JP4641267B2 - Low melting point brazing material for aluminum heat exchanger and method for producing aluminum heat exchanger - Google Patents

Low melting point brazing material for aluminum heat exchanger and method for producing aluminum heat exchanger Download PDF

Info

Publication number
JP4641267B2
JP4641267B2 JP2006040455A JP2006040455A JP4641267B2 JP 4641267 B2 JP4641267 B2 JP 4641267B2 JP 2006040455 A JP2006040455 A JP 2006040455A JP 2006040455 A JP2006040455 A JP 2006040455A JP 4641267 B2 JP4641267 B2 JP 4641267B2
Authority
JP
Japan
Prior art keywords
melting point
brazing material
low melting
heat exchanger
aluminum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006040455A
Other languages
Japanese (ja)
Other versions
JP2007216267A (en
Inventor
洋 小川
聖英 手島
泰永 伊藤
祐治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP2006040455A priority Critical patent/JP4641267B2/en
Publication of JP2007216267A publication Critical patent/JP2007216267A/en
Application granted granted Critical
Publication of JP4641267B2 publication Critical patent/JP4641267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数のアルミニウム合金よりなる部材を接合して構成されるアルミニウム熱交換器を製造する際に上記複数の部材間の接合に用いられる低融点ろう材、及びこれを用いたアルミニウム熱交換器の製造方法に関する。   The present invention relates to a low melting point brazing material used for joining between a plurality of members when manufacturing an aluminum heat exchanger constituted by joining members made of a plurality of aluminum alloys, and aluminum heat exchange using the same The present invention relates to a method for manufacturing a container.

自動車などの輸送器用アルミニウム熱交換器、電子部品などに用いられる冷却用アルミニウム熱交換器は、通常Al−Si系ろう材を用いて、フィンやチューブ等のアルミニウム合金部品をろう付接合して製造している。
より具体的には、アルミニウム合金製の熱交換器は構造が複雑であるため、一般的にAl−Si系合金ろう材をクラッドしたブレージングシートを組立品の構成部品の一部に使用し、Al−Si系合金ろう材の融点以上の約600℃の温度に昇温し、ノコロックろう付け法、真空ろう付け法等の炉中ろう付け法により、構成部品同士を接合することにより組み立てられている。
Aluminum heat exchangers for transporters such as automobiles and cooling aluminum heat exchangers used for electronic parts are usually manufactured by brazing and joining aluminum alloy parts such as fins and tubes using Al-Si brazing filler metal. is doing.
More specifically, since the heat exchanger made of aluminum alloy has a complicated structure, a brazing sheet clad with an Al-Si alloy brazing material is generally used as a part of the components of the assembly. -It is assembled by heating components up to a temperature of about 600 ° C above the melting point of the Si-based alloy brazing material, and joining the components together by in-furnace brazing such as Nocolok brazing and vacuum brazing. .

近年、エネルギー消費量削減、融点の低い高強度アルミニウム合金材の接合を可能とすることを目的に、ろう付温度の低温化が要望されている。このため、上記Al−Si系合金ろう材よりも融点が低いZn合金系ろう材を用いた低温接合の検討がなされている。
Zn合金系ろう材は、Al母材との融点差が非常に大きいため圧延によるクラッドができない。そのため、大量生産に適用するには、Zn合金系ろう材を被接合材に低コストで供給する技術が必要となる。
In recent years, there has been a demand for lower brazing temperature for the purpose of reducing energy consumption and enabling joining of high-strength aluminum alloy materials having a low melting point. For this reason, studies have been made on low temperature bonding using a Zn alloy brazing material having a melting point lower than that of the Al—Si based brazing material.
The Zn alloy brazing material cannot be clad by rolling because the melting point difference from the Al base material is very large. Therefore, in order to apply to mass production, a technique for supplying a Zn alloy brazing material to a material to be joined at a low cost is required.

Zn合金系ろう材を被接合材に供給する技術として、超音波やフラックスを用いた溶融めっき(特許文献1)が提案されているが、専用設備を必要としており高コストである。また、機械摩擦によるめっき(特許文献2)が提案されているが、形状に制限があり複雑な形状への適用は困難である。   As a technique for supplying a Zn alloy-based brazing material to a material to be joined, hot dipping using ultrasonic waves and flux (Patent Document 1) has been proposed, but requires dedicated equipment and is expensive. Moreover, although plating by mechanical friction (Patent Document 2) has been proposed, the shape is limited and application to a complicated shape is difficult.

これらを解決する方法として、ろう材粉末とフラックス粉末の混合物を塗布する方法(特許文献3)が提案されている。この方法により複雑な形状においてもろう材を供給することが可能となった。しかし、Znの比重はAlの比重の2.65倍あるため、従来のAl系のろう材を使用した場合に比べると、ろう材の重量比率が大幅に増大してしまう。そのため、Zn系ろう材を使用して低温処理化を図ると共に、さらに、その使用量をできる限り低減させるための技術の開発が望まれていた。   As a method for solving these problems, a method of applying a mixture of brazing filler metal powder and flux powder (Patent Document 3) has been proposed. This method makes it possible to supply a brazing material even in a complicated shape. However, since the specific gravity of Zn is 2.65 times the specific gravity of Al, the weight ratio of the brazing material is significantly increased as compared with the case where a conventional Al-based brazing material is used. For this reason, it has been desired to develop a technique for reducing the amount of use as much as possible while attaining low-temperature treatment using a Zn-based brazing material.

特開平5−277787号公報JP-A-5-277787 特開平5−320855号公報JP-A-5-320855 特開2005−111527号公報JP 2005-111527 A

本発明は、かかる従来の問題点に鑑みてなされたもので、ろう付けを低温処理にて行うことができ、かつ、ろう材の使用量を従来よりも低減させることができるアルミニウム熱交換器用の低融点ろう材及びこれを用いたアルミニウム熱交換器の製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and can be used for an aluminum heat exchanger in which brazing can be performed at a low temperature and the amount of brazing material used can be reduced as compared with the conventional one. An object of the present invention is to provide a low melting point brazing material and a method for producing an aluminum heat exchanger using the same.

第1の発明は、アルミニウム合金よりなる複数の部材を接合して構成されるアルミニウム熱交換器を製造する際に上記複数の部材間の接合に用いられる低融点ろう材であって、
平均粒径20μm以下の亜鉛合金粒子よりなるろう材成分と、
平均粒径20μm以下の非腐食性フラックス粒子よりなるフラックス成分とを含有しており、
上記ろう材成分と上記フラックス成分の配合比(フラックス成分重量/ろう材成分重量)が0.6〜2.0であることを特徴とするアルミニウム熱交換器用の低融点ろう材にある(請求項1)。
The first invention is a low melting point brazing material used for joining between the plurality of members when manufacturing an aluminum heat exchanger configured by joining a plurality of members made of an aluminum alloy,
A brazing filler metal component comprising zinc alloy particles having an average particle size of 20 μm or less;
A flux component composed of non-corrosive flux particles having an average particle size of 20 μm or less,
The low melting point brazing material for an aluminum heat exchanger, wherein the blending ratio of the brazing filler metal component and the flux component (the flux component weight / the brazing filler metal component weight) is 0.6 to 2.0. 1).

本発明の低融点ろう材は、上記アルミニウム熱交換器を製造する際に用いるろう材であり、その成分として含有されるろう材成分とフラックス成分の両方を、上記特定の範囲の粒径を有する粒子に限定している。さらに、上記ろう材成分と上記フラックス成分の配合比を、上記特定の範囲に限定している。これらの要件を同時に具備することによって、上記低融点ろう材は、アルミニウム熱交換器製造に採用した場合に、従来よりも少ない使用量で確実な接合を実現することができる。   The low melting point brazing material of the present invention is a brazing material used in producing the aluminum heat exchanger, and both the brazing material component and the flux component contained as the components have a particle size in the specific range. Limited to particles. Furthermore, the blending ratio of the brazing filler metal component and the flux component is limited to the specific range. By satisfying these requirements at the same time, the low melting point brazing material can realize reliable joining with a smaller amount of use than in the conventional case when it is employed in the manufacture of an aluminum heat exchanger.

上記亜鉛合金粒子と上記非腐食性フラックス粒子(以下、フラックス粒子という)の少なくとも一方の平均粒径が20μmを超える場合には、アルミニウム合金よりなる部品に付着させた時に厚みのムラが生じやすいという問題がある。従って、上記亜鉛合金粒子と上記フラックス粒子の両方が、平均粒径20μm以下という要件を具備する必要がある。なお、これらの平均粒径の下限値は、微粉末化による製造コスト上昇という理由により、1μmであることが好ましい。   When the average particle size of at least one of the zinc alloy particles and the non-corrosive flux particles (hereinafter referred to as flux particles) exceeds 20 μm, unevenness in thickness is likely to occur when adhered to a component made of an aluminum alloy. There's a problem. Therefore, both the zinc alloy particles and the flux particles need to satisfy the requirement that the average particle size is 20 μm or less. Note that the lower limit of these average particle diameters is preferably 1 μm for the reason of an increase in production cost due to fine powdering.

また、上記亜鉛合金粒子と上記フラックス粒子の配合比を0.6以上とすることによって、それ未満の場合よりも、安定した接合強度を得ることができ、また、2.0以下とすることによっても、それ以上にする場合よりもより安定した接合強度が得られる。最も好ましくは、接合強度のピークが得られる配合比である1.0近傍とするのがよい。   Moreover, by setting the blending ratio of the zinc alloy particles and the flux particles to 0.6 or more, a stable bonding strength can be obtained as compared with the case of less than that, and 2.0 or less. However, a more stable bonding strength can be obtained than in the case of more than that. Most preferably, it is good to set it as 1.0 vicinity which is a compounding ratio with which the peak of joining strength is obtained.

第2の発明は、アルミニウム合金よりなる複数の部材を接合して構成されるアルミニウム熱交換器の製造方法であって、
上記複数の部材のうち少なくとも1つの部材に低融点ろう材を付着させ、該低融点ろう材に含有されるろう材成分の融点を超えるろう付け温度に加熱することにより、上記複数の部材間をろう付け接合するに当たり、上記低融点ろう材として上記第1の発明の低融点ろう材を用いることを特徴とするアルミニウム熱交換器の製造方法にある(請求項4)。
2nd invention is a manufacturing method of the aluminum heat exchanger comprised by joining the some member which consists of aluminum alloys,
By attaching a low melting point brazing material to at least one member of the plurality of members and heating to a brazing temperature that exceeds the melting point of the brazing material component contained in the low melting point brazing material, In brazing and joining, the low melting point brazing material of the first invention is used as the low melting point brazing material. (Aspect 4)

本発明の製造方法は、上述した優れた低融点ろう材を使用してろう付けを行う。そのため、上記低融点ろう材の使用量を従来よりも低減することができると共に、確実なろう付けが可能となる。それ故、得られるアルミニウム熱交換器に残存するZnの含有量を低く抑えることができ、軽量化を図ることができる。   The manufacturing method of the present invention performs brazing using the above-described excellent low melting point brazing material. Therefore, the amount of the low melting point brazing material used can be reduced as compared with the conventional one, and reliable brazing can be performed. Therefore, the Zn content remaining in the obtained aluminum heat exchanger can be kept low, and the weight can be reduced.

第1の発明における上記ろう材成分の亜鉛合金粒子としては、亜鉛、又は亜鉛を主体とする亜鉛合金の粒子を適用できる。即ち、上記亜鉛合金の概念には、純亜鉛及び亜鉛と他の金属の合金を含む。
例えば、上記亜鉛合金粒子は、質量%において、Al:2〜6%、残部がZn及び不可避的不純物よりなることが好ましい(請求項2)。この場合、Al含有量5%の融点が382℃と最も低く,2~6%の範囲においてろう付時にろう材の流動性が非常によくなるという効果が得られる。
As the zinc alloy particles of the brazing filler metal component in the first invention, zinc or zinc alloy particles mainly composed of zinc can be applied. That is, the concept of the zinc alloy includes pure zinc and alloys of zinc and other metals.
For example, it is preferable that the zinc alloy particles are composed of Al: 2 to 6% by mass and the balance of Zn and inevitable impurities in mass% (Claim 2). In this case, the melting point with an Al content of 5% is the lowest at 382 ° C., and in the range of 2 to 6%, the flowability of the brazing material becomes very good during brazing.

また、上記非腐食性フラックス粒子としては、上記ろう材成分の溶融温度域において溶融して活性化するものであれば公知の様々なものを適用可能である。この非腐食性フラックス粒子の活性化によって、上記部材におけるアルミニウム酸化膜除去、溶融ろう材の流動化等のろう付け促進作用を果たすことができる。   As the non-corrosive flux particles, various known particles can be applied as long as they are melted and activated in the melting temperature range of the brazing filler metal component. By activating the non-corrosive flux particles, brazing promoting effects such as removal of the aluminum oxide film and fluidization of the molten brazing material can be achieved.

上記非腐食性フラックス粒子は、CsFとAlF3の混合組成物からなり、混合比CsF(mol%)/AlF3(mol%)は、1.0〜1.2であることが好ましい(請求項3)。混合比1.0〜1.2の範囲においてフラックスの融点はろう付温度に対し十分低い状態に有りフラックスの活性が非常によくなるという効果が得られる。 The non-corrosive flux particles are composed of a mixed composition of CsF and AlF 3 , and the mixing ratio CsF (mol%) / AlF 3 (mol%) is preferably 1.0 to 1.2. 3). In the mixing ratio range of 1.0 to 1.2, the melting point of the flux is sufficiently low with respect to the brazing temperature, and the effect that the activity of the flux becomes very good is obtained.

例えば、上記混合比が35/65の非腐食性フラックス粒子の場合は、その溶融活性開始温度が420℃、溶融活性温度範囲が420℃〜480℃となる。
ここで、溶融活性開始温度とは、フラックス成分の溶融が開始されて上記ろう付け促進作用が活性化される温度のことである。そして、溶融活性温度範囲は、この溶融活性状態が良好に維持される温度範囲をいう。なお、上記フラックス成分の温度が溶融活性温度範囲の上限を超えると、フラックス成分が過熱状態となって、フラックスの気化が急増するので好ましくない。
従って、上記ろう材成分としての亜鉛合金粒子とフラックス成分としての上記非腐食性フラックス粒子との組み合わせは、少なくとも、上記フラックス成分の溶融活性温度範囲とろう材成分の溶融温度とが重なっていることが必要である。
For example, in the case of non-corrosive flux particles having a mixing ratio of 35/65, the melting activity start temperature is 420 ° C., and the melting activity temperature range is 420 ° C. to 480 ° C.
Here, the melting activation start temperature is a temperature at which melting of the flux component is started and the brazing promoting action is activated. The melt activation temperature range refers to a temperature range in which this melt active state is favorably maintained. If the temperature of the flux component exceeds the upper limit of the melting activation temperature range, the flux component is overheated, and flux vaporization increases rapidly, which is not preferable.
Therefore, in the combination of the zinc alloy particles as the brazing filler metal component and the non-corrosive flux particles as the flux component, at least the melting active temperature range of the flux component and the melting temperature of the brazing filler metal component overlap. is required.

第2の発明のアルミニウム熱交換器の製造方法においては、上記のごとく、複数の部材のうち少なくとも1つの部材に低融点ろう材を付着させる。付着させる方法としては、例えば、有機溶媒中に上述した低融点ろう材を懸濁させ、その液体を所望の部材に塗布する方法がある。塗布方法としては、公知の様々な方法、例えば、噴霧させて塗布する方法、刷毛、ローラ等によって塗布する方法等がある。   In the method for manufacturing an aluminum heat exchanger according to the second invention, as described above, the low melting point brazing material is adhered to at least one member among the plurality of members. For example, the low melting point brazing material is suspended in an organic solvent and the liquid is applied to a desired member. As a coating method, there are various known methods, for example, a spraying method, a brushing method, a roller method, and the like.

また、部材に上記低融点ろう材を付着させた後の加熱処理は、例えば、上記のごとく有機溶媒を用いた場合には、その溶媒を蒸発させて乾燥させた後に行う。
そして、上記ろう付け温度は450℃以下であることが好ましい(請求項5)。即ち、上記低融点ろう材の成分を調整して、450℃以下の温度で十分にろう接可能とし、実際のろう付け温度を450℃以下の温度とすることによって、エネルギー消費量の大幅な低減を図ることができる。
The heat treatment after the low melting point brazing material is adhered to the member is performed after evaporating the solvent and drying, for example, when the organic solvent is used as described above.
And it is preferable that the said brazing temperature is 450 degrees C or less ( Claim 5 ). That is, by adjusting the components of the low melting point brazing material so that it can be sufficiently brazed at a temperature of 450 ° C. or lower, and the actual brazing temperature is set to 450 ° C. or lower, the energy consumption is greatly reduced. Can be achieved.

(実施例1)
本発明の実施例に係るアルミニウム熱交換器用の低融点ろう材及びアルミニウム熱交換器の製造方法につき、図1を用いて説明する。
本例の低融点ろう材は、図1に示すごとく、アルミニウム合金よりなる複数の部材10〜13を接合して構成されるアルミニウム熱交換器1を製造する際に上記複数の部材10〜13間の接合に用いられる低融点ろう材である。
Example 1
A low melting point brazing material for an aluminum heat exchanger and a method for manufacturing the aluminum heat exchanger according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the low melting point brazing material of this example is formed between the plurality of members 10 to 13 when the aluminum heat exchanger 1 configured by joining a plurality of members 10 to 13 made of an aluminum alloy is manufactured. It is a low melting point brazing material used for joining.

上記アルミニウム熱交換器1は、同図に示すごとく、車両用の熱交換器であり、高圧冷媒が流れる冷媒通路を有する蛇行状に曲げ成形されたチューブ10と、チューブ10の対向する並行部相互間に挿入されたコルゲートフィン11とを有する。上記チューブ10は、アルミニウム合金材料を押出成形してなる扁平多穴管を採用している。また、上記コルゲートフィン11は、薄板のアルミニウム合金板を波状に曲げ成形したものである。また、チューブ10の一端には冷媒入口パイプ12が、他端には冷媒出口パイプ13がそれぞれ接合されている。これら冷媒入口パイプ12及び冷媒出口パイプ13もアルミニウム合金材料により形成されている。   As shown in the figure, the aluminum heat exchanger 1 is a vehicle heat exchanger, and a tube 10 bent in a meandering shape having a refrigerant passage through which a high-pressure refrigerant flows and a parallel portion of the tubes 10 facing each other. And corrugated fins 11 inserted therebetween. The tube 10 employs a flat multi-hole tube formed by extruding an aluminum alloy material. The corrugated fin 11 is formed by bending a thin aluminum alloy plate into a wave shape. A refrigerant inlet pipe 12 is joined to one end of the tube 10 and a refrigerant outlet pipe 13 is joined to the other end. These refrigerant inlet pipe 12 and refrigerant outlet pipe 13 are also formed of an aluminum alloy material.

本例において、このアルミニウム熱交換器1を製造するに当たっては、上記各部品11〜13を予め作製し、すべての部品を完成品と同じ配置となるように組み付けた組付体を作製し、その後、低融点ろう材を付着させる付着工程を行う。
本例では、低融点ろう材としては、平均粒径20μmの亜鉛合金粒子よりなるろう材成分と、平均粒径20μmの非腐食性フラックス粒子よりなるフラックス成分とを含有しており、上記ろう材成分と上記フラックス成分の配合比(フラックス成分重量/ろう材成分重量)が1.0のものを用いた。上記亜鉛合金粒子としては、Zn−5%Alを採用し、上記非腐食性フラックス粒子としては、CsF(mol%)/AlF3(mol%)=35:65のものを採用した。
In this example, in manufacturing this aluminum heat exchanger 1, each of the above components 11 to 13 is prepared in advance, and an assembly in which all components are assembled so as to have the same arrangement as the finished product is manufactured. Then, an attaching step for attaching a low melting point brazing material is performed.
In this example, the low melting point brazing material contains a brazing filler metal component made of zinc alloy particles having an average particle size of 20 μm and a flux component made of non-corrosive flux particles having an average particle size of 20 μm. The compounding ratio of the component and the flux component (flux component weight / brazing material component weight) was 1.0. As the zinc alloy particles, Zn-5% Al was adopted, and as the non-corrosive flux particles, CsF (mol%) / AlF 3 (mol%) = 35:65 was adopted.

付着工程では、上記構成の低融点ろう材をアルコール等の有機溶媒中に懸濁させた溶液を用いる。この溶液の濃度は、噴霧に適するよう適度に調整した。そして、組付体における上記各部品10〜13の表面に、室温において噴霧器を用いて噴霧することによって上記溶液を付着させた。   In the attaching step, a solution in which the low melting point brazing material having the above structure is suspended in an organic solvent such as alcohol is used. The concentration of this solution was appropriately adjusted to be suitable for spraying. And the said solution was made to adhere to the surface of said each components 10-13 in an assembly by spraying at room temperature using a sprayer.

次いで、上記組付体を室温よりも若干高め(60℃程度)に加熱して、上記低融点ろう材を含む溶液の溶媒を蒸発させた。
次に、上記組付体を加熱炉内に装入して、ろう材成分の融点を超えるろう付け温度に加熱するろう付け工程を行う。ろう付け工程は、ろう付け温度(加熱温度)を450℃、ろう付け時間(加熱時間)を1分間、加熱炉内雰囲気は大気雰囲気という条件で行った。
Subsequently, the assembly was heated slightly above room temperature (about 60 ° C.) to evaporate the solvent of the solution containing the low melting point brazing material.
Next, a brazing step is performed in which the assembly is charged into a heating furnace and heated to a brazing temperature exceeding the melting point of the brazing filler metal component. The brazing step was performed under the conditions that the brazing temperature (heating temperature) was 450 ° C., the brazing time (heating time) was 1 minute, and the atmosphere in the heating furnace was an air atmosphere.

上記ろう付け工程の結果、上記組付体の表面に付着していた低融点ろう材が各部品10〜13の間の接合に寄与し、図1に示す構成のアルミニウム熱交換器1が得られた。各部の接合強度は十分であった。   As a result of the brazing process, the low melting point brazing material adhering to the surface of the assembly contributes to the joining between the parts 10 to 13, and the aluminum heat exchanger 1 having the configuration shown in FIG. 1 is obtained. It was. The bonding strength of each part was sufficient.

このように、本例では、上記の低融点ろう材を用いて、460℃という低い温度でろう付け工程を行うことができる。即ち、一般的なアルミニウム熱交換器のAlろう材を用いたろう付け方法における600℃程度の加熱温度に比較して大幅に加熱温度を低くすることができる。それ故、アルミニウム熱交換器1の各部材10〜13が熱履歴によって強度低下することを抑制できると共に、加熱に必要なエネルギー使用量を低減することができる。   Thus, in this example, the brazing process can be performed at a temperature as low as 460 ° C. using the low melting point brazing material. That is, the heating temperature can be significantly lowered as compared with a heating temperature of about 600 ° C. in a brazing method using an Al brazing material of a general aluminum heat exchanger. Therefore, it is possible to suppress the strength reduction of the members 10 to 13 of the aluminum heat exchanger 1 due to the thermal history, and it is possible to reduce the amount of energy used for heating.

また、本例における低融点ろう材は、その成分の平均粒径を上記のごとく20μmに制御したものを用いた。これにより、上記付着工程における使用量を少なくしても均一な付着状態を得ることができる。それ故、低融点ろう材の使用量の低減による軽量化を図ることもできる。   Further, the low melting point brazing material in this example was one whose average particle size was controlled to 20 μm as described above. Thereby, even if it reduces the usage-amount in the said adhesion process, a uniform adhesion state can be obtained. Therefore, it is possible to reduce the weight by reducing the amount of low melting point brazing material used.

(実施例2)
本例では、上記実施例1において用いた低融点ろう材の組成等を変更すると共に、付着量を変更した場合の接合強度についての試験を行った。
まず、図2、図3に示すごとく、試験片21、22として、材質A3003、厚みT=5mm、幅W=20mm、長さL=80mmのアルミニウム合金板を準備した。そして、図2に示すごとく、一方の試験片21の長手方向端部に長さS=5mmの範囲に、有機溶媒に懸濁させた低融点ろう材5を塗装用ローラにより塗布した。
(Example 2)
In this example, the composition of the low melting point brazing material used in Example 1 was changed, and a test was conducted on the bonding strength when the amount of adhesion was changed.
First, as shown in FIGS. 2 and 3, as the test pieces 21 and 22, an aluminum alloy plate having a material A3003, a thickness T = 5 mm, a width W = 20 mm, and a length L = 80 mm was prepared. Then, as shown in FIG. 2, a low melting point brazing material 5 suspended in an organic solvent was applied to a longitudinal end portion of one test piece 21 in a range of length S = 5 mm by a coating roller.

次に、試験片21に塗布した低融点ろう材5から有機溶媒を蒸発させた後、図3に示すごとく、低融点ろう材5を挟持するように、試験片21と試験片22の端部同士を重ね合わせた。両者を合わせた長さL2は155mmである。そして、試験片21、22を、大気雰囲気中において450℃の温度に10分間加熱するろう付け工程を実施した。
次に、得られた接合体における両端を引っ張る引張試験による剪断強度測定を行った。
Next, after evaporating the organic solvent from the low melting point brazing material 5 applied to the test piece 21, as shown in FIG. 3, the end portions of the test piece 21 and the test piece 22 are sandwiched between the low melting point brazing material 5. Overlapping each other. The combined length L2 is 155 mm. And the brazing process which heats the test pieces 21 and 22 to the temperature of 450 degreeC in air | atmosphere for 10 minutes was implemented.
Next, shear strength measurement was performed by a tensile test in which both ends of the obtained joined body were pulled.

また、上記低融点ろう材としては、平均粒径20μm以下のZn−5%Alの粒子よりなるろう材成分と、平均粒径20μm以下であってCsF(mol%)/AlF3(mol%)=35:65のCsF−AlF3系非腐食性フラックス粒子をフラックス成分として含有するものを用いた。そして、上記ろう材成分と上記フラックス成分の配合比(フラックス成分重量/ろう材成分重量)を0.5〜2.0の範囲で変化させた。また、低融点ろう材5の付着量は、Zn換算厚さで30〜160μmの範囲で変化させた。 The low melting point brazing material includes a brazing filler metal component composed of Zn-5% Al particles having an average particle size of 20 μm or less, and CsF (mol%) / AlF 3 (mol%) having an average particle size of 20 μm or less. = 35: 65 CsF—AlF 3 non-corrosive flux particles were used as flux components. And the compounding ratio (flux component weight / brazing material component weight) of the brazing filler metal component and the flux component was changed in the range of 0.5 to 2.0. Moreover, the adhesion amount of the low melting-point brazing material 5 was changed in the range of 30 to 160 μm in terms of Zn.

試験結果を図4、図5に示す。
図4は、横軸に低融点ろう材の付着量(Zn換算厚さ、μm)をとり、縦軸にせん断強度(MPa)をとったものである。図5は、横軸にろう材成分とフラックス成分との配合比(フラックス成分重量/ろう材成分重量)をとり、縦軸にせん断強度(MPa)をとったものである。
The test results are shown in FIGS.
In FIG. 4, the horizontal axis represents the amount of low melting point brazing material (Zn equivalent thickness, μm), and the vertical axis represents shear strength (MPa). FIG. 5 shows the mixing ratio of the brazing filler metal component and the flux component (flux component weight / brazing filler component weight) on the horizontal axis and the shear strength (MPa) on the vertical axis.

図4より知られるごとく、せん断強度の好ましい範囲をおよそ30MPa程度以上として考察すると、低融点ろう材の付着量は、Zn換算厚さ(μm)において60〜150μmの範囲内とすることが好ましいことがわかる。また、上記配合比としては、1.0が最も好ましいことがわかる。一方、配合比を0.5まで低下させた場合には、付着量が少ない場合に若干せん断強度が30MPaを下回る場合がある。この点から、配合比0.5よりも若干配合比を高めて0.6以上程度にすることが好ましいことがわかる。また、配合比を2.0に高めても一応十分なせん断強度が得られることがわかる。   As can be seen from FIG. 4, when considering a preferable range of shear strength as about 30 MPa or more, the adhesion amount of the low melting point brazing material is preferably in the range of 60 to 150 μm in the Zn equivalent thickness (μm). I understand. Moreover, it turns out that 1.0 is the most preferable as said compounding ratio. On the other hand, when the blending ratio is reduced to 0.5, the shear strength may be slightly lower than 30 MPa when the adhesion amount is small. From this point, it can be seen that it is preferable to slightly increase the mixing ratio to about 0.6 or more than the mixing ratio of 0.5. It can also be seen that sufficient shear strength can be obtained even if the blending ratio is increased to 2.0.

図5より知られるごとく、せん断強度の好ましい範囲をおよそ30MPa程度以上として考察すると、上記配合比が1.0以上の場合には、付着量を30〜160μmの範囲で変化させても一応十分なせん断強度が得られることがわかる。一方、配合比を0.5まで低下させた場合には、付着量が60μm以下の場合に若干せん断強度が30MPaを下回る場合がある。
以上の図4、図5の結果を総合的に考えると、上記配合比は0.5まで下げずに、0.6以上2.0以下の範囲に収め、最も好ましくは1.0近傍とすることことが好ましく、また、上記付着量は、60μm〜150μmの範囲に収め、かつ、最も好ましくは100μm近傍とすることが好ましいことがわかる。
As can be seen from FIG. 5, considering the preferable range of the shear strength as about 30 MPa or more, if the blending ratio is 1.0 or more, it is sufficient even if the adhesion amount is changed in the range of 30 to 160 μm. It can be seen that shear strength can be obtained. On the other hand, when the blending ratio is reduced to 0.5, the shear strength may be slightly lower than 30 MPa when the adhesion amount is 60 μm or less.
Considering the results of FIG. 4 and FIG. 5 as a whole, the blending ratio is not lowered to 0.5, but is within the range of 0.6 or more and 2.0 or less, and most preferably around 1.0. It is also preferable that the adhesion amount is in the range of 60 μm to 150 μm, and most preferably in the vicinity of 100 μm.

(実施例3)
本例では、実施例1において用いた低融点ろう材における亜鉛合金粒子とフラックス粒子の粒径を変化させ、その塗布厚さばらつきを評価する試験を行った。
試験は、図6に示すごとく、有機溶媒に低融点ろう材5を懸濁させた溶液を、基準板8上に塗布し、その塗布ばらつきを測定するものである。塗布厚さ(Zn換算厚さ)はすべて100μmを目標として行った。また、ろう材の塗布は塗装用ローラで塗布するいう方法により行った。また、塗布ばらつきの測定は、図6に示すごとく、レーザ変位形を用いて膜厚の最大値から最小値の差Aを求めるという手順により行った。
(Example 3)
In this example, a test was performed in which the zinc alloy particles and the flux particles in the low melting point brazing material used in Example 1 were changed in size and the coating thickness variation was evaluated.
In the test, as shown in FIG. 6, a solution in which the low melting point brazing material 5 is suspended in an organic solvent is applied on the reference plate 8, and the application variation is measured. The coating thickness (Zn equivalent thickness) was all targeted at 100 μm. The brazing material was applied by a method of applying with a coating roller. In addition, as shown in FIG. 6, the application variation was measured by a procedure of obtaining a difference A between the maximum value and the minimum value using a laser displacement type.

また、用いた低融点ろう材における亜鉛合金粒子とフラックス粒子の粒径は、いずれも同じ程度の粒径のものの組み合わせとし、その平均粒径を10μmから100μmの範囲で変化させた。塗布ばらつきの大きさは、上述したZn換算厚さによって示した。
試験の結果を表1に示す。
表1には、低融点ろう材5の厚さ(Zn換算厚さ)100μmに対する塗布厚さばらつき(Zn換算厚さ)が30μm未満の場合が合格(○印)、30μm以上の場合を不合格(×印)として示した。
In addition, the particle diameters of the zinc alloy particles and the flux particles in the low melting point brazing material used were a combination of particles having the same particle diameter, and the average particle diameter was changed in the range of 10 μm to 100 μm. The magnitude of the coating variation was indicated by the above-described Zn equivalent thickness.
The test results are shown in Table 1.
Table 1 shows that the coating thickness variation (Zn equivalent thickness) of the low melting point brazing filler metal 5 with respect to the thickness (Zn equivalent thickness) 100 μm is less than 30 μm, pass (circle), and the case where it is 30 μm or more is rejected. (X mark).

Figure 0004641267
Figure 0004641267

表1より知られるごとく、低融点ろう材に含まれる亜鉛合金粒子とフラックス粒子の両方が平均粒径20μm以下の場合に、非常に均一な付着状態を得ることができるということがわかる。そして、このような低融点ろう材の均一な付着状態を得ることによって、低融点ろう材の使用量を少なくしても十分な接合強度を得ることができる。   As is known from Table 1, it can be seen that a very uniform adhesion state can be obtained when both the zinc alloy particles and the flux particles contained in the low melting point brazing material have an average particle diameter of 20 μm or less. And by obtaining such a uniform adhesion state of the low melting point brazing material, it is possible to obtain a sufficient bonding strength even if the amount of the low melting point brazing material is reduced.

実施例1における、アルミニウム熱交換器の構成を示す説明図。Explanatory drawing which shows the structure of the aluminum heat exchanger in Example 1. FIG. 実施例2における、試験片に低融点ろう材を付着させる領域を示す説明図。FIG. 3 is an explanatory view showing a region where a low melting point brazing material is adhered to a test piece in Example 2. 実施例2における、試験片の接合状態を示す説明図。FIG. 3 is an explanatory diagram showing a joined state of test pieces in Example 2. 実施例2における、低融点ろう材の付着量とせん断強度との関係を示す説明図。FIG. 6 is an explanatory diagram showing the relationship between the amount of low melting point brazing material attached and the shear strength in Example 2. 実施例2における、フラックス成分とろう材成分の配合比とせん断強度との関係を示す説明図。Explanatory drawing which shows the relationship between the compounding ratio of a flux component and a brazing filler metal component, and shear strength in Example 2. FIG. 実施例3における、塗布厚さばらつきを示す説明図。Explanatory drawing which shows the coating thickness dispersion | variation in Example 3. FIG.

符号の説明Explanation of symbols

1 アルミニウム熱交換器
10 チューブ
11 コルゲートフィン
12 冷媒入口パイプ
13 冷媒出口パイプ
21、22 試験片
DESCRIPTION OF SYMBOLS 1 Aluminum heat exchanger 10 Tube 11 Corrugated fin 12 Refrigerant inlet pipe 13 Refrigerant outlet pipe 21, 22 Test piece

Claims (5)

アルミニウム合金よりなる複数の部材を接合して構成されるアルミニウム熱交換器を製造する際に上記複数の部材間の接合に用いられる低融点ろう材であって、
平均粒径20μm以下の亜鉛合金粒子よりなるろう材成分と、
平均粒径20μm以下の非腐食性フラックス粒子よりなるフラックス成分とを含有しており、
上記ろう材成分と上記フラックス成分の配合比(フラックス成分重量/ろう材成分重量)が0.6〜2.0であることを特徴とするアルミニウム熱交換器用の低融点ろう材。
A low melting point brazing material used for joining between the plurality of members when producing an aluminum heat exchanger configured by joining a plurality of members made of an aluminum alloy,
A brazing filler metal component comprising zinc alloy particles having an average particle size of 20 μm or less;
A flux component composed of non-corrosive flux particles having an average particle size of 20 μm or less,
A low melting point brazing material for an aluminum heat exchanger, wherein a blending ratio (flux component weight / brazing material component weight) of the brazing filler metal component and the flux component is 0.6 to 2.0.
請求項1において、上記亜鉛合金粒子は、質量%において、Al:2〜6%、残部がZn及び不可避的不純物よりなることを特徴とするアルミニウム熱交換器用の低融点ろう材。   2. The low melting point brazing material for an aluminum heat exchanger according to claim 1, wherein the zinc alloy particles comprise, in mass%, Al: 2 to 6%, the balance being Zn and inevitable impurities. 請求項1又は2において、上記非腐食性フラックス粒子は、CsFとAlF3の混合組成物からなり、混合比CsF(mol%)/AlF3(mol%)は、1.0〜1.2であることを特徴とするアルミニウム熱交換器用の低融点ろう材。 According to claim 1 or 2, the non-corrosive flux particles consist of a mixture composition of CsF and AlF 3, the mixing ratio CsF (mol%) / AlF 3 (mol%) is a 1.0 to 1.2 A low melting point brazing material for an aluminum heat exchanger, アルミニウム合金よりなる複数の部材を接合して構成されるアルミニウム熱交換器の製造方法であって、
上記複数の部材のうち少なくとも1つの部材に低融点ろう材を付着させ、該低融点ろう材に含有されるろう材成分の融点を超えるろう付け温度に加熱することにより、上記複数の部材間をろう付け接合するに当たり、上記低融点ろう材として請求項1〜3のいずれか1項に記載の低融点ろう材を用いることを特徴とするアルミニウム熱交換器の製造方法。
A method of manufacturing an aluminum heat exchanger configured by joining a plurality of members made of an aluminum alloy,
By attaching a low melting point brazing material to at least one member of the plurality of members and heating to a brazing temperature that exceeds the melting point of the brazing material component contained in the low melting point brazing material, A method for producing an aluminum heat exchanger, wherein the low melting point brazing material according to any one of claims 1 to 3 is used as the low melting point brazing material in brazing and joining.
請求項4において、上記ろう付け温度は450℃以下であることを特徴とするアルミニウム熱交換器の製造方法。  The method for manufacturing an aluminum heat exchanger according to claim 4, wherein the brazing temperature is 450 ° C or lower.
JP2006040455A 2006-02-17 2006-02-17 Low melting point brazing material for aluminum heat exchanger and method for producing aluminum heat exchanger Expired - Fee Related JP4641267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040455A JP4641267B2 (en) 2006-02-17 2006-02-17 Low melting point brazing material for aluminum heat exchanger and method for producing aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040455A JP4641267B2 (en) 2006-02-17 2006-02-17 Low melting point brazing material for aluminum heat exchanger and method for producing aluminum heat exchanger

Publications (2)

Publication Number Publication Date
JP2007216267A JP2007216267A (en) 2007-08-30
JP4641267B2 true JP4641267B2 (en) 2011-03-02

Family

ID=38494068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040455A Expired - Fee Related JP4641267B2 (en) 2006-02-17 2006-02-17 Low melting point brazing material for aluminum heat exchanger and method for producing aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JP4641267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331278A (en) * 2020-03-26 2020-06-26 中机智能装备创新研究院(宁波)有限公司 High-corrosion-resistance Zn-Al solder powder, solder paste and preparation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079003A (en) * 2009-10-05 2011-04-21 Nichirin Co Ltd Method of brazing plated product
JP2011230162A (en) * 2010-04-28 2011-11-17 Kobe Steel Ltd Method of joining aluminum materials
JP2015078789A (en) * 2013-10-16 2015-04-23 三菱電機株式会社 Heat exchanger and air conditioning device including heat exchanger
JP5992499B2 (en) * 2014-12-22 2016-09-14 株式会社神戸製鋼所 Method for joining aluminum materials used in power devices
CN113732422B (en) * 2021-09-23 2022-12-13 郑州机械研究所有限公司 Brazing flux-free brazing method and brazing filler metal paste for aluminum alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111794A (en) * 1984-11-06 1986-05-29 Mitsubishi Alum Co Ltd Brazing auxiliary
JP2000117484A (en) * 1998-10-19 2000-04-25 Senko Kinzoku:Kk Seamless ring-shaped brazing material and manufacture thereof
JP2001138038A (en) * 1999-11-17 2001-05-22 Yuichiro Asano Method for blazing aluminum member and copper or stainless steel member
JP2001293593A (en) * 2000-02-17 2001-10-23 Toyo Aluminium Kk Pasty composition for aluminum brazing, coating film thereof and brazing method
JP2005111527A (en) * 2003-10-08 2005-04-28 Denso Corp Aluminum-made heat exchanger manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111794A (en) * 1984-11-06 1986-05-29 Mitsubishi Alum Co Ltd Brazing auxiliary
JP2000117484A (en) * 1998-10-19 2000-04-25 Senko Kinzoku:Kk Seamless ring-shaped brazing material and manufacture thereof
JP2001138038A (en) * 1999-11-17 2001-05-22 Yuichiro Asano Method for blazing aluminum member and copper or stainless steel member
JP2001293593A (en) * 2000-02-17 2001-10-23 Toyo Aluminium Kk Pasty composition for aluminum brazing, coating film thereof and brazing method
JP2005111527A (en) * 2003-10-08 2005-04-28 Denso Corp Aluminum-made heat exchanger manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331278A (en) * 2020-03-26 2020-06-26 中机智能装备创新研究院(宁波)有限公司 High-corrosion-resistance Zn-Al solder powder, solder paste and preparation method

Also Published As

Publication number Publication date
JP2007216267A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP6253212B2 (en) Tube for heat exchanger assembly configuration
TWI322736B (en) Thermal spray application of brazing material for manufacture of heat transfer devices
JP4641267B2 (en) Low melting point brazing material for aluminum heat exchanger and method for producing aluminum heat exchanger
JP5906113B2 (en) Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger
US20070251410A1 (en) Method For Reducing Metal Oxide Powder And Attaching It To A Heat Transfer Surface And The Heat Transfer Surface
CN104822855B (en) Aluminum alloy clad sheet and by the heat exchanger is assembled into by the pipe is molded with by the covering material
JP2005111527A (en) Aluminum-made heat exchanger manufacturing method
JP2010075965A (en) Compound material for brazing
CN107107273B (en) Multi-layer aluminum brazing sheet material
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
JP2003053523A (en) Heat exchanger and its manufacturing method
JP2010075966A (en) Compound material for brazing
WO2005118912A1 (en) Method for attaching metal powder to a heat transfer surface and the heat transfer surface
JP5485539B2 (en) Method for producing heat exchanger member and heat exchanger member
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
JP6226642B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure
JP4248433B2 (en) Method for brazing Mg-containing aluminum alloy material
JP2010112671A (en) Method of manufacturing tube for heat exchanger
JP2005207728A (en) Heat exchanger and manufacturing method therefor
JP2016035368A (en) Aluminum alloy heat exchanger, and method for manufacturing the same
JP2002172485A (en) Aluminum extrusion multi-hole pipe for brazing excellent in corrosion resistance
JP3356856B2 (en) Anticorrosion aluminum material for brazing and method for producing the same
JPH11291028A (en) Manufacture of metal covering with brazing filler metal
WO2020196740A1 (en) Brazing tube, method for manufacturing same, and heat exchanger
JP6184804B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101103

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees