JP4635912B2 - ガスセンサと可燃性ガスの測定装置 - Google Patents

ガスセンサと可燃性ガスの測定装置 Download PDF

Info

Publication number
JP4635912B2
JP4635912B2 JP2006058514A JP2006058514A JP4635912B2 JP 4635912 B2 JP4635912 B2 JP 4635912B2 JP 2006058514 A JP2006058514 A JP 2006058514A JP 2006058514 A JP2006058514 A JP 2006058514A JP 4635912 B2 JP4635912 B2 JP 4635912B2
Authority
JP
Japan
Prior art keywords
internal electrode
gas
electrode
processing chamber
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006058514A
Other languages
English (en)
Other versions
JP2007240152A (ja
Inventor
忠司 稲葉
啓市 佐治
二郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006058514A priority Critical patent/JP4635912B2/ja
Publication of JP2007240152A publication Critical patent/JP2007240152A/ja
Application granted granted Critical
Publication of JP4635912B2 publication Critical patent/JP4635912B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、可燃性ガスの濃度に対応する電気信号を出力するガスセンサに関する。本発明はまた、そのセンサを利用して可燃性ガスの濃度を測定する測定装置にも関する。
可燃性ガスの濃度に対応する電圧を出力するガスセンサが開発されており、特許文献1に開示されている。そのガスセンサは、第1処理室と第2処理室を備えている。第1処理室を周囲から区画する壁の少なくとも一部分は、ガス拡散律速層と固体電解質で形成されている。また、第2処理室を周囲から区画する壁の少なくとも一部分は、固体電解質で形成されている。第1処理室と第2処理室はガス拡散律速層を介して隣接している。
第1処理室を区画する固体電解質の第1処理室側に、第1内部電極が形成されている。また、固体電解質を挟んで第1内部電極の反対側に第1外部電極が形成されている。第1内部電極と固体電解質と第1外部電極によって、第1処理室内の酸素を周囲に移送する第1酸素ポンプが構成されている。
さらに、第2処理室を区画する固体電解質の第2処理室側に第2内部電極が形成されている。また、固体電解質を挟んで第2内部電極の反対側に第2外部電極が形成されている。第2外部電極と固体電解質と第2内部電極によって、周囲から第2処理室内に酸素を移送する第2酸素ポンプが構成されている。
特許文献1のガスセンサでは、可燃性ガスと酸素を含む被検ガスを第1処理室に導入する。第1処理室では第1酸素ポンプを利用し、被検ガスに含まれている酸素を周囲に排出する。第1処理室で酸素が除去された可燃性ガスは、第2処理室へ導入される。第2処理室には、第2酸素ポンプよって、酸素も導入される。第2処理室では可燃性ガスが酸素と反応する。第2処理室に導入される酸素量は、可燃性ガスが酸素と反応する酸素量に等しい。そこで、第2処理室に導入される酸素量を測定すれば、被検ガスに含まれる可燃性ガス量を検出することができる。第2処理室に導入される酸素量は、第2内部電極と第2外部電極の間を流れる電流に比例する。
特許文献1のガスセンサは、第2内部電極と第2外部電極の間に流れる電流を検出する電流検出手段に接続されて用いられ、被検ガスに含まれる可燃性ガスの濃度を示す電気信号に変換される。
特開8−247995号公報
特許文献1のガスセンサでは、第1内部電極と固体電解質と第1外部電極によって構成している第1酸素ポンプによって、被検ガスから酸素を除去する。特許文献1のガスセンサでは、第1処理室内の酸素濃度は十分に薄いから、第1処理室内で被検ガスに含まれる可燃性ガスが酸素と反応することはないとしている。
しかしながら、第1酸素ポンプを構成する第1内部電極は、触媒作用をも有している。そのために、第1内部電極の近傍では、被検ガスに含まれる可燃性ガスが酸素と反応することが避けられない。第1処理室内で被検ガスに含まれる可燃性ガスが酸素と反応してしまうと、第2処理室に導入される可燃性ガス量が、被検ガスに含まれる可燃性ガス量よりも低下してしまう。そのために、特許文献1のガスセンサでは、可燃性ガスの濃度を正確に検出することができない。
本発明では、第1酸素ポンプを構成する第1内部電極の触媒作用を不活性化し、第1内部電極の近傍で被検ガスに含まれる可燃性ガスが酸素と反応してしまうことを抑制する。それが実現できれば、被検ガスに含まれる可燃性ガスが消費されないで第2処理室に導入されるようにすることができ、可燃性ガスの濃度を正確に検出するガスセンサを実現することができる。
本発明のガスセンサは、可燃性ガスの濃度を検出するためのものである。本発明のガスセンサは第1処理室と第2処理室を備えており、下記の特徴を備えている。
第1処理室を周囲から区画する壁の少なくとも一部分にガス拡散律速層と固体電解質を備えており、第2処理室を周囲から区画する壁の少なくとも一部分に固体電解質を備えている。第1処理室と第2処理室はガス拡散律速層を介して隣接している。第1処理室を区画する固体電解質の第1処理室側に第1内部電極が形成されており、固体電解質を挟んで第1内部電極の反対側に第1外部電極が形成されている。第2処理室を区画する固体電解質の第2処理室側に第2内部電極が形成されており、固体電解質を挟んで第2内部電極の反対側に第2外部電極が形成されている。
第1内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含み、第1内部電極を構成する金属粒子の総質量に対するビスマス含有率(ビスマスの質量/電極を構成する金属粒子の総質量)が0.01〜10質量%である。
第2内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されている。第2内部電極は、ビスマスを含まない。ビスマスを含まないとは、積極的にはビスマスを添加しないという意味であり、微量のビスマスが不純物として混入していることはある。
上記ガスセンサでは、第1内部電極が、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されている。そのため、第1内部電極と第1外部電極の間に電圧を印加したときに、電流が流れ易く、酸素の移送効率が高い。また、第1内部電極を形成する金属粒子の表面にビスマスを含んでいるために、第1内部電極の触媒作用が不活性化されており、第1内部電極の近傍で、被検ガス(周囲ガスともいう)に含まれる可燃性ガスが酸素と反応することを効果的に抑制する。
被検ガスから酸素が除去された可燃性ガスは、第2処理室へ導入される。第2処理室には、第2内部電極と固体電解質と第2外部電極で構成される第2酸素ポンプが用意されており、酸素も導入される。第2処理室では可燃性ガスが酸素と反応する。第2処理室に導入される酸素量は、可燃性ガスが酸素と反応する酸素量に等しい。そこで、第2処理室に導入される酸素量を測定することによって、被検ガスに含まれる可燃性ガス量を検出することができる。第2処理室に導入される酸素量は、第2内部電極と第2外部電極の間を流れる電流に比例する。
第1処理室に導入される被検ガスには酸素が含まれている。第1処理室から第2処理室に移送されるガスに酸素が残っていると、可燃性ガス量が正確に検出できなくなる。上記ガスセンサでは、第1酸素ポンプの酸素移送効率が高いために、被検ガスに含まれる酸素が第1処理室で効率的に除去される。第1内部電極が触媒作用を備えていると、被検ガスに含まれる可燃性ガスが第1内部電極の近傍で消費されてしまい、可燃性ガス量が正確に検出できなくなる。上記ガスセンサでは、第1内部電極を形成する金属粒子の表面にビスマスを含んでいるために、第1内部電極の触媒作用が不活性化されており、第1内部電極の近傍で、被検ガスに含まれる可燃性ガスを消費してしまうことがない。これらがあいまって、上記ガスセンサは、被検ガスに含まれる可燃性ガスの濃度に正確に対応する電気信号を出力する。
本発明のガスセンサは、第1内部電極と第1外部電極の間に第1処理室内の酸素を周囲に移送する向きの電圧を加える第1電源と、第2内部電極と第2外部電極の間に周囲ガスに含まれる酸素を第2処理室内に移送する向きの電圧を加える第2電源と、第2内部電極と第2外部電極の間に流れる電流を検出する電流検出手段を組み合わせて用いることができる。それによって、可燃性ガスの測定装置を実現することができる。
第2内部電極と第2外部電極の間に流れる電流は、第2処理室に導入される酸素量に対応しており、被検ガスに含まれる可燃性ガスの濃度に対応している。第1電源と第1酸素ポンプによって第1処理室から酸素を排出し、第2電源と第2酸素ポンプによって第2処理室に酸素を導入しながら第2内部電極と第2外部電極の間に流れる電流を検出することによって、被検ガスに含まれる可燃性ガスの濃度を正確に測定することができる。
本発明の他の一つのガスセンサは、ガス検知空間の内部に一対の内部電極を形成する。このガスセンサも、可燃性ガスの濃度を検出するためのものである。一対の内部電極のうちの一方については触媒作用が活性なものを用い、他方については触媒作用が不活性なものを用いると、一対の内部電極の間に可燃性ガスの濃度に対応する起電力が生じることを利用する。
この形式のガスセンサは、ガス検知空間と、ガス検知空間の酸素濃度を制御する酸素ポンプ素子と、ガス検知空間の可燃性ガスの濃度を検出する濃度検知素子を備えており、下記の特徴を備えている。
ガス検知空間を周囲から区画する壁は少なくとも一部分にガス拡散律速層と固体電解質を備えている。濃度検知素子は、ガス検知空間を区画する固体電解質のガス検知空間側に第1内部電極と第2内部電極が形成されており、固体電解質を挟んで第1内部電極と第2内部電極の反対側に共通外部電極が形成されている。酸素ポンプ素子は、ガス検知空間を区画する固体電解質のガス検知空間側に第3内部電極が形成されており、固体電解質を挟んで第3内部電極の反対側に外部電極が形成されている。
第1内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されている。第1内部電極は、ビスマスを含まない。ビスマスを含まないとは、積極的にはビスマスを添加しないという意味であり、微量のビスマスが不純物として混入していることはある。
第2内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含み、第2内部電極を構成する金属粒子の総質量に対するビスマス含有率(ビスマスの質量/電極を構成する金属粒子の総質量)が0.01〜10質量%である。
第3内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含み、第3内部電極を構成する金属粒子の総質量に対するビスマス含有率が0.01〜10質量%である。
上記のガスセンサの場合、第1内部電極は表面にビスマスを含んでいないために、触媒活性を示す。第1内部電極の近傍では、可燃性ガスと酸素が反応するために、酸素濃度は低下する。その一方において、第2内部電極は表面にビスマスを含んでいるために、触媒作用が不活性である。第2内部電極の近傍では、可燃性ガスと酸素が反応しないために、酸素濃度は低下しない。
この結果、第1内部電極と第2内部電極の間に両電極間の酸素濃度差に対応した起電力が生じる。第1内部電極と第2内部電極の間に生じる起電力は、被検ガスに含まれている可燃性ガスの濃度によく対応する。
このガスセンサは、例えば、ガス拡散律速体を介して、酸素ポンプ素子が形成される第1処理室と濃度検知素子が形成される第2処理室が隣接していてもよい。さらに、第1処理室と第2処理室が共有されているガス検知空間を形成すると、検出の時間的応答性が高く、構造が簡単であり、製造しやすいという特徴も備える。
上記のガスセンサは、第3内部電極と外部電極の間にガス検知空間の酸素濃度を制御する為の電源と、第1内部電極または第2内部電極と共通外部電極の間に発生する電圧を検出する電圧検出手段と、電圧検出手段で検出された電圧が一定値に維持されるように第3内部電極と外部電極の間に加える電圧を制御する装置と、第1内部電極と第2内部電極の間に発生する出力電圧を検出する出力電圧検出手段と組み合わせて用いることが好ましい。それによって、可燃性ガスの測定装置を実現することができる。
第3内部電極と外部電極の間に電源を備えることにより、ガスセンサの周囲からガス検知空間に酸素を移送することもできるし、ガス検知空間からガスセンサの周囲に酸素を移送することもできる。
第1内部電極または第2内部電極と共通外部電極の間に発生する電圧が一定に保たれるように第3内部電極と固体電解質と外部電極で構成される酸素ポンプ素子の能力を調整すると、第1内部電極と第2内部電極の間に生じる起電力は、被検ガスに含まれている可燃性ガスの濃度によく対応する。第1内部電極と第2内部電極の間に生じる起電力を検出することによって、被検ガスに含まれる可燃性ガスの濃度を正確に測定することができる。
本発明では、ガス検知素子を構成する一対の内部電極のうち、一方の内部電極は触媒作用が活性なものを用い、他方の内部電極は触媒作用が不活性なものを用いる。更に、可燃性ガスを検知する空間の酸素濃度を酸素ポンプによって制御するため、微量な可燃性ガスの濃度を高出力で検知できる。また、可燃性ガスを検知する空間の酸素濃度を正確に管理できるため、可燃性ガスの濃度を正確に検知することができる。
本発明の実施形態を以下に説明する。
(第1実施形態)
図1は、第1実施形態のガスセンサを模式的に図示している。ガスセンサ10は、第1処理室36aと、第2処理室36bを備えている。第1処理室36aは、第1固体電解質層30と、第2固体電解質層16aと、絶縁シート32bと、第2ガス拡散律速層40と、第1固体電解質層30に形成されているガス導入孔34を覆っている第1ガス拡散律速層38で取り囲まれている。
第2処理室36bは、第1固体電解質層30と、第2固体電解質層16aと、絶縁シート32aと、第2ガス拡散律速層40で取り囲まれている。
第1処理室36aと、第2処理室36bは、第2ガス拡散律速層40を介して隣接している。
第2固体電解質層16aの第1処理室36a側に第1内部電極18aが形成されている。第2固体電解質層16aを挟んで第1内部電極18aの反対側に第1外部電極20aが形成されている。第1内部電極18aと第2固体電解質層16aと第1外部電極20aによって、第1酸素ポンプ12aが構成されている。第1内部電極18aと第1外部電極20aは、電流計を備えた電源回路22aに電気的に接続されている。第1内部電極18aは、第1処理室36aに晒されており、第1外部電極20aは、外気口42を通じてガスセンサ10の外部に晒されている。
第2固体電解質層16aの第2処理室36b側に第2内部電極24が形成されている。第2固体電解質層16aを挟んで第2内部電極24の反対側に第2外部電極26が形成されている。第2内部電極24と第2固体電解質層16aと第2外部電極26によって、第2酸素ポンプ14が構成されている。第2内部電極24と第2外部電極26は、電流計を備えた電源回路28に電気的に接続されている。第2内部電極24は、第2処理室36bに晒されており、第2外部電極26は、外気口42を通じてガスセンサ10の外気に晒されている。
図示の32dは絶縁シートであり、内部にヒータ44が形成されている。絶縁シート32dは、絶縁シート32cを介して第2固体電解質層16aに固定されている。
ガス拡散律速層38は、ガスの拡散速度を制限することができ、ガスセンサ10の外部に存在する被検ガス(周囲ガスともいう)を第1処理室36aに導入することができる。
第1固体電解質層30と、第2固体電解質層16aは、酸素イオンの透過性を有するイットリア安定化ジルコニア(YSZ)板で構成されている。
第1内部電極18aは、白金を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含んでいる。第1内部電極18aを構成する金属粒子の総質量に対するビスマス含有率は、1質量%である。白金に代えて、白金族に属する白金以外の金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を用いてもよい。例えば第1内部電極18aは、金を主体とする金属粒子で形成されていても良い。また、金を主体とする金属粒子と白金および/または白金族に属する白金以外の金属の少なくとも一種の金属元素を主体とする金属粒子から形成されていても良い。
第2内部電極24は、白金を主体とする金属粒子から形成されている。ビスマスは添加されていない。白金に代えて、白金族に属する白金以外の金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を用いてもよい。
第1外部電極20aは、白金を主体とする金属粒子から形成されている。ビスマスは添加されていない。白金に代えて、白金族に属する白金以外の金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を用いてもよい。
第2外部電極26は、白金を主体とする金属粒子から形成されている。ビスマスは添加されていない。白金に代えて、白金族に属する白金以外の金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を用いてもよい。
ガスセンサ10で可燃性ガスの濃度を測定する方法を説明する。
可燃性ガスと酸素を含む被検ガスが存在する空間にガスセンサ10を設置すると、被検ガスは拡散速度が制限された状態でガス拡散律速層38を通過し、第1処理室36aに導入される。このとき、可燃性ガスと同時に酸素も第1処理室36aに導入される。
第1内部電極18aと第1外部電極20aに接続された電源回路22aをオンすると、第1処理室36aに導入された酸素は、第1内部電極18aから第2固体電解質層16aの内部を通過して第1外部電極20aの側に移動する。即ち、第1処理室36aから酸素が排出される。このとき、第1内部電極18aは触媒作用が不活性なために、可燃性ガスは酸素と反応しない。
第1処理室36aで酸素が除去された可燃性ガスは、拡散速度がガス拡散律速層40で制限された状態で、第1処理室36aから第2処理室36bに導入される。後記するように、第2処理室36bに導入された可燃性ガスは第2酸素ポンプ14より供給される酸素と反応して消費される。第1処理室36aから第2処理室36bへの可燃性ガスの移送は、第1処理室36aにおける可燃性ガスの濃度と第2処理室36bにおける可燃性ガスの濃度の差や、第1処理室36a内と第2処理室36b内での可燃性ガスの流れなどによって生じる。
第2処理室36bでは、第2内部電極24の触媒作用によって、可燃性ガスが酸素と反応する。可燃性ガスと反応するための酸素は、周囲ガスから供給される。第2内部電極24と第2外部電極26に接続された電源回路28をオンすると、外気口42から進入した被検ガスに含まれる酸素が、第2固体電解質層16aを通過し、第2処理室36bに導入される。
第2処理室36bに導入される酸素量は、可燃性ガスが酸素と反応する酸素量に等しい。そこで、第2処理室36bに導入される酸素量を測定すれば、被検ガスに含まれる可燃性ガス量を検出することができる。第2処理室36bに導入される酸素量は、第2内部電極24と第2外部電極26の間を流れる電流に比例する。電源回路28に流れる電流値を読み取ることで、被検ガスに含まれる可燃性ガスの濃度を測定することができる。
なお、ヒータ44は、ガスセンサ10の温度を一定に保つ。ガスセンサ10の温度を一定に保つことで、第1処理室36aと第2処理室36bと外気口42から進入した周囲ガスの温度は一定になる。
(第2実施形態)
図2は、第2実施形態のガスセンサを模式的に図示している。ガスセンサ50は、ガス検知空間58を備えている。ガス検知空間58は、第1固体電解質層16bと、第2固体電解質層48と、絶縁シート56bと、第1固体電解質層16bに形成されているガス導入孔68を覆っているガス拡散律速層66で取り囲まれている。
第2固体電解質層48のガス検知空間58側に、第1内部電極60と第2内部電極62が形成されている。第2固体電解質層48を挟んで第1内部電極60と第2内部電極62の反対側に共通外部電極64が形成されている。共通電極64は、外気口54を通じてガスセンサ50の外部(例えば大気)に晒されている。または、共通外部電極64に大気を導入するための大気室を設置してもよい。第2固体電解質48と、第1内部電極60と、第2内部電極62と、共通外部電極64によりガス検知セル46が形成されている。 第1内部電極60と第2内部電極62の間には、両者間に生じる起電力を検出する電圧計V3が設けられている。第1内部電極60と共通外部電極64の間には、両者間に生じる起電力を検出する電圧計V1が設けられている。第2内部電極62と共通外部電極64の間には、両者間に生じる起電力を検出する電圧計V2が設けられている。
第1固体電解質層16bのガス検知空間58側に、第3内部電極18bが形成されている。第1固体電解質層16bを挟んで第3内部電極18bの反対側に外部電極20bが形成されている。第3内部電極18bと外部電極20bによって、酸素ポンプが構成されている。外部電極20bは、ガスセンサ50の外部(例えば被検ガス)に晒されている。
第3内部電極18bと外部電極20bは、電流計を備えた電源回路22bに電気的に接続されている。
図示の56dは絶縁シートであり、内部にヒータ53が形成されている。絶縁シート56dは、絶縁シート56cを介して第2固体電解質層48に固定されている。
ガス拡散律速層66は、ガスの拡散速度を制限することができ、ガスセンサ50の外部に存在する被検ガス(周囲ガスともいう)をガス検知空間58に導入することができる。
第1固体電解質層16bと、第2固体電解質層48は、酸素イオンの透過性を有するイットリア安定化ジルコニア(YSZ)板で構成されている。
第1内部電極60は、白金を主体とする金属粒子から形成されている。ビスマスは添加されていない。白金に代えて、白金族に属する白金以外の金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を用いてもよい。
第2内部電極62と第3内部電極18bは、白金を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含んでいる。第2内部電極62と第3内部電極18bを構成する金属粒子の総質量に対するビスマス含有率は、0.6質量%である。白金に代えて、白金族に属する白金以外の金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を用いてもよい。例えば第2内部電極62と第3内部電極18bは、金を主体とする金属粒子で形成されても良い。また、金を主体とする金属粒子と白金および/または白金族に属する白金以外の金属の少なくとも一種の金属元素を主体とする金属粒子から形成されても良い。
共通外部電極64と、外部電極20bは、白金を主体とする金属粒子から形成されている。ビスマスは添加されていない。白金に代えて、白金族に属する白金以外の金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を用いてもよい。
ガスセンサ50で可燃性ガスの濃度を測定する方法を説明する。
可燃性ガスと酸素を含む被検ガスが存在する空間にガスセンサ50を設置すると、被検ガスはガス拡散律速層66によって拡散速度が制限された状態で移動し、ガス検知空間58に導入される。このとき、可燃性ガスと同時に酸素もガス検知空間58に導入される。
第3内部電極18bと外部電極20bに接続された電源回路22bをオンすると、ガス検知空間58に導入された酸素は、第3内部電極18bから第1固体電解質層16bを通過し、外部電極20b側に移動する。即ち、第3内部電極18bは、触媒作用が不活性なため、ガス検知空間58から可燃性ガスに影響を与えることなく酸素を排出できる。
ガス検知空間58に導入された可燃性ガスは、第1内部電極60の触媒作用によってガス検知空間58に導入された酸素と反応する。そのため、第1内部電極60の表面付近の酸素濃度は、ガス検知空間58の平均酸素濃度よりも低くなる。
一方、第2内部電極62は触媒作用が不活性なために、第2内部電極62の近傍では可燃性ガスと酸素の反応が起こらない。そのため、第2内部電極62の表面付近の酸素濃度はガス検知空間58の平均酸素濃度に等しい。したがって、第1内部電極60と第2内部電極62の間には酸素濃度差が生じ、酸素濃淡起電力が発生する。両電極に生じる酸素濃度差は、燃焼する可燃性ガスの量と相関があるため、起電力より可燃性ガスの濃度を検知できる。
酸素ポンプ12bによって、ガス検知空間58の酸素濃度が所望する濃度に制御される。即ち、ガス検知空間58から周囲ガスへ酸素を排出する場合や、周囲ガスからガス検知空間58へ酸素を導入する場合もある。
本実施形態では、電圧計V1または電圧計V2の検出値を一定に保つように酸素ポンプ12bの酸素排出能力を調整する。即ち、第1内部電極60または第2内部電極62の表面付近の酸素濃度を一定に保つように酸素ポンプ12bの酸素排出能力を調整する。例えば、ガス検知空間58の酸素濃度が高くなると、酸素ポンプ12bを制御しなければ第1内部電極60と共通外部電極64の間の起電力V1は小さくなる。そのため、電圧計V1の検出値を一定に保つように酸素ポンプ12bを制御する。即ち、酸素ポンプ12bの酸素排出能力を高めて、ガス検知空間58の酸素濃度を低くする。
図面を参照して以下に実施例を詳細に説明する。
(第1実施例)
図1に示す形態のガスセンサ10を製造した。即ち、薄片状(70mm×6mm×1mm)に成形したイットリア安定化ジルコニア(ZrO−6mol%Y:以下YSZと称す。)板(固体電解質)16aの両面の2箇所ずつに電気的に接しないように、白金(Pt)粉90質量%、YSZ10質量%(但しビヒクル等の有機成分を除く)の組成の白金電極形成用ペーストをスクリーン印刷した。
次いで、YSZ板16aの上面のPt電極(第1内部電極)18aとPt電極(第2内部電極)24の間にガス拡散律速層40を形成した。次いで、アルミナを主成分とする薄膜状(70mm×6mm×2mm)の絶縁シート32a,32b(図示32a,32bは実質的に同一のシート)を形成するためのアルミナシートを置き、アルミナシートとYSZ板(固体電解質)30を貼りあわせた。
次いで、YSZ板16aの下面に薄膜状(70mm×6mm×2mm)の絶縁シート32cを介して、ヒータ44が内部に形成されている絶縁シート32dを貼りあわせた。その後、1500℃で2時間の焼成を行った。
さらに、Pt電極18aに0.01mol/Lの硝酸ビスマス水溶液を30μL滴下した。Pt電極18aのビスマス含有率は1質量%になる。
硝酸ビスマス水溶液を塗布した後、850℃で熱処理を行った。さらにPt電極18aの金属表面にビスマスを偏在化させるために、1%の水素を含む窒素ガス中で通電処理を行った。さらに、YSZ板30の上面にガス導入孔34を塞ぐようにガス拡散律速層38を形成し、電源回路22aをPt電極18a,20a間に接続し、電源回路28をPt電極24,26間に接続した。
次に、ガスセンサ10をヒータ44で700℃に加熱し、1%の酸素を含む窒素ガス(以下「第1基準被検ガス」と称す。)雰囲気下に可燃性ガスを添加して、ガスセンサ10のガス検知性能を評価した。可燃性ガスはプロパンガス(C)、水素ガス(H)、一酸化炭素ガス(CO)の3種類について濃度を0〜1000ppmに変化させて用意した。
第1酸素ポンプ12aには、電源回路22aによって0.6Vの電圧が印加され、第1処理室36aから外気口42に酸素が排出された。
図5は、ガスセンサ10の電源回路28に流れた電流値と、可燃性ガスの濃度の関係を示している。縦軸は電源回路28に流れた電流値(μA)を示し、横軸は可燃性ガスの濃度(ppm)を示している。カーブ90は可燃性ガスがプロパンガスの場合を示し、カーブ92は可燃性ガスが水素ガスの場合を示し、カーブ94は可燃性ガスが一酸化炭素ガスの場合を示している。
カーブ90から明らかなように、プロパンガスの濃度が高くなると、電源回路28に流れる電流は比例して大きくなっている。ガスセンサ10はプロパンガスの濃度を測定することができることが確認された。
また、カーブ92とカーブ94から明らかなように、可燃性ガスが水素ガスや一酸化炭素ガスの場合、ガス濃度が高くなっても電源回路28にはほとんど電流が流れない。即ち、ガスセンサ10は水素ガスや一酸化炭素ガスの濃度に影響されないことが確認された。
(第2実施例)
図2に示す形態のガスセンサ50を製造した。即ち、ガス導入孔68が形成されたYSZ板16bの両面に、実施例1で使用した組成の白金電極形成用ペーストをスクリーン印刷した。その後1500℃で2時間の焼成を行い、YSZ板16bの両面にPt粒子が焼結して成る薄膜状のPt電極18b,20bを形成した。次いで、YSZ板(固体電解質)48の上面の2箇所に電気的に接しないように、実施例1で使用した組成の白金電極形成用ペーストをスクリーン印刷し、YSZ板48の下面に、実施例1で使用した組成の白金電極形成用ペーストをスクリーン印刷した。その後1500℃で2時間の焼成を行い、YSZ板48の両面にPt粒子が焼結して成る薄膜状のPt電極60,62,64を形成した。
次いで、Pt電極(第3内部電極)18bとPt電極62に0.01mol/Lの硝酸ビスマス水溶液を10μL滴下した。Pt電極18bとPt電極62のビスマス含有率は0.6質量%になる。硝酸ビスマス水溶液を塗布した後、850℃で熱処理を行った。さらにPt電極18bとPt電極62の金属表面にビスマスを偏在化させるために、1%水素を含む窒素ガス中で通電処理を行った。
次いで、YSZ板16bの上面にガス導入孔68を塞ぐようにガス拡散律速層66を形成した。次いで、YSZ板16bとYSZ板48を絶縁シート56bを介して接着し、YSZ板48とヒータ53が内部に形成されている絶縁シート56dを絶縁シート56cを介して接着した。その後、600℃で1時間の焼成を行った。
次いで、電源回路22bをPt電極18b,20b間に接続し、Pt電極(第1内部電極)60と、Pt電極(第2内部電極)62と、Pt電極(共通外部電極)64の間に電圧制御回路52を形成した。
次に、ガスセンサ50をヒータ53で加熱し、第1基準被検ガス雰囲気下に可燃性ガスを添加してガスセンサ50のガス検知性能を評価した。
ガス検知性能の評価は、外気口54に大気を導入して評価した。即ち、Pt電極64は可燃性ガスに晒されず、大気に晒されている。可燃性ガスはプロパンガス(C3H8)、水素ガス(H2)、一酸化炭素ガス(CO)の3種類について濃度を0〜1000ppmに変化させて用意した。
Pt電極60とPt電極64の間に発生する起電力が110mVで一定になるように、電圧制御回路52の電圧計V1からの電気信号によって、可変電源回路22bに流れる電流値を変化させた。
図6は、ガスセンサ50の電圧制御回路52の電圧計V3の値と、可燃性ガスの濃度の関係を示している。縦軸は電圧計V3の値(mV)を示し、横軸は可燃性ガスの濃度(ppm)を示している。カーブ96は可燃性ガスがプロパンガスの場合を示し、カーブ98は可燃性ガスが水素ガスの場合を示し、カーブ100は可燃性ガスが一酸化炭素ガスの場合を示している。
カーブ96から明らかなように、プロパンガスの濃度が高くなると、電圧計V3の値は大きくなっている。ガスセンサ50は、プロパンガスの濃度を測定できることが確認された。
また、カーブ98とカーブ100から明らかなように、可燃性ガスが水素ガスや一酸化炭素ガスの場合、ガス濃度が高くなっても電圧計V3の値はほとんど変化しない。即ち、ガスセンサ50は水素ガスや一酸化炭素ガスの濃度に影響されないことが確認された。
(第3実施例)
実施例1又は実施例2では、内部電極の表面にビスマスを添加した電極を用いている。本実施例では、ビスマスの添加量とその効果について調査した。
図3に示すガスセンサ80であって、内部電極86のビスマス含有率がそれぞれ異なる12種類のガスセンサ80を製造した。
即ち、薄板状(直径17mm、高さ1mm)に成形したYSZ板82の両面に、実施例1で使用した組成の白金電極形成用ペーストをスクリーン印刷した。その後、1500℃で1時間の焼成を行い、YSZ板82の両面にPt粒子を焼結させて、薄膜状のPt電極86,88を形成した。得られたPt電極86,88の物性を次に示す。(厚さ:10μm、面積:約0.5cm、空隙率:約40%、密度:21.45g/cm、Pt質量:約6.4mg)
次いで、Pt電極86に表1に示すいずれかの濃度の硝酸ビスマス水溶液を適量(表1参照)滴下した。硝酸ビスマス水溶液滴下後、そのPt電極86上に所定形状(直径17mm、高さ0.5mm)のアルミナから成るガス拡散律速体84を接着させた。次いで、大気中で800℃の熱処理を行った。この方法によって、ガス拡散律速体84により包囲された空間85に配置された内部電極86を構成するPt粒子の表面にビスマス(酸化ビスマス)を含有させた。次いでPt電極86,88に電圧を印加することができる電源回路81をPt電極86,88間に形成した
このようにして、表1に示す計12種類のガスセンサ80(サンプル1〜サンプル12)を製造した。表1には、各サンプルの製造に使用した硝酸ビスマスの濃度、滴下量、ビスマス添加量、及び、ビスマスを添加した内部電極86における電極構成金属元素の総質量に対するビスマス質量含有率((ビスマスの質量/白金粒子の質量+ビスマスの質量)×100)を示す。
Figure 0004635912
次に、サンプル1〜12を700℃に加熱し、0.1%の酸素を含む窒素ガス(以下「第2基準被検ガス」と称す。)中における限界電流と、第2基準被検ガスに対して濃度が200ppmとなるようにプロパンを導入したプロパン含有第2被検ガス中における限界電流を求めた。そして、プロパン含有第2被検ガス中における限界電流値がプロパンを含まない第2基準被検ガス中における限界電流値の80%を保持した場合は、ビスマス含有の効果があるとして表1中に○で示した。限界電流値の差が80%以下になった場合は、ビスマス含有の実質的な効果がないとして表1中に×で示した。
表1から明らかなように、内部電極に0.0016質量%以上のビスマスを含有したサンプル3〜12において限界電流値が可燃性ガス(ここではプロパン)の影響を受けずに、プロパン含有第2被検ガス中における限界電流値がプロパンを含まない第2基準被検ガス中における限界電流値の80%を保持した。その一方、詳細なデータを示していないが、内部電極のビスマス含有率が10質量%を越えるサンプル11〜12では抵抗値が上昇してしまった(図中の△)。従って、本発明によって提供されるガスセンサを酸素センサとして用いる場合は、内部電極のビスマス含有率は0.002〜10質量%程度が適当であり、0.01〜10質量%程度が好ましいことが認められた。
(第4実施例)
ビスマスが添加されている電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成され、その金属粒子の表面に硝酸ビスマス水溶液を塗布して、その金属粒子の表面にビスマスを偏った状態で含ませることが好ましい。
上記実施例では、電極の表面にビスマスを含ませる方法として、硝酸ビスマス水溶液を塗布する方法を採用している。ガスセンサで利用する電極にビスマスを含ませるためには、水溶液を塗布する方法が他の方法よりも高い酸素ポンプ性能が得られるからである。
図4は、ガスセンサに利用する電極のイオン透過性を検証するために作製した構成部品70を示している。薄片状(直径17mm、高さ1mm)に成形したYSZ板72を用意して、YSZ板72の片面に実施例1で使用した組成の白金電極形成用ペーストをスクリーン印刷して1500℃で1時間焼成してPt電極88を形成した。その後、YSZ板72の他方の面に以下に示す2種類のPt/Bi電極74を作製した。
条件1:白金粉75mol%、ビスマス25mol%の組成のPt/Bi電極形成用ペーストをスクリーン印刷して、次いで酸素雰囲気中で850℃の熱処理を行った。
条件2:実施例1で使用した組成の白金電極形成用ペーストをスクリーン印刷し、1500℃で1時間焼成した後、0.002mol/Lの硝酸ビスマス水溶液を塗布して、次いで酸素雰囲気中で850℃の熱処理を実施し、その後水素雰囲気下で800℃で1時間の熱処理を実施した。次いで、Pt電極74,88に電圧を印加することができる電源回路81をPt電極74,88間に形成した
得られた本実施例の構成部品について、第2基準被検ガス中で700℃に加熱して電源回路81の電圧を変化させ、そのときの電流値を測定した。
図7に示すグラフは、縦軸は電流値(mA)を示し、横軸は電源回路81の電圧(V)を示している。曲線104は、Pt/Bi電極74を条件1で作製した結果を示し、曲線102は、Pt/Bi電極74を条件2で作製した結果を示している。
曲線104は、電源回路81の電圧を高くしてもあまり電流値は高くならない。即ち、電圧を高くしても電極間を通過する酸素イオンの量はあまり増えないことを示している。曲線102は、電圧を高くすると電流値も比例して高くなる。即ち、電圧を高くすると、電極間を通過する酸素イオンの量が比例して増えることを示している。電極間に電圧を1Vかけた場合、条件1でPt/Bi電極74を作製した構成部品70と条件2でPt/Bi電極74を作製した構成部品70は、Pt電極74,88間の流れる電流は約10倍の差がみられた。
ガスセンサに利用される酸素ポンプは、酸素イオン透過性が高い方が、より低い電圧でより多くの酸素イオンを内部電極から外部電極(又は外部電極から内部電極)へ移動させることが可能となるため、ガスセンサで利用する電極にビスマスを含ませるためには、溶液を塗布し、表面にビスマスを偏在化させる方法が他の方法よりも高い酸素ポンプ性能が得られる。
また、条件1のPt/Bi電極74の表面には約26質量%のビスマスが使用されており、条件2のPt/Bi電極74の表面には約0.5質量%のビスマスが使用されている。
溶液を塗布する方法でPt/Bi電極74を作製すると、少ないビスマス添加量で高い酸素ポンプ性能が得られることが確認された。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
上記実施例では、ガスセンサにヒータを設置したが、ガスセンサが加熱されさえすればよく、必ずしもガスセンサにヒータを設置しなくてもよい。その場合は、ガスセンサを加熱することができる領域にガスセンサを配置すればよい。
実施例1では、ガス拡散律速体を介して第1処理室と第2処理室が隣接しているが、第1処理室と第2処理室の間のガスの拡散速度が制限されていればよく、必ずしも区画されている必要はない。例えば第1処理室と第2処理室の空間体積を小さくすることで、ガスの拡散速度を制限してもよい。
また、実施例1では、焼成前のYSZ板と焼成前のアルミナシートと焼成前の絶縁シートを貼り付けた後に焼成を行ったが、YSZ板とアルミナシートと絶縁シートをそれぞれ事前に焼成して、最後に接着してもよい。
実施例2では、YSZ板と絶縁シートをそれぞれ事前に焼成して、最後に接着したが、YSZ板と絶縁シートを接着した後に焼成してもよい。
また、実施例2では、ガスセンサ全体が被検ガス中に晒されており、外気口に大気を導入したが、酸素ポンプの外部電極側を区画してその区画内のみを被検ガスに晒し、ガス検知セルの共通外部電極側を区画してその区画内のみを大気に晒してもよい。
例えば、実施例2では、電圧計V1の検出値を一定に保つように酸素ポンプの動作を制御したが、電圧計V2の検出値を一定に保つように酸素ポンプの動作を制御してもよい。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。
実施例1のガスセンサを示している。 実施例2のガスセンサを示している。 実施例3のガスセンサを示している。 実施例4のガスセンサの構成部品を示している。 実施例1のガスセンサの可燃性ガスと出力電流値を示すグラフ。 実施例2のガスセンサの可燃性ガスと出力電圧値を示すグラフ。 実施例4ガスセンサの構成部品の電流―電圧特性を示すグラフ。
符号の説明
10:ガスセンサ
12:酸素ポンプ
14:第2酸素ポンプ
16、30、48:固体電解質
18:内部電極
20:外部電極
22、28、81:電源回路
24:内部電極
26:外部電極
32、56:絶縁シート
34、68:ガス導入孔
36:処理室
42、54:外気口
38、40、66:ガス拡散律速体
44、53:ヒータ
46:ガス検知セル
50:ガスセンサ
52:電圧制御回路
58:ガス検知空間
60:内部電極
62:内部電極
64:共通外部電極

Claims (4)

  1. 可燃性ガスの濃度を検出するためのガスセンサであり、
    第1処理室と第2処理室を備えており、
    第1処理室を周囲から区画する壁の少なくとも一部分にガス拡散律速層と固体電解質を備えており、
    第2処理室を周囲から区画する壁の少なくとも一部分に固体電解質を備えており、
    第1処理室と第2処理室はガス拡散律速層を介して隣接しており、
    第1処理室を区画する固体電解質の第1処理室側に第1内部電極が形成されており、
    固体電解質を挟んで第1内部電極の反対側に第1外部電極が形成されており、
    第2処理室を区画する固体電解質の第2処理室側に第2内部電極が形成されており、
    固体電解質を挟んで第2内部電極の反対側に第2外部電極が形成されており、
    第1内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含み、第1内部電極を構成する金属粒子の総質量に対するビスマス含有率(ビスマスの質量/電極を構成する金属粒子の総質量)が0.01〜10質量%であり、
    第2内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されていることを特徴とするガスセンサ。
  2. 請求項1のガスセンサと、
    第1内部電極と第1外部電極の間に、第1処理室内の酸素を周囲に移送する向きの電圧を加える第1電源と、
    第2内部電極と第2外部電極の間に、周囲ガスに含まれる酸素を第2処理室内に移送する向きの電圧を加える第2電源と、
    第2内部電極と第2外部電極の間に流れる電流を検出する電流検出手段を有する可燃性ガスの測定装置。
  3. 可燃性ガスの濃度を検出するためのガスセンサであり、
    ガス検知空間を備えており、
    ガス検知空間を周囲から区画する壁の少なくとも一部分にガス拡散律速層と固体電解質を備えており、
    ガス検知空間を区画する固体電解質のガス検知空間側に第1内部電極と第2内部電極が形成されており、
    固体電解質を挟んで第1内部電極と第2内部電極の反対側に共通外部電極が形成されており、
    ガス検知空間を区画する固体電解質のガス検知空間側に第3内部電極が形成されており、
    固体電解質を挟んで第3内部電極の反対側に外部電極が形成されており、
    第1内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されており、
    第2内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含み、第2内部電極を構成する金属粒子の総質量に対するビスマス含有率(ビスマスの質量/電極を構成する金属粒子の総質量)が0.01〜10質量%であり、
    第3内部電極は、白金族に属するいずれかの金属、金、銀、ニッケルから成る群から選択される少なくとも一種の金属元素を主体とする金属粒子から形成されており、その金属粒子の表面に偏った状態でビスマスを含み、第3内部電極を構成する金属粒子の総質量に対するビスマス含有率が0.01〜10質量%であることを特徴とするガスセンサ。
  4. 請求項3のガスセンサと、
    第3内部電極と外部電極の間にガス検知空間内の酸素濃度を制御する電圧を加える電源と、
    第1内部電極または第2内部電極と共通外部電極の間に発生する電圧を検出する電圧検出手段と、
    電圧検出手段で検出された電圧が一定値に維持されるように第3内部電極と外部電極の間に加える電圧を制御する装置と、
    第1内部電極と第2内部電極の間に発生する出力電圧を検出する出力電圧検出手段を有する可燃性ガスの測定装置。
JP2006058514A 2006-03-03 2006-03-03 ガスセンサと可燃性ガスの測定装置 Expired - Fee Related JP4635912B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058514A JP4635912B2 (ja) 2006-03-03 2006-03-03 ガスセンサと可燃性ガスの測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058514A JP4635912B2 (ja) 2006-03-03 2006-03-03 ガスセンサと可燃性ガスの測定装置

Publications (2)

Publication Number Publication Date
JP2007240152A JP2007240152A (ja) 2007-09-20
JP4635912B2 true JP4635912B2 (ja) 2011-02-23

Family

ID=38585845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058514A Expired - Fee Related JP4635912B2 (ja) 2006-03-03 2006-03-03 ガスセンサと可燃性ガスの測定装置

Country Status (1)

Country Link
JP (1) JP4635912B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387618B (zh) * 2008-10-14 2013-01-16 苏州金百合电子科技有限公司 汽车用宽范围空气/汽油比例测量传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247995A (ja) * 1995-03-09 1996-09-27 Ngk Insulators Ltd 可燃ガス成分の測定方法及び測定装置
JPH11183434A (ja) * 1997-12-22 1999-07-09 Ngk Insulators Ltd NOx濃度測定装置
JPH11271269A (ja) * 1998-03-24 1999-10-05 Toyota Central Res & Dev Lab Inc 炭化水素ガス成分の検出方法及び検出センサ
JPH11344468A (ja) * 1998-06-01 1999-12-14 Toyota Motor Corp 可燃性ガスセンサおよび可燃性ガス濃度測定装置
JP2002333428A (ja) * 2001-05-08 2002-11-22 Toyota Central Res & Dev Lab Inc 希土類元素を含む電極及び該電極を備えた電気化学セル
JP2003194773A (ja) * 2001-12-28 2003-07-09 Toyota Central Res & Dev Lab Inc 多孔質電極、これを含む電気化学素子及びガス濃度検出センサ、並びに酸素分圧の制御方法及び可燃性ガスの検出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247995A (ja) * 1995-03-09 1996-09-27 Ngk Insulators Ltd 可燃ガス成分の測定方法及び測定装置
JPH11183434A (ja) * 1997-12-22 1999-07-09 Ngk Insulators Ltd NOx濃度測定装置
JPH11271269A (ja) * 1998-03-24 1999-10-05 Toyota Central Res & Dev Lab Inc 炭化水素ガス成分の検出方法及び検出センサ
JPH11344468A (ja) * 1998-06-01 1999-12-14 Toyota Motor Corp 可燃性ガスセンサおよび可燃性ガス濃度測定装置
JP2002333428A (ja) * 2001-05-08 2002-11-22 Toyota Central Res & Dev Lab Inc 希土類元素を含む電極及び該電極を備えた電気化学セル
JP2003194773A (ja) * 2001-12-28 2003-07-09 Toyota Central Res & Dev Lab Inc 多孔質電極、これを含む電気化学素子及びガス濃度検出センサ、並びに酸素分圧の制御方法及び可燃性ガスの検出方法

Also Published As

Publication number Publication date
JP2007240152A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
US6787014B2 (en) Gas-detecting element and gas-detecting device comprising same
US4224113A (en) Method of detecting air/fuel ratio in combustor by detecting oxygen in combustion gas
JP3128114B2 (ja) 窒素酸化物検出装置
JP2020512524A (ja) アンモニアセンサ
US8012323B2 (en) Compact electrochemical bifunctional NOx/O2 sensors with internal reference for high temperature applications
KR20080069575A (ko) NOx 센서 및 이를 사용하는 방법
US6638416B2 (en) Hydrogen sensing process
CN109564184B (zh) 气体传感器
JP2016138775A (ja) ガスセンサ
JP2009244140A (ja) ガスセンサおよびNOxセンサ
JP3855771B2 (ja) 多孔質電極、これを含む電気化学素子及びガス濃度検出センサ、並びに酸素分圧の制御方法及び可燃性ガスの検出方法
JP3782031B2 (ja) 空燃比検出装置
JP4028289B2 (ja) NOx分解電極及びNOx濃度測定装置
JP2002243692A (ja) 窒素酸化物ガスセンサ
US20060213772A1 (en) Sensing element and method of making
JP4635912B2 (ja) ガスセンサと可燃性ガスの測定装置
JP2017133940A (ja) ガスセンサユニット
JP2000097903A (ja) ガス濃度測定装置及びガス濃度測定方法
JP4153238B2 (ja) 電気化学的酸素ポンプセルおよびそれを用いた窒素酸化物検知装置
JPH04504170A (ja) ガス混合物のλ値を測定するための限界電流センサ用のセンサ素子
US20110210013A1 (en) Selective gas sensor device and associated method
JP3499421B2 (ja) NOxガス濃度測定方法及びNOxガス濃度検出器
JP3463735B2 (ja) 炭化水素ガス成分の検出方法及び検出センサ
JP2002005883A (ja) 窒素酸化物ガスセンサ
JP2615138B2 (ja) 複合ガスセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4635912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees