JP4641411B2 - Elevator earthquake recovery operation device and elevator earthquake recovery service providing system - Google Patents
Elevator earthquake recovery operation device and elevator earthquake recovery service providing system Download PDFInfo
- Publication number
- JP4641411B2 JP4641411B2 JP2004347938A JP2004347938A JP4641411B2 JP 4641411 B2 JP4641411 B2 JP 4641411B2 JP 2004347938 A JP2004347938 A JP 2004347938A JP 2004347938 A JP2004347938 A JP 2004347938A JP 4641411 B2 JP4641411 B2 JP 4641411B2
- Authority
- JP
- Japan
- Prior art keywords
- elevator
- earthquake
- abnormality
- floor
- automatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Maintenance And Inspection Apparatuses For Elevators (AREA)
Description
この発明は、高感知器、低感知器、超低感知器の3段階レベルの地震計を備えたエレベータの地震時復旧運転装置並びにエレベータの地震時復旧サービス提供システムに関するものである。 The present invention relates to an elevator restoration operation apparatus and an elevator restoration service providing system equipped with a three-level seismometer of a high sensor, a low sensor, and an ultra-low sensor.
一般にエレベータの地震時管制運転は、超低感知器、低感知器の地震計が設置されており、超低感知器の地震計が動作するとかごは最寄階に停止し、一定時間内に低感知器の地震計が動作しなければ自動で復旧され、エレベータは正常運転に戻る。
もし、一定時間内に低感知器の地震計が動作すると、エレベータにどの程度の被害があったのか、異常の有無を保守・点検の専門技術者か確認するまではエレベータを停止させる状態となる。
地震発生回数、地震計の動作件数は、共に増加傾向にあり、1年の平均では、約8000台の地震計が動作し、その後エレベータが復旧運転されている。
過去3年間のデータの中から地震発生データを分析した結果によれば、震度4以下の中・小規模の地震による物損事故発生件数は、僅か1件であり、その発生率は0.014%と極めて低い値である。これが震度5以上の大規模地震になると、その発生率は1.12%と格段に高くなることが判明した。
しかし、震度4程度の地震発生では、ビルが密集する地域で発生すると、数多くのエレベータの地震計が動作し、保守契約をしている保守・点検の専門技術者が、点検に巡回することになる。従って、広い範囲で地震計が動作すると、数百、数千台の規模で地震計が動作することになり、エレベータの点検、復旧には、数百人の専門技術者が対応しても何時間も掛かり、点検、復旧か終了するまでビル、マンション内のエレベータ利用者はエレベータを使えないことになる。
なお、通常エレベータの保守会社では、エレベータと保守会社を電話回線で接続し、故障、地震計動作の状況は、保守会社の受信システムで受信可能なシステムを有しているのが実情である。
In general, elevator control operations during earthquakes are equipped with ultra-low detectors and low-sensor seismometers, and when the ultra-low sensor seismometers are operated, the car stops at the nearest floor and is low within a certain time. If the seismometer of the sensor does not operate, it is automatically restored and the elevator returns to normal operation.
If the seismometer of the low sensor operates within a certain period of time, it will be in a state where the elevator is stopped until it has been confirmed by a maintenance / inspection technician whether there is any damage to the elevator or whether there is any abnormality. .
The number of earthquakes and the number of seismometer operations are both increasing, with an average of about 8000 seismometers operating on average per year, after which the elevator is being restored.
According to the results of analyzing earthquake occurrence data from the data of the past three years, the number of property damage accidents caused by medium and small-scale earthquakes with
However, if an earthquake with a seismic intensity of about 4 occurs in a densely populated area, many elevator seismometers will operate, and maintenance and inspection specialists with maintenance contracts will go around for inspection. Become. Therefore, if the seismometer operates in a wide range, it will operate on the scale of several hundreds or thousands of units. Even if hundreds of professional engineers respond to the inspection and restoration of elevators. It takes time, and elevator users in buildings and condominiums will not be able to use the elevator until inspection or restoration is completed.
In general, an elevator maintenance company has a system in which the elevator and the maintenance company are connected by a telephone line, and the status of failure and seismometer operation can be received by the reception system of the maintenance company.
従来技術として、中規模の地震の復旧運転に際して、復旧手動運転を実施し手動運転に要した時間により正常か否かの判断を行い復旧させ、通常運転させるものが知られている(例えば、特許文献1参照)。
また、他の従来技術として、地震感知器動作時に微速走行の異常検知運転を行い、かご上部、下部に取り付けた衝突検知により異常の有無を判断するものが知られている(例えば、特許文献2参照)。
更にまた、他の従来技術として、地震時管制運転にて停止中のエレベータに対して、センサーによる異常検知、制御ケーブルヘの圧力異常検知を行い、問題がなければ、上下1000mmの試験運転を行い、問題なければ復旧するものが知られている(例えば、特許文献3参照)。
As a conventional technique, during a recovery operation of a medium-scale earthquake, a recovery manual operation is performed, and it is determined whether it is normal or not based on the time required for the manual operation, and the normal operation is performed (for example, patents) Reference 1).
Further, as another conventional technique, there is known a technique that performs an abnormality detection operation of a slow speed traveling when an earthquake detector is operated, and determines the presence or absence of an abnormality by detecting a collision attached to an upper part or a lower part of a car (for example, Patent Document 2). reference).
Furthermore, as another conventional technique, for an elevator that is stopped in the control operation at the time of an earthquake, abnormality detection by the sensor and pressure abnormality detection to the control cable are performed. If there is no problem, it is known that it recovers (for example, see Patent Document 3).
従来の特許文献1記載のものでは、地震異常検知の仕組みが不充分であり、万一釣り合い重りが外れている場合、或いは制御ケーブルが昇降路機器に引っ掛ている場合には、かごと釣り合い重りの衝突や制御ケーブルの断線等が発生する恐れがあった。
また、特許文献2記載のものでは、地震異常検知の仕組みが不充分であり、制御ケーブルが万一、昇降路機器に引っ掛っている場合には、制御ケーブルの断線事故が発生する可能性があり、制御ケーブルの復旧に多大な時間を要することになる。
更にまた、特許文献3記載のものも異常検知の方法が不充分であった。制御ケーブルは昇降路機器に引っ掛っていても、停止中には引っ張る圧力に変化が無いため、検知できないことになる。例えば1000mmの試験運転後に走行して引っ掛れば制御ケーブルの断線にもつながる。また、制御ケーブルの重さは吊り上げる長さにより、変化するもので数mから昇降工程の長さの重量まで変化するので、それを超えたものを異常と判定しなけければならず、従って、もし制御ケーブルが昇降路の機器に引っ掛った場合、かなりの力で引き上げてもセンサーが感知できないという問題点があった。
In the case of the
Moreover, in the thing of
Furthermore, the method described in
この発明は、上述のような課題を解決するためになされたもので、地震計動作で機器の損傷が殆ど発生しないような地震レベルでは地震復旧運転を行い、機器の損傷が発生し易い地震レベル又は復旧運転では問題が発生しそうな地震レベルでは復旧運転を避けるようにしたエレベータの地震時復旧運転装置を提供するものである。
また、地震の復旧運転が完了したものは、エレベータ保守会社の受信センターに通報し、保守技術者は、地震復旧運転不可で、点検を必要とする他のエレベータに効率よく巡回できるようにするエレベータの地震時復旧サービス提供システムを提供するものである。
The present invention has been made to solve the above-described problems, and performs an earthquake recovery operation at an earthquake level where almost no equipment damage occurs during seismometer operation, and an earthquake level at which equipment damage is likely to occur. Alternatively, it is an object of the present invention to provide an elevator restoration operation device for an elevator that avoids restoration operation at an earthquake level where a problem is likely to occur in restoration operation.
In addition, if the earthquake recovery operation has been completed, report it to the reception center of the elevator maintenance company, and the maintenance engineer will not be able to perform the earthquake recovery operation, and will be able to travel efficiently to other elevators that require inspection. Provide a system for providing earthquake recovery services.
この発明に係るエレベータの地震時復旧運転装置においては、自動復帰運転で殆ど問題がない地震計のレベルである低感知の低感知器、及びそれ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知の高感知器の地震計を備え、地震発生時に低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、高感知器が動作した地震レベルでは自動復旧運転を避けて、エレベータ保守会社に地震復旧運転不可通報を送信するものである。 In the elevator restoration operation device according to the present invention, an abnormality occurs at a level of a low-sensing low sensor which is a level of a seismometer which has almost no problem in an automatic return operation , and a level of a seismometer higher than that. Equipped with a high-sensing high-sensing seismometer that is likely to cause problems in automatic restoration operation, and when the low-sensing sensor is activated when an earthquake occurs, the elevator car stops on the first floor or a specific floor on the lobby floor make sure that it is in, the earthquake level low sensor is activated when an abnormality of the elevator seismic diagnosis operation I line for detecting the abnormality of the elevator can not be detected by automatic recovery elevator, high sensor In the earthquake level where it operates, automatic restoration operation is avoided and an earthquake restoration operation impossible notice is transmitted to the elevator maintenance company .
また、この発明に係るエレベータの地震時復旧サービス提供システムにおいては、自動復帰運転で殆ど問題がない地震計のレベルである低感知の低感知器、及びそれ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知の高感知器の地震計を備え、地震発生時に低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、かつエレベータの異常が検出された場合はエレベータの自動復旧運転を中止し、エレベータ保守会社に地震復旧運転不可通報を送信するとともに、高感知器が動作した地震レベルでは地震診断運転及びエレベータの自動復旧を避け、保守専門技術者による復旧作業と判断してエレベータ保守会社に地震復旧運転不可通報を送信するものである。
Further, in the elevator restoration service providing system according to the present invention , the low-sensing low detector, which is a level of a seismometer having almost no problem in the automatic return operation , and the level of a seismometer or more higher than that, Equipped with a high-sensing high-sensing seismometer that is likely to cause abnormalities and likely to cause problems in automatic recovery operation. When the low-sensing sensor is activated when an earthquake occurs, the elevator car is identified on the first or lobby floor. After confirming that it is stopped at the floor, if the earthquake level is low, the seismic diagnosis operation that detects the elevator abnormality is performed, and if the elevator abnormality cannot be detected, the elevator is automatically restored, and the elevator If an abnormal condition is detected, the automatic restoration operation of the elevator will be stopped, an earthquake restoration operation impossible notice will be sent to the elevator maintenance company, and the high sensor will be Avoid the automatic recovery of the earthquake diagnosis operation and the elevator is at the level, is intended to send a notification earthquake recovery operation is possible on the maintenance technician by the restoration work it is judged that the elevator maintenance company.
この発明は、地震計動作時の大半のエレベータは地震診断運転が可能となり、その大半のエレベータは、自動的に異常状況が診断され、問題発生のないエレベータは自動的に復旧が可能となる。
この発明によれば、1階又はロビー階等の特定階に停止していて復旧運転が可能なビル、マンションのエレベータ利用者は地震後数分後には、自動点検が完了して、エレベータが通常通りに活用可能となる。
一方、エレベータ保守会社では、地震発生時に、地震計が動作して停止中のエレベータを、迅速に巡回して復旧させる件数が激減して、地震で真に不具合が発生しているエレベータヘのサービスが迅速に行えることとなる。
According to the present invention, most elevators during seismometer operation are capable of seismic diagnosis operation, and most of the elevators are automatically diagnosed for abnormal conditions, and elevators that do not have problems can be automatically restored.
According to the present invention, elevator users of buildings and condominiums that are stopped on a specific floor such as the first floor or the lobby floor and can be restored are automatically checked after a few minutes after the earthquake, and the elevator is usually It can be used on the street.
On the other hand, in the case of an elevator maintenance company, when an earthquake occurs, the number of cases in which a seismometer operates and stops is quickly patrolled and restored, and the service to elevators that have truly failed due to the earthquake is drastically reduced. Can be done quickly.
実施の形態1.
図1はエレベータにおける地震等の異常情報通信システムの概略構成を情報の流れとともに示すブロック説明図、図2はこの発明の実施の形態1におけるエレベータの地震時復旧運転装置並びにエレベータの地震時復旧サービス提供システムの全体構成を示すシステム構成図、図3はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータのガイドレール取り付け状況を示す平面図、図4はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータのガバナロープの支持装置を示す概略構成図、図5は図4のガバナロープガイドを示す拡大斜視図、図6はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータの制御ケーブル引っ掛り検出装置を示す側面図、図7は図6のケーブル引っ掛り検出アームを示す拡大斜視図、図8は制御ケーブル引っ掛り検出装置の異常検出時の状態を示す側面図、図9はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータの釣り合い重りの衝突検出装置を昇降路の上から見た平面図、図10は釣り合い重りの衝突検出装置を示す拡大平面図、図11は釣り合い重りの衝突検出装置を示す拡大側面図、図12はこの発明の実施の形態1におけるエレベータの地震時復旧運転装置の動作フローを示すフローチャートである。
FIG. 1 is a block diagram showing a schematic configuration of an abnormal information communication system such as an earthquake in an elevator together with the flow of information. FIG. 2 is an elevator restoration operation device and an elevator restoration service according to
図1において、地震が発生し、低感知器の地震計が動作すると、エレベータは最寄階で停止し、扉が閉まって利用できなくなる。そして、通常は、保守・点検の専門技術者がエレベータを点検し異常の有無を確認することとなる。
一般に、エレベータの制御回路6には、保守会社の専用の通信装置30が接続されており、電話回線31を通じて故障の情報等、地震計動作の情報もエレベータ保守会社の受信システム34の通信装置32を通じて受信端末33に送信されてくる。エレベータ保守会社の受信システム34は、本信号及び、エレベータのビルの利用者、管理人から電話連絡により受信した、「エレベータが地震にて動かなくなった」という、連絡により、保守・点検の専門技術者35を当該ビルに出動させることになる。この発明はこれらの自動化を図ろうとするものである。
In FIG. 1, when an earthquake occurs and the seismometer of the low sensor operates, the elevator stops at the nearest floor, and the door is closed and cannot be used. Usually, a maintenance / inspection engineer inspects the elevator to check whether there is an abnormality.
In general, a
図2において、エレベータのかご1は主ロープ2により釣り合い重り3と連結され、主ロープ2は巻上機4に巻き掛けられている。かご1は制御ケーブル5により機械室等に設置された制御回路6に接続され、かご内インターホン7を備えている。
この発明による地震計は、第1の基準値を超えると動作する復帰コイル20を備えた超低感知器21、第1の基準値よりも大きい第2の基準値を超えると動作する復帰コイル18を備えた低感知器19、第2の基準値よりも大きい第3の基準値を超えると動作する復帰コイルを備えない高感知器17の3段階レベルの地震計を備えている。震度3以下の低レベルの低規模地震では超低感知器21が動作する範囲であり、超低感知器21が動作するとエレベータは最寄階停止運転を行い、一定時間後に復帰コイル20を動作させて、通常運転に戻る運転を地震管制運転制御16が行う。
また、震度4以下の中規模地震では低感知器19が動作する範囲であり、低感知器19が動作すると、高感知器17が動作していない条件で、地震復旧運転のモードとなる。地震復旧運転の制御は地震運転制御装置15が行う。
地震管制運転制御装置16、地震復旧運転制御装置15は、エレベータ制御回路6内で実行される。エレベータのかご1には、ケーブル引っ掛り検出装置45、釣り合い重り衝突検出スイッチ8を設ける。また、地震時異常音検出機能を実行する際にはかご内インターホン7を活用する。
地震時運転制御装置15は、地震時運転状態確認手段10、感知器復帰回路11、微速異常検出運転回路12、手動速異常検出運転回路13、高速異常検出運転回路14がある。
In FIG. 2, an
The seismometer according to the present invention includes an
Further, in a medium-scale earthquake with a seismic intensity of 4 or less, the
The earthquake control
The earthquake
ここで、先ずエレベータの地震復旧運転の条件について説明する。
この発明によるエレベータ地震復旧運転の目的は、中・低規模の地震発生に於いては、通常はエレベータ機器の地震による損傷が殆どないレベルについての、自動復旧を目的としている。
地震計の感度が超低感知、例えば震度3以下の場合は、現状でも低感知の地震計が動作しなければ一定時間後に自動復旧させることとしている。
上記したように、過去3年間のデータの中から発明者が情報システムに登録されている129回の地震発生データを分析した結果、震度4以下の中・小規模の地震による物損事故発生件数は、数千件中、僅か1件であり、その発生率は0.014%と極めて低い値であるという事実、及びこれが震度5以上の大規模地震になると、その発生率は1.12%と格段に高くなるという事実が知見として得られたことは、エレベータの地震復旧運転の効率化やビルが密集する地域でのエレベータの早期復旧を目指す上で非常に重要なファクターとなり得る。
従って、この発明では地震計のレベルを3段階に設定する。すなわち、現状の低感知の地震計が動作しなければ一定時間後に自動復旧させる地震計のレベルが超低感知(例えば震度3以下)の超低感知器21と、自動復旧運転で殆ど問題がない地震計のレベルである低感知(例えば震度4以下)の低感知器19と、それ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知(例えば震度5以上)の高感知器17の3段階である。高感知の地震レベルに関しては、保守・点検の専門技術者を派遣する点検対応領域とする。
Here, the conditions of the elevator earthquake recovery operation will be described first.
The purpose of the elevator earthquake restoration operation according to the present invention is to automatically restore a level where there is usually almost no damage to the elevator equipment due to the earthquake in the occurrence of an earthquake of medium and low scale.
When the sensitivity of the seismometer is very low, for example, seismic intensity is 3 or less, if the seismometer with low sensitivity does not operate even in the present situation, it will be automatically restored after a certain time.
As mentioned above, the inventor analyzed the data of 129 earthquakes registered in the information system from the data for the past three years. The fact is that there is only one out of thousands, and the rate of occurrence is as low as 0.014%, and if this is a large earthquake with a seismic intensity of 5 or more, the rate of occurrence is 1.12%. The fact that the fact that it is extremely high was obtained as knowledge can be a very important factor in aiming at the efficiency of the earthquake recovery operation of elevators and the early restoration of elevators in areas where buildings are crowded.
Therefore, in the present invention, the level of the seismometer is set to three levels. That is, if the current low-sensing seismometer does not operate, there is almost no problem with the
次に、地震による機器損傷を最小限に抑えるための各機器の構成について説明する。
地震時の復旧運転の条件として、地震発生時のエレベータのかごは、例えば、1階またはロビー階等の特定階で停止していることを条件にする。エレベータのかごは、通常時、利用者の呼びが発生しない場合は1階またはロビー階等の特定階で待機しており、利用者の利用の頻度が少ない場合は殆どが特定階に停止しているのが一般的である。
そこで、地震が発生した時に機器損傷を最小限に抑えるためのガイドレールの構成を説明する。
図3はエレベータのかご用ガイドレールまたは釣り合い重り用ガイドレールを支える構造を示しているが、昇降路壁50に、レールブラケット51がアンカーボルトで固定され、エレベータのかご用または釣り合い重り用ガイドレール53、54が、レールクリップ52で固定されている。
ここで、上記の条件である1階またはロビー階等の特定階でかごが停止中であるということが地震復旧運転の条件であることにより、1階またはロビー階等の特定階に停止しているエレベータのかご1付近の、かご用ガイドレール53のレールブラケット51、レールクリップ52の取り付け本数を他の部分よりも増加させる。これにより、特定階付近のかご用ガイドレールの強度を補強する。また同様に、昇降路の最上階付近に停止している釣り合い重り3付近の、釣り合い重り用ガイドレール54を固定するレールブラケット51、レールクリップ52の取り付け本数を他の部分よりも増加させる。これにより、昇降路の最上階付近の釣り合い重り用ガイドレール54の強度を補強する。
更にまた、1階またはロビー階等の特定階に停止しているエレベータのかご1付近の、かご用ガイドレール53自体、および/または昇降路の最上階付近に停止している釣り合い重り3付近の釣り合い重り用ガイドレール54自体を、他のガイドレールよりも曲げ強度の大きな材料である例えばステンレス鋼材またはステンレス合金等で製作することにより強度を増大させても良い。
Next, the configuration of each device for minimizing device damage due to an earthquake will be described.
As a condition for the restoration operation at the time of the earthquake, the elevator car at the time of the earthquake is conditional on being stopped on a specific floor such as the first floor or the lobby floor. Elevator cars normally stand by on a specific floor such as the first floor or lobby floor if no user calls are made, and most of them stop at a specific floor when the frequency of use by the user is low. It is common.
Therefore, the structure of a guide rail for minimizing equipment damage when an earthquake occurs will be described.
FIG. 3 shows a structure for supporting an elevator car guide rail or a counterweight guide rail. A
Here, the fact that the car is stopped on a specific floor such as the first floor or the lobby floor, which is the above condition, is a condition for earthquake recovery operation, so that the car stops on the first floor or the specific floor such as the lobby floor. The number of
Furthermore, in the vicinity of the
次に、地震による機器損傷を最小限に抑えるためのガバナロープの支持装置を説明する。
図4、図5に示すように、エレベータのかご1の側面に取り付けられているガバナロープ62が、昇降路内で交差、あるいは途中で引っ掛りが発生しないように、ガバナロープ62が挿通されるリング部60aと、昇降路等に取り付けるための支持腕60bとからなる複数のガバナロープガイド60を昇降路の上下方向に亘ってほぼ等間隔となるように取り付けている。このガバナロープガイド60は、昇降路側壁に近い側に位置するガバナロープ62を挿通支持させるやり方がガバナロープの引っ掛り防止に効果的である。図中、61は昇降路下部に設けられたガバナ張り車である。
Next, a governor rope support device for minimizing equipment damage due to an earthquake will be described.
As shown in FIGS. 4 and 5, a ring portion through which the
次に、地震による機器損傷を最小限に抑えるための制御ケーブルの引っ掛り検出装置の構成を説明する。
地震復旧運転の際の異常検出運転時に、エレベータ用制御ケーブル5が、昇降路内の機器、突起物等に引っ掛りが発生していないかどうかるを検出する必要がある。このために、図6、図7に示すような制御ケーブルの引っ掛り検出装置45を具備するものである。
エレベータのかご枠44の底部にケーブル引っ掛り検出アーム45が固定され、通常は引っ張りばね46により垂直方向(かご昇降方向)に固定されている。このケーブル引っ掛り検出アーム45の下端部には制御ケーブル5が挿通されるリング部45aを設けている。
制御ケーブル5は、かご下のケーブルハンガー41に吊り下げられ、ケーブルクリップ42にて結束固定され、機械室等に設けられた制御回路6側に接続される制御ケーブル5が上記ケーブル引っ掛り検出アーム45のリング部45a内を挿通して垂れ下がり、更に上方に折り返されて機械室等に設けられた制御回路6に接続される。
通常では、制御ケーブル5は、かご1が垂直方向に昇降移動しても、そのまま真直ぐに移動するため、ケーブル引っ掛り検出アーム45は、図6に示すように、垂直状態に固定されており、かご枠44の底部に設けられた制御ケーブル引っ掛り検出スイッチ40は動作することはない。
しかし、地震により、万一制御ケーブル5が昇降路の機器、突起物47に引っ掛ると、図8に示すように、ケーブル引っ掛り検出アーム45が制御ケーブル5の引っ掛りにより引っ張られて傾き、制御ケーブル引っ掛り検出スイッチ40が動作することになり、制御ケーブル5の異常が検出されることになる。
Next, the configuration of the control cable catch detection device for minimizing equipment damage due to an earthquake will be described.
It is necessary to detect whether or not the
A cable catching
The
Normally, even if the
However, if the
次に、地震による機器損傷を最小限に抑えるための釣り合い重り衝突検出スイッチの構成を説明する。
エレベータのかご1が1階またはロビー階等の特定階に停止しており、釣り合い重りが昇降路の最上階に待機している場合にのみ、地震時の復旧運転を開始するため、釣り合い重り3が、かご1に衝突しないかどうかを検出する必要がある。このために、図9、図10、図11に示すような釣り合い重り衝突検出装置を具備するものである。
エレベータのかご1の釣り合い重り側の上部に釣り合い重り衝突検出スイッチ8を設置する。この釣り合い重り衝突検出スイッチ8には、釣り合い重り3と所定の間隔を置いて離れた位置に衝突検出バー60が取り付けられている。この衝突検出バー60は、ばね61により常時上方向に付勢されており、釣り合い重り3に当たって図11の矢印に示すように下側に倒れると、釣り合い重り衝突検出スイッチ8が動作するようになっている。これにより、釣り合い重り3の逸脱が異常検出される。
Next, the configuration of a counterweight collision detection switch for minimizing equipment damage due to an earthquake will be described.
Only when the
A counterweight
次に、復旧運転時の異常音検出装置を説明する。
地震復旧運転時に、エレベータのかご1内にあるかご内インターホン7の音圧検出を有効にして、地震復旧時における異常検出運転時において、特に、かご内インターホン7による異常音、衝突音の検出を行い、異常音に起因する異常検出を行う。
Next, the abnormal sound detection device during the recovery operation will be described.
Enables sound pressure detection of the intercom 7 in the
次に、エレベータの地震復旧運転の動作フローについて、図12を用いて説明する。
ステップS1で開始され、地震時管制運転制御装置16にて、低感知器19が動作し、高感知器17が動作していない状態かどうかをステップS2で判定する。ステップS2でこの条件に無ければ、復旧運転は中止し、ステップS3で地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(S4)。
この場合、低感知器19の地震計が動作しているので、ステップS5に進み、通信装置30から地震感知器動作通報をエレベータ保守会社受信システム34に対し通報する。
次に、ステップS6に進み地震復旧運転を開始する。そして、先ずエレベータが地震感知器の低感知器19が動作した時点で、エレベータの運転状態が1階またはロビー階等の特定階で停止していたかのデータ(地震復旧運転条件)をエレベータ制御回路6のメモリーから地震時運転状態確認手段10が確認する(ステップS7)。ステップS8でかごが1階またはロビー階等の特定階で停止中であれば、ステップS9で超低感知器21の復帰により、復帰コイル20を動作させる。次にステップS10で低感知器19の復帰により、復帰コイル18を動作させる。これらの復帰動作は感知器復帰回路11が行う。
超低感知器21、低感知器19の地震計を復帰させた後に、ステップS11でかご1を
微速異常検出運転回路12にて微速運転し、微速異常検出運転を行い、最上階までアップ
運転、更に最下階までのダウン運転を行う。ここでいう微速運転は、例えば分速60mの
エレベータで1/10程度の分速5m程度の速度とする。
そして、次のステップS12で、走行中の異常音検出、制御ケーブルの引っ掛り検出、釣り合い重りのかご上衝突検出を実施する。
ステップS12で異常検出があると、ステップS3に進み、地震復旧運転は中止され、地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(ステップS4)。
上記ステップS11で1階まで戻り、徴速異常検出運転が終了し、ステップS12でも異常検出が無いと、ステップS13でかご1を手動速異常検出運転回路13にて手動速異常検出運転を実施し、同様に最上階までアップ運転、更に最下階までのダウン運転を行う。ここでいう手動速運転は、保守点検時の速度として設定されている分速15m程度の速度をいう。
そして、次のステップS14で、走行中の異常音検出、制御ケーブルの引っ掛り検出、釣り合い重りのかご上衝突検出を実施する。
ステップS14で異常検出があると、ステップS3に進み、地震復旧運転は中止され、地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(ステップS4)。
更に、地震復旧運転は、手動速異常検出運転が終了し、ステップS14でも異常検出が無いと、ステップS15でかご1を高速異常検出運転回路14にて高速異常検出運転を実施し、同様に最上階までアップ運転、更に最下階までのダウン運転を行う。
そして、次のステップS16で、走行中の異常音検出、制御ケーブルの引っ掛り検出、釣り合い重りのかご上衝突検出を実施する。
ステップS16で異常検出があると、ステップS3に進み、地震復旧運転は中止され、地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(ステップS4)。
上記ステップS16でも異常が検知されなかった場合は、ステップS17に進み、エレベータに損傷を検知しなかったと判断し、エレベータを通常運転に復旧する。その後、ステップS18で地震復旧通報をエレベータ保守会社受信システム34に発報して、エレベータの地震復旧を完了したことを伝える。
以上により、エレベータは地震復旧運転を終了する(ステップS4)。
Next, the operation flow of the elevator earthquake recovery operation will be described with reference to FIG.
In Step S1, it is determined in Step S2 whether the
In this case, since the seismometer of the
Next, it progresses to step S6 and an earthquake restoration driving | operation is started. First, when the
After the seismometers of the
Then, in the next step S12, abnormal sound detection during traveling, control cable catch detection, and counterweight collision detection on the counterweight are carried out.
If an abnormality is detected in step S12, the process proceeds to step S3, the earthquake recovery operation is stopped, an earthquake recovery operation impossibility notification is transmitted to the elevator maintenance
Returning to the first floor in the above step S11, the speed abnormality detection operation is completed, and if no abnormality is detected in step S12, the manual speed abnormality
Then, in the next step S14, abnormal sound detection during traveling, control cable catch detection, and counterweight collision detection on the counterweight are carried out.
If an abnormality is detected in step S14, the process proceeds to step S3, the earthquake recovery operation is stopped, an earthquake recovery operation impossibility notification is transmitted to the elevator maintenance
Furthermore, in the earthquake recovery operation, when the manual speed abnormality detection operation is completed and no abnormality is detected in step S14, the
Then, in the next step S16, abnormal noise detection during traveling, control cable catch detection, and counterweight collision detection on the counterweight are carried out.
If an abnormality is detected in step S16, the process proceeds to step S3, the earthquake recovery operation is stopped, an earthquake recovery operation impossibility notification is transmitted to the elevator maintenance
If no abnormality is detected in step S16, the process proceeds to step S17, where it is determined that no damage has been detected in the elevator, and the elevator is restored to normal operation. Thereafter, in step S18, an earthquake restoration notification is issued to the elevator maintenance
Thus, the elevator finishes the earthquake recovery operation (step S4).
以上説明したようにこの実施の形態1によれば、従来、震度4程度の中規模地震の発生では、ほとんど機器の異常がない状況であるにも拘らず、震度4か震度6の区別がつかないために、または震度4でも異常がある場合があるために、現状のエレベータの地震計は、超低感度以上の地震計動作は、保守・点検の専門技術者の点検を必要とするが、自動点検を実施することが可能となる。これにより、大半の地震計動作時のエレベータは、自動点検が可能となり、その大半のエレベータは、自動的に異常状況が診断され、問題発生のないエレベータは自動的に復旧可能となる。
また、この実施の形態1によれば、1階またはロビー階等の特定階に停止していて復旧運転が可能なビル、マンションのエレベータ利用者は地震後数分後には、自動点検が完了して、エレベータが通常通りに活用可能となる。
一方、エレベータの保守会社では、地震発生時に、地震計が動作して停止中のエレベータを、迅速に巡回して復旧させる件数が激減して、地震で真に不具合が発生しているエレベータヘのサービスが迅速に行えることとなる。
As described above, according to the first embodiment, conventionally, in the occurrence of a medium-scale earthquake with a seismic intensity of about 4, it is possible to distinguish
In addition, according to the first embodiment, elevator users of buildings and condominiums that can be restored and stopped on a specific floor such as the first floor or lobby floor, have completed automatic inspection within a few minutes after the earthquake. Thus, the elevator can be used as usual.
On the other hand, in the case of an elevator maintenance company, when an earthquake occurs, the number of elevators that are stopped due to the operation of the seismometer has been reduced rapidly, and the number of elevators that have truly failed due to the earthquake has been drastically reduced. The service can be performed quickly.
実施の形態2.
図13はこの発明の実施の形態2における地震後の復旧運転を可能にするための構造を持つエレベータの制御ケーブル引っ掛り検出装置を示す側面図である。
この実施の形態2では、制御ケーブル5は、かご下のケーブルハンガー41に吊り下げられ、ケーブルクリップ42にて結束固定され、機械室等に設けられた制御回路6側に接続される制御ケーブル5はケーブルクリップ42を出てから垂れ下がり、更に上方に折り返されて機械室等に設けられた制御回路6に接続される。エレベータのかご枠44の底部とケーブルクリップ42との間にケーブル引っ掛り検出アーム45の上下両端部が回転可能に固定され、通常は図に示すように、少し傾斜した状態で固定されている。
通常では、制御ケーブル5は、かご1が垂直方向に昇降移動しても、そのまま真直ぐに移動するため、ケーブル引っ掛り検出アーム45は、図13に示すように、少し傾斜した状態に固定されており、かご枠44の底部中央に設けられた制御ケーブル引っ掛り検出スイッチ40は動作することはない。
しかし、地震により、万一制御ケーブル5が昇降路の機器、突起物47に引っ掛ると、ケーブル引っ掛り検出アーム45が制御ケーブル5の引っ掛りにより引っ張られて更に傾斜して、制御ケーブル引っ掛り検出スイッチ40が動作することになり、制御ケーブル5の異常が検出されることになる。
この実施の形態2の場合も、実施の形態1と同様の効果がある。
FIG. 13 is a side view showing an elevator control cable catch detection apparatus having a structure for enabling a recovery operation after an earthquake in
In the second embodiment, the
Normally, even if the
However, if the
This second embodiment also has the same effect as the first embodiment.
1 エレベータのかご
2 主ロープ
3 釣り合い重り
4 巻上機
5 制御ケーブル
6 制御回路
7 かご内インターホン(異常音検出用)
8 釣り合い重り衝突検出スイッチ
10 地震時運転状態確認手段
11 感知器復帰回路
12 微速異常検出運転回路
13 手動速異常検出運転回路
14 高速異常検出運転回路
15 地震復旧運転制御回路
16 地震管制運転制御装置
17 高感知器
18、20 復帰コイル
19 低感知器
21 超低感知器
30、32 通信装置
31 電話回線
33 受信端末
34 エレベータ保守会社受信システム
35 保守技術者
40 制御ケーブル引っ掛り検出スイッチ
41 ケーブルハンガー
42 ケーブルクリップ
44 かご枠
45 制御ケーブル引っ掛り検出アーム
45a リング部
46 引っ張りばね
47 突起物
50 昇降路壁
51 レールブラケット
52 レールクリップ
53 かご用ガイドレール
54 釣り合い重り用ガイドレール
60 衝突検出バー
61 ばね
DESCRIPTION OF
8 Balance Weight
Claims (6)
地震発生時に前記低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、前記低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、前記高感知器が動作した地震レベルでは自動復旧運転を避けて、エレベータ保守会社に地震復旧運転不可通報を送信することを特徴とするエレベータの地震時自動復旧運転装置。 Low-detection low-detector level, which is the level of seismometers that have almost no problems in automatic return operation , and higher seismometer levels that are prone to abnormalities, and that are likely to cause problems in automatic recovery operation. Equipped with a high-sensing seismometer,
When the low sensor is activated at the time of the earthquake, after confirming that the elevator car is stopped on the first floor or a specific floor of the lobby floor, the abnormality of the elevator is detected at the earthquake level where the low sensor is activated. to automatically recover the elevator when an abnormality of the elevator I line the earthquake diagnosis operation to be detected can not be detected, so as to avoid the automatic recovery operation said in a high sensor earthquake level work, the earthquake recovery operation can not report to the elevator maintenance company An automatic restoration operation device for an elevator during an earthquake characterized by transmitting .
地震発生時に前記低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、前記低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、かつエレベータの異常が検出された場合はエレベータの自動復旧運転を中止し、エレベータ保守会社に地震復旧運転不可通報を送信するとともに、
前記高感知器が動作した地震レベルでは前記地震診断運転及びエレベータの自動復旧を避け、保守専門技術者による復旧作業と判断してエレベータ保守会社に地震復旧運転不可通報を送信することを特徴とするエレベータの地震時自動復旧サービス提供システム。 Low-detection low-detector level, which is the level of seismometers that have almost no problems in automatic return operation , and higher seismometer levels that are prone to abnormalities, and that are likely to cause problems in automatic recovery operation. Equipped with a high-sensing seismometer,
When the low sensor is activated at the time of the earthquake, after confirming that the elevator car is stopped on the first floor or a specific floor of the lobby floor, the abnormality of the elevator is detected at the earthquake level where the low sensor is activated. If the elevator the earthquake diagnosis operation I line to detect abnormality can not be detected by automatic recovery of the elevator, and when the abnormality of the elevator is detected to stop the automatic recovery operation of the elevator, earthquake recovery operation is possible on the elevator maintenance company Send a report,
The earthquake detection operation and the automatic restoration of the elevator are avoided at the earthquake level where the high sensor is operated, and a restoration work is judged by a maintenance engineer, and an earthquake restoration operation impossible notice is transmitted to the elevator maintenance company. Elevator automatic restoration service provision system in the event of an earthquake.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004347938A JP4641411B2 (en) | 2004-12-01 | 2004-12-01 | Elevator earthquake recovery operation device and elevator earthquake recovery service providing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004347938A JP4641411B2 (en) | 2004-12-01 | 2004-12-01 | Elevator earthquake recovery operation device and elevator earthquake recovery service providing system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006151660A JP2006151660A (en) | 2006-06-15 |
JP4641411B2 true JP4641411B2 (en) | 2011-03-02 |
Family
ID=36630406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004347938A Expired - Fee Related JP4641411B2 (en) | 2004-12-01 | 2004-12-01 | Elevator earthquake recovery operation device and elevator earthquake recovery service providing system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4641411B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5263723B2 (en) * | 2006-07-28 | 2013-08-14 | 東芝エレベータ株式会社 | Elevator apparatus, elevator automatic recovery method and program thereof |
JP5186896B2 (en) * | 2007-11-27 | 2013-04-24 | 三菱電機ビルテクノサービス株式会社 | Elevator diagnostic operation confirmation method |
JP4675390B2 (en) * | 2008-03-18 | 2011-04-20 | 三菱電機株式会社 | Elevator earthquake recovery equipment |
WO2011052015A1 (en) * | 2009-10-30 | 2011-05-05 | 三菱電機株式会社 | Elevator control device and control method |
JP5562196B2 (en) * | 2010-09-30 | 2014-07-30 | 三菱電機ビルテクノサービス株式会社 | Elevator control command device, elevator device, and elevator system |
JP6855605B1 (en) * | 2020-01-15 | 2021-04-07 | 東芝エレベータ株式会社 | Elevator control system and elevator control method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55111377A (en) * | 1979-02-16 | 1980-08-27 | Mitsubishi Electric Corp | Elevator |
JPS60258078A (en) * | 1984-06-06 | 1985-12-19 | 株式会社日立製作所 | Detector for abnormality of wiring cable for elevator |
JP2002316780A (en) * | 2001-04-24 | 2002-10-31 | Hitachi Building Systems Co Ltd | Operation report system used when earthquake occurs |
JP2003146552A (en) * | 2001-11-14 | 2003-05-21 | Mitsubishi Electric Corp | Operation device of elevator |
-
2004
- 2004-12-01 JP JP2004347938A patent/JP4641411B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55111377A (en) * | 1979-02-16 | 1980-08-27 | Mitsubishi Electric Corp | Elevator |
JPS60258078A (en) * | 1984-06-06 | 1985-12-19 | 株式会社日立製作所 | Detector for abnormality of wiring cable for elevator |
JP2002316780A (en) * | 2001-04-24 | 2002-10-31 | Hitachi Building Systems Co Ltd | Operation report system used when earthquake occurs |
JP2003146552A (en) * | 2001-11-14 | 2003-05-21 | Mitsubishi Electric Corp | Operation device of elevator |
Also Published As
Publication number | Publication date |
---|---|
JP2006151660A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5224933B2 (en) | Elevator restoration operation method and apparatus | |
CN101811635B (en) | Rope swing detecting device for the elevator and control method for operation automaticlly recovering after earthquake | |
JP2596452B2 (en) | How to recover the elevator from earthquake control operation | |
JP4641411B2 (en) | Elevator earthquake recovery operation device and elevator earthquake recovery service providing system | |
JP4705364B2 (en) | Elevator earthquake recovery operation device and elevator earthquake recovery service providing system | |
JP4929730B2 (en) | Elevator control cable abnormality detection device and elevator restoration diagnosis system using the same | |
JP4935262B2 (en) | Elevator rope roll detection device and elevator control operation device | |
JP2019210086A (en) | Elevator abnormality monitoring system and elevator abnormality monitoring method | |
JP5401281B2 (en) | Elevator rope swing detection device and automatic earthquake recovery operation control method using the same | |
JP5251999B2 (en) | Elevator equipment | |
JP5062289B2 (en) | Elevator earthquake recovery operation device | |
JP5023511B2 (en) | Elevator equipment | |
JP2007197150A (en) | Earthquake restoration operating method for elevator | |
JP4844410B2 (en) | Hook detection device for elevator ropes | |
JP2006298622A (en) | Abnormality detection device of elevator control cable and automatic restoration service system of elevator using it when earthquake occurs | |
JP4839862B2 (en) | Elevator abnormality detection device and elevator repair method | |
JP4924254B2 (en) | Elevator earthquake response operation device | |
JP2007276895A (en) | Detection device for elevator | |
JP5206400B2 (en) | Elevator governor rope catch detection device | |
JP5035773B2 (en) | Elevator control device | |
JPH06247657A (en) | Inspecting device for elevator | |
JP4867813B2 (en) | Elevator seismic control operation system | |
JP2008280101A (en) | Device and method of managing and measuring clearance between elevator counterweight and governor rope stretching sheave | |
JP2020121884A (en) | Monitoring method of hoisting rope and elevator system | |
JP6537745B2 (en) | Elevator remote monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |