JP4641411B2 - Elevator earthquake recovery operation device and elevator earthquake recovery service providing system - Google Patents

Elevator earthquake recovery operation device and elevator earthquake recovery service providing system Download PDF

Info

Publication number
JP4641411B2
JP4641411B2 JP2004347938A JP2004347938A JP4641411B2 JP 4641411 B2 JP4641411 B2 JP 4641411B2 JP 2004347938 A JP2004347938 A JP 2004347938A JP 2004347938 A JP2004347938 A JP 2004347938A JP 4641411 B2 JP4641411 B2 JP 4641411B2
Authority
JP
Japan
Prior art keywords
elevator
earthquake
abnormality
floor
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004347938A
Other languages
Japanese (ja)
Other versions
JP2006151660A (en
Inventor
秀樹 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Building Techno-Service Co Ltd
Priority to JP2004347938A priority Critical patent/JP4641411B2/en
Publication of JP2006151660A publication Critical patent/JP2006151660A/en
Application granted granted Critical
Publication of JP4641411B2 publication Critical patent/JP4641411B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Description

この発明は、高感知器、低感知器、超低感知器の3段階レベルの地震計を備えたエレベータの地震時復旧運転装置並びにエレベータの地震時復旧サービス提供システムに関するものである。   The present invention relates to an elevator restoration operation apparatus and an elevator restoration service providing system equipped with a three-level seismometer of a high sensor, a low sensor, and an ultra-low sensor.

一般にエレベータの地震時管制運転は、超低感知器、低感知器の地震計が設置されており、超低感知器の地震計が動作するとかごは最寄階に停止し、一定時間内に低感知器の地震計が動作しなければ自動で復旧され、エレベータは正常運転に戻る。
もし、一定時間内に低感知器の地震計が動作すると、エレベータにどの程度の被害があったのか、異常の有無を保守・点検の専門技術者か確認するまではエレベータを停止させる状態となる。
地震発生回数、地震計の動作件数は、共に増加傾向にあり、1年の平均では、約8000台の地震計が動作し、その後エレベータが復旧運転されている。
過去3年間のデータの中から地震発生データを分析した結果によれば、震度4以下の中・小規模の地震による物損事故発生件数は、僅か1件であり、その発生率は0.014%と極めて低い値である。これが震度5以上の大規模地震になると、その発生率は1.12%と格段に高くなることが判明した。
しかし、震度4程度の地震発生では、ビルが密集する地域で発生すると、数多くのエレベータの地震計が動作し、保守契約をしている保守・点検の専門技術者が、点検に巡回することになる。従って、広い範囲で地震計が動作すると、数百、数千台の規模で地震計が動作することになり、エレベータの点検、復旧には、数百人の専門技術者が対応しても何時間も掛かり、点検、復旧か終了するまでビル、マンション内のエレベータ利用者はエレベータを使えないことになる。
なお、通常エレベータの保守会社では、エレベータと保守会社を電話回線で接続し、故障、地震計動作の状況は、保守会社の受信システムで受信可能なシステムを有しているのが実情である。
In general, elevator control operations during earthquakes are equipped with ultra-low detectors and low-sensor seismometers, and when the ultra-low sensor seismometers are operated, the car stops at the nearest floor and is low within a certain time. If the seismometer of the sensor does not operate, it is automatically restored and the elevator returns to normal operation.
If the seismometer of the low sensor operates within a certain period of time, it will be in a state where the elevator is stopped until it has been confirmed by a maintenance / inspection technician whether there is any damage to the elevator or whether there is any abnormality. .
The number of earthquakes and the number of seismometer operations are both increasing, with an average of about 8000 seismometers operating on average per year, after which the elevator is being restored.
According to the results of analyzing earthquake occurrence data from the data of the past three years, the number of property damage accidents caused by medium and small-scale earthquakes with seismic intensity 4 or less is only 1, and the incidence is 0.014. %, Which is an extremely low value. When this became a large-scale earthquake with a seismic intensity of 5 or more, the incidence was found to be significantly higher at 1.12%.
However, if an earthquake with a seismic intensity of about 4 occurs in a densely populated area, many elevator seismometers will operate, and maintenance and inspection specialists with maintenance contracts will go around for inspection. Become. Therefore, if the seismometer operates in a wide range, it will operate on the scale of several hundreds or thousands of units. Even if hundreds of professional engineers respond to the inspection and restoration of elevators. It takes time, and elevator users in buildings and condominiums will not be able to use the elevator until inspection or restoration is completed.
In general, an elevator maintenance company has a system in which the elevator and the maintenance company are connected by a telephone line, and the status of failure and seismometer operation can be received by the reception system of the maintenance company.

従来技術として、中規模の地震の復旧運転に際して、復旧手動運転を実施し手動運転に要した時間により正常か否かの判断を行い復旧させ、通常運転させるものが知られている(例えば、特許文献1参照)。
また、他の従来技術として、地震感知器動作時に微速走行の異常検知運転を行い、かご上部、下部に取り付けた衝突検知により異常の有無を判断するものが知られている(例えば、特許文献2参照)。
更にまた、他の従来技術として、地震時管制運転にて停止中のエレベータに対して、センサーによる異常検知、制御ケーブルヘの圧力異常検知を行い、問題がなければ、上下1000mmの試験運転を行い、問題なければ復旧するものが知られている(例えば、特許文献3参照)。
As a conventional technique, during a recovery operation of a medium-scale earthquake, a recovery manual operation is performed, and it is determined whether it is normal or not based on the time required for the manual operation, and the normal operation is performed (for example, patents) Reference 1).
Further, as another conventional technique, there is known a technique that performs an abnormality detection operation of a slow speed traveling when an earthquake detector is operated, and determines the presence or absence of an abnormality by detecting a collision attached to an upper part or a lower part of a car (for example, Patent Document 2). reference).
Furthermore, as another conventional technique, for an elevator that is stopped in the control operation at the time of an earthquake, abnormality detection by the sensor and pressure abnormality detection to the control cable are performed. If there is no problem, it is known that it recovers (for example, see Patent Document 3).

特開2003−146552号公報JP 2003-146552 A 特開2002−128408号公報JP 2002-128408 A 特開平6−247657号公報JP-A-6-247657

従来の特許文献1記載のものでは、地震異常検知の仕組みが不充分であり、万一釣り合い重りが外れている場合、或いは制御ケーブルが昇降路機器に引っ掛ている場合には、かごと釣り合い重りの衝突や制御ケーブルの断線等が発生する恐れがあった。
また、特許文献2記載のものでは、地震異常検知の仕組みが不充分であり、制御ケーブルが万一、昇降路機器に引っ掛っている場合には、制御ケーブルの断線事故が発生する可能性があり、制御ケーブルの復旧に多大な時間を要することになる。
更にまた、特許文献3記載のものも異常検知の方法が不充分であった。制御ケーブルは昇降路機器に引っ掛っていても、停止中には引っ張る圧力に変化が無いため、検知できないことになる。例えば1000mmの試験運転後に走行して引っ掛れば制御ケーブルの断線にもつながる。また、制御ケーブルの重さは吊り上げる長さにより、変化するもので数mから昇降工程の長さの重量まで変化するので、それを超えたものを異常と判定しなけければならず、従って、もし制御ケーブルが昇降路の機器に引っ掛った場合、かなりの力で引き上げてもセンサーが感知できないという問題点があった。
In the case of the conventional patent document 1, the mechanism for detecting earthquake anomalies is insufficient, and in the unlikely event that the counterweight is off, or the control cable is hooked on the hoistway device, the car and the counterbalance There was a risk of collision of weights or disconnection of the control cable.
Moreover, in the thing of patent document 2, when the mechanism of an earthquake abnormality detection is inadequate and a control cable should be caught by a hoistway apparatus by any chance, the disconnection accident of a control cable may generate | occur | produce. Yes, it takes a lot of time to restore the control cable.
Furthermore, the method described in Patent Document 3 is insufficient in the method for detecting an abnormality. Even if the control cable is hooked on the hoistway device, it cannot be detected because there is no change in the pulling pressure during the stop. For example, running and catching after a test operation of 1000 mm leads to disconnection of the control cable. In addition, the weight of the control cable changes depending on the length of lifting, and changes from several meters to the weight of the length of the lifting process, so it must be determined that there is an abnormality beyond that, If the control cable gets caught in the hoistway equipment, the sensor cannot be detected even if the control cable is pulled up with considerable force.

この発明は、上述のような課題を解決するためになされたもので、地震計動作で機器の損傷が殆ど発生しないような地震レベルでは地震復旧運転を行い、機器の損傷が発生し易い地震レベル又は復旧運転では問題が発生しそうな地震レベルでは復旧運転を避けるようにしたエレベータの地震時復旧運転装置を提供するものである。
また、地震の復旧運転が完了したものは、エレベータ保守会社の受信センターに通報し、保守技術者は、地震復旧運転不可で、点検を必要とする他のエレベータに効率よく巡回できるようにするエレベータの地震時復旧サービス提供システムを提供するものである。
The present invention has been made to solve the above-described problems, and performs an earthquake recovery operation at an earthquake level where almost no equipment damage occurs during seismometer operation, and an earthquake level at which equipment damage is likely to occur. Alternatively, it is an object of the present invention to provide an elevator restoration operation device for an elevator that avoids restoration operation at an earthquake level where a problem is likely to occur in restoration operation.
In addition, if the earthquake recovery operation has been completed, report it to the reception center of the elevator maintenance company, and the maintenance engineer will not be able to perform the earthquake recovery operation, and will be able to travel efficiently to other elevators that require inspection. Provide a system for providing earthquake recovery services.

この発明に係るエレベータの地震時復旧運転装置においては、自動復帰運転で殆ど問題がない地震計のレベルである低感知の低感知器、及びそれ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知の高感知器の地震計を備え、地震発生時に低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、高感知器が動作した地震レベルでは自動復旧運転を避けて、エレベータ保守会社に地震復旧運転不可通報を送信するものである。 In the elevator restoration operation device according to the present invention, an abnormality occurs at a level of a low-sensing low sensor which is a level of a seismometer which has almost no problem in an automatic return operation , and a level of a seismometer higher than that. Equipped with a high-sensing high-sensing seismometer that is likely to cause problems in automatic restoration operation, and when the low-sensing sensor is activated when an earthquake occurs, the elevator car stops on the first floor or a specific floor on the lobby floor make sure that it is in, the earthquake level low sensor is activated when an abnormality of the elevator seismic diagnosis operation I line for detecting the abnormality of the elevator can not be detected by automatic recovery elevator, high sensor In the earthquake level where it operates, automatic restoration operation is avoided and an earthquake restoration operation impossible notice is transmitted to the elevator maintenance company .

また、この発明に係るエレベータの地震時復旧サービス提供システムにおいては、自動復帰運転で殆ど問題がない地震計のレベルである低感知の低感知器、及びそれ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知の高感知器の地震計を備え、地震発生時に低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、かつエレベータの異常が検出された場合はエレベータの自動復旧運転を中止し、エレベータ保守会社に地震復旧運転不可通報を送信するとともに、高感知器が動作した地震レベルでは地震診断運転及びエレベータの自動復旧を避け、保守専門技術者による復旧作業と判断してエレベータ保守会社に地震復旧運転不可通報を送信するものである。
Further, in the elevator restoration service providing system according to the present invention , the low-sensing low detector, which is a level of a seismometer having almost no problem in the automatic return operation , and the level of a seismometer or more higher than that, Equipped with a high-sensing high-sensing seismometer that is likely to cause abnormalities and likely to cause problems in automatic recovery operation. When the low-sensing sensor is activated when an earthquake occurs, the elevator car is identified on the first or lobby floor. After confirming that it is stopped at the floor, if the earthquake level is low, the seismic diagnosis operation that detects the elevator abnormality is performed, and if the elevator abnormality cannot be detected, the elevator is automatically restored, and the elevator If an abnormal condition is detected, the automatic restoration operation of the elevator will be stopped, an earthquake restoration operation impossible notice will be sent to the elevator maintenance company, and the high sensor will be Avoid the automatic recovery of the earthquake diagnosis operation and the elevator is at the level, is intended to send a notification earthquake recovery operation is possible on the maintenance technician by the restoration work it is judged that the elevator maintenance company.

この発明は、地震計動作時の大半のエレベータは地震診断運転が可能となり、その大半のエレベータは、自動的に異常状況が診断され、問題発生のないエレベータは自動的に復旧が可能となる。
この発明によれば、1階又はロビー階等の特定階に停止していて復旧運転が可能なビル、マンションのエレベータ利用者は地震後数分後には、自動点検が完了して、エレベータが通常通りに活用可能となる。
一方、エレベータ保守会社では、地震発生時に、地震計が動作して停止中のエレベータを、迅速に巡回して復旧させる件数が激減して、地震で真に不具合が発生しているエレベータヘのサービスが迅速に行えることとなる。
According to the present invention, most elevators during seismometer operation are capable of seismic diagnosis operation, and most of the elevators are automatically diagnosed for abnormal conditions, and elevators that do not have problems can be automatically restored.
According to the present invention, elevator users of buildings and condominiums that are stopped on a specific floor such as the first floor or the lobby floor and can be restored are automatically checked after a few minutes after the earthquake, and the elevator is usually It can be used on the street.
On the other hand, in the case of an elevator maintenance company, when an earthquake occurs, the number of cases in which a seismometer operates and stops is quickly patrolled and restored, and the service to elevators that have truly failed due to the earthquake is drastically reduced. Can be done quickly.

実施の形態1.
図1はエレベータにおける地震等の異常情報通信システムの概略構成を情報の流れとともに示すブロック説明図、図2はこの発明の実施の形態1におけるエレベータの地震時復旧運転装置並びにエレベータの地震時復旧サービス提供システムの全体構成を示すシステム構成図、図3はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータのガイドレール取り付け状況を示す平面図、図4はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータのガバナロープの支持装置を示す概略構成図、図5は図4のガバナロープガイドを示す拡大斜視図、図6はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータの制御ケーブル引っ掛り検出装置を示す側面図、図7は図6のケーブル引っ掛り検出アームを示す拡大斜視図、図8は制御ケーブル引っ掛り検出装置の異常検出時の状態を示す側面図、図9はこの発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータの釣り合い重りの衝突検出装置を昇降路の上から見た平面図、図10は釣り合い重りの衝突検出装置を示す拡大平面図、図11は釣り合い重りの衝突検出装置を示す拡大側面図、図12はこの発明の実施の形態1におけるエレベータの地震時復旧運転装置の動作フローを示すフローチャートである。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a schematic configuration of an abnormal information communication system such as an earthquake in an elevator together with the flow of information. FIG. 2 is an elevator restoration operation device and an elevator restoration service according to Embodiment 1 of the present invention. FIG. 3 is a system configuration diagram showing the overall configuration of the providing system, FIG. 3 is a plan view showing the guide rail mounting state of an elevator having a structure for enabling recovery operation after an earthquake in Embodiment 1 of the present invention, and FIG. FIG. 5 is a schematic configuration diagram showing an elevator governor rope support device having a structure for enabling recovery operation after an earthquake in Embodiment 1 of the present invention, FIG. 5 is an enlarged perspective view showing the governor rope guide of FIG. 6 is an elevator control cable cable having a structure for enabling recovery operation after an earthquake in Embodiment 1 of the present invention. FIG. 7 is an enlarged perspective view showing the cable catch detection arm of FIG. 6, FIG. 8 is a side view showing a state of the control cable catch detection device when an abnormality is detected, and FIG. 9 is the present invention. The top view which looked at the collision detection apparatus of the balance weight of the elevator with the structure for enabling the recovery operation after an earthquake in Embodiment 1 of the above from the hoistway, FIG. 10 shows the collision detection apparatus of the balance weight Fig. 11 is an enlarged plan view, Fig. 11 is an enlarged side view showing the counterweight collision detection device, and Fig. 12 is a flowchart showing an operation flow of the elevator restoration operation device in the first embodiment of the present invention.

図1において、地震が発生し、低感知器の地震計が動作すると、エレベータは最寄階で停止し、扉が閉まって利用できなくなる。そして、通常は、保守・点検の専門技術者がエレベータを点検し異常の有無を確認することとなる。
一般に、エレベータの制御回路6には、保守会社の専用の通信装置30が接続されており、電話回線31を通じて故障の情報等、地震計動作の情報もエレベータ保守会社の受信システム34の通信装置32を通じて受信端末33に送信されてくる。エレベータ保守会社の受信システム34は、本信号及び、エレベータのビルの利用者、管理人から電話連絡により受信した、「エレベータが地震にて動かなくなった」という、連絡により、保守・点検の専門技術者35を当該ビルに出動させることになる。この発明はこれらの自動化を図ろうとするものである。
In FIG. 1, when an earthquake occurs and the seismometer of the low sensor operates, the elevator stops at the nearest floor, and the door is closed and cannot be used. Usually, a maintenance / inspection engineer inspects the elevator to check whether there is an abnormality.
In general, a communication device 30 dedicated to a maintenance company is connected to the elevator control circuit 6, and information on seismometer operation such as failure information via a telephone line 31 is also included in the communication system 32 of the reception system 34 of the elevator maintenance company. To the receiving terminal 33. The reception system 34 of the elevator maintenance company has received this signal and the technical knowledge of maintenance / inspection based on the communication that the elevator and the user of the elevator building and the administrator have received the telephone contact. The person 35 is dispatched to the building. The present invention is intended to automate these.

図2において、エレベータのかご1は主ロープ2により釣り合い重り3と連結され、主ロープ2は巻上機4に巻き掛けられている。かご1は制御ケーブル5により機械室等に設置された制御回路6に接続され、かご内インターホン7を備えている。
この発明による地震計は、第1の基準値を超えると動作する復帰コイル20を備えた超低感知器21、第1の基準値よりも大きい第2の基準値を超えると動作する復帰コイル18を備えた低感知器19、第2の基準値よりも大きい第3の基準値を超えると動作する復帰コイルを備えない高感知器17の3段階レベルの地震計を備えている。震度3以下の低レベルの低規模地震では超低感知器21が動作する範囲であり、超低感知器21が動作するとエレベータは最寄階停止運転を行い、一定時間後に復帰コイル20を動作させて、通常運転に戻る運転を地震管制運転制御16が行う。
また、震度4以下の中規模地震では低感知器19が動作する範囲であり、低感知器19が動作すると、高感知器17が動作していない条件で、地震復旧運転のモードとなる。地震復旧運転の制御は地震運転制御装置15が行う。
地震管制運転制御装置16、地震復旧運転制御装置15は、エレベータ制御回路6内で実行される。エレベータのかご1には、ケーブル引っ掛り検出装置45、釣り合い重り衝突検出スイッチ8を設ける。また、地震時異常音検出機能を実行する際にはかご内インターホン7を活用する。
地震時運転制御装置15は、地震時運転状態確認手段10、感知器復帰回路11、微速異常検出運転回路12、手動速異常検出運転回路13、高速異常検出運転回路14がある。
In FIG. 2, an elevator car 1 is connected to a counterweight 3 by a main rope 2, and the main rope 2 is wound around a hoisting machine 4. The car 1 is connected to a control circuit 6 installed in a machine room or the like by a control cable 5 and includes an in-car interphone 7.
The seismometer according to the present invention includes an ultra-low sensor 21 having a return coil 20 that operates when a first reference value is exceeded, and a return coil 18 that operates when a second reference value that is greater than the first reference value is exceeded. And a three-stage seismometer with a high sensor 17 without a return coil that operates when a third reference value greater than the second reference value is exceeded. In a low-scale earthquake with a seismic intensity of 3 or less, the ultra-low sensor 21 operates. When the ultra-low sensor 21 operates, the elevator performs the nearest floor stop operation and operates the return coil 20 after a certain time. Then, the seismic control operation control 16 performs the operation to return to the normal operation.
Further, in a medium-scale earthquake with a seismic intensity of 4 or less, the low sensor 19 is in an operating range. When the low sensor 19 is operated, a mode of an earthquake recovery operation is set under the condition that the high sensor 17 is not operating. The earthquake operation control device 15 controls the earthquake restoration operation.
The earthquake control operation control device 16 and the earthquake restoration operation control device 15 are executed in the elevator control circuit 6. The elevator car 1 is provided with a cable catch detection device 45 and a counterweight collision detection switch 8. Further, the intercom 7 in the car is utilized when executing the abnormal sound detection function during an earthquake.
The earthquake operation control device 15 includes an earthquake operation state confirmation means 10, a sensor return circuit 11, a slow speed abnormality detection operation circuit 12, a manual speed abnormality detection operation circuit 13, and a high speed abnormality detection operation circuit 14.

ここで、先ずエレベータの地震復旧運転の条件について説明する。
この発明によるエレベータ地震復旧運転の目的は、中・低規模の地震発生に於いては、通常はエレベータ機器の地震による損傷が殆どないレベルについての、自動復旧を目的としている。
地震計の感度が超低感知、例えば震度3以下の場合は、現状でも低感知の地震計が動作しなければ一定時間後に自動復旧させることとしている。
上記したように、過去3年間のデータの中から発明者が情報システムに登録されている129回の地震発生データを分析した結果、震度4以下の中・小規模の地震による物損事故発生件数は、数千件中、僅か1件であり、その発生率は0.014%と極めて低い値であるという事実、及びこれが震度5以上の大規模地震になると、その発生率は1.12%と格段に高くなるという事実が知見として得られたことは、エレベータの地震復旧運転の効率化やビルが密集する地域でのエレベータの早期復旧を目指す上で非常に重要なファクターとなり得る。
従って、この発明では地震計のレベルを3段階に設定する。すなわち、現状の低感知の地震計が動作しなければ一定時間後に自動復旧させる地震計のレベルが超低感知(例えば震度3以下)の超低感知器21と、自動復旧運転で殆ど問題がない地震計のレベルである低感知(例えば震度4以下)の低感知器19と、それ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知(例えば震度5以上)の高感知器17の3段階である。高感知の地震レベルに関しては、保守・点検の専門技術者を派遣する点検対応領域とする。
Here, the conditions of the elevator earthquake recovery operation will be described first.
The purpose of the elevator earthquake restoration operation according to the present invention is to automatically restore a level where there is usually almost no damage to the elevator equipment due to the earthquake in the occurrence of an earthquake of medium and low scale.
When the sensitivity of the seismometer is very low, for example, seismic intensity is 3 or less, if the seismometer with low sensitivity does not operate even in the present situation, it will be automatically restored after a certain time.
As mentioned above, the inventor analyzed the data of 129 earthquakes registered in the information system from the data for the past three years. The fact is that there is only one out of thousands, and the rate of occurrence is as low as 0.014%, and if this is a large earthquake with a seismic intensity of 5 or more, the rate of occurrence is 1.12%. The fact that the fact that it is extremely high was obtained as knowledge can be a very important factor in aiming at the efficiency of the earthquake recovery operation of elevators and the early restoration of elevators in areas where buildings are crowded.
Therefore, in the present invention, the level of the seismometer is set to three levels. That is, if the current low-sensing seismometer does not operate, there is almost no problem with the ultra-low detector 21 whose level of the seismometer is automatically restored after a certain time and the automatic restoration operation. Low sensor 19 of seismometer level (for example seismic intensity of 4 or less) and seismometer level higher than that, high sensitivity that is likely to cause abnormalities and likely to cause problems in automatic recovery operation There are three stages of the high detector 17 (for example, seismic intensity 5 or more). For highly sensitive seismic levels, it will be an inspection area where specialists for maintenance and inspection are dispatched.

次に、地震による機器損傷を最小限に抑えるための各機器の構成について説明する。
地震時の復旧運転の条件として、地震発生時のエレベータのかごは、例えば、1階またはロビー階等の特定階で停止していることを条件にする。エレベータのかごは、通常時、利用者の呼びが発生しない場合は1階またはロビー階等の特定階で待機しており、利用者の利用の頻度が少ない場合は殆どが特定階に停止しているのが一般的である。
そこで、地震が発生した時に機器損傷を最小限に抑えるためのガイドレールの構成を説明する。
図3はエレベータのかご用ガイドレールまたは釣り合い重り用ガイドレールを支える構造を示しているが、昇降路壁50に、レールブラケット51がアンカーボルトで固定され、エレベータのかご用または釣り合い重り用ガイドレール53、54が、レールクリップ52で固定されている。
ここで、上記の条件である1階またはロビー階等の特定階でかごが停止中であるということが地震復旧運転の条件であることにより、1階またはロビー階等の特定階に停止しているエレベータのかご1付近の、かご用ガイドレール53のレールブラケット51、レールクリップ52の取り付け本数を他の部分よりも増加させる。これにより、特定階付近のかご用ガイドレールの強度を補強する。また同様に、昇降路の最上階付近に停止している釣り合い重り3付近の、釣り合い重り用ガイドレール54を固定するレールブラケット51、レールクリップ52の取り付け本数を他の部分よりも増加させる。これにより、昇降路の最上階付近の釣り合い重り用ガイドレール54の強度を補強する。
更にまた、1階またはロビー階等の特定階に停止しているエレベータのかご1付近の、かご用ガイドレール53自体、および/または昇降路の最上階付近に停止している釣り合い重り3付近の釣り合い重り用ガイドレール54自体を、他のガイドレールよりも曲げ強度の大きな材料である例えばステンレス鋼材またはステンレス合金等で製作することにより強度を増大させても良い。
Next, the configuration of each device for minimizing device damage due to an earthquake will be described.
As a condition for the restoration operation at the time of the earthquake, the elevator car at the time of the earthquake is conditional on being stopped on a specific floor such as the first floor or the lobby floor. Elevator cars normally stand by on a specific floor such as the first floor or lobby floor if no user calls are made, and most of them stop at a specific floor when the frequency of use by the user is low. It is common.
Therefore, the structure of a guide rail for minimizing equipment damage when an earthquake occurs will be described.
FIG. 3 shows a structure for supporting an elevator car guide rail or a counterweight guide rail. A rail bracket 51 is fixed to the hoistway wall 50 with anchor bolts, and the elevator car or counterweight guide rail is used. 53 and 54 are fixed by a rail clip 52.
Here, the fact that the car is stopped on a specific floor such as the first floor or the lobby floor, which is the above condition, is a condition for earthquake recovery operation, so that the car stops on the first floor or the specific floor such as the lobby floor. The number of rail brackets 51 and rail clips 52 attached to the car guide rail 53 in the vicinity of the elevator car 1 is increased as compared with other parts. This reinforces the strength of the car guide rail near the specific floor. Similarly, the number of rail brackets 51 and rail clips 52 to which the counterweight guide rails 54 are fixed in the vicinity of the counterweight 3 stopped near the top floor of the hoistway is increased more than the other portions. This reinforces the strength of the counterweight guide rail 54 near the top floor of the hoistway.
Furthermore, in the vicinity of the elevator car 1 stopped on a specific floor such as the first floor or lobby floor, the car guide rail 53 itself and / or the counterweight 3 stopped near the top floor of the hoistway. The strength of the counterweight guide rail 54 itself may be increased by making it, for example, a stainless steel material or a stainless alloy, which is a material having a higher bending strength than other guide rails.

次に、地震による機器損傷を最小限に抑えるためのガバナロープの支持装置を説明する。
図4、図5に示すように、エレベータのかご1の側面に取り付けられているガバナロープ62が、昇降路内で交差、あるいは途中で引っ掛りが発生しないように、ガバナロープ62が挿通されるリング部60aと、昇降路等に取り付けるための支持腕60bとからなる複数のガバナロープガイド60を昇降路の上下方向に亘ってほぼ等間隔となるように取り付けている。このガバナロープガイド60は、昇降路側壁に近い側に位置するガバナロープ62を挿通支持させるやり方がガバナロープの引っ掛り防止に効果的である。図中、61は昇降路下部に設けられたガバナ張り車である。
Next, a governor rope support device for minimizing equipment damage due to an earthquake will be described.
As shown in FIGS. 4 and 5, a ring portion through which the governor rope 62 is inserted so that the governor rope 62 attached to the side surface of the elevator car 1 does not cross or catch in the middle of the hoistway. A plurality of governor rope guides 60 comprising 60a and support arms 60b for attaching to the hoistway or the like are attached so as to be substantially equidistant in the vertical direction of the hoistway. In this governor rope guide 60, the method of inserting and supporting the governor rope 62 located on the side close to the side wall of the hoistway is effective in preventing the governor rope from being caught. In the figure, 61 is a governor-carrying wheel provided at the lower part of the hoistway.

次に、地震による機器損傷を最小限に抑えるための制御ケーブルの引っ掛り検出装置の構成を説明する。
地震復旧運転の際の異常検出運転時に、エレベータ用制御ケーブル5が、昇降路内の機器、突起物等に引っ掛りが発生していないかどうかるを検出する必要がある。このために、図6、図7に示すような制御ケーブルの引っ掛り検出装置45を具備するものである。
エレベータのかご枠44の底部にケーブル引っ掛り検出アーム45が固定され、通常は引っ張りばね46により垂直方向(かご昇降方向)に固定されている。このケーブル引っ掛り検出アーム45の下端部には制御ケーブル5が挿通されるリング部45aを設けている。
制御ケーブル5は、かご下のケーブルハンガー41に吊り下げられ、ケーブルクリップ42にて結束固定され、機械室等に設けられた制御回路6側に接続される制御ケーブル5が上記ケーブル引っ掛り検出アーム45のリング部45a内を挿通して垂れ下がり、更に上方に折り返されて機械室等に設けられた制御回路6に接続される。
通常では、制御ケーブル5は、かご1が垂直方向に昇降移動しても、そのまま真直ぐに移動するため、ケーブル引っ掛り検出アーム45は、図6に示すように、垂直状態に固定されており、かご枠44の底部に設けられた制御ケーブル引っ掛り検出スイッチ40は動作することはない。
しかし、地震により、万一制御ケーブル5が昇降路の機器、突起物47に引っ掛ると、図8に示すように、ケーブル引っ掛り検出アーム45が制御ケーブル5の引っ掛りにより引っ張られて傾き、制御ケーブル引っ掛り検出スイッチ40が動作することになり、制御ケーブル5の異常が検出されることになる。
Next, the configuration of the control cable catch detection device for minimizing equipment damage due to an earthquake will be described.
It is necessary to detect whether or not the elevator control cable 5 is caught in equipment, protrusions, etc. in the hoistway during the abnormality detection operation during the earthquake recovery operation. For this purpose, a control cable catch detection device 45 as shown in FIGS. 6 and 7 is provided.
A cable catching detection arm 45 is fixed to the bottom of the elevator car frame 44, and is usually fixed in a vertical direction (car raising / lowering direction) by a tension spring 46. A ring portion 45 a through which the control cable 5 is inserted is provided at the lower end portion of the cable catch detection arm 45.
The control cable 5 is hung on a cable hanger 41 under a car, is bound and fixed by a cable clip 42, and the control cable 5 connected to the control circuit 6 side provided in the machine room or the like is connected to the cable catch detection arm. 45 is inserted through the ring portion 45a, hangs down, and further folded upward to be connected to a control circuit 6 provided in a machine room or the like.
Normally, even if the car 1 moves up and down in the vertical direction, the control cable 5 moves straight as it is, so that the cable catch detection arm 45 is fixed in a vertical state as shown in FIG. The control cable catch detection switch 40 provided at the bottom of the car frame 44 does not operate.
However, if the control cable 5 is caught by a hoistway device or projection 47 due to an earthquake, the cable catch detection arm 45 is tilted by the control cable 5 as shown in FIG. The control cable catching detection switch 40 is operated, and an abnormality of the control cable 5 is detected.

次に、地震による機器損傷を最小限に抑えるための釣り合い重り衝突検出スイッチの構成を説明する。
エレベータのかご1が1階またはロビー階等の特定階に停止しており、釣り合い重りが昇降路の最上階に待機している場合にのみ、地震時の復旧運転を開始するため、釣り合い重り3が、かご1に衝突しないかどうかを検出する必要がある。このために、図9、図10、図11に示すような釣り合い重り衝突検出装置を具備するものである。
エレベータのかご1の釣り合い重り側の上部に釣り合い重り衝突検出スイッチ8を設置する。この釣り合い重り衝突検出スイッチ8には、釣り合い重り3と所定の間隔を置いて離れた位置に衝突検出バー60が取り付けられている。この衝突検出バー60は、ばね61により常時上方向に付勢されており、釣り合い重り3に当たって図11の矢印に示すように下側に倒れると、釣り合い重り衝突検出スイッチ8が動作するようになっている。これにより、釣り合い重り3の逸脱が異常検出される。
Next, the configuration of a counterweight collision detection switch for minimizing equipment damage due to an earthquake will be described.
Only when the elevator car 1 is stopped on the first floor or a specific floor such as the lobby floor and the counterweight is waiting on the top floor of the hoistway, the recovery operation in the event of an earthquake is started. However, it is necessary to detect whether or not the car 1 collides. For this purpose, a counterweight collision detection device as shown in FIGS. 9, 10, and 11 is provided.
A counterweight collision detection switch 8 is installed in the upper part of the elevator car 1 on the counterweight side. A collision detection bar 60 is attached to the counterweight collision detection switch 8 at a position away from the counterweight 3 at a predetermined interval. The collision detection bar 60 is always urged upward by a spring 61. When the collision detection bar 60 hits the counterweight 3 and falls down as shown by the arrow in FIG. 11, the counterweight collision detection switch 8 operates. ing. Thereby, the deviation of the counterweight 3 is detected abnormally.

次に、復旧運転時の異常音検出装置を説明する。
地震復旧運転時に、エレベータのかご1内にあるかご内インターホン7の音圧検出を有効にして、地震復旧時における異常検出運転時において、特に、かご内インターホン7による異常音、衝突音の検出を行い、異常音に起因する異常検出を行う。
Next, the abnormal sound detection device during the recovery operation will be described.
Enables sound pressure detection of the intercom 7 in the elevator car 1 during earthquake recovery operation, and detects abnormal sounds and collision sounds using the interphone 7 in the car, especially during abnormal detection operation during earthquake recovery. To detect anomalies caused by abnormal sounds.

次に、エレベータの地震復旧運転の動作フローについて、図12を用いて説明する。
ステップS1で開始され、地震時管制運転制御装置16にて、低感知器19が動作し、高感知器17が動作していない状態かどうかをステップS2で判定する。ステップS2でこの条件に無ければ、復旧運転は中止し、ステップS3で地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(S4)。
この場合、低感知器19の地震計が動作しているので、ステップS5に進み、通信装置30から地震感知器動作通報をエレベータ保守会社受信システム34に対し通報する。
次に、ステップS6に進み地震復旧運転を開始する。そして、先ずエレベータが地震感知器の低感知器19が動作した時点で、エレベータの運転状態が1階またはロビー階等の特定階で停止していたかのデータ(地震復旧運転条件)をエレベータ制御回路6のメモリーから地震時運転状態確認手段10が確認する(ステップS7)。ステップS8でかごが1階またはロビー階等の特定階で停止中であれば、ステップS9で超低感知器21の復帰により、復帰コイル20を動作させる。次にステップS10で低感知器19の復帰により、復帰コイル18を動作させる。これらの復帰動作は感知器復帰回路11が行う。
超低感知器21、低感知器19の地震計を復帰させた後に、ステップS11でかご1を
微速異常検出運転回路12にて微速運転し、微速異常検出運転を行い、最上階までアップ
運転、更に最下階までのダウン運転を行う。ここでいう微速運転は、例えば分速60mの
エレベータで1/10程度の分速5m程度の速度とする。
そして、次のステップS12で、走行中の異常音検出、制御ケーブルの引っ掛り検出、釣り合い重りのかご上衝突検出を実施する。
ステップS12で異常検出があると、ステップS3に進み、地震復旧運転は中止され、地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(ステップS4)。
上記ステップS11で1階まで戻り、徴速異常検出運転が終了し、ステップS12でも異常検出が無いと、ステップS13でかご1を手動速異常検出運転回路13にて手動速異常検出運転を実施し、同様に最上階までアップ運転、更に最下階までのダウン運転を行う。ここでいう手動速運転は、保守点検時の速度として設定されている分速15m程度の速度をいう。
そして、次のステップS14で、走行中の異常音検出、制御ケーブルの引っ掛り検出、釣り合い重りのかご上衝突検出を実施する。
ステップS14で異常検出があると、ステップS3に進み、地震復旧運転は中止され、地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(ステップS4)。
更に、地震復旧運転は、手動速異常検出運転が終了し、ステップS14でも異常検出が無いと、ステップS15でかご1を高速異常検出運転回路14にて高速異常検出運転を実施し、同様に最上階までアップ運転、更に最下階までのダウン運転を行う。
そして、次のステップS16で、走行中の異常音検出、制御ケーブルの引っ掛り検出、釣り合い重りのかご上衝突検出を実施する。
ステップS16で異常検出があると、ステップS3に進み、地震復旧運転は中止され、地震復旧運転不可通報を、エレベータ保守会社受信システム34に送信して終了する(ステップS4)。
上記ステップS16でも異常が検知されなかった場合は、ステップS17に進み、エレベータに損傷を検知しなかったと判断し、エレベータを通常運転に復旧する。その後、ステップS18で地震復旧通報をエレベータ保守会社受信システム34に発報して、エレベータの地震復旧を完了したことを伝える。
以上により、エレベータは地震復旧運転を終了する(ステップS4)。
Next, the operation flow of the elevator earthquake recovery operation will be described with reference to FIG.
In Step S1, it is determined in Step S2 whether the low sensor 19 is operating and the high sensor 17 is not operating in the seismic control operation control device 16. If this condition is not met in step S2, the restoration operation is stopped, and an earthquake restoration operation impossibility notification is transmitted to the elevator maintenance company reception system 34 in step S3 and terminated (S4).
In this case, since the seismometer of the low detector 19 is operating, the process proceeds to step S5, and the communication device 30 notifies the elevator maintenance company receiving system 34 of the earthquake detector operation notification.
Next, it progresses to step S6 and an earthquake restoration driving | operation is started. First, when the low detector 19 of the earthquake detector operates, the elevator control circuit 6 obtains data (earthquake recovery operation condition) on whether the operation state of the elevator is stopped on a specific floor such as the first floor or the lobby floor. The operation state confirmation means 10 at the time of earthquake confirms from the memory (step S7). If the car is stopped on a specific floor such as the first floor or the lobby floor in step S8, the return coil 20 is operated by returning the ultra-low sensor 21 in step S9. Next, in step S10, the return coil 18 is operated by the return of the low sensor 19. These return operations are performed by the sensor return circuit 11.
After the seismometers of the ultra-low sensor 21 and the low sensor 19 are restored, the car 1 is operated at a low speed by the slow speed abnormality detection operation circuit 12 at step S11, the slow speed abnormality detection operation is performed, and the up operation to the top floor is performed. Further down operation to the lowest floor is performed. Here, the slow speed operation is, for example, an elevator with a speed of 60 m / min and a speed of about 1/10 or about 5 m / min.
Then, in the next step S12, abnormal sound detection during traveling, control cable catch detection, and counterweight collision detection on the counterweight are carried out.
If an abnormality is detected in step S12, the process proceeds to step S3, the earthquake recovery operation is stopped, an earthquake recovery operation impossibility notification is transmitted to the elevator maintenance company reception system 34, and the process ends (step S4).
Returning to the first floor in the above step S11, the speed abnormality detection operation is completed, and if no abnormality is detected in step S12, the manual speed abnormality detection operation circuit 13 performs the manual speed abnormality detection operation in step S13. Similarly, up operation to the top floor and further down operation to the bottom floor are performed. The manual speed operation here refers to a speed of about 15 m / min which is set as a speed at the time of maintenance and inspection.
Then, in the next step S14, abnormal sound detection during traveling, control cable catch detection, and counterweight collision detection on the counterweight are carried out.
If an abnormality is detected in step S14, the process proceeds to step S3, the earthquake recovery operation is stopped, an earthquake recovery operation impossibility notification is transmitted to the elevator maintenance company reception system 34, and the process ends (step S4).
Furthermore, in the earthquake recovery operation, when the manual speed abnormality detection operation is completed and no abnormality is detected in step S14, the car 1 is subjected to the high speed abnormality detection operation circuit 14 in step S15, and similarly the top Run up to the floor and down to the lowest floor.
Then, in the next step S16, abnormal noise detection during traveling, control cable catch detection, and counterweight collision detection on the counterweight are carried out.
If an abnormality is detected in step S16, the process proceeds to step S3, the earthquake recovery operation is stopped, an earthquake recovery operation impossibility notification is transmitted to the elevator maintenance company reception system 34, and the process ends (step S4).
If no abnormality is detected in step S16, the process proceeds to step S17, where it is determined that no damage has been detected in the elevator, and the elevator is restored to normal operation. Thereafter, in step S18, an earthquake restoration notification is issued to the elevator maintenance company reception system 34 to inform the elevator that the earthquake restoration has been completed.
Thus, the elevator finishes the earthquake recovery operation (step S4).

以上説明したようにこの実施の形態1によれば、従来、震度4程度の中規模地震の発生では、ほとんど機器の異常がない状況であるにも拘らず、震度4か震度6の区別がつかないために、または震度4でも異常がある場合があるために、現状のエレベータの地震計は、超低感度以上の地震計動作は、保守・点検の専門技術者の点検を必要とするが、自動点検を実施することが可能となる。これにより、大半の地震計動作時のエレベータは、自動点検が可能となり、その大半のエレベータは、自動的に異常状況が診断され、問題発生のないエレベータは自動的に復旧可能となる。
また、この実施の形態1によれば、1階またはロビー階等の特定階に停止していて復旧運転が可能なビル、マンションのエレベータ利用者は地震後数分後には、自動点検が完了して、エレベータが通常通りに活用可能となる。
一方、エレベータの保守会社では、地震発生時に、地震計が動作して停止中のエレベータを、迅速に巡回して復旧させる件数が激減して、地震で真に不具合が発生しているエレベータヘのサービスが迅速に行えることとなる。
As described above, according to the first embodiment, conventionally, in the occurrence of a medium-scale earthquake with a seismic intensity of about 4, it is possible to distinguish seismic intensity 4 or seismic intensity 6 even though there is almost no equipment abnormality. Because there is a case where there is an abnormality even with seismic intensity 4, the current seismometers of elevators require operation by maintenance and inspection specialists for seismometer operation exceeding ultra-low sensitivity. Automatic inspection can be performed. As a result, most of the elevators during the operation of the seismometer can be automatically inspected, and most of the elevators are automatically diagnosed for abnormal conditions, and elevators free from problems can be automatically restored.
In addition, according to the first embodiment, elevator users of buildings and condominiums that can be restored and stopped on a specific floor such as the first floor or lobby floor, have completed automatic inspection within a few minutes after the earthquake. Thus, the elevator can be used as usual.
On the other hand, in the case of an elevator maintenance company, when an earthquake occurs, the number of elevators that are stopped due to the operation of the seismometer has been reduced rapidly, and the number of elevators that have truly failed due to the earthquake has been drastically reduced. The service can be performed quickly.

実施の形態2.
図13はこの発明の実施の形態2における地震後の復旧運転を可能にするための構造を持つエレベータの制御ケーブル引っ掛り検出装置を示す側面図である。
この実施の形態2では、制御ケーブル5は、かご下のケーブルハンガー41に吊り下げられ、ケーブルクリップ42にて結束固定され、機械室等に設けられた制御回路6側に接続される制御ケーブル5はケーブルクリップ42を出てから垂れ下がり、更に上方に折り返されて機械室等に設けられた制御回路6に接続される。エレベータのかご枠44の底部とケーブルクリップ42との間にケーブル引っ掛り検出アーム45の上下両端部が回転可能に固定され、通常は図に示すように、少し傾斜した状態で固定されている。
通常では、制御ケーブル5は、かご1が垂直方向に昇降移動しても、そのまま真直ぐに移動するため、ケーブル引っ掛り検出アーム45は、図13に示すように、少し傾斜した状態に固定されており、かご枠44の底部中央に設けられた制御ケーブル引っ掛り検出スイッチ40は動作することはない。
しかし、地震により、万一制御ケーブル5が昇降路の機器、突起物47に引っ掛ると、ケーブル引っ掛り検出アーム45が制御ケーブル5の引っ掛りにより引っ張られて更に傾斜して、制御ケーブル引っ掛り検出スイッチ40が動作することになり、制御ケーブル5の異常が検出されることになる。
この実施の形態2の場合も、実施の形態1と同様の効果がある。
Embodiment 2. FIG.
FIG. 13 is a side view showing an elevator control cable catch detection apparatus having a structure for enabling a recovery operation after an earthquake in Embodiment 2 of the present invention.
In the second embodiment, the control cable 5 is hung on a cable hanger 41 under a car, is bound and fixed by a cable clip 42, and is connected to a control circuit 6 provided in a machine room or the like. Hangs down after leaving the cable clip 42 and is further folded back and connected to the control circuit 6 provided in the machine room or the like. The upper and lower ends of the cable catch detection arm 45 are rotatably fixed between the bottom of the elevator car frame 44 and the cable clip 42, and are usually fixed in a slightly inclined state as shown in the figure.
Normally, even if the car 1 moves up and down in the vertical direction, the control cable 5 moves straight as it is, so that the cable catch detection arm 45 is fixed in a slightly inclined state as shown in FIG. The control cable catching detection switch 40 provided at the center of the bottom of the car frame 44 does not operate.
However, if the control cable 5 is caught by a hoistway device or protrusion 47 due to an earthquake, the cable catch detection arm 45 is further pulled by the catch of the control cable 5 and further tilted to catch the control cable. The detection switch 40 is operated, and an abnormality of the control cable 5 is detected.
This second embodiment also has the same effect as the first embodiment.

エレベータにおける地震等の異常情報通信システムの概略構成を情報の流れとともに示すブロック説明図である。It is block explanatory drawing which shows schematic structure of abnormality information communication systems, such as an earthquake, in an elevator with the flow of information. この発明の実施の形態1におけるエレベータの地震時復旧運転装置並びにエレベータの地震時復旧サービス提供システムの全体構成を示すシステム構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a system block diagram which shows the whole structure of the restoration | recovery operation apparatus of the elevator at the time of earthquake in Embodiment 1 of this invention and the restoration service at the time of earthquake of an elevator. この発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータのガイドレール取り付け状況を示す平面図である。It is a top view which shows the guide rail attachment condition of the elevator which has a structure for enabling the recovery operation after the earthquake in Embodiment 1 of this invention. この発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータのガバナロープの支持装置を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the elevator governor rope support apparatus with the structure for enabling the recovery operation after the earthquake in Embodiment 1 of this invention. 図4のガバナロープガイドを示す拡大斜視図である。It is an expansion perspective view which shows the governor rope guide of FIG. この発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータの制御ケーブル引っ掛り検出装置を示す側面図である。It is a side view which shows the control cable catching detection apparatus of the elevator which has a structure for enabling the recovery operation after an earthquake in Embodiment 1 of this invention. 図6のケーブル引っ掛り検出アームを示す拡大斜視図である。It is an expansion perspective view which shows the cable hook detection arm of FIG. 制御ケーブル引っ掛り検出装置の異常検出時の状態を示す側面図である。It is a side view which shows the state at the time of abnormality detection of a control cable catch detection apparatus. この発明の実施の形態1における地震後の復旧運転を可能にするための構造を持つエレベータの釣り合い重りの衝突検出装置を昇降路の上から見た平面図である。It is the top view which looked at the collision detection apparatus of the balance weight of the elevator with the structure for enabling the recovery operation after the earthquake in Embodiment 1 of this invention from the hoistway. 釣り合い重りの衝突検出装置を示す拡大平面図である。It is an enlarged plan view which shows the collision detection apparatus of a counterweight. 釣り合い重りの衝突検出装置を示す拡大側面図である。It is an enlarged side view which shows the collision detection apparatus of a counterweight. この発明の実施の形態1におけるエレベータの地震時復旧運転装置の動作フローを示すフローチャートである。It is a flowchart which shows the operation | movement flow of the restoration | recovery operation apparatus at the time of the earthquake of the elevator in Embodiment 1 of this invention. この発明の実施の形態2における地震後の復旧運転を可能にするための構造を持つエレベータの制御ケーブル引っ掛り検出装置を示す側面図である。It is a side view which shows the control cable catching detection apparatus of the elevator which has a structure for enabling the recovery operation after the earthquake in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 エレベータのかご
2 主ロープ
3 釣り合い重り
4 巻上機
5 制御ケーブル
6 制御回路
7 かご内インターホン(異常音検出用)
8 釣り合い重り衝突検出スイッチ
10 地震時運転状態確認手段
11 感知器復帰回路
12 微速異常検出運転回路
13 手動速異常検出運転回路
14 高速異常検出運転回路
15 地震復旧運転制御回路
16 地震管制運転制御装置
17 高感知器
18、20 復帰コイル
19 低感知器
21 超低感知器
30、32 通信装置
31 電話回線
33 受信端末
34 エレベータ保守会社受信システム
35 保守技術者
40 制御ケーブル引っ掛り検出スイッチ
41 ケーブルハンガー
42 ケーブルクリップ
44 かご枠
45 制御ケーブル引っ掛り検出アーム
45a リング部
46 引っ張りばね
47 突起物
50 昇降路壁
51 レールブラケット
52 レールクリップ
53 かご用ガイドレール
54 釣り合い重り用ガイドレール
60 衝突検出バー
61 ばね
DESCRIPTION OF SYMBOLS 1 Elevator car 2 Main rope 3 Balance weight 4 Hoisting machine 5 Control cable 6 Control circuit 7 Car intercom (for abnormal sound detection)
8 Balance Weight Collision Detection Switch 10 Seismic Operation State Confirmation Means 11 Sensor Return Circuit 12 Slow Speed Abnormality Detection Operation Circuit 13 Manual Speed Abnormality Detection Operation Circuit 14 High Speed Abnormality Detection Operation Circuit 15 Earthquake Recovery Operation Control Circuit 16 Earthquake Control Operation Control Device 17 High sensor 18, 20 Return coil 19 Low sensor 21 Ultra low sensor 30, 32 Communication device 31 Telephone line 33 Receiving terminal 34 Elevator maintenance company reception system 35 Maintenance engineer 40 Control cable catch detection switch 41 Cable hanger 42 Cable Clip 44 Car frame 45 Control cable catch detection arm 45a Ring 46 Pull spring 47 Projection 50 Hoistway wall 51 Rail bracket 52 Rail clip 53 Car guide rail 54 Counterweight guide rail 60 Collision detection bar 6 Spring

Claims (6)

自動復帰運転で殆ど問題がない地震計のレベルである低感知の低感知器、及びそれ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知の高感知器の地震計を備え、
地震発生時に前記低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、前記低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、前記高感知器が動作した地震レベルでは自動復旧運転を避けて、エレベータ保守会社に地震復旧運転不可通報を送信することを特徴とするエレベータの地震時自動復旧運転装置。
Low-detection low-detector level, which is the level of seismometers that have almost no problems in automatic return operation , and higher seismometer levels that are prone to abnormalities, and that are likely to cause problems in automatic recovery operation. Equipped with a high-sensing seismometer,
When the low sensor is activated at the time of the earthquake, after confirming that the elevator car is stopped on the first floor or a specific floor of the lobby floor, the abnormality of the elevator is detected at the earthquake level where the low sensor is activated. to automatically recover the elevator when an abnormality of the elevator I line the earthquake diagnosis operation to be detected can not be detected, so as to avoid the automatic recovery operation said in a high sensor earthquake level work, the earthquake recovery operation can not report to the elevator maintenance company An automatic restoration operation device for an elevator during an earthquake characterized by transmitting .
地震発生時に低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止していたかをエレベータ制御回路の地震時運転確認手段で確認することを特徴とする請求項1記載のエレベータの地震時自動復旧運転装置。 2. The operation check means at the time of an earthquake of an elevator control circuit confirms whether an elevator car is stopped on a first floor or a specific floor of a lobby floor when a low sensor is operated when an earthquake occurs. Elevator automatic recovery operation device during earthquake. 地震診断運転は、釣り合い重り外れ検知、制御ケーブル引っ掛り検知、異常音検知の少なくとも一つを行う異常検知運転であることを特徴とする請求項1又は請求項2載のエレベータの地震時自動復旧運転装置。 Seismic diagnostic operation, the counterweight off detection, control cables caught detected claim 1 or claim 2 Symbol placement Seismic automatic elevator, characterized in that an abnormality detection operation for performing at least one of the abnormal sound detection Recovery operation device. 地震診断運転は、微速異常検知運転、手動速異常検知運転、高速異常検知運転の少なくとも一つを行う異常検知運転であることを特徴とする請求項3記載のエレベータの地震時自動復旧運転装置。   4. The elevator automatic restoration operation device according to claim 3, wherein the earthquake diagnosis operation is an abnormality detection operation that performs at least one of a fine speed abnormality detection operation, a manual speed abnormality detection operation, and a high speed abnormality detection operation. エレベータの異常を検出する地震診断運転を行い、エレベータの異常が検出された場合はエレベータの自動復旧運転を中止し、エレベータ保守会社に地震復旧運転不可通報を送信することを特徴とする請求項1又は請求項2記載のエレベータの地震時自動復旧運転装置。   2. An earthquake diagnosis operation for detecting an elevator abnormality is performed, and when an elevator abnormality is detected, the automatic restoration operation of the elevator is stopped, and an earthquake restoration operation disable notification is transmitted to the elevator maintenance company. Alternatively, the elevator automatic restoration operation device according to claim 2. 自動復帰運転で殆ど問題がない地震計のレベルである低感知の低感知器、及びそれ以上の地震計のレベルであって、異常が発生し易く、又自動復旧運転では問題が発生しそうな高感知の高感知器の地震計を備え、
地震発生時に前記低感知器が動作した時、エレベータのかごが1階又はロビー階の特定階で停止中であることを確認してから、前記低感知器が動作した地震レベルではエレベータの異常を検出する地震診断運転を行ってエレベータの異常が検出できない場合はエレベータを自動復旧させ、かつエレベータの異常が検出された場合はエレベータの自動復旧運転を中止し、エレベータ保守会社に地震復旧運転不可通報を送信するとともに、
前記高感知器が動作した地震レベルでは前記地震診断運転及びエレベータの自動復旧を避け、保守専門技術者による復旧作業と判断してエレベータ保守会社に地震復旧運転不可通報を送信することを特徴とするエレベータの地震時自動復旧サービス提供システム。
Low-detection low-detector level, which is the level of seismometers that have almost no problems in automatic return operation , and higher seismometer levels that are prone to abnormalities, and that are likely to cause problems in automatic recovery operation. Equipped with a high-sensing seismometer,
When the low sensor is activated at the time of the earthquake, after confirming that the elevator car is stopped on the first floor or a specific floor of the lobby floor, the abnormality of the elevator is detected at the earthquake level where the low sensor is activated. If the elevator the earthquake diagnosis operation I line to detect abnormality can not be detected by automatic recovery of the elevator, and when the abnormality of the elevator is detected to stop the automatic recovery operation of the elevator, earthquake recovery operation is possible on the elevator maintenance company Send a report,
The earthquake detection operation and the automatic restoration of the elevator are avoided at the earthquake level where the high sensor is operated, and a restoration work is judged by a maintenance engineer, and an earthquake restoration operation impossible notice is transmitted to the elevator maintenance company. Elevator automatic restoration service provision system in the event of an earthquake.
JP2004347938A 2004-12-01 2004-12-01 Elevator earthquake recovery operation device and elevator earthquake recovery service providing system Expired - Fee Related JP4641411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347938A JP4641411B2 (en) 2004-12-01 2004-12-01 Elevator earthquake recovery operation device and elevator earthquake recovery service providing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347938A JP4641411B2 (en) 2004-12-01 2004-12-01 Elevator earthquake recovery operation device and elevator earthquake recovery service providing system

Publications (2)

Publication Number Publication Date
JP2006151660A JP2006151660A (en) 2006-06-15
JP4641411B2 true JP4641411B2 (en) 2011-03-02

Family

ID=36630406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347938A Expired - Fee Related JP4641411B2 (en) 2004-12-01 2004-12-01 Elevator earthquake recovery operation device and elevator earthquake recovery service providing system

Country Status (1)

Country Link
JP (1) JP4641411B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263723B2 (en) * 2006-07-28 2013-08-14 東芝エレベータ株式会社 Elevator apparatus, elevator automatic recovery method and program thereof
JP5186896B2 (en) * 2007-11-27 2013-04-24 三菱電機ビルテクノサービス株式会社 Elevator diagnostic operation confirmation method
JP4675390B2 (en) * 2008-03-18 2011-04-20 三菱電機株式会社 Elevator earthquake recovery equipment
WO2011052015A1 (en) * 2009-10-30 2011-05-05 三菱電機株式会社 Elevator control device and control method
JP5562196B2 (en) * 2010-09-30 2014-07-30 三菱電機ビルテクノサービス株式会社 Elevator control command device, elevator device, and elevator system
JP6855605B1 (en) * 2020-01-15 2021-04-07 東芝エレベータ株式会社 Elevator control system and elevator control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111377A (en) * 1979-02-16 1980-08-27 Mitsubishi Electric Corp Elevator
JPS60258078A (en) * 1984-06-06 1985-12-19 株式会社日立製作所 Detector for abnormality of wiring cable for elevator
JP2002316780A (en) * 2001-04-24 2002-10-31 Hitachi Building Systems Co Ltd Operation report system used when earthquake occurs
JP2003146552A (en) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp Operation device of elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111377A (en) * 1979-02-16 1980-08-27 Mitsubishi Electric Corp Elevator
JPS60258078A (en) * 1984-06-06 1985-12-19 株式会社日立製作所 Detector for abnormality of wiring cable for elevator
JP2002316780A (en) * 2001-04-24 2002-10-31 Hitachi Building Systems Co Ltd Operation report system used when earthquake occurs
JP2003146552A (en) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp Operation device of elevator

Also Published As

Publication number Publication date
JP2006151660A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP5224933B2 (en) Elevator restoration operation method and apparatus
CN101811635B (en) Rope swing detecting device for the elevator and control method for operation automaticlly recovering after earthquake
JP2596452B2 (en) How to recover the elevator from earthquake control operation
JP4641411B2 (en) Elevator earthquake recovery operation device and elevator earthquake recovery service providing system
JP4705364B2 (en) Elevator earthquake recovery operation device and elevator earthquake recovery service providing system
JP4929730B2 (en) Elevator control cable abnormality detection device and elevator restoration diagnosis system using the same
JP4935262B2 (en) Elevator rope roll detection device and elevator control operation device
JP2019210086A (en) Elevator abnormality monitoring system and elevator abnormality monitoring method
JP5401281B2 (en) Elevator rope swing detection device and automatic earthquake recovery operation control method using the same
JP5251999B2 (en) Elevator equipment
JP5062289B2 (en) Elevator earthquake recovery operation device
JP5023511B2 (en) Elevator equipment
JP2007197150A (en) Earthquake restoration operating method for elevator
JP4844410B2 (en) Hook detection device for elevator ropes
JP2006298622A (en) Abnormality detection device of elevator control cable and automatic restoration service system of elevator using it when earthquake occurs
JP4839862B2 (en) Elevator abnormality detection device and elevator repair method
JP4924254B2 (en) Elevator earthquake response operation device
JP2007276895A (en) Detection device for elevator
JP5206400B2 (en) Elevator governor rope catch detection device
JP5035773B2 (en) Elevator control device
JPH06247657A (en) Inspecting device for elevator
JP4867813B2 (en) Elevator seismic control operation system
JP2008280101A (en) Device and method of managing and measuring clearance between elevator counterweight and governor rope stretching sheave
JP2020121884A (en) Monitoring method of hoisting rope and elevator system
JP6537745B2 (en) Elevator remote monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees