6465825B2 (en) Method and apparatus for recovering precious metals from incinerated ash
JP3617767B2 (en) Method and apparatus for recovering metal from solid waste
CN107442264A (en) The wet split recovery process of valuable component in a kind of waste printed circuit board
JP4554068B2 (en) Method of recovering metal from electronic / electric parts with resin
JP4366513B2 (en) Method and apparatus for recovering valuable metals from metal composite waste
JP2012522127A (en) Recovery of platinum group metals from powdered waste.
JP6502274B2 (en) Incineration ash sorting method and apparatus
JP2005288209A (en) Separation method of refuse and separation apparatus thereof
JP4153099B2 (en) Method for enriching nickel-containing oxide ores
JP6817127B2 (en) How to treat shredder dust
CN209735768U (en) Recycling system of waste circuit board
JP2000005702A (en) Method and device for recovering metal from solid waste
JP2018079459A (en) Processing method of electronic/electrical equipment component scrap
JP7137532B2 (en) Metal-containing waste treatment apparatus and treatment method
WO2017172980A1 (en) Use of multi-gravity separation to recover metals from iba, asr, and electronic scrap
JP6938414B2 (en) How to dispose of parts waste
RU2710395C1 (en) Method of extracting junior metal and/or rare-earth metal
JPH0975853A (en) Treatment method for shredder dust incineration ash
JP2019055407A (en) Method and device for recovery of noble metal from burned ash
CN211865434U (en) Mineral separation device for improving recovery rate of gold-containing waste residue gold
JP2023125642A (en) Method for recovery of noble metal from waste

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees