JP4640279B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP4640279B2
JP4640279B2 JP2006194997A JP2006194997A JP4640279B2 JP 4640279 B2 JP4640279 B2 JP 4640279B2 JP 2006194997 A JP2006194997 A JP 2006194997A JP 2006194997 A JP2006194997 A JP 2006194997A JP 4640279 B2 JP4640279 B2 JP 4640279B2
Authority
JP
Japan
Prior art keywords
injection
fuel
injection rate
fuel injection
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006194997A
Other languages
Japanese (ja)
Other versions
JP2008025345A (en
Inventor
摩島  嘉裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006194997A priority Critical patent/JP4640279B2/en
Priority to DE102007000379A priority patent/DE102007000379B4/en
Publication of JP2008025345A publication Critical patent/JP2008025345A/en
Application granted granted Critical
Publication of JP4640279B2 publication Critical patent/JP4640279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0059Arrangements of valve actuators
    • F02M63/0064Two or more actuators acting on two or more valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、内燃機関の燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device for an internal combustion engine.

ディーゼルエンジン等の内燃機関に対して燃料を噴射供給する技術として、コモンレール等の蓄圧配管を用いて高圧燃料を蓄えるとともに、その高圧燃料をインジェクタに給送して内燃機関に噴射供給する蓄圧式燃料噴射装置が知られている。また、内燃機関における燃料の燃焼状態を良化すべくインジェクタの噴射態様を種々変更することも提案されている(例えば、特許文献1,特許文献2参照)。具体的には、燃料噴射パターンを切り替えることで噴射率等を適宜変更し、マルチ噴射、ブーツ噴射、矩形噴射(台形噴射とも言う)等を実現する技術がある。   As a technology for injecting and supplying fuel to an internal combustion engine such as a diesel engine, an accumulator fuel that stores high-pressure fuel using an accumulator piping such as a common rail, and supplies the high-pressure fuel to an injector and injects it into the internal combustion engine. Injectors are known. It has also been proposed to variously change the injection mode of the injector in order to improve the combustion state of the fuel in the internal combustion engine (see, for example, Patent Document 1 and Patent Document 2). Specifically, there is a technique for appropriately changing the injection rate by switching the fuel injection pattern to realize multi-injection, boot injection, rectangular injection (also referred to as trapezoidal injection), and the like.

ここで、噴射波形を矩形化した矩形噴射によれば、噴射開始直後における噴射率の立ち上がりを比較的急峻なものとすることができ、その矩形噴射により噴霧の微粒化が促進される。また、インジェクタによる噴射開始直後には、噴口を開閉するためのニードル弁が全開位置に達するまでの過程で一時的に噴霧粒径が大きくなることが懸念されるが、矩形噴射を行うことにより、噴霧粒径の拡大を極力抑えることが可能となる。
特開平5−321732号公報 特開2004−44493号公報
Here, according to the rectangular injection in which the injection waveform is rectangular, the rise of the injection rate immediately after the start of injection can be made relatively steep, and atomization of the spray is promoted by the rectangular injection. Also, immediately after the start of injection by the injector, there is a concern that the spray particle size temporarily increases in the process until the needle valve for opening and closing the nozzle reaches the fully open position, but by performing rectangular injection, It becomes possible to suppress the enlargement of the spray particle size as much as possible.
Japanese Patent Laid-Open No. 5-321732 JP 2004-44493 A

上記したように、燃料噴射の矩形化により、筒内における燃焼状態を良化することができる。しかしながら、例えば内燃機関において筒内の新気導入量は都度のEGR率等に応じて変動し、それに伴い筒内において燃料量と新気導入量とのバランスが崩れることが考えられる。そして、燃料量と新気導入量とのバランスが崩れることに起因して、燃焼状態の悪化が生じるおそれがあった。   As described above, the combustion state in the cylinder can be improved by making the fuel injection rectangular. However, for example, in an internal combustion engine, the amount of fresh air introduced into the cylinder fluctuates according to the EGR rate and the like, and accordingly, the balance between the amount of fuel and the amount of fresh air introduced in the cylinder may be lost. In addition, the balance between the fuel amount and the fresh air introduction amount is lost, which may cause deterioration of the combustion state.

本発明は、筒内における燃料量と新気量とのバランスを適正に保ち、ひいては良好なる筒内燃焼を実現することができる内燃機関の燃料噴射制御装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide a fuel injection control device for an internal combustion engine that can maintain an appropriate balance between the amount of fuel in the cylinder and the amount of fresh air, and thus achieve good in-cylinder combustion. It is.

以下、上記課題を解決するための手段、及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

本発明では、噴口を開閉するための弁部材と、該弁部材を開閉駆動するための駆動部としてのソレノイドとを有してなる燃料噴射弁を駆動対象とし、燃料噴射弁による燃料噴射の開始当初に前記ソレノイドに対して初期動作エネルギを供給するとともに、該初期動作エネルギの供給に引き続き、前記ソレノイドに対して燃料噴射弁の開弁状態を保持する開弁保持エネルギを供給するようにして燃料噴射制御を行うものであり、前記初期動作エネルギの供給に際し、前記弁部材の始動のための初期ピーク電流を前記ソレノイドに流すとともに同弁部材が全開位置に達するまでの期間でその開弁速度を維持するための開弁速度維持電流を流し、その後の前記開弁保持エネルギの供給に際し、前記弁部材の開弁状態を保持するための開弁状態保持電流を流すようにしている。そして特に、請求項1に記載の発明では、初期動作エネルギの供給に際し、内燃機関の運転状態パラメータに基づいて、前記開弁速度維持電流を増減調整することで噴射開始直後における噴射率の変化勾配を制御する。 In the present invention, a fuel injection valve having a valve member for opening and closing the nozzle and a solenoid as a drive unit for opening and closing the valve member is a driving target, and fuel injection by the fuel injection valve is started. The initial operating energy is supplied to the solenoid initially, and the supply of valve opening holding energy for holding the valve open state of the fuel injection valve is supplied to the solenoid following the supply of the initial operating energy. When supplying the initial operating energy, the initial peak current for starting the valve member is supplied to the solenoid and the valve opening speed is adjusted until the valve member reaches the fully open position. A valve-opening state maintaining current for maintaining the valve-opening state of the valve member when supplying the valve-opening holding energy after supplying a valve-opening speed maintaining current for maintaining the valve-opening holding energy. So that flow. In particular, according to the first aspect of the present invention, when the initial operating energy is supplied, the change rate of the injection rate immediately after the start of injection is adjusted by increasing or decreasing the valve opening speed maintaining current based on the operating state parameter of the internal combustion engine. To control.

要するに、内燃機関の運転状態が相違すると、内燃機関の筒内(燃焼室内)における空気導入の様相等が変わり、その影響で燃焼状態も変動することが考えられる。この場合、初期動作エネルギの供給に際し、噴射開始直後における噴射率の変化勾配が一定であると、筒内に噴射供給される燃料量と筒内に導入される新気量(筒内酸素濃度)とのバランスが崩れ、燃焼状態が悪化するおそれが生じる。この点本発明では、内燃機関の都度の運転状態に応じて、噴射開始直後における噴射率の変化勾配が可変となるため、筒内における燃料量と新気量とのバランスが適正に保たれ、ひいては良好なる筒内燃焼を実現することができる。
また、前記開弁速度維持電流を増減調整することで、噴射開始直後における噴射率の変化勾配を制御するため、開弁速度維持電流の増減させることで弁部材の開弁速度が低速又は高速となり、これにより噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。
より具体的な構成としては、燃料噴射弁用の駆動回路に、ソレノイドに対して開弁速度維持電流を供給するための定電流回路を設け、その定電流回路の定電流出力を可変とする。そして、都度要求される噴射率の変化勾配に応じて、定電流回路からの定電流出力(開弁速度維持電流)を増加又は減少させると良い。
また、請求項2に記載したように、前記開弁速度維持電流に加え、前記初期ピーク電流を増減調整することで、噴射開始直後における噴射率の変化勾配を制御すると良い。本構成では、初期ピーク電流を増減させることで弁部材の初期開弁速度が低速又は高速となり、噴射開始直後における噴射率制御をより精密に行うことができる。
より具体的な構成としては、燃料噴射弁用の駆動回路に、ソレノイドに対して初期ピーク電流を供給するためのコンデンサと、初期ピーク電流の放電後に同コンデンサを充電する充電回路(充電コイル等)を設け、そのコンデンサの充電電流を可変とする。そして、都度要求される噴射率の変化勾配に応じて、コンデンサからソレノイドへの通電量(初期ピーク電流)を増加又は減少させると良い。
In short, if the operating state of the internal combustion engine is different, the state of air introduction or the like in the cylinder (combustion chamber) of the internal combustion engine may change, and the combustion state may also fluctuate due to the influence. In this case, when supplying the initial operating energy, if the gradient of change in the injection rate immediately after the start of injection is constant, the amount of fuel injected and supplied into the cylinder and the amount of fresh air introduced into the cylinder (in-cylinder oxygen concentration) And the balance may be lost, and the combustion state may deteriorate. In this respect, according to the present invention, the gradient of change in the injection rate immediately after the start of injection becomes variable depending on the operating state of the internal combustion engine, so that the balance between the fuel amount in the cylinder and the fresh air amount is properly maintained, As a result, good in-cylinder combustion can be realized.
In addition, by adjusting the valve opening speed maintenance current to increase or decrease, the change rate of the injection rate immediately after the start of injection is controlled, so that the valve opening speed of the valve member becomes low or high by increasing or decreasing the valve opening speed maintenance current. Thereby, the change gradient of the injection rate immediately after the start of injection can be controlled as desired.
As a more specific configuration, a constant current circuit for supplying a valve opening speed maintaining current to the solenoid is provided in the drive circuit for the fuel injection valve, and the constant current output of the constant current circuit is variable. And it is good to increase or decrease the constant current output (valve opening speed maintenance current) from a constant current circuit according to the change gradient of the injection rate requested | required each time.
Further, as described in claim 2, in addition to the valve opening speed maintaining current, the change rate of the injection rate immediately after the start of injection may be controlled by adjusting the initial peak current to increase or decrease. In this configuration, by increasing or decreasing the initial peak current, the initial valve opening speed of the valve member becomes low or high, and the injection rate control immediately after the start of injection can be performed more precisely.
As a more specific configuration, a capacitor for supplying an initial peak current to a solenoid to a drive circuit for a fuel injection valve, and a charging circuit (charging coil, etc.) for charging the capacitor after the initial peak current is discharged And the charging current of the capacitor is variable. Then, it is preferable to increase or decrease the energization amount (initial peak current) from the capacitor to the solenoid in accordance with the required change rate of the injection rate.

なお、燃料噴射弁において弁部材の変位に追従して噴射率が変化することを考えると、「噴射開始直後における噴射率の変化勾配」は、燃料噴射弁(弁部材)の開弁応答性として言い換えることもできる。   In consideration of the change in the injection rate following the displacement of the valve member in the fuel injection valve, “the change rate of the injection rate immediately after the start of injection” is the valve opening response of the fuel injection valve (valve member). In other words.

例えば、筒内への新気導入が少ない場合において、その新気導入量に対して噴射開始直後における噴射率の変化勾配が急峻であると(すなわち、噴射率の立ち上がり変化が速いと)、噴射開始直後において一時的に燃料過多の状態となり、燃焼状態の悪化を招く。また逆に、筒内への新気導入が多い場合において、その新気導入量に対して噴射開始直後における噴射率の変化勾配が緩慢であると(すなわち、噴射率の立ち上がり変化が遅いと)、噴射開始直後において一時的に酸素過多の状態となり、やはり燃焼状態の悪化を招く。   For example, when the introduction of fresh air into the cylinder is small and the change rate of the injection rate immediately after the start of injection is steep with respect to the amount of fresh air introduced (that is, when the rise rate of the injection rate rises rapidly), the injection Immediately after the start, the fuel temporarily becomes excessive, resulting in deterioration of the combustion state. Conversely, when there is a large amount of fresh air introduced into the cylinder, if the gradient of change in the injection rate immediately after the start of injection is slow with respect to the amount of fresh air introduced (that is, if the rise rate of the injection rate is slow). Immediately after the start of injection, the state temporarily becomes excessively oxygen, which also causes deterioration of the combustion state.

そこで、請求項に記載したように、都度の新気導入量に関わる新気導入パラメータを前記運転状態パラメータとして取得し、その新気導入パラメータに基づいて噴射率制御を行うと良い。この場合、新気導入量に応じて噴射率の変化勾配を増加又は減少させることにより、噴射開始直後において筒内への燃料供給量と新気導入量とのバランスを適正に保ち、燃焼状態の改善を図ることができる。 Therefore, as described in claim 3, it is preferable to acquire a fresh air introduction parameter related to a fresh air introduction amount as the operating state parameter and perform injection rate control based on the fresh air introduction parameter. In this case, by increasing or decreasing the gradient of change in the injection rate in accordance with the amount of fresh air introduced, the balance between the amount of fuel supplied into the cylinder and the amount of fresh air introduced is maintained immediately after the start of injection, and the combustion state Improvements can be made.

新気導入量の変動要因としては、EGR率の変化や過給圧の変化等が考えられる。そこで、請求項に記載したように、EGR装置によるEGR率を前記新気導入パラメータとして取得し、都度のEGR率が大きいほど、噴射開始直後の噴射率の変化勾配を小さくする(変化勾配を寝かせる)ようにして噴射率制御を行うと良い。 As a variation factor of the fresh air introduction amount, a change in the EGR rate, a change in the supercharging pressure, or the like can be considered. Therefore, as described in claim 4 , the EGR rate by the EGR device is acquired as the fresh air introduction parameter, and the change gradient of the injection rate immediately after the start of injection is reduced as the EGR rate is increased each time (the change gradient is changed). It is better to control the injection rate in such a way as to lie down.

又は、請求項に記載したように、過給装置による過給圧を前記新気導入パラメータとして取得し、都度の過給圧が小さいほど、噴射開始直後の噴射率の変化勾配を小さくする(変化勾配を寝かせる)ようにして噴射率制御を行うと良い。 Alternatively, as described in claim 5 , the supercharging pressure by the supercharging device is acquired as the fresh air introduction parameter, and the smaller the supercharging pressure is, the smaller the gradient of change in the injection rate immediately after the start of injection ( The injection rate control is preferably performed in such a manner that the change gradient is laid down.

つまり、EGR率が大きい場合、又は過給圧が小さい場合には、筒内への新気導入量が少なくなると考えられる。こうした場合において、噴射開始直後の噴射率の変化勾配を寝かせる(すなわち、噴射率変化を遅くする)ことにより、筒内の新気を最大限利用でき、上記のとおり燃焼状態の改善を図ることができる。   That is, when the EGR rate is large or when the supercharging pressure is small, it is considered that the amount of fresh air introduced into the cylinder decreases. In such a case, by laying down the gradient of change in the injection rate immediately after the start of injection (that is, slowing down the change in injection rate), the fresh air in the cylinder can be utilized to the maximum, and the combustion state can be improved as described above. it can.

内燃機関では、その回転速度に依存して筒内の空気流動や充填効率が変化する。そこで、請求項に記載したように、内燃機関の回転速度を前記運転状態パラメータとして取得し、都度の機関回転速度が小さいほど、噴射開始直後の噴射率の変化勾配を小さくする(変化勾配を寝かせる)ようにして噴射率制御を行うと良い。これにより、筒内の空気流動や充填効率の変化を考慮した噴射率制御が実現でき、燃焼状態の更なる良化が可能となる。 In an internal combustion engine, the air flow in the cylinder and the charging efficiency vary depending on the rotational speed. Therefore, as described in claim 6 , the rotational speed of the internal combustion engine is acquired as the operating state parameter, and the smaller the engine rotational speed is, the smaller the gradient of change in the injection rate immediately after the start of injection (the change gradient is reduced). It is better to control the injection rate in such a way as to lie down. Thereby, the injection rate control in consideration of the air flow in the cylinder and the change in the charging efficiency can be realized, and the combustion state can be further improved.

また、燃料圧力に応じて、供給噴霧のペネトレーションや拡散度合いが変化する。そこで、請求項に記載したように、燃料噴射弁に供給される燃料の圧力を前記運転状態パラメータとして取得し、都度の燃料圧力が小さいほど、噴射開始直後の噴射率の変化勾配を小さくする(変化勾配を寝かせる)ようにして噴射率制御を行うと良い。これにより、供給噴霧のペネトレーションや拡散度合いの変化を考慮した噴射率制御が実現でき、燃焼状態の更なる良化が可能となる。 Further, the penetration and diffusion degree of the supply spray change according to the fuel pressure. Therefore, as described in claim 7 , the pressure of the fuel supplied to the fuel injection valve is acquired as the operating state parameter, and the change gradient of the injection rate immediately after the start of injection is reduced as the fuel pressure is reduced each time. It is preferable to perform the injection rate control in such a manner that the change gradient is laid down. Thereby, the injection rate control in consideration of the penetration of the supply spray and the change in the diffusion degree can be realized, and the combustion state can be further improved.

また、燃料噴射量が相違すると、筒内での燃焼に要する空気量も相違する。そこで、請求項に記載したように、燃料噴射弁による燃料噴射量を前記運転状態パラメータとして取得し、都度の燃料噴射量が少ないほど、噴射開始直後の噴射率の変化勾配を小さくする(変化勾配を寝かせる)ようにして噴射率制御を行うと良い。これにより、都度の燃料噴射量に見合った噴射率制御が実現できる。 Further, when the fuel injection amount is different, the amount of air required for combustion in the cylinder is also different. Therefore, as described in claim 8 , the fuel injection amount by the fuel injection valve is acquired as the operation state parameter, and the smaller the fuel injection amount in each case, the smaller the change gradient of the injection rate immediately after the start of injection (change) It is preferable to control the injection rate in such a manner that the gradient is laid down. Thereby, the injection rate control commensurate with the fuel injection amount can be realized.

また、初期動作エネルギの供給途中においてそのエネルギ供給を一時的に休止させることで、噴射開始直後における噴射率の変化勾配を制御するようにしてもよい。この場合、初期動作エネルギの供給を一時的に休止させると、噴射開始直後における噴射率の変化勾配が緩慢なものとなる。これにより、噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。 In addition, by temporarily pause its energy supply in the middle the supply of initial operating energy, may be controlled gradient change of the injection rate immediately after the injection start. In this case, if the supply of the initial operating energy is temporarily stopped, the change gradient of the injection rate immediately after the start of injection becomes slow. Thereby, the change gradient of the injection rate immediately after the start of injection can be controlled as desired.

ここで、燃料噴射弁として、弁部材を閉弁状態で保持すべく同弁部材に作用する高圧燃料を溜める圧力制御室と、その圧力制御室に通じる燃料排出通路とを有し、前記駆動部に対するエネルギの供給態様に応じて前記燃料排出通路を介しての高圧燃料の排出状況が可変とされるものがある。同燃料噴射弁では、高圧燃料の排出状況(すなわち、圧力制御室内の圧力低下の速さ)が可変とされることで、弁部材の応答性が変わり、それに伴い噴射率の変化勾配が変更できるものとなっている。かかる燃料噴射弁を用いた構成では、前記駆動部に対するエネルギ供給態様を変更することで、噴射開始直後における噴射率の変化勾配を制御すると良い。これにより、噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。 Here, the fuel injection valve has a pressure control chamber for storing high-pressure fuel acting on the valve member to hold the valve member in a closed state, and a fuel discharge passage communicating with the pressure control chamber, and the drive unit In some cases, the discharge state of the high-pressure fuel through the fuel discharge passage is variable depending on the energy supply mode. In the fuel injection valve, the discharge state of high-pressure fuel (that is, the speed of pressure drop in the pressure control chamber) is made variable, so that the responsiveness of the valve member changes, and the change rate of the injection rate can be changed accordingly. It has become a thing. In the configuration using such fuel injection valve, by changing the energy supply mode for the previous SL driver, it may control the change gradient of the injection rate immediately after the injection start. Thereby, the change gradient of the injection rate immediately after the start of injection can be controlled as desired.

また、燃料噴射弁として、前記燃料排出通路を複数有するとともに、前記駆動部として複数の燃料排出通路を各々個別に開閉する複数のソレノイドを有するものがある。かかる構成では、複数のソレノイドのうちいずれを通電するかを変更することで、噴射開始直後における噴射率の変化勾配を制御すると良い。この場合、複数のソレノイドのうちいずれを通電するかによって、どの燃料排出通路を通じて高圧燃料が排出されるか(幾つの燃料排出通路を通じて高圧燃料が排出されるか、を含む)が切り替えられ、それによって噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。 Further, as the fuel injection valve, which has a plurality of said fuel discharge passage, Ru Monogaa having a plurality of solenoids for each individual opening and closing a plurality of fuel discharge passage as said drive unit. In such a configuration, it is preferable to control the change gradient of the injection rate immediately after the start of injection by changing which of the plurality of solenoids is energized. In this case, depending on which of the plurality of solenoids is energized, through which fuel discharge passage high pressure fuel is discharged (including how many fuel discharge passages high pressure fuel is discharged) is switched. Thus, the change gradient of the injection rate immediately after the start of injection can be controlled as desired.

さらに、同じく燃料噴射弁として、複数の燃料排出通路が、それぞれ孔径が異なる複数のオリフィスにより構成されるものがある。かかる構成では、噴射開始直後における噴射率の変化勾配を大きくする場合に、複数のオリフィスのうち大径オリフィスに対応するソレノイドに対して通電を行わせ、噴射開始直後における噴射率の変化勾配を小さくする場合に、複数のオリフィスのうち小径オリフィスに対応するソレノイドに対して通電を行わせると良い。この場合、大径オリフィス側/小径オリフィス側のいずれのソレノイドを通電するかによって、圧力制御室内の圧力低下の速さが切り替えられ、それによって噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。 Furthermore, as also the fuel injection valves, a plurality of fuel discharge passage, Ru Monogaa pore size each of which is composed of a plurality of different orifices. In such a configuration, when increasing the gradient of change in the injection rate immediately after the start of injection, the solenoid corresponding to the large-diameter orifice among the plurality of orifices is energized to reduce the gradient of change in the injection rate immediately after the start of injection. In this case, it is preferable to energize the solenoid corresponding to the small-diameter orifice among the plurality of orifices. In this case, the speed of the pressure drop in the pressure control chamber is switched depending on which solenoid on the large-diameter orifice side or small-diameter orifice side is energized, thereby controlling the change rate gradient of the injection rate immediately after the start of injection as desired. can do.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態では、車両用の多気筒ディーゼルエンジンを制御対象にしてエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢としてエンジンの各種制御が実施される。先ずは、図1を用いてエンジン制御システムの概略を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. In the present embodiment, an engine control system is constructed by using a multi-cylinder diesel engine for vehicles as a control target. In the control system, various control of the engine is performed with an electronic control unit (hereinafter referred to as ECU) as a center. Is done. First, the outline of the engine control system will be described with reference to FIG.

エンジン10においてはコモンレール式燃料噴射システムが採用されており、先ずは当該燃料噴射システムについて説明する。すなわち、エンジン本体11には気筒ごとに電磁駆動式のインジェクタ(燃料噴射弁)12が設けられている。インジェクタ12は各気筒共通のコモンレール(蓄圧配管)13に接続されている。コモンレール13には燃料供給ポンプとしての高圧ポンプ14が接続され、高圧ポンプ14の駆動に伴い噴射圧相当の高圧燃料がコモンレール13に連続的に蓄圧される。高圧ポンプ14はエンジン10の回転に伴い駆動され、エンジン回転に同期して燃料の吸入及び吐出が繰り返し行われる。高圧ポンプ14には、その燃料吸入部に吸入調量弁(SCV)14aが設けられており、図示しない燃料タンクから汲み上げられた低圧燃料が吸入調量弁14aを介して当該ポンプ14の燃料室に吸入される。コモンレール13にはコモンレール圧センサ13aが設けられており、このコモンレール圧センサ13aによりコモンレール13内の燃料圧(実レール圧)が検出される。   The engine 10 employs a common rail fuel injection system. First, the fuel injection system will be described. That is, the engine body 11 is provided with an electromagnetically driven injector (fuel injection valve) 12 for each cylinder. The injector 12 is connected to a common rail (pressure accumulation pipe) 13 common to each cylinder. A high pressure pump 14 as a fuel supply pump is connected to the common rail 13, and high pressure fuel corresponding to the injection pressure is continuously accumulated in the common rail 13 as the high pressure pump 14 is driven. The high-pressure pump 14 is driven as the engine 10 rotates, and fuel is repeatedly sucked and discharged in synchronization with the engine rotation. The high-pressure pump 14 is provided with a suction metering valve (SCV) 14a at its fuel suction portion, and low-pressure fuel pumped from a fuel tank (not shown) is connected to the fuel chamber of the pump 14 via the suction metering valve 14a. Inhaled. The common rail 13 is provided with a common rail pressure sensor 13a, and the fuel pressure (actual rail pressure) in the common rail 13 is detected by the common rail pressure sensor 13a.

エンジン本体11には、吸気管(マニホールド部分を含む)15と排気管(マニホールド部分を含む)16とが接続されており、吸気管15には吸気圧センサ17が設けられている。また、吸気管15には、スロットルバルブ18aを有するスロットルアクチュエータ18が設けられている。吸気管15と排気管16とはEGR通路20により接続されており、そのEGR通路20にはEGRクーラ21とEGR弁22とが設けられている。   An intake pipe (including a manifold part) 15 and an exhaust pipe (including a manifold part) 16 are connected to the engine body 11, and an intake pressure sensor 17 is provided in the intake pipe 15. The intake pipe 15 is provided with a throttle actuator 18 having a throttle valve 18a. The intake pipe 15 and the exhaust pipe 16 are connected by an EGR passage 20, and an EGR cooler 21 and an EGR valve 22 are provided in the EGR passage 20.

また、本システムには、過給装置としてターボチャージャ24が設けられている。ターボチャージャ24は、吸気管15に設けられた吸気コンプレッサ25と、排気管16に設けられた排気タービン26とを有しており、排気管16を流れる排気によって排気タービン26が回転し、その回転力がシャフト(図示略)を介して吸気コンプレッサ25に伝達される。そして、吸気コンプレッサ25により、吸気管15内を流れる吸入空気が圧縮されて過給が行われる。ターボチャージャ24にて過給された空気は、インタークーラ27によって冷却された後、吸気管15の下流側に給送される。   Further, in this system, a turbocharger 24 is provided as a supercharging device. The turbocharger 24 has an intake air compressor 25 provided in the intake pipe 15 and an exhaust turbine 26 provided in the exhaust pipe 16. The exhaust turbine 26 rotates by the exhaust gas flowing through the exhaust pipe 16, and the rotation thereof. The force is transmitted to the intake compressor 25 via a shaft (not shown). Then, the intake air flowing in the intake pipe 15 is compressed by the intake compressor 25 and supercharging is performed. The air supercharged by the turbocharger 24 is cooled by the intercooler 27 and then fed to the downstream side of the intake pipe 15.

吸気管15において、吸気コンプレッサ25の上流側には吸入空気量を検出するエアフロメータ28が設けられ、その最上部にはエアクリーナ29が設けられている。また、排気管16において排気タービン26よりも下流側には、排気浄化装置としてのDPF(ディーゼルパティキュレートフィルタ)31が設置されており、このDPF31によって排気中のPM(パティキュレートマター)が捕集される。なお、排気管16には、DPF31以外に、酸化触媒やNOx触媒等の排気浄化装置、酸素濃度センサ、排気温度センサなどが適宜設けられるが、ここではその説明を省略する。   In the intake pipe 15, an air flow meter 28 for detecting the intake air amount is provided upstream of the intake compressor 25, and an air cleaner 29 is provided at the uppermost portion thereof. In addition, a DPF (diesel particulate filter) 31 as an exhaust purification device is installed downstream of the exhaust turbine 26 in the exhaust pipe 16, and PM (particulate matter) in the exhaust is collected by the DPF 31. Is done. In addition to the DPF 31, the exhaust pipe 16 is appropriately provided with an exhaust purification device such as an oxidation catalyst or a NOx catalyst, an oxygen concentration sensor, an exhaust temperature sensor, and the like, but the description thereof is omitted here.

ECU40は、CPU、ROM、RAM等からなるマイクロコンピュータ(以下、マイコンという)41を主体として構成されており、マイコン41には、上記したコモンレール圧センサ13a、吸気圧センサ17、エアフロメータ28、酸素濃度センサ32、排気温度センサ33といった各センサの検出信号や、その他エンジンの回転速度を検出するための回転速度センサ45、ドライバによるアクセル操作量(アクセル開度)を検出するためのアクセルセンサ46などの各種センサから検出信号が逐次入力される。そして、マイコン41は、エンジン回転速度やアクセル操作量等のエンジン運転情報に基づいて最適な燃料噴射量及び噴射時期を決定し、それに応じた噴射制御信号をインジェクタ12に出力する。これにより、各気筒においてインジェクタ12による燃料噴射が制御される。   The ECU 40 is mainly composed of a microcomputer (hereinafter referred to as a microcomputer) 41 composed of a CPU, a ROM, a RAM, and the like. The microcomputer 41 includes the above-described common rail pressure sensor 13a, intake pressure sensor 17, air flow meter 28, oxygen Detection signals from the sensors such as the concentration sensor 32 and the exhaust temperature sensor 33, other rotational speed sensors 45 for detecting the rotational speed of the engine, accelerator sensors 46 for detecting the accelerator operation amount (accelerator opening) by the driver, and the like. Detection signals are sequentially input from the various sensors. Then, the microcomputer 41 determines an optimal fuel injection amount and injection timing based on engine operation information such as engine speed and accelerator operation amount, and outputs an injection control signal corresponding to the fuel injection amount to the injector 12. Thereby, fuel injection by the injector 12 is controlled in each cylinder.

ECU40には、インジェクタ12を駆動するためのインジェクタ駆動回路42が設けられており、その詳細については後述する。なお、インジェクタ駆動回路42は、ECU40においてマイコン41(制御部)に一体に設けられる他、マイコン41(制御部)とは別体で設けられても良い。   The ECU 40 is provided with an injector drive circuit 42 for driving the injector 12, details of which will be described later. The injector drive circuit 42 is provided integrally with the microcomputer 41 (control unit) in the ECU 40, or may be provided separately from the microcomputer 41 (control unit).

また、マイコン41は、その時々のエンジン回転速度及び燃料噴射量に基づきコモンレール圧(噴射圧)の目標値を算出するとともに、実レール圧が目標レール圧となるように高圧ポンプ14の燃料吐出量をフィードバック制御する。実際には、実レール圧と目標レール圧との偏差に基づいて高圧ポンプ14の目標吐出量を決定し、それに応じて吸入調量弁14aの開度を制御する。このとき、吸入調量弁14aの開度が増減されることにより、高圧ポンプ14による燃料吐出量が調整される。その他、マイコン41は、都度のエンジン運転状態に基づいてスロットルアクチュエータ18やEGR弁22等を適宜制御する。   Further, the microcomputer 41 calculates a target value of the common rail pressure (injection pressure) based on the engine speed and the fuel injection amount at each time, and the fuel discharge amount of the high-pressure pump 14 so that the actual rail pressure becomes the target rail pressure. Feedback control. Actually, the target discharge amount of the high-pressure pump 14 is determined based on the deviation between the actual rail pressure and the target rail pressure, and the opening degree of the intake metering valve 14a is controlled accordingly. At this time, the amount of fuel discharged by the high-pressure pump 14 is adjusted by increasing or decreasing the opening of the intake metering valve 14a. In addition, the microcomputer 41 appropriately controls the throttle actuator 18, the EGR valve 22, and the like based on the respective engine operating conditions.

ここで、インジェクタ12の構成について図2を用いて説明する。図2に示すように、インジェクタ12は、インジェクタ本体部51と二方電磁弁からなる電磁駆動部52とを有している。インジェクタ本体部51において、ボディ53の内部には弁部材としてのニードル54とコマンドピストン55とが摺動可能に収容されており、ニードル54の先端部側に設けられた燃料溜まり室56と、コマンドピストン55の背面側(図の上端部側)に設けられた圧力制御室57とにはそれぞれコモンレール13から高圧燃料が導入される。本構成において、ニードル54及びコマンドピストン55は、圧力制御室57内の圧力(図の下向きの力)と、燃料溜まり室56内の圧力(図の上向きの力)と、ニードル54を下方に付勢するスプリング58の付勢力とのバランスに応じて動作する。   Here, the configuration of the injector 12 will be described with reference to FIG. As shown in FIG. 2, the injector 12 includes an injector main body 51 and an electromagnetic driving unit 52 including a two-way electromagnetic valve. In the injector main body 51, a needle 54 and a command piston 55 as a valve member are slidably accommodated in the body 53, and a fuel reservoir chamber 56 provided on the tip end side of the needle 54, and a command High pressure fuel is introduced from the common rail 13 to the pressure control chamber 57 provided on the back side of the piston 55 (upper end portion in the figure). In this configuration, the needle 54 and the command piston 55 attach the pressure in the pressure control chamber 57 (downward force in the figure), the pressure in the fuel reservoir chamber 56 (upward force in the figure), and the needle 54 downward. It operates according to the balance with the biasing force of the spring 58 that biases.

圧力制御室57は、オリフィス61を介して低圧燃料室62に接続されている。また、この低圧燃料室62には、燃料溜まり室56や圧力制御室57から漏れ出たリーク燃料がリーク通路63を通じて導入されるようになっている。低圧燃料室62にはオリフィス61の開口を開閉するための弁体65が設けられている。弁体65は、通常はオリフィス開口を閉じる方向にスプリング66により付勢されており、電磁駆動部52において、ソレノイド67の非通電時には弁体65によってオリフィス開口が閉鎖される。これに対し、ECU40からの通電信号によるソレノイド67の通電時には、弁体65が図の上方向に移動してオリフィス開口が開放され、それに伴い圧力制御室57と低圧燃料室62とが連通される。また、低圧燃料室62の燃料はリターン燃料通路68等を通じて燃料タンク(図示略)に戻されるようになっている。   The pressure control chamber 57 is connected to the low pressure fuel chamber 62 through the orifice 61. In addition, leaked fuel leaking from the fuel reservoir chamber 56 and the pressure control chamber 57 is introduced into the low pressure fuel chamber 62 through the leak passage 63. The low pressure fuel chamber 62 is provided with a valve body 65 for opening and closing the opening of the orifice 61. The valve body 65 is normally biased by a spring 66 in a direction to close the orifice opening, and the orifice opening is closed by the valve body 65 in the electromagnetic drive unit 52 when the solenoid 67 is not energized. On the other hand, when the solenoid 67 is energized by the energization signal from the ECU 40, the valve body 65 moves upward in the figure to open the orifice opening, and the pressure control chamber 57 and the low pressure fuel chamber 62 are communicated accordingly. . The fuel in the low pressure fuel chamber 62 is returned to the fuel tank (not shown) through the return fuel passage 68 and the like.

上記構成において、ソレノイド67が通電されていない状態では、弁体65が閉弁位置にあるために圧力制御室57内が高圧状態で保持され、図示の如くニードル54の先端部により噴口69が閉じられる。この状態では燃料噴射が行われない。これに対し、ソレノイド67が通電されると、弁体65が開弁位置に移動し、圧力制御室57内の高圧燃料がオリフィス61を介して低圧燃料室62に流れ込む。その際、圧力制御室57内の圧力が一気に低下するため、それに伴いニードル54が図の上方に移動する。これにより、噴口69が開き、燃料噴射が行われる。   In the above configuration, when the solenoid 67 is not energized, the valve body 65 is in the valve closing position, so that the pressure control chamber 57 is held at a high pressure, and the nozzle 69 is closed by the tip of the needle 54 as shown. It is done. In this state, fuel injection is not performed. On the other hand, when the solenoid 67 is energized, the valve body 65 moves to the valve open position, and the high pressure fuel in the pressure control chamber 57 flows into the low pressure fuel chamber 62 through the orifice 61. At this time, since the pressure in the pressure control chamber 57 is reduced at once, the needle 54 is moved upward in the drawing. Thereby, the injection hole 69 opens and fuel injection is performed.

次に、インジェクタ駆動回路42の概略構成を図3により説明する。図3では説明の便宜上、1気筒分のインジェクタソレノイド(ソレノイド67)のみを示している。   Next, a schematic configuration of the injector drive circuit 42 will be described with reference to FIG. In FIG. 3, only the injector solenoid (solenoid 67) for one cylinder is shown for convenience of explanation.

図3において、バッテリ等よりなる電源部71には充電用コイル72の一端が接続され、同充電用コイル72の他端には充電用スイッチング素子としてのトランジスタ73が接続されている。トランジスタ73のベース端子はマイコン41に接続されている。また、充電用コイル72とトランジスタ73との間には逆流防止用ダイオード74を介してコンデンサ回路75が接続されている。コンデンサ回路75は、並列に設けられた第1コンデンサ76及び第2コンデンサ77と、第1コンデンサ76の+端子側に設けられたトランジスタ78とを有しており、トランジスタ78のベース端子がマイコン41に接続されている。上記構成において、マイコン41によりトランジスタ73が断続的にON/OFFされると、充電用コイル72によりコンデンサ回路75内の各コンデンサ76,77が充電される。   In FIG. 3, one end of a charging coil 72 is connected to a power supply unit 71 made of a battery or the like, and a transistor 73 as a charging switching element is connected to the other end of the charging coil 72. The base terminal of the transistor 73 is connected to the microcomputer 41. Further, a capacitor circuit 75 is connected between the charging coil 72 and the transistor 73 via a backflow preventing diode 74. The capacitor circuit 75 includes a first capacitor 76 and a second capacitor 77 provided in parallel, and a transistor 78 provided on the + terminal side of the first capacitor 76, and the base terminal of the transistor 78 is the microcomputer 41. It is connected to the. In the above configuration, when the transistor 73 is intermittently turned on / off by the microcomputer 41, the capacitors 76 and 77 in the capacitor circuit 75 are charged by the charging coil 72.

ここで、コンデンサ回路75では、基本的に2つのコンデンサ76,77に対して同時に充電が行われる。そして、放電に際しては、トランジスタ78がONされていれば、2つのコンデンサ76,77から同時に放電が行われ、同トランジスタ78がOFFされていれば、一方のコンデンサ77のみで放電が行われる。   Here, in the capacitor circuit 75, the two capacitors 76 and 77 are basically charged simultaneously. In discharging, if the transistor 78 is ON, discharging is simultaneously performed from the two capacitors 76 and 77, and if the transistor 78 is OFF, discharging is performed only by one capacitor 77.

また、コンデンサ回路75には、ダイオード81を介してソレノイド67の一端が接続され、同ソレノイド67の他端には噴射制御用スイッチング素子としてのトランジスタ82が接続されている。トランジスタ82のベース端子はマイコン41に接続されており、マイコン41から出力されるインジェクタ駆動信号に応じて同トランジスタ82がON又はOFFされる。   In addition, one end of a solenoid 67 is connected to the capacitor circuit 75 via a diode 81, and a transistor 82 as an injection control switching element is connected to the other end of the solenoid 67. The base terminal of the transistor 82 is connected to the microcomputer 41, and the transistor 82 is turned on or off in accordance with the injector drive signal output from the microcomputer 41.

電源部71には定電流回路85が接続され、さらにその定電流回路85にはダイオード86を介してソレノイド67が接続されている。定電流回路85は、電源部71からの給電を受けて定電流を生成し出力するものであり、その定電流レベルはマイコン41からの制御信号により適宜切り替え可能となっている。   A constant current circuit 85 is connected to the power supply unit 71, and a solenoid 67 is connected to the constant current circuit 85 via a diode 86. The constant current circuit 85 receives power supplied from the power supply unit 71 and generates and outputs a constant current. The constant current level can be appropriately switched by a control signal from the microcomputer 41.

次に、インジェクタ駆動回路42の動作について図4を参照しながら説明する。図4には、インジェクタソレノイドに対する通電電流波形と、そのソレノイド通電に伴う噴射率の推移とを示している。なお図4では、タイミングta〜tcの燃料噴射期間でトランジスタ82がONされ、それに伴い燃料噴射が行われるようになっている。   Next, the operation of the injector drive circuit 42 will be described with reference to FIG. FIG. 4 shows an energization current waveform for the injector solenoid and the transition of the injection rate associated with the energization of the solenoid. In FIG. 4, the transistor 82 is turned on during the fuel injection period from timing ta to tc, and fuel injection is performed accordingly.

図4において、燃料噴射の開始タイミングであるタイミングtaでは、トランジスタ82がONされることでコンデンサ回路75からソレノイド67に対して大電流が一気に流れる。またそれとともに、定電流回路85からソレノイド67に対して定電流が流れ始める。このとき、第1通電期間T1では、ニードル54を開弁方向に初期駆動(始動)するために要する開弁初期電流(初期ピーク電流)が流れ、それに引き続く第2通電期間T2では、そのニードル54の開弁速度を維持するために要する高レベル定電流(開弁速度維持電流)が流れる。これにより、燃料噴射開始に伴いインジェクタ12が一気に全開状態とされる。   In FIG. 4, at a timing ta that is a fuel injection start timing, the transistor 82 is turned on, whereby a large current flows from the capacitor circuit 75 to the solenoid 67 at once. At the same time, a constant current starts to flow from the constant current circuit 85 to the solenoid 67. At this time, in the first energization period T1, a valve opening initial current (initial peak current) required to initially drive (start) the needle 54 in the valve opening direction flows, and in the subsequent second energization period T2, the needle 54 A high level constant current (valve opening speed maintaining current) required for maintaining the valve opening speed flows. As a result, the injector 12 is fully opened as soon as fuel injection is started.

その後、タイミングtbでは、定電流回路85から出力される定電流が高レベル定電流からそれよりも低い低レベル定電流(開弁状態保持電流)に切り替えられる。このとき、第3通電期間T3では、ニードル54の開弁状態を維持するために要する低レベル定電流が流れる。これにより、インジェクタ12の全開状態が保持される。   Thereafter, at timing tb, the constant current output from the constant current circuit 85 is switched from the high level constant current to the lower level constant current (valve open state holding current) lower than that. At this time, in the third energization period T3, a low-level constant current required for maintaining the needle 54 in an open state flows. Thereby, the fully open state of the injector 12 is maintained.

上記のように本実施形態では、インジェクタソレノイドに対する通電電流が3段階に制御される(期間T1,T2,T3)。その際、噴射率が略矩形状になるように通電制御が行われる。なお、期間T1,T2にて供給される通電電流が「初期動作エネルギ」に相当し、期間T3にて供給される通電電流が「開弁保持エネルギ」に相当する。   As described above, in the present embodiment, the energization current to the injector solenoid is controlled in three stages (periods T1, T2, T3). At that time, energization control is performed so that the injection rate is substantially rectangular. The energization current supplied in the periods T1 and T2 corresponds to “initial operating energy”, and the energization current supplied in the period T3 corresponds to “valve opening holding energy”.

ところで、エンジン10においては、その運転状態が相違すると、筒内(燃焼室内)に噴射供給される燃料量と筒内に導入される新気量(スロットル通過空気量に相当)とのバランスが崩れ、燃焼状態が悪化するおそれが生じる。具体的には、都度のエンジン運転状態等に応じてEGR率や過給圧が大小異なると、そのEGR率や過給圧に相応して新気量が増加又は減少し、その影響で燃焼状態に変化が生じる。例えば、EGR率が大きい場合、又は過給圧が小さい場合には、新気量が少なくなるため、その新気量に対して噴射開始直後における噴射率の変化勾配(噴射率の立ち上がり時の変化割合)が急峻であると、一時的に燃料過多の状態となり、それに起因して燃焼状態が悪化する。また逆に、EGR率が小さい場合、又は過給圧が大きい場合には、新気量が多くなるため、その新気量に対して噴射開始直後における噴射率の変化勾配(噴射率の立ち上がり時の変化割合)が緩慢であると、一時的に酸素過多の状態となり、やはり燃焼状態が悪化する。   By the way, in the engine 10, if the operating state is different, the balance between the amount of fuel injected into the cylinder (combustion chamber) and the amount of fresh air introduced into the cylinder (corresponding to the amount of air passing through the throttle) is lost. This may cause the combustion state to deteriorate. Specifically, if the EGR rate and supercharging pressure differ depending on the engine operating conditions, etc., the amount of fresh air increases or decreases according to the EGR rate and supercharging pressure, and the combustion state is affected by the effect. Changes. For example, when the EGR rate is large, or when the supercharging pressure is small, the amount of fresh air decreases. Therefore, the gradient of the injection rate immediately after the start of injection with respect to the amount of fresh air (change at the rise of the injection rate) When the ratio is steep, the fuel temporarily becomes excessive, and the combustion state deteriorates due to this. Conversely, when the EGR rate is small or when the supercharging pressure is large, the amount of fresh air increases. Therefore, the gradient of change in the injection rate immediately after the start of injection with respect to the amount of fresh air (when the injection rate rises). If the rate of change) is slow, the state temporarily becomes excessively oxygen, and the combustion state also deteriorates.

そこで本実施形態では、都度のエンジン運転状態に応じて、噴射開始直後における噴射率の変化勾配(噴射率の立ち上がり時の変化割合)を可変とする。そしてそれにより、筒内への燃料噴射量と新気導入量とのバランスを適正に保ち、ひいては筒内燃焼の改善を図ることとしている。   Therefore, in the present embodiment, the change rate of the injection rate immediately after the start of injection (change rate at the time of rising of the injection rate) is made variable in accordance with the engine operating state every time. As a result, the balance between the amount of fuel injected into the cylinder and the amount of fresh air introduced is properly maintained, and as a result, the improvement of in-cylinder combustion is intended.

図5は、インジェクタ駆動に関するメイン処理を示すフローチャートであり、本処理はECU40内のマイコン41により所定の時間周期で繰り返し実行される。   FIG. 5 is a flowchart showing a main process related to injector driving. This process is repeatedly executed by the microcomputer 41 in the ECU 40 at a predetermined time period.

図5において、ステップS101では、エンジン運転状態を表す各種パラメータの読み込みを行う。具体的には、各種センサ等の検出信号により算出されたエンジン回転速度、アクセル開度、燃料圧(実レール圧)等を読み込む。   In FIG. 5, in step S101, various parameters representing the engine operating state are read. Specifically, the engine rotational speed, accelerator opening, fuel pressure (actual rail pressure), and the like calculated from detection signals from various sensors and the like are read.

次に、ステップS102〜S104では、燃料噴射量の算出、EGR率の算出、過給圧の算出をそれぞれ実施する。詳しくは、ステップS102では、アクセル開度等をパラメータとして要求トルクを算出するとともに、その要求トルクとエンジン回転速度とをパラメータとするマップデータ等を用いて燃料噴射量を算出する。また、ステップS103では、燃料噴射量とエンジン回転速度とをパラメータとするマップデータ等を用いてEGR率を算出する。ステップS104では、同じく燃料噴射量とエンジン回転速度とをパラメータとするマップデータ等を用いて過給圧を算出する。なお、燃料噴射量、EGR率及び過給圧の算出に際し、インジェクタの微小噴射領域のバラツキを補正するための微小噴射量補正や、その他燃料温度補正等を適宜行うことも可能である。過給圧情報の取得に関しては、吸気圧センサ17の検出値から推定する手法や、吸気コンプレッサ25の下流側(スロットル上流側)に過給圧センサを設けて該センサの検出値から求める手法などが適用できる。   Next, in steps S102 to S104, calculation of the fuel injection amount, calculation of the EGR rate, and calculation of the supercharging pressure are performed. Specifically, in step S102, the required torque is calculated using the accelerator opening or the like as a parameter, and the fuel injection amount is calculated using map data or the like using the required torque and engine speed as parameters. In step S103, the EGR rate is calculated using map data or the like using the fuel injection amount and the engine speed as parameters. In step S104, the boost pressure is calculated using map data and the like using the fuel injection amount and the engine rotation speed as parameters. In calculating the fuel injection amount, the EGR rate, and the supercharging pressure, it is also possible to appropriately perform a micro injection amount correction for correcting variations in the micro injection region of the injector, other fuel temperature corrections, and the like. Regarding the acquisition of the supercharging pressure information, a method of estimating from the detection value of the intake pressure sensor 17, a method of obtaining a supercharging pressure sensor on the downstream side (upstream side of the throttle) of the intake compressor 25 and obtaining from the detection value of the sensor, etc. Is applicable.

その後、ステップS105では、燃料噴射開始直後において目標とする噴射率の変化勾配(目標変化勾配)を設定する。その詳細を図6のサブルーチンにより説明する。図6において、ステップS201では、あらかじめ規定した変化勾配のベース値に各種補正量H1〜H5を加算し、目標変化勾配を算出する(目標変化勾配=ベース値+補正量H1〜H5)。   Thereafter, in step S105, a target change gradient of the injection rate immediately after the start of fuel injection (target change gradient) is set. The details will be described with reference to the subroutine of FIG. In FIG. 6, in step S201, various correction amounts H1 to H5 are added to a base value of a predetermined change gradient to calculate a target change gradient (target change gradient = base value + correction amounts H1 to H5).

このとき、補正量H1〜H5は、エンジン回転速度、燃料圧、燃料噴射量、EGR率、過給圧のそれぞれをパラメータとして算出される補正項であり、例えば図7(a)〜(e)の関係に基づいて算出される。なお、各補正量H1〜H5の算出に用いる各パラメータが「運転状態パラメータ」に相当する。   At this time, the correction amounts H1 to H5 are correction terms calculated using the engine speed, fuel pressure, fuel injection amount, EGR rate, and supercharging pressure as parameters, for example, FIGS. It is calculated based on the relationship. Each parameter used for calculating each of the correction amounts H1 to H5 corresponds to an “operating state parameter”.

図7(a)には、エンジン回転速度と、同回転速度をパラメータとして算出される補正量H1との関係を示している。同図の関係によれば、エンジン回転速度が大きいほど、補正量H1が大きい値として算出される。   FIG. 7A shows the relationship between the engine rotation speed and the correction amount H1 calculated using the rotation speed as a parameter. According to the relationship shown in the figure, the correction amount H1 is calculated as a larger value as the engine speed increases.

図7(b)には、燃料圧と、同燃料圧をパラメータとして算出される補正量H2との関係を示している。同図の関係によれば、燃料圧が大きいほど、補正量H2が大きい値として算出される。   FIG. 7B shows the relationship between the fuel pressure and the correction amount H2 calculated using the fuel pressure as a parameter. According to the relationship shown in the figure, the correction amount H2 is calculated as a larger value as the fuel pressure increases.

図7(c)には、燃料噴射量と、同燃料噴射量をパラメータとして算出される補正量H3との関係を示している。同図の関係によれば、燃料噴射量が大きいほど、補正量H3が大きい値として算出される。   FIG. 7C shows the relationship between the fuel injection amount and the correction amount H3 calculated using the fuel injection amount as a parameter. According to the relationship shown in the figure, the correction amount H3 is calculated as a larger value as the fuel injection amount is larger.

図7(d)には、EGR率と、同EGR率をパラメータとして算出される補正量H4との関係を示している。同図の関係によれば、EGR率が大きいほど、補正量H4が小さい値として算出される。   FIG. 7D shows the relationship between the EGR rate and the correction amount H4 calculated using the EGR rate as a parameter. According to the relationship shown in the drawing, the correction amount H4 is calculated as a smaller value as the EGR rate is larger.

図7(e)には、過給圧と、同過給圧をパラメータとして算出される補正量H5との関係を示している。同図の関係によれば、過給圧が大きいほど、補正量H5が大きい値として算出される。   FIG. 7E shows the relationship between the supercharging pressure and the correction amount H5 calculated using the supercharging pressure as a parameter. According to the relationship shown in the figure, the correction amount H5 is calculated as a larger value as the boost pressure is larger.

その後、ステップS202では、前記算出した目標変化勾配が、あらかじめ規定した下限ガード値以上であるか否かを判定する。目標変化勾配≧下限ガード値であれば、そのまま本処理を終了する。また、目標変化勾配<下限ガード値であれば、ステップS203に進み、同変化勾配について下限ガード値による下限ガードを施した後、本処理を終了する。   Thereafter, in step S202, it is determined whether or not the calculated target change gradient is equal to or greater than a predetermined lower limit guard value. If the target change gradient ≧ the lower limit guard value, the process is terminated as it is. If the target change gradient <the lower limit guard value, the process proceeds to step S203, where the lower limit guard is applied to the change gradient using the lower limit guard value, and then the present process is terminated.

図5の説明に戻り、ステップS106では、インジェクタソレノイドを通電するための通電条件を決定する。この場合、前記ステップS105で算出した目標変化勾配に基づいて、ソレノイド通電時における第1通電期間T1の通電量(第1通電量:初期ピーク電流に相当)と第2通電期間T2の通電量(第2通電量:開弁速度維持電流に相当)を決定する。本実施形態では、図8に示す関係に基づいて第1,第2通電量を決定することとしており、図8の関係によれば、目標変化勾配に応じて第1,第2通電量が大小2段階に可変設定される。このとき、目標変化勾配が所定値A未満であれば、第1,第2通電量として比較的小さい値が求められ、目標変化勾配が所定値A以上であれば、第1,第2通電量として比較的大きい値が求められる。   Returning to FIG. 5, in step S106, energization conditions for energizing the injector solenoid are determined. In this case, based on the target change gradient calculated in step S105, the energization amount during the first energization period T1 during the energization of the solenoid (first energization amount: equivalent to the initial peak current) and the energization amount during the second energization period T2 ( 2nd energization amount: It corresponds to valve-opening speed maintenance current). In the present embodiment, the first and second energization amounts are determined based on the relationship shown in FIG. 8, and according to the relationship of FIG. 8, the first and second energization amounts are large and small according to the target change gradient. It is variably set in two stages. At this time, if the target change gradient is less than the predetermined value A, a relatively small value is obtained as the first and second energization amounts. If the target change gradient is equal to or greater than the predetermined value A, the first and second energization amounts are obtained. As a relatively large value.

なお、インジェクタ駆動回路42において、第1通電期間T1ではコンデンサ回路75からの放電によりソレノイド通電が行われるようになっており、上記決定されたソレノイド通電条件(第1通電量)に応じて、2つのコンデンサ76,77から同時放電するか、又は一方のコンデンサ77からのみ放電するかが切り替えられる。また、第2通電期間T2では定電流回路85からの定電流出力によりソレノイド通電が行われるようになっており、上記決定されたソレノイド通電条件(第2通電量)に応じて、定電流出力が大小2つの定電流レベルで切り替えられる。   In the injector drive circuit 42, solenoid energization is performed by discharging from the capacitor circuit 75 in the first energization period T1, and 2 according to the determined solenoid energization condition (first energization amount). Switching between simultaneous discharge from one of the capacitors 76 and 77 or only discharge from one of the capacitors 77 is switched. Further, in the second energization period T2, solenoid energization is performed by a constant current output from the constant current circuit 85, and a constant current output is generated according to the determined solenoid energization condition (second energization amount). Switching between large and small constant current levels.

最後に、ステップS107では、前記決定したソレノイド通電条件や、その他通電開始タイミング、指令噴射量等に基づいて噴射指令信号を生成し、該指令信号をインジェクタ駆動回路42に対して出力する。なお、インジェクタソレノイドの通電開始タイミングを、エンジン回転速度や要求トルク等に応じて可変設定することも可能である。   Finally, in step S107, an injection command signal is generated based on the determined solenoid energization condition, other energization start timing, command injection amount, and the like, and the command signal is output to the injector drive circuit 42. It should be noted that the energization start timing of the injector solenoid can be variably set according to the engine speed, the required torque, and the like.

図9は、目標変化勾配が異なる場合におけるソレノイド通電態様の違いを示すタイムチャートである。図9において(a)には目標変化勾配が比較的大きい場合を、(b)には目標変化勾配が比較的小さい場合を示す。   FIG. 9 is a time chart showing a difference in solenoid energization mode when the target change gradients are different. 9A shows a case where the target change gradient is relatively large, and FIG. 9B shows a case where the target change gradient is relatively small.

図9(a),(b)では、第1通電量及び第2通電量がそれぞれ相違し、目標変化勾配が大きい(a)の方の各通電量が大電流となっている。これにより、噴射開始直後における噴射率の変化勾配が(a)>(b)となっている。すなわち、(a)の方が噴射率の立ち上がり変化が急峻なものとなっている。   9A and 9B, the first energization amount and the second energization amount are different from each other, and each energization amount of (a) having a larger target change gradient is a large current. Thereby, the change gradient of the injection rate immediately after the start of injection satisfies (a)> (b). That is, in (a), the rising change of the injection rate is steeper.

以上詳述した本実施形態によれば、以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

都度のエンジン運転状態に応じて、噴射開始直後における噴射率の変化勾配を可変に制御する構成としたため、筒内における燃料量と新気量とのバランスを適正に保つことができ、ひいては良好なる筒内燃焼を実現することができる。   Since the change rate of the injection rate immediately after the start of injection is variably controlled according to the engine operating state each time, the balance between the amount of fuel in the cylinder and the amount of fresh air can be properly maintained, which in turn is good. In-cylinder combustion can be realized.

具体的には、エンジン回転速度、燃料圧、燃料噴射量、EGR率、過給圧のそれぞれをパラメータとして噴射率の変化勾配を制御する構成とした。この場合、エンジン回転速度をパラメータとすることにより、筒内の空気流動や充填効率の変化を考慮した噴射率制御が実現できる。燃料圧力をパラメータとすることにより、供給噴霧のペネトレーションや拡散度合いの変化を考慮した噴射率制御が実現できる。燃料噴射量をパラメータとすることにより、都度の燃料噴射量に見合った噴射率制御が実現できる。また、EGR率及び過給圧をパラメータとすることにより、筒内への新気導入量の変化を考慮した噴射率制御が実現できる。   Specifically, the engine speed, the fuel pressure, the fuel injection amount, the EGR rate, and the supercharging pressure are used as parameters to control the change rate of the injection rate. In this case, by using the engine rotation speed as a parameter, it is possible to realize injection rate control that takes into account changes in the air flow and filling efficiency in the cylinder. By using the fuel pressure as a parameter, it is possible to realize injection rate control that takes into account changes in the penetration and diffusion degree of the supply spray. By using the fuel injection amount as a parameter, it is possible to realize injection rate control commensurate with each fuel injection amount. Further, by using the EGR rate and the supercharging pressure as parameters, it is possible to realize injection rate control that takes into account the change in the amount of fresh air introduced into the cylinder.

インジェクタ駆動回路42によるソレノイド通電に際し、前後3段階の通電量のうち先の2つの通電量(第1通電量、第2通電量)を可変設定する構成としたため、それら通電量の変更によって、所望とする噴射量制御を容易に実現できる。この場合、噴射率制御を実施する上で、通常一般に用いられているインジェクタ12がそのまま使用できるという利点もある。   When the solenoid is energized by the injector drive circuit 42, the previous two energization amounts (the first energization amount and the second energization amount) are variably set among the energization amounts of the three stages before and after. The injection amount control can be easily realized. In this case, there is also an advantage that the injector 12 that is generally used can be used as it is in performing the injection rate control.

本発明は上記実施形態の記載内容に限定されず、例えば次のように実施しても良い。   The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

上記実施形態では、目標変化勾配に応じてソレノイド通電条件(第1,第2通電量)を大小2つの電流レベルに可変設定する構成としたが(図8参照)、これを変更する。例えば、目標変化勾配に応じてソレノイド通電条件(第1,第2通電量)を3つ以上の電流レベルに可変設定する構成や、同じく目標変化勾配に応じてソレノイド通電条件(第1,第2通電量)を線形的に設定する構成などを適用することも可能である。   In the above embodiment, the solenoid energization condition (first and second energization amounts) is variably set to two large and small current levels according to the target change gradient (see FIG. 8), but this is changed. For example, the solenoid energization conditions (first and second energization amounts) are variably set to three or more current levels according to the target change gradient, and the solenoid energization conditions (first and second) are similarly set according to the target change gradient. It is also possible to apply a configuration in which the energization amount) is set linearly.

上記実施形態では、インジェクタ駆動回路42によるソレノイド通電に際し、前後3段階の通電量のうち第1通電量(初期ピーク電流)と第2通電量(開弁速度維持電流)とを可変設定して噴射率の変化勾配を制御する構成としたが、これを変更する。例えば、第2通電量(開弁速度維持電流)のみを可変設定して噴射率の変化勾配を制御することとする。この場合、第1通電量(初期ピーク電流)は固定とする。本構成であっても、前記同様、噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。   In the above embodiment, when the solenoid is energized by the injector drive circuit 42, the first energization amount (initial peak current) and the second energization amount (valve opening speed maintaining current) among the energization amounts of the three stages before and after are variably set. The rate change gradient is controlled, but this is changed. For example, only the second energization amount (valve opening speed maintaining current) is variably set to control the change gradient of the injection rate. In this case, the first energization amount (initial peak current) is fixed. Even in this configuration, as described above, the change gradient of the injection rate immediately after the start of injection can be controlled as desired.

インジェクタ駆動回路42によるソレノイド通電に際し、初期動作エネルギの供給途中にそのエネルギ供給を一時的に休止させることで、噴射開始直後における噴射率の変化勾配を制御することも可能である。すなわち、図10に示すように、第1通電期間での初期ピーク電流による通電(コンデンサ放電)の後、一時的にソレノイド通電を中止させる。具体的な構成で言えば、定電流回路85による通電を、コンデンサ放電を開始するタイミングt11で開始するのではなく、コンデンサ放電の終了後のタイミングt12で開始する。この場合、エネルギ供給の一時休止により、噴射率の変化勾配が一時的に遅くなり(全体としては緩慢となり)、結果として、噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。   When the solenoid is energized by the injector drive circuit 42, it is possible to control the change gradient of the injection rate immediately after the start of injection by temporarily stopping the energy supply during the supply of the initial operating energy. That is, as shown in FIG. 10, the energization of the solenoid is temporarily stopped after energization (capacitor discharge) by the initial peak current in the first energization period. More specifically, the energization by the constant current circuit 85 does not start at the timing t11 when the capacitor discharge is started, but starts at the timing t12 after the end of the capacitor discharge. In this case, due to the temporary stop of the energy supply, the change rate of the injection rate is temporarily slowed (as a whole becomes slow), and as a result, the change rate of the injection rate immediately after the start of injection can be controlled as desired. .

駆動対象であるインジェクタとして、噴射率可変構造を有するインジェクタを用いても良い。その構成を図11により説明する。なお、図11に示すインジェクタ90は、前述したインジェクタ12(図2参照)の一部構成を変更したものであり、同一の構成については同じ部材番号を付してその説明を省略する。インジェクタ90では、前述したインジェクタ12(図2参照)に比して電磁駆動部91の構成が相違している。   An injector having a variable injection rate structure may be used as the injector to be driven. The configuration will be described with reference to FIG. In addition, the injector 90 shown in FIG. 11 is obtained by changing a part of the configuration of the injector 12 (see FIG. 2) described above, and the same components are denoted by the same member numbers and the description thereof is omitted. In the injector 90, the configuration of the electromagnetic drive unit 91 is different from that of the injector 12 (see FIG. 2) described above.

インジェクタ90の電磁駆動部91には、2系統のソレノイド92a,92bが設けられるとともに、それら各ソレノイド92a,92bに対応させて弁体93a,93bが設けられている。ECU40により各ソレノイド92a,92bが個々に通電されると、その通電に伴いスプリング94a,94bの付勢力に抗して弁体93a,93bが変位する。また、低圧燃料室96と圧力制御室57とは燃料排出通路としての2つのオリフィス95a,95bを介して連通されている。2つのオリフィス95a,95bはそれぞれ孔径が異なり、オリフィス95aが大径オリフィス、オリフィス95bが小径オリフィスである。   The electromagnetic drive unit 91 of the injector 90 is provided with two systems of solenoids 92a and 92b, and valve bodies 93a and 93b corresponding to the solenoids 92a and 92b. When the solenoids 92a and 92b are individually energized by the ECU 40, the valve bodies 93a and 93b are displaced against the urging force of the springs 94a and 94b with the energization. The low pressure fuel chamber 96 and the pressure control chamber 57 are communicated with each other via two orifices 95a and 95b as fuel discharge passages. The two orifices 95a and 95b have different hole diameters. The orifice 95a is a large-diameter orifice and the orifice 95b is a small-diameter orifice.

この場合、各ソレノイド92a,92bの非通電時には弁体93a,93bによりオリフィス95a,95bがそれぞれ閉じられ、同ソレノイド92a,92bの通電時には弁体93a,93bによりオリフィス95a,95bが開放される。   In this case, when the solenoids 92a and 92b are not energized, the orifices 95a and 95b are closed by the valve bodies 93a and 93b, respectively, and when the solenoids 92a and 92b are energized, the orifices 95a and 93b are opened by the valve bodies 93a and 93b.

上記構成のインジェクタ90を用いたシステムでは、噴射開始直後における噴射率の変化勾配を大きくする場合、ECU40は、大径オリフィス95a側のソレノイド92aを通電し、大径オリフィス95aを通じて圧力制御室57内の高圧燃料を低圧燃料室96側に排出する。また、噴射開始直後における噴射率の変化勾配を小さくする場合、ECU40は、小径オリフィス95b側のソレノイド92bを通電し、小径オリフィス95bを通じて圧力制御室57内の高圧燃料を低圧燃料室96側に排出する。かかる場合、大径オリフィス95aによる燃料排出時と小径オリフィス95bによる燃料排出時とでは圧力制御室57内の圧力低下の速さが相違し、前者の方が噴射開始直後における噴射率の変化勾配が大きくなる。本構成においても、噴射開始直後における噴射率の変化勾配を望みとおりに制御することができる。   In the system using the injector 90 having the above-described configuration, when increasing the change gradient of the injection rate immediately after the start of injection, the ECU 40 energizes the solenoid 92a on the large-diameter orifice 95a side and passes through the large-diameter orifice 95a in the pressure control chamber 57. The high pressure fuel is discharged to the low pressure fuel chamber 96 side. In order to reduce the change rate gradient of the injection rate immediately after the start of injection, the ECU 40 energizes the solenoid 92b on the small diameter orifice 95b side, and discharges the high pressure fuel in the pressure control chamber 57 to the low pressure fuel chamber 96 side through the small diameter orifice 95b. To do. In such a case, the speed of pressure drop in the pressure control chamber 57 is different between when the fuel is discharged from the large-diameter orifice 95a and when the fuel is discharged from the small-diameter orifice 95b, and the former has a change gradient of the injection rate immediately after the start of injection. growing. Also in this configuration, the change gradient of the injection rate immediately after the start of injection can be controlled as desired.

上記構成において、ソレノイド92a,92bを択一的に通電する他に、両ソレノイド92a,92bを同時通電することも可能であり、かかる場合にはソレノイド通電方式を3通りに切り替えることができる。なお、上記図11のインジェクタ90を採用する場合、初期動作エネルギ(初期ピーク電流、開弁速度維持電流)を可変とする必要はなく、インジェクタ駆動回路42について従前の回路構成が適用できる。   In the above-described configuration, in addition to energizing the solenoids 92a and 92b alternatively, it is also possible to energize both solenoids 92a and 92b at the same time. When the injector 90 shown in FIG. 11 is employed, it is not necessary to vary the initial operating energy (initial peak current, valve opening speed maintaining current), and the conventional circuit configuration can be applied to the injector drive circuit 42.

2つのオリフィス95a,95bは孔径が同じものであっても良い。この場合、2つのオリフィス95a,95bのうち、1つを通電するか、2つを通電するかによって圧力制御室57内の圧力低下の速さが相違し、噴射開始直後における噴射率の変化勾配を可変制御することができる。   The two orifices 95a and 95b may have the same hole diameter. In this case, the rate of pressure drop in the pressure control chamber 57 differs depending on whether one or two of the two orifices 95a and 95b are energized, and the change gradient of the injection rate immediately after the start of injection. Can be variably controlled.

上記実施形態では、駆動部としてソレノイドを有する電磁駆動式インジェクタを駆動対象としたが、それ以外のインジェクタを駆動対象とすることも可能である。例えば、駆動部としてピエゾスタックを有するピエゾ駆動式インジェクタを駆動対象とし、同インジェクタを用いて本発明の燃料噴射制御装置を実現しても良い。   In the above embodiment, an electromagnetically driven injector having a solenoid as a driving unit is a driving target, but other injectors can be a driving target. For example, a piezo drive type injector having a piezo stack as a drive unit may be used as a drive target, and the fuel injection control device of the present invention may be realized using the injector.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図。The block diagram which shows the outline of the engine control system in embodiment of invention. インジェクタの概略構成を示す断面図。Sectional drawing which shows schematic structure of an injector. インジェクタ駆動回路の概略構成を示す回路図。The circuit diagram which shows schematic structure of an injector drive circuit. インジェクタソレノイドに対する通電電流波形と、そのソレノイド通電に伴う噴射率の推移とを示すタイムチャート。The time chart which shows the transition of the injection rate accompanying the energization current waveform with respect to an injector solenoid, and the solenoid energization. インジェクタ駆動に関するメイン処理を示すフローチャート。The flowchart which shows the main process regarding an injector drive. 噴射率の変化勾配設定のためのサブルーチンを示すフローチャート。The flowchart which shows the subroutine for the change gradient setting of an injection rate. 各種補正量を算出するための関係図。FIG. 6 is a relationship diagram for calculating various correction amounts. ソレノイド通電条件の設定内容を説明するための関係図。The related figure for demonstrating the setting content of solenoid energization conditions. インジェクタソレノイドに対する通電電流波形と、そのソレノイド通電に伴う噴射率の推移とを示すタイムチャート。The time chart which shows the transition of the injection rate accompanying the energization current waveform with respect to an injector solenoid, and the solenoid energization. インジェクタソレノイドに対する通電電流波形と、そのソレノイド通電に伴う噴射率の推移とを示すタイムチャート。The time chart which shows the transition of the injection rate accompanying the energization current waveform with respect to an injector solenoid, and the solenoid energization. 別の実施形態におけるインジェクタの概略構成を示す断面図。Sectional drawing which shows schematic structure of the injector in another embodiment.

符号の説明Explanation of symbols

10…エンジン、12…インジェクタ、13…コモンレール、14…高圧ポンプ、22…EGR弁、24…ターボチャージャ、40…ECU、41…マイコン、42…インジェクタ駆動回路、51…インジェクタ本体部、52…電磁駆動部、54…ニードル、55…コマンドピストン、57…圧力制御室、61…オリフィス、67…ソレノイド、69…噴口、72…充電用コイル、75…コンデンサ回路、76,77…コンデンサ、85…定電流回路、90…インジェクタ、91…電磁駆動部、92a,92b…ソレノイド、95a,95b…オリフィス。   DESCRIPTION OF SYMBOLS 10 ... Engine, 12 ... Injector, 13 ... Common rail, 14 ... High pressure pump, 22 ... EGR valve, 24 ... Turbocharger, 40 ... ECU, 41 ... Microcomputer, 42 ... Injector drive circuit, 51 ... Injector main part, 52 ... Electromagnetic Drive unit, 54 ... needle, 55 ... command piston, 57 ... pressure control chamber, 61 ... orifice, 67 ... solenoid, 69 ... jet, 72 ... charge coil, 75 ... capacitor circuit, 76,77 ... capacitor, 85 ... constant Current circuit, 90 ... injector, 91 ... electromagnetic drive unit, 92a, 92b ... solenoid, 95a, 95b ... orifice.

Claims (8)

内燃機関に設けられ、噴口を開閉するための弁部材と、該弁部材を開閉駆動するための駆動部としてのソレノイドとを有してなる燃料噴射弁を駆動対象とし、
前記燃料噴射弁による燃料噴射の開始当初に前記ソレノイドに対して初期動作エネルギを供給するとともに、該初期動作エネルギの供給に引き続き、前記ソレノイドに対して前記燃料噴射弁の開弁状態を保持する開弁保持エネルギを供給するようにして燃料噴射制御を行うものであり、
前記初期動作エネルギの供給に際し、前記弁部材の始動のための初期ピーク電流を前記ソレノイドに流すとともに同弁部材が全開位置に達するまでの期間でその開弁速度を維持するための開弁速度維持電流を流し、その後の前記開弁保持エネルギの供給に際し、前記弁部材の開弁状態を保持するための開弁状態保持電流を流すようにした内燃機関の燃料噴射制御装置において、
内燃機関の運転状態を表す運転状態パラメータを取得するパラメータ取得手段と、
前記初期動作エネルギの供給に際し、前記パラメータ取得手段により取得した運転状態パラメータに基づいて、噴射開始直後における噴射率の変化勾配を制御する噴射率制御手段と、
を備え、
前記噴射率制御手段は、前記開弁速度維持電流を増減調整することで、噴射開始直後における噴射率の変化勾配を制御することを特徴とする内燃機関の燃料噴射制御装置。
A fuel injection valve provided in an internal combustion engine and having a valve member for opening and closing the nozzle hole and a solenoid as a drive unit for driving the valve member to open and close is a driving target.
An initial operating energy is supplied to the solenoid at the beginning of fuel injection by the fuel injection valve, and following the supply of the initial operating energy, an opening that holds the open state of the fuel injection valve to the solenoid is maintained. Fuel injection control is performed by supplying valve holding energy ,
When supplying the initial operating energy, an initial peak current for starting the valve member is supplied to the solenoid and the valve opening speed is maintained to maintain the valve opening speed until the valve member reaches the fully open position. In the fuel injection control device for an internal combustion engine in which a valve opening state holding current for holding the valve opening state of the valve member is supplied when supplying the valve opening holding energy thereafter .
Parameter acquisition means for acquiring an operation state parameter representing an operation state of the internal combustion engine;
An injection rate control means for controlling the change gradient of the injection rate immediately after the start of injection based on the operating state parameter acquired by the parameter acquisition means when supplying the initial operating energy;
With
The fuel injection control device for an internal combustion engine, wherein the injection rate control means controls a change gradient of the injection rate immediately after the start of injection by adjusting the valve opening speed maintaining current to increase or decrease .
前記噴射率制御手段は、前記開弁速度維持電流に加え、前記初期ピーク電流を増減調整することで、噴射開始直後における噴射率の変化勾配を制御することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。 The injection rate control means controls the change gradient of the injection rate immediately after the start of injection by adjusting the initial peak current to increase or decrease in addition to the valve opening speed maintaining current . A fuel injection control device for an internal combustion engine. 前記パラメータ取得手段は、都度の新気導入量に関わる新気導入パラメータを前記運転状態パラメータとして取得し、
前記噴射率制御手段は、前記新気導入パラメータに基づいて噴射率制御を行うことを特徴とする請求項1又は2に記載の内燃機関の燃料噴射制御装置。
The parameter acquisition means acquires a fresh air introduction parameter related to a fresh air introduction amount as the operation state parameter,
The fuel injection control device for an internal combustion engine according to claim 1 or 2 , wherein the injection rate control means performs injection rate control based on the fresh air introduction parameter .
排気の一部を吸気系に環流させるEGR装置を備えたシステムに適用され、
前記パラメータ取得手段は、前記EGR装置によるEGR率を前記新気導入パラメータとして取得し、
前記噴射率制御手段は、都度のEGR率が大きいほど、前記噴射開始直後の噴射率の変化勾配を小さくするようにして噴射率制御を行うことを特徴とする請求項3に記載の内燃機関の燃料噴射制御装置。
It is applied to a system equipped with an EGR device that circulates part of the exhaust to the intake system,
The parameter acquisition means acquires an EGR rate by the EGR device as the fresh air introduction parameter,
4. The internal combustion engine according to claim 3 , wherein the injection rate control unit performs the injection rate control such that a change gradient of the injection rate immediately after the start of injection is reduced as the EGR rate is increased each time . Fuel injection control device.
吸気を過給する過給装置を備えたシステムに適用され、
前記パラメータ取得手段は、前記過給装置による過給圧を前記新気導入パラメータとして取得し、
前記噴射率制御手段は、都度の過給圧が小さいほど、前記噴射開始直後の噴射率の変化勾配を小さくするようにして噴射率制御を行うことを特徴とする請求項3又は4に記載の内燃機関の燃料噴射制御装置。
Applied to systems with supercharging devices that supercharge intake air,
The parameter acquisition means acquires a supercharging pressure by the supercharging device as the fresh air introduction parameter,
The said injection rate control means performs injection rate control by making the change gradient of the injection rate immediately after the said injection start small, so that each supercharging pressure is small . A fuel injection control device for an internal combustion engine.
前記パラメータ取得手段は、前記内燃機関の回転速度を前記運転状態パラメータとして取得し、
前記噴射率制御手段は、都度の機関回転速度が小さいほど、前記噴射開始直後の噴射率の変化勾配を小さくするようにして噴射率制御を行うことを特徴とする請求項1乃至5のいずれかに記載の内燃機関の燃料噴射制御装置。
The parameter acquisition means acquires the rotational speed of the internal combustion engine as the operating state parameter,
The injection rate control means performs the injection rate control such that the gradient of change in the injection rate immediately after the start of the injection becomes smaller as the engine speed at each time decreases . A fuel injection control device for an internal combustion engine according to claim 1.
前記パラメータ取得手段は、前記燃料噴射弁に供給される燃料の圧力を前記運転状態パラメータとして取得し、
前記噴射率制御手段は、都度の燃料圧力が小さいほど、前記噴射開始直後の噴射率の変化勾配を小さくするようにして噴射率制御を行うことを特徴とする請求項1乃至6のいずれかに記載の内燃機関の燃料噴射制御装置。
The parameter acquisition means acquires the pressure of the fuel supplied to the fuel injection valve as the operating state parameter,
The said injection rate control means performs injection rate control by making the change rate gradient of the injection rate immediately after the said injection start small, so that fuel pressure in each case is small. A fuel injection control device for an internal combustion engine as described.
前記パラメータ取得手段は、前記燃料噴射弁による燃料噴射量を前記運転状態パラメータとして取得し、
前記噴射率制御手段は、都度の燃料噴射量が少ないほど、前記噴射開始直後の噴射率の変化勾配を小さくするようにして噴射率制御を行うことを特徴とする請求項1乃至7のいずれかに記載の内燃機関の燃料噴射制御装置。
The parameter acquisition means acquires a fuel injection amount by the fuel injection valve as the operation state parameter,
The injection rate control means performs the injection rate control so that the change rate of the injection rate immediately after the start of injection becomes smaller as the fuel injection amount for each time is smaller . A fuel injection control device for an internal combustion engine according to claim 1.
JP2006194997A 2006-07-17 2006-07-17 Fuel injection control device for internal combustion engine Expired - Fee Related JP4640279B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006194997A JP4640279B2 (en) 2006-07-17 2006-07-17 Fuel injection control device for internal combustion engine
DE102007000379A DE102007000379B4 (en) 2006-07-17 2007-07-16 Fuel injection control device of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006194997A JP4640279B2 (en) 2006-07-17 2006-07-17 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008025345A JP2008025345A (en) 2008-02-07
JP4640279B2 true JP4640279B2 (en) 2011-03-02

Family

ID=38859534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194997A Expired - Fee Related JP4640279B2 (en) 2006-07-17 2006-07-17 Fuel injection control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4640279B2 (en)
DE (1) DE102007000379B4 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128415A1 (en) * 2008-05-27 2009-12-02 Delphi Technologies, Inc. Improvements relating to fuel injector control
JPWO2009154214A1 (en) * 2008-06-19 2011-12-01 ボッシュ株式会社 Fuel injection valve control device, control method, and control program
DE102009001399A1 (en) * 2009-03-09 2010-09-16 Robert Bosch Gmbh Fuel injector
CN102536492A (en) * 2012-02-15 2012-07-04 潍柴动力股份有限公司 Method for correcting power-up time of fuel sprayer based on air inlet pressure
EP2669503A1 (en) * 2012-05-29 2013-12-04 Delphi Technologies Holding S.à.r.l. Fuel Injector
US10982635B2 (en) 2012-05-29 2021-04-20 Delphi Technologies Ip Limited Fuel injector and method for controlling the same
DE102014211287A1 (en) * 2014-06-12 2015-12-17 Engineering Center Steyr Gmbh & Co. Kg Fluid injection device for an internal combustion engine
JP6919437B2 (en) * 2017-09-07 2021-08-18 株式会社デンソー Fuel injection device
JP6950489B2 (en) * 2017-11-22 2021-10-13 株式会社デンソー Fuel injection control device and fuel injection control system
JP2023018372A (en) * 2021-07-27 2023-02-08 三菱重工エンジン&ターボチャージャ株式会社 Fuel injection valve and method for operating fuel injection valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321732A (en) * 1992-05-21 1993-12-07 Nippondenso Co Ltd Fuel injection control device for internal combustion engine
JP2000297719A (en) * 1999-04-16 2000-10-24 Nissan Motor Co Ltd Fuel injector for diesel engine
JP2000329027A (en) * 1999-05-17 2000-11-28 Isuzu Motors Ltd Injector drive unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909141A1 (en) * 1989-03-21 1990-09-27 Bosch Gmbh Robert Circuit arrangement for operating an electromagnetic load
DE10148217C1 (en) * 2001-09-28 2003-04-24 Bosch Gmbh Robert Method, computer program and control and / or regulating device for operating an internal combustion engine, and internal combustion engine
JP4007103B2 (en) * 2002-07-11 2007-11-14 株式会社豊田中央研究所 Fuel injection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321732A (en) * 1992-05-21 1993-12-07 Nippondenso Co Ltd Fuel injection control device for internal combustion engine
JP2000297719A (en) * 1999-04-16 2000-10-24 Nissan Motor Co Ltd Fuel injector for diesel engine
JP2000329027A (en) * 1999-05-17 2000-11-28 Isuzu Motors Ltd Injector drive unit

Also Published As

Publication number Publication date
DE102007000379B4 (en) 2009-10-15
JP2008025345A (en) 2008-02-07
DE102007000379A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4640279B2 (en) Fuel injection control device for internal combustion engine
JP4462327B2 (en) Cylinder characteristic variation detector
JP4577348B2 (en) Internal combustion engine control device and internal combustion engine control system
JP4782759B2 (en) Internal combustion engine control device and internal combustion engine control system
US7921707B2 (en) Exhaust gas recirculation distribution variation sensing device
JP4462315B2 (en) Internal combustion engine control device
EP2045458A2 (en) Defective injection detection device and fuel injection system having the same
EP2039918A1 (en) Fuel injection control apparatus for internal combustion engine
JP4211610B2 (en) Fuel injection control device for internal combustion engine
US8215288B2 (en) Control system and method for controlling an engine in response to detecting an out of range pressure signal
US7213565B2 (en) Method for optimizing the operating mode and combustion processes of a diesel engine
JP4144375B2 (en) Accumulated fuel injection system
WO2017081929A1 (en) Estimation device and control device for combustion system
JP4737320B2 (en) Internal combustion engine control device and internal combustion engine control system
JP5884834B2 (en) Control device for internal combustion engine
JP3948294B2 (en) Fuel injection device
JP3873431B2 (en) Diesel engine control device
JP2003278586A (en) Accumulator type fuel injection device
CN109899183B (en) Engine system and method for controlling engine system
JP3972689B2 (en) Fuel injection device for internal combustion engine
JP2004245047A (en) Fuel injection apparatus and fuel injection method for diesel engine
JP2004005446A (en) Linear actuator controller
JP4214907B2 (en) Accumulated fuel injection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4640279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees