JP4631298B2 - Rotating machine design method and rotating machine manufacturing method - Google Patents

Rotating machine design method and rotating machine manufacturing method Download PDF

Info

Publication number
JP4631298B2
JP4631298B2 JP2004077022A JP2004077022A JP4631298B2 JP 4631298 B2 JP4631298 B2 JP 4631298B2 JP 2004077022 A JP2004077022 A JP 2004077022A JP 2004077022 A JP2004077022 A JP 2004077022A JP 4631298 B2 JP4631298 B2 JP 4631298B2
Authority
JP
Japan
Prior art keywords
core material
design
rotating machine
iron core
material characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004077022A
Other languages
Japanese (ja)
Other versions
JP2005269746A (en
Inventor
邦浩 千田
昌義 石田
健一 定廣
広朗 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004077022A priority Critical patent/JP4631298B2/en
Publication of JP2005269746A publication Critical patent/JP2005269746A/en
Application granted granted Critical
Publication of JP4631298B2 publication Critical patent/JP4631298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、高効率・高精度を指向した電動機や発電機などの電磁気学的作用を利用した回転機の設計に関する。   The present invention relates to the design of a rotating machine that uses an electromagnetic action such as an electric motor or a generator directed at high efficiency and high accuracy.

電動機や発電機といった電磁気学的作用を利用した回転機は、今日の自動化された社会を構成するために欠くことの出来ない機器といえる。このため、近年のエネルギー損失低減の必要性から、より高効率な回転機が望まれている。また、高精度の制御を行うためにはトルクを高い精度で実現する必要がある。このため、回転機の最適化設計において、損失の最小化やトルクの高精度な予測はますます重要となりつつある。   Rotating machines that use electromagnetic action, such as electric motors and generators, can be said to be indispensable for constituting today's automated society. For this reason, a more efficient rotating machine is desired because of the recent need to reduce energy loss. Moreover, in order to perform highly accurate control, it is necessary to implement | achieve a torque with high precision. For this reason, in the optimization design of rotating machines, minimizing loss and highly accurate prediction of torque are becoming increasingly important.

従来の回転機の設計方法は、概略的な理論や経験に基づいて行われるのが一般的であった。しかし、このような設計法では、電磁気学に基づいた解析的な式から機器の大まかな傾向を見いだすことはできたとしても、具体的な数値を高精度に予測することは不可能であり、最終判断は経験と実験による試行錯誤を必要としていた。
これに対して近年、計算機能力の向上により有限要素法や積分要素法などによる電磁界解析を用いた、回転機の模擬計算(計算機シミュレーション)が可能となり、機器の設計に適用されつつある(非特許文献l及び2参照)。これらの方法を用いて最適化設計を行う場合は、従来から使用されてきた回転機に関する解析的な式から大まかな仕様を決定し、最終的な厳密計算を電磁界解析により実施しつつ上記仕様内容を変更して最終的な仕様を決定するといった方法が一般的である。
Conventional design methods for rotating machines are generally based on rough theory and experience. However, with such a design method, it is impossible to predict a specific numerical value with high accuracy even though a rough tendency of the device can be found from an analytical formula based on electromagnetism. Final judgment required trial and error by experience and experiment.
On the other hand, in recent years, with the improvement of calculation capability, simulation calculation (computer simulation) of a rotating machine using electromagnetic field analysis by a finite element method or an integral element method has become possible and is being applied to the design of equipment (non- (See Patent Documents 1 and 2). When optimization design is performed using these methods, a rough specification is determined from an analytical expression related to a rotating machine that has been used in the past, and the above specifications are performed while performing final rigorous calculation by electromagnetic field analysis. A general method is to determine the final specification by changing the contents.

ここで、電磁界解析による計算において、網羅的に設計変数を変更して行って最適仕様を求める方法は計算負荷が大きいため、非特許文献1のように、最適解に漸近するように設計変数を探索する方法や、非特許文献2のように、実験計画法に基づいて限られた計算結果から最適解を予測する方法などが提案されている。
また、いずれの設計方法においても、従来にあっては、最適化設計で使用される鉄心の材料特性としては、鉄心材料自体から直接に測定した値か、理論や経験から求めた鉄心材料自体の鉄心材料特性が使用されている。
日野その他、「鉄損解析と形状最適化による高効率モータの設計検討」、電気学会回転機研究資料 RM02−7、平成14年 藤島その他、「最適化計算への応答曲面近似法の適用に関する基礎的検討」、電気学会回転機研究資料 RM02−6、平成14年
Here, in the calculation by electromagnetic field analysis, the method of obtaining the optimum specification by comprehensively changing the design variable has a large calculation load, so that the design variable is asymptotic to the optimum solution as in Non-Patent Document 1. And a method for predicting an optimal solution from a limited calculation result based on an experimental design method, as in Non-Patent Document 2, has been proposed.
In any conventional design method, the material characteristics of the iron core used in the optimized design are the values measured directly from the iron core material itself, or the iron core material itself obtained from theory and experience. Iron core material properties are used.
Hino et al., “Design study of high-efficiency motor by iron loss analysis and shape optimization”, IEEJ rotating machine research data RM02-7, 2002 Fujishima et al., “Fundamental study on application of response surface approximation method to optimization calculation”, IEEJ rotating machine research data RM02-6, 2002

以上のように、従来にあっては、計算機上での計算だけで最適な設計仕様を求め、その求めた設計にて実際に回転機を試作して、現実の機器特性を見極めたのちに製品の生産工程に移行する。
磁界解析を用いた設計法では、経験により設計する方法よりも高精度の機器予測が可能であるものの、依然として予測値と現実の値の間には乖離が生じる場合がある。このため、所望の機器特性が得られないことによる再度の仕様変更や再設計といった問題が発生するおそれがある。
As described above, in the past, the optimum design specifications were obtained only by calculation on the computer, the prototype was actually manufactured using the obtained design, and the product characteristics were determined after determining the actual device characteristics. Transition to the production process.
In the design method using magnetic field analysis, device prediction can be performed with higher accuracy than the design method based on experience, but there may still be a discrepancy between the predicted value and the actual value. For this reason, there is a possibility that problems such as re-design change and re-design due to failure to obtain desired device characteristics may occur.

このような乖離の原因は、現在の電磁界解析が、鉄心材料の持つ異方性やヒステリシス特性といった実際的な磁気挙動を完全に反映させることが困難であることや、鉄心の材料特性すべてを厳密に数値化することが困難であること、さらにはモータ製造時に鉄心材料に導入される歪などによる影響など、種々の原因があげられる。
このように現在の模擬計算技術は、現実的な種々の因子をすべて考慮したものではなく、理想的かつ単純化された条件下で行わざるを得ないために、回転機特性の厳密な予測が出来ず、回転機の最適化設計に適用した場合に必ずしも最適な解を導出しているとは限らないという問題がある。
本発明は、このような点に着目したもので、より精度良く回転機の最適化設計を可能とすることを課題としている。
The reason for this divergence is that it is difficult for current electromagnetic field analysis to fully reflect the actual magnetic behavior such as anisotropy and hysteresis characteristics of iron core materials, and all the material characteristics of iron cores. There are various causes such as difficulty in quantifying strictly and the influence of strain introduced into the iron core material during motor manufacture.
In this way, the current simulation calculation technology does not take into account all of the various realistic factors, and must be performed under ideal and simplified conditions. There is a problem that the optimum solution is not always derived when applied to the optimization design of a rotating machine.
The present invention pays attention to such a point, and has an object to enable optimization design of a rotating machine with higher accuracy.

発明者らは、モータの固定子内部の局所磁気特性を測定すること、特に探針法を用いて直接測定することで、模擬計算(計算機シミュレーション)では再現出来ない現象を見いだした。図4〜図6に、モータ固定子内部における局所磁束密度ベクトルの軌跡、局所鉄損分布および局所磁束密度分布について、探針法による測定値と、FEM(有限要素法)による計算値との比較を示す。これらの図から明らかなように、
(1)計算では予測できない鉄心内の回転磁束挙動
(2)局所鉄損分布の計算結果との乖離
(3)固定子内部の磁束密度の大きさとその分布の計算との乖離
という現象が少なくとも生じていることが分かった。
これらは、モータ設計を行う上で計算機による模擬計算の結果に誤差をもたらす要因である。発明者らは、各要因に対応した補完を行うことで高精度な設計計算を実施可能と考えた。
The inventors have found a phenomenon that cannot be reproduced by simulation (computer simulation) by measuring the local magnetic characteristics inside the stator of the motor, particularly by directly using the probe method. FIG. 4 to FIG. 6 show the comparison between the measured value by the probe method and the calculated value by the FEM (finite element method) for the locus of the local magnetic flux density vector, the local iron loss distribution, and the local magnetic flux density distribution inside the motor stator. Indicates. As is clear from these figures,
(1) Rotating magnetic flux behavior in the iron core that cannot be predicted by calculation (2) Deviation from the calculation result of local iron loss distribution (3) At least the phenomenon of deviation between the magnetic flux density inside the stator and the calculation of the distribution occurs I found out.
These are factors that cause an error in the result of the simulation calculation by the computer in designing the motor. The inventors considered that it is possible to perform highly accurate design calculation by performing complementation corresponding to each factor.

ここで、上記(l)の回転磁束とは、鉄心を構成する鋼板の平面内の磁束密度が一方向以外の成分を有しながら変化する場合に対応しており、周期的な磁化を生じる回転機では磁束密度ベクトルの基点を原点とし、ベクトルの先端の軌跡を励磁1周期に渡って描いたときに円または楕円状に回転して描かれる形状、もしくはこれらに高周波の成分が重畳された形状となることから、このように命名されているものである。回転磁束は、回転機のティースとヨークの接合部やティース先端部といった磁束の向きが変化する部分で発生することは従来から知られていたが、従来では磁束の向きの変化が予想されなかったティースの中央部のような部分でも何らかの原因で回転磁束が発生していることを局所磁気測定により発明者らは確認している。回転磁束下では交番の磁束変化に比べて鉄損が大きくなることが知られている(なお、回転磁束下での鉄損は回転鉄損と呼ばれている。)。したがって、回転磁束挙動が正確に把握出来ていない場合は回転機の鉄損を正確に予測できず、効率を最大化するような最適化において誤差を生じる。また、鉄心材料の異方性と強く関連している回転磁束挙動は、モータのトルク脈動にも影響していると考えられるため、回転磁束挙動が正確に見積もられていない場合は、トルク脈動も正確に予測できないと考えられる。   Here, the rotating magnetic flux of (l) corresponds to the case where the magnetic flux density in the plane of the steel sheet constituting the iron core changes while having a component other than one direction, and rotation that causes periodic magnetization. In this machine, the origin of the magnetic flux density vector is the origin, and when the locus of the tip of the vector is drawn over one excitation cycle, the shape is drawn by rotating it into a circle or ellipse, or the shape in which high-frequency components are superimposed. Therefore, it is named in this way. It has been conventionally known that rotating magnetic flux is generated at the part where the direction of magnetic flux changes, such as the joint between the teeth and the yoke of the rotating machine and the tip of the tooth. However, in the past, no change in the direction of the magnetic flux was expected. The inventors have confirmed by local magnetic measurement that a rotating magnetic flux is generated for some reason even in a portion such as the central portion of the teeth. It is known that the iron loss is larger under the rotating magnetic flux than the alternating magnetic flux change (the iron loss under the rotating magnetic flux is called the rotating iron loss). Therefore, if the rotating magnetic flux behavior cannot be accurately grasped, the iron loss of the rotating machine cannot be accurately predicted, and an error occurs in the optimization that maximizes the efficiency. In addition, the rotating magnetic flux behavior, which is strongly related to the anisotropy of the iron core material, is thought to affect the torque pulsation of the motor. Therefore, if the rotating magnetic flux behavior is not accurately estimated, the torque pulsation However, it cannot be predicted accurately.

特に、一方向性電磁鋼板や二方向性電磁鋼板のような磁気異方性の大きい材料を回転機の鉄心として用いた場合は、磁気異方性の影響が強くなるので、回転磁束の影響を正確に電磁界解析に反映させることが精度の高い結果を得るうえで重要となる。
従来、鉄心材料そのものの回転磁束や回転鉄損を測定するための方法は種々検討されており、この結果を回転機の電磁界解析に反映させることが検討されているが、回転機に組まれた状態での鉄心各部分に生じるような、例えば加工歪等の影響を逐次考慮することは困難である。また、ヒステリシス特性まで考慮した鉄心材料の回転磁束特性の厳密なデータベース化は困難であるため、たとえばヒステリシス特性が鉄心の形状等を介して回転磁束挙動に影響するような場合は、計算精度を低下させる要因となる。
In particular, when a material with large magnetic anisotropy, such as a unidirectional electrical steel sheet or a bi-directional electrical steel sheet, is used as the iron core of a rotating machine, the magnetic anisotropy becomes stronger. Accurate reflection in electromagnetic field analysis is important for obtaining highly accurate results.
Conventionally, various methods for measuring the rotating magnetic flux and the rotating iron loss of the iron core material itself have been studied, and it has been studied to reflect this result in the electromagnetic field analysis of the rotating machine. For example, it is difficult to sequentially consider the influence of, for example, machining strain, which occurs in each part of the iron core in a damaged state. In addition, since it is difficult to create a strict database of rotating magnetic flux characteristics of iron core materials with consideration to hysteresis characteristics, for example, if the hysteresis characteristics affect the rotating magnetic flux behavior via the shape of the iron core, etc., the calculation accuracy will be reduced. It becomes a factor to make.

このように、電磁鋼板そのものの回転磁束挙動を材料レベルで測定し、これを回転機の電磁界解析に反映させて最適化設計を行うことは原理的には正しい方法であるものの、これを厳密かつ高速に実施する方法は確立されていないのが現状である。
これに対し、本願発明者らは、対象とする回転機の一次モデルを試作し、この回転機の鉄心内部の磁束密度、とくに回転磁束の挙動を局所的に実測し、電磁界解析の計算結果がもっとも実測に近づくように鉄心材料特性データを変更・補正することで、実際の回転機の特性を正確に計算することが可能であるとの着想のもとに本発明に至った。
In this way, measuring the rotating magnetic flux behavior of the electrical steel sheet itself at the material level and reflecting this in the electromagnetic field analysis of the rotating machine is an optimal design in principle, but this is strictly At present, no method has been established for high-speed implementation.
In contrast, the inventors of the present application prototyped a primary model of the target rotating machine, locally measured the magnetic flux density inside the iron core of this rotating machine, in particular the behavior of the rotating magnetic flux, and calculated the electromagnetic field analysis. The present invention has been reached based on the idea that the characteristics of the actual rotating machine can be accurately calculated by changing / correcting the core material characteristic data so that the actual measured value approaches the actual measurement.

つまり、本発明は、従来の一般的な計算機シミュレーション(模擬計算)では困難であった異方性、ヒステリシス等といった材料特性の寄与を実験値を用いて補正することで、高精度な回転機設計を実現可能な鉄心材料特性を提供するものである。
また、今日の設計において、回転機の損失のうちのかなりの部分は鉄心で発生する損失(鉄損)で占められていることから、鉄心部に着目して上記補正をするものである。
In other words, the present invention corrects the contribution of material properties such as anisotropy and hysteresis, which has been difficult with conventional general computer simulation (simulation calculation), by using experimental values, so that a highly accurate rotating machine design can be achieved. It provides iron core material characteristics that can realize the above.
Further, in today's design, a considerable part of the loss of the rotating machine is occupied by the loss (iron loss) generated in the iron core, and thus the above correction is made by paying attention to the iron core portion.

すなわち、本発明のうち請求項1に記載した発明は、鉄心材料特性及び設計仕様に基づいて回転機の最適化設計を行う回転機の設計方法であって、
まず、予め決めた鉄心材料特性及び設計仕様に基づき回転機における鉄心部の磁気特性を計算すると共に、上記材料特性とされる鉄心材料及び設計仕様にて作製した試験回転機を駆動させた状態における鉄心部の局所的な磁気特性を測定し、上記磁気特性についての計算値と測定値との乖離量に基づき、上記鉄心材料特性における変数を補正し、その補正後の鉄心材料特性を上記最適化設計で使用する鉄心材料特性として定め、
つぎに最適化設計において、前記定めた鉄心材料特性を使用するとともに、当該鉄心材料特性以外の設計仕様を変化させながら計算した回転機の特性値が目標特性を満足するように設計することを特徴とするものである。
That is, the invention described in claim 1 of the present invention is a design method for a rotating machine that performs an optimized design of the rotating machine based on the core material characteristics and design specifications,
First, the magnetic properties of the core part of the rotating machine are calculated based on the predetermined iron core material characteristics and design specifications, and the test rotating machine manufactured with the core material and design specifications described above is driven . Measure the local magnetic properties of the iron core, correct the variables in the iron core material properties based on the amount of deviation between the calculated values and the measured values, and optimize the iron core material properties after the correction Determined as the core material characteristics used in the design ,
Next, in the optimization design, the specified core material characteristics are used, and the calculated characteristic value of the rotating machine while changing the design specifications other than the core material characteristics is designed to satisfy the target characteristics. It is what.

次に、請求項2に記載した発明は、請求項1に記載した構成に対し、上記最適化設計で使用する鉄心材料特性を定める際、上記乖離量が所定値以下になるまで、上記鉄心材料特性の補正及び上記鉄心部の磁気特性の計算を繰り返すことを特徴とするものである。
次に、請求項3に記載した発明は、同一の材料特性とされる鉄心材料を使用して、複数の設計仕様について、それぞれ上記請求項1又は請求項2に記載の方法で各設計仕様毎の鉄心材料特性を特定することで、上記各設計仕様と補正後の鉄心材料特性との組を予め求めておき、
上記予め求めた各設計仕様と補正後の鉄心材料特性との組に基づいて、作製する回転機の設計仕様と同じ若しくは近い上記設計仕様での補正後の鉄心材料特性を定め
つぎに最適化設計において、前記定めた鉄心材料特性を使用するとともに、当該鉄心材料特性以外の設計仕様を変化させながら計算した回転機の特性値が目標特性を満足するように設計することを特徴とするものである。
Next, in the invention described in claim 2, when the core material characteristics used in the optimization design are determined with respect to the configuration described in claim 1, the iron core material is used until the deviation amount becomes a predetermined value or less. The correction of the characteristics and the calculation of the magnetic characteristics of the iron core are repeated.
Next, the invention described in claim 3 uses an iron core material having the same material characteristics, and a plurality of design specifications for each design specification by the method described in claim 1 or claim 2, respectively. By specifying the core material characteristics of the above, a set of each of the above design specifications and the corrected core material characteristics is obtained in advance,
Based on the set of the iron core material characteristics and the corrected each design specification above previously obtained, defining a core material characteristics after the correction in the same or close to the design specifications and the rotating machine design specifications to produce,
Next, in the optimization design , the specified core material characteristics are used, and the calculated characteristic value of the rotating machine while changing the design specifications other than the core material characteristics is designed to satisfy the target characteristics. It is what.

次に、請求項4に記載した発明は、請求項1〜請求項3のいずれか1項に記載した構成に対し、上記設計仕様は、少なくとも鉄心部仕様及び駆動条件仕様であることを特徴とするものである。
次に、請求項5に記載した発明は、請求項1〜請求項4のいずれか1項に記載した構成に対し、上記鉄心材料特性のうち補正される変数は、鉄心材料の磁化曲線に関わる変数、及び鉄心材料の鉄損特性に関わる変数の少なくとも一方であることを特徴とするものである。
次に、請求項6に記載した発明は、請求項1〜請求項5のいずれか1項に記載した構成に対し、上記鉄心部の磁気特性の測定は、探針法による局所的な磁束密度測定により行うことを特徴とするものである。
Next, the invention described in claim 4 is characterized in that, for the configuration described in any one of claims 1 to 3, the design specifications are at least an iron core specification and a drive condition specification. To do.
Next, in the invention described in claim 5, with respect to the configuration described in any one of claims 1 to 4, the variable to be corrected among the core material characteristics relates to the magnetization curve of the core material. It is characterized in that it is at least one of a variable and a variable related to iron loss characteristics of the iron core material.
Next, in the invention described in claim 6, in contrast to the configuration described in any one of claims 1 to 5, the measurement of the magnetic characteristics of the iron core portion is performed by measuring the local magnetic flux density by the probe method. The measurement is performed by measurement.

に、請求項に記載した発明は、上記請求項1〜請求項6のいずれか1項に記載の設計方法を用いて製造することを特徴とする回転機の製造方法を提供するものである。 In the following, the invention described in claim 7, intended to provide a method of manufacturing a rotating machine, characterized in that to produce using the design method according to any one of the above claims 1 to 6 is there.

本発明によれば、モータの仕様のうち、その複雑な挙動を模擬計算で正確に取り扱うことが困難な鉄心材料特性について、試験機で測定したつまり実機状態に近い状態で測定した局所的なデータに基づいて補正することで、回転機に組み込まれた状態での実際の鉄心内部の局所的な磁気挙動を正確に模擬計算出来る。その補正した鉄心材料特性を使用することで、最適化設計における模擬計算の計算量が莫大なものとならずに、より精度良く実際の回転機の最適化設計を行うことが可能となる。   According to the present invention, among the specifications of the motor, the local data measured in a state close to the actual machine state, measured with a test machine, about the core material properties that are difficult to handle accurately by simulation calculation. By correcting based on the above, it is possible to accurately simulate the local magnetic behavior inside the actual iron core in a state incorporated in the rotating machine. By using the corrected iron core material characteristics, it becomes possible to perform the optimization design of the actual rotating machine with higher accuracy without making the calculation amount of the simulation calculation in the optimization design enormous.

また、上述のように、模擬計算で考慮する変数以外にも実際の仕様に影響のある変数が実際には存在するが、本願発明にあっては、その変数量についても上記補正後の鉄心材料特性に吸収されている。つまり、補正後の鉄心材料特性とは、実際の鉄心材料特性に対し、計算上考慮していない他の変数量をも取り込んだ値である。したがって、上記補正後の鉄心材料特性は、当該補正後の鉄心材料特性を求める際に使用した設計仕様と同じ若しくは近い設計仕様において特に信頼性がある。   In addition, as described above, there are actually variables that affect the actual specifications in addition to the variables to be considered in the simulation calculation. In the present invention, the iron core material after the correction is also used for the variable amount. Is absorbed in the characteristics. In other words, the corrected iron core material characteristic is a value obtained by taking in other variable quantities that are not considered in the calculation with respect to the actual iron core material characteristic. Therefore, the iron core material characteristic after the correction is particularly reliable in a design specification that is the same as or close to the design specification used when obtaining the corrected iron core material characteristic.

また、探針法で磁束密度を測定することで、試験機に加工を加えることなく、簡易に磁束密度を測定することができる。
ここで、本発明で重要な点は、局所領域の磁気特性の測定データと計算結果から、回転機に組み込んだ状態での鉄心内部の局所磁気特性を計算するのに適した補正された材料磁気特性を得るというものである。すなわち、このような最適化は、例えば、鉄心の各位置での計算結果と実測結果のずれの平均値を最小化するという指針に基づいて行うことができる。あるいは、鉄心内部をいくつかの部分に区分して、計算と測定のずれの最小化を実施することもできる。鉄心内部を区分して計算結果の補正を行う方法は、たとえば加工歪が鉄心の各部分で異なるような場合に有効である。同様に、局所領域の鉄損に関しても、計算結果とのずれを最小化するように、材料の磁束密度−鉄損の関係を鉄心全体あるいは鉄心内部の部分ごとに変化させることが出来る。
Further, by measuring the magnetic flux density by the probe method, the magnetic flux density can be easily measured without adding processing to the testing machine.
Here, the important point in the present invention is that the corrected material magnetism suitable for calculating the local magnetic property inside the iron core in the state of being incorporated in the rotating machine from the measurement data and the calculation result of the magnetic property of the local region. It is to get characteristics. That is, such optimization can be performed based on a guideline that minimizes the average value of the deviation between the calculation result and the actual measurement result at each position of the iron core, for example. Alternatively, the inside of the iron core can be divided into several parts to minimize the difference between calculation and measurement. The method of correcting the calculation result by dividing the inside of the iron core is effective when, for example, the processing strain differs in each part of the iron core. Similarly, regarding the iron loss in the local region, the relationship between the magnetic flux density and the iron loss of the material can be changed for the entire iron core or for each part inside the iron core so as to minimize the deviation from the calculation result.

本発明によれば、磁気特性における測定値と計算値との乖離量に基づき鉄心材料特性を補正することで、実際の回転機の鉄心内部の局所磁気特性を精度良く模擬計算するに適した材料磁気特性を得ることが出来る。そして、その求めた補正後の鉄心材料特性を使用して回転機の最適化設計を行うことで、より短時間の計算で且つ精度良く回転機の最適化設計の仕様を求めることが可能となる。   According to the present invention, by correcting the iron core material characteristics based on the amount of deviation between the measured value and the calculated value in the magnetic characteristics, a material suitable for accurately calculating the local magnetic characteristics inside the iron core of an actual rotating machine with high accuracy. Magnetic characteristics can be obtained. Then, by performing the optimized design of the rotating machine using the corrected iron core material characteristics obtained, it becomes possible to obtain the optimized design specification of the rotating machine with a shorter time and with higher accuracy. .

以下に、本発明の実施形態について図を参照して説明する。
図1は、本実施形態の設計方法の概要を示す図であって、本願の一番の特徴部分である鉄心材料特性の特定段階と、実際の回転機の最適化設計段階との2段階に大きく設計段階は分かれる。
まず、本発明の主な特徴である鉄心材料特性の特定段階の処理手順について図1を参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an outline of the design method of the present embodiment, and is divided into two stages: a core material characteristic characteristic stage, which is the first characteristic part of the present application, and an actual rotary machine optimization design stage. The design stage is largely divided.
First, the processing procedure at the specific stage of the core material characteristics, which is the main feature of the present invention, will be described with reference to FIG.

ステップS1にて、試作機の鉄心材料特性及び設計仕様を決定する。
ここでの試作機は実際の試作回転機にて鉄心部における局所の磁気特性を測定するためのものである。設計仕様の詳細としては、例えば駆動条件、鉄心部の設計仕様(各部分のサイズや比率等)などが挙げられる。試作機の仕様の決定する方法としては、従来存在した仕様をそのまま用いる方法や、従来的な解析式を用いる方法、電磁界解析を用いる方法など、種々の方法が採用可能である。ここで試作機の仕様は目標となる最適解(最適化設計)に近ければ近いほど理想的である。ただし、本発明は実測結果による補正を取り入れた、より精度の高い鉄心材料特性を使用して最適化設計のための計算を行うものであるため、試作機の設計段階では必ずしも厳密な計算を行う必要性はない。
In step S1, the core material characteristics and design specifications of the prototype are determined.
The prototype here is an actual prototype rotary machine for measuring local magnetic properties in the iron core. Details of the design specifications include, for example, drive conditions, design specifications of the iron core (size, ratio, etc. of each part). As a method for determining the specifications of the prototype, various methods such as a method using the existing specifications as they are, a method using a conventional analytical expression, and a method using electromagnetic field analysis can be employed. Here, the specification of the prototype is ideal as it is closer to the target optimum solution (optimized design). However, since the present invention performs the calculation for the optimization design using the more accurate core material characteristics incorporating the correction based on the actual measurement result, the calculation is not necessarily performed strictly at the prototype design stage. There is no need.

ステップS2では、上記決定した仕様の試作機を駆動した際の鉄心内部の局所的な磁気特性をFEMなどによる電磁界解析を用いた模擬計算で演算する。
一方、ステップS3では、ステップS12で定めた仕様に基づいて実際の回転機を作製し、続いてステップS4にて、これを実際の駆動条件またはこれに近い条件で駆動させた場合の鉄心内部の局所的な磁気特性分布を測定する。ここでの測定は出来るだけ鉄心の全域に渡って行うのがよいが、測定領域が限られる場合は、鉄心の代表的な局所部分のみであってもよい。また、計算で正確に再現出来ない成分を、実測により補正する本発明においては、ここでの局所磁気測定は、r方向(回転機の径方向)とθ方向(回転機の周方向)などの2方向に対して行う二次元局所磁気測定とすることで補正の精度を高めることができる。
In step S2, the local magnetic characteristics inside the iron core when the prototype with the determined specifications is driven are calculated by simulation calculation using electromagnetic field analysis such as FEM.
On the other hand, in step S3, an actual rotating machine is manufactured based on the specifications determined in step S12. Subsequently, in step S4, the interior of the iron core when driven under actual driving conditions or conditions close thereto is used. Measure the local magnetic property distribution. The measurement here is preferably performed over the entire area of the iron core as much as possible. However, if the measurement region is limited, only a representative local portion of the iron core may be used. Further, in the present invention in which components that cannot be accurately reproduced by calculation are corrected by actual measurement, the local magnetic measurement here is performed in the r direction (radial direction of the rotating machine) and the θ direction (circumferential direction of the rotating machine). The accuracy of correction can be increased by using the two-dimensional local magnetic measurement performed in two directions.

ここで、実際の回転機を作製して測定する局所磁気特性の測定値は、試作の都度に回転機を作製することが設計の高精度化の観点から好ましいが、この局所磁気特性における測定値として、複数の設計仕様にて作製した回転機について測定した、複数の局所磁気特性における測定値から、適宜選択したものを用いることにより、設計期間が大幅に短縮されるとともに、従来より高精度の設計が可能となる。   Here, it is preferable to manufacture a rotating machine at each trial production from the viewpoint of improving the design accuracy, but the measured value of the local magnetic characteristics measured by making an actual rotating machine is measured. As a result, the design period can be greatly shortened and the accuracy can be improved more than before by using the one selected from the measured values of the multiple local magnetic characteristics measured for rotating machines manufactured with multiple design specifications. Design becomes possible.

続いてステップS5にて、先に行った電磁界解析の計算結果と局所磁気測定の結果を比較し、両者の乖離量を求め、ステップS6にて、その乖離量が、予め設定した所定の目標値以下になったか否かを評価し、所定の目標値以下になった場合には最適化設計段階に移行するが、乖離量が所定の目標値よりも大きい場合にはステップS7に移行する。
ここで、評価する乖離量の対象としては、局所磁束密度(固定子内部の局所的な部分での磁束密度)や局所鉄損特性(固定子内部の局所的な部分での鉄損)などが考えられる。
なお、上記乖離量目標量は、要求される設計精度に応じて、例えば、乖離量対象量となった磁気特性値の初期値の数%などに設定する。
Subsequently, in step S5, the calculation result of the previous electromagnetic field analysis and the result of local magnetic measurement are compared to determine the amount of divergence between them. In step S6, the amount of divergence is a predetermined target set in advance. It is evaluated whether or not the value is equal to or less than the value. If the value is equal to or less than the predetermined target value, the process proceeds to the optimization design stage. If the deviation is larger than the predetermined target value, the process proceeds to step S7.
Here, as a target of the deviation amount to be evaluated, there are local magnetic flux density (magnetic flux density in a local portion inside the stator), local iron loss characteristics (iron loss in a local portion inside the stator), and the like. Conceivable.
The divergence amount target amount is set to, for example, several percent of the initial value of the magnetic characteristic value that is the divergence amount target amount, according to the required design accuracy.

ステップS7では、ステップS5で求めた乖離量に基づいて、その乖離量が小さくなると思われる方向に、上記鉄心材料の磁化曲線や鉄損等に関連した変数の値を変更することで、鉄心材料特性を補正する。続いて、上記ステップS2に移行して、変更した鉄心材料特性を用いて再び電磁界解析(計算機による計算)を行い、実測結果と比較する(S5、S6)。
ここで、変更する変数としては、たとえば透磁率に関しては、例えば下記(1)式の透磁率行列の各成分やHベクトルとBベクトルの間の角度θが挙げられる。そして、これらを記述する係数や関数形を変更する。鉄損に関する(2)式の係数(c1 、c2 )の変更が可能である。(1)式や(2)式において、Br、Hrはそれぞれ磁束密度、磁界の径成分、Bθ、Hθはそれぞれ磁束密度、磁界の周方向成分である。
In step S7, based on the deviation amount obtained in step S5, the values of variables related to the magnetization curve, iron loss, and the like of the iron core material are changed in a direction in which the deviation amount is considered to be small, so that the iron core material is changed. Correct the characteristics. Then, it transfers to said step S2, performs electromagnetic field analysis (calculation by a computer) again using the changed iron core material characteristic, and compares with an actual measurement result (S5, S6).
Here, as the variable to be changed, for example, with respect to the magnetic permeability, for example, each component of the magnetic permeability matrix of the following equation (1) and the angle θ between the H vector and the B vector can be cited. And the coefficient and function form which describe these are changed. It is possible to change the coefficients (c 1 , c 2 ) of the formula (2) relating to the iron loss. In equations (1) and (2), Br and Hr are the magnetic flux density and the magnetic field diameter component, respectively, and Bθ and Hθ are the magnetic flux density and the magnetic field circumferential component, respectively.

Figure 0004631298
Figure 0004631298

ここで、行列成分μは磁界Hの関数、θはHベクトルとBベクトルの間の角度、そして上記式は磁界Hと周波数の関数である。また、上記μやθは、磁化曲線や鉄損に係る変数であり、乖離量に応じて変更される。
W=c1 ・f・Bm1.6 + c2 ・f2 ・Bm2 ・・・(2)
ここで、c1 、c2 は係数Bmは磁束密度ベクトルBの大きさの最大値、fは周波数である。
Here, the matrix component μ is a function of the magnetic field H, θ is the angle between the H vector and the B vector, and the above equation is a function of the magnetic field H and the frequency. The μ and θ are variables related to the magnetization curve and iron loss, and are changed according to the amount of deviation.
W = c 1 · f · Bm 1.6 + c 2 · f 2 · Bm 2 (2)
Here, c 1 and c 2 are coefficients Bm are the maximum values of the magnetic flux density vector B, and f is the frequency.

以上の鉄心材料特性の特定段階の処理によれば、通常の電磁界解析および電磁界解析を用いた最適化計算では上記(1)式や(2)式について、透磁率μや係数c1 、c2 を鉄心材料で測定された値そのままを使用するのに対し、これらを鉄心の局所領域での実測結果と整合するように補正変更することで、回転機に組み込まれた状態での実測値で最適化された鉄心材料特性が求められ、この結果、次段の最適化設計の段階における計算精度を実質的に向上させることが可能である。
実測結果に計算結果を近づけるための材料変数の変更は、何らかの基準に基づいて行ってもよいし、数値をランダムに変化させながら最適解を探してもよい。または、最適解を求めるために繰り返し計算の回数や目標とする計算と測定値の差は、必要に応じて任意に選ぶことが出来る。
According to the above-described processing at the specific stage of the core material characteristics, in the normal electromagnetic field analysis and the optimization calculation using the electromagnetic field analysis, the permeability μ, the coefficient c 1 , While c 2 is used as it is, the value measured with the iron core material, it is corrected to match with the actual measurement result in the local region of the iron core, so that the actual value in the state incorporated in the rotating machine. As a result, it is possible to substantially improve the calculation accuracy in the next optimization design stage.
The change of the material variable for bringing the calculation result closer to the actual measurement result may be performed based on some standard, or the optimum solution may be searched for while randomly changing the numerical value. Alternatively, in order to obtain an optimal solution, the number of repeated calculations and the difference between the target calculation and the measured value can be arbitrarily selected as necessary.

素材変数の最適化方法としては、たとえば以下のような手順が考えられる。
まず、素材の磁化曲線を
B=a1 /[a2 +(a3 H+a4 a5+a6 H+a7
:a1 〜a7 は素材によって決まる係数
といった関数で表すと、透磁率μは
μ=μ(H)=(a1 /[a2 +(a3 H+a4 a5+a6 H+a7 )/Hとなる。
As a material variable optimization method, for example, the following procedure can be considered.
First, the magnetization curve of the material B = a 1 / [a 2 + (a 3 H + a 4) a5 + a 6 H + a 7
: When a 1 ~a 7 represents a function such as coefficient determined by the material, the magnetic permeability μ μ = μ (H) = (a 1 / [a 2 + (a 3 H + a 4) a5 + a 6 H + a 7) / H It becomes.

次に式(1)について、フィッティングのための係数c11、c12、c21、c22を導入して、
μ11 =c11μ(H)
μ12 =c12
μ21 =c21
μ22 =c22μ(H)とおく。
上記で定めた係数と式(1)のθを用いて初期モデルのモータの磁界解析により計算される局所磁束密度ベクトル軌跡を、Bcalc =(Brcalc、Bθcalc)とし、初期モデル試験モータで実測した局所磁束密度ベクトル軌跡をBmeas =(Brmeas、Bθmeas)とするとき、実測値と計算値の1周期にわたる乖離の平均値を、
Next, for the formula (1), coefficients c 11 , c 12 , c 21 , c 22 for fitting are introduced,
μ 11 = c 11 μ (H)
μ 12 = c 12
μ 21 = c 21
Let μ 22 = c 22 μ (H).
Let B calc = (Br calc , Bθ calc ) be the local magnetic flux density vector locus calculated by the magnetic field analysis of the motor of the initial model using the coefficient defined above and θ of equation (1). When the measured local magnetic flux density vector locus is B meas = (Br meas , Bθ meas ), the average value of the deviation between the measured value and the calculated value over one cycle is

Figure 0004631298
Figure 0004631298

とする。
ここで、ωは局所磁束密度ベクトルの回転角度であり、0〜2πの範囲で上式による積分を行う。
ここで、測定位置の番号1〜NでのΔBの平均値を<ΔB>とし、
さらに、<ΔB>の許容値を、測定点番号1〜Nでの磁束密度の最大値の平均値<Bm>の3%とする。
すなわち、<ΔB>/<Bm> < 0.03を目標条件とする。
And
Here, ω is the rotation angle of the local magnetic flux density vector, and the integration according to the above equation is performed in the range of 0 to 2π.
Here, the average value of ΔB at the measurement position numbers 1 to N is <ΔB>,
Further, the allowable value of <ΔB> is set to 3% of the average value <Bm> of the maximum values of the magnetic flux density at the measurement point numbers 1 to N.
That is, <ΔB> / <Bm><0.03 is set as the target condition.

次に、係数c11、c12、c21、c22とθをc11=c12=1,c12=c21=0の初期値から手動若しくは自動でそれぞれわずかに増加もしくは減少させて上記<ΔB>/<Bm>を逐次計算し、上記目標条件を満たす組み合わせ(c11、c12、c21、c22、θ)を求める。θの初期値は、素材の二次元磁気測定の結果得られるθを用いるのがよく、通常25%程度である。
以上のようにして求められる透磁率行列をモータの電磁解析に適用し、これにより回転機の最適化設計を行うことによって、従来より精度の高い模擬計算いよりモータ特性の向上を図ることが可能となる。
Next, the coefficients c 11 , c 12 , c 21 , c 22 and θ are slightly increased or decreased manually or automatically from the initial values of c 11 = c 12 = 1, c 12 = c 21 = 0, respectively. <ΔB> / <Bm> is sequentially calculated to find a combination (c 11 , c 12 , c 21 , c 22 , θ) that satisfies the above target condition. As the initial value of θ, it is preferable to use θ obtained as a result of two-dimensional magnetic measurement of the material, and is usually about 25%.
By applying the permeability matrix obtained as described above to the electromagnetic analysis of the motor, and by optimizing the design of the rotating machine, it is possible to improve the motor characteristics by simulation calculation with higher accuracy than before. It becomes.

次に、最適化段階の処理(最適化設計)について説明する。
上述の処理で求めた、補正された、すなわち材料変数が変更済みの最適化された鉄心材料特性を用いる以外は、従来の最適化のための設計法と同じである。すなわち、上記求めた補正後の鉄心材料特性を用いて、当該鉄心材料特性以外の回転機の各部分のサイズや比率等の変数を変化させながら最適化計算(電磁界解析)を行い、予め設定された所定の目標特性が達成される回転機設計仕様を求める(S8〜S15)。
そして、その求めた設計仕様及び上記評価した鉄心材料によって実際の回転機を作製する。
Next, the optimization stage process (optimization design) will be described.
The design method is the same as the conventional design method for optimization except that the optimized core material characteristic obtained by the above-described process, that is, the material variable is changed, is used. That is, using the corrected iron core material characteristics obtained above, optimization calculations (electromagnetic field analysis) are performed while changing variables such as the size and ratio of each part of the rotating machine other than the iron core material characteristics. A rotating machine design specification that achieves the predetermined target characteristic is obtained (S8 to S15).
Then, an actual rotating machine is manufactured based on the obtained design specifications and the evaluated core material.

以上の処理によって回転機を設計すると、現実の磁性材料の複雑な磁気的挙動を単純化した磁気特性曲線を用いた場合にも、便宜的に正確な結果が得られることから、より精度良く回転機の最適化設計を行うことができる。すなわち、従来よりも高精度に回転機の計算機シミュレーションと最適化設計が実施可能であるため、高い回転機特性を精度良く得ることが可能である。   When a rotating machine is designed by the above processing, accurate results can be obtained for convenience even when using a magnetic characteristic curve that simplifies the complex magnetic behavior of an actual magnetic material. The machine can be optimized. That is, since it is possible to carry out computer simulation and optimization design of a rotating machine with higher accuracy than before, it is possible to obtain high rotating machine characteristics with high accuracy.

本発明の方法は、実際には複雑なために計算上の取扱いが困難な電磁鋼板の磁気特性に関し、計算結果の精度を便宜的に向上させるために、単純化した特性曲線に補正を加えるため、計算で考慮されていない未知の変数量があるが、その変数量を上記鉄心材料特性に取り込ませることによって精度良く回転機の最適化設計を行うことが可能となる。なお、試作機の加工方法と実施の回転機の加工方法を同じにすれば、加工歪のような作製時の未知の変数量も鉄心材料特性に取り込まれることとなる。
ここで、鉄心材料特性の特定段階での試作機の仕様と、最適化段階の実際の回転機の仕様とは同一若しくは近いものを選択することが好ましい。上述のように鉄心材料特性に対し未知の変数量(加工歪などによる誤差など)も含まれるので、両者の仕様が近いほど補正後の鉄心材料特性の信頼性が向上する。
The method of the present invention is related to the magnetic properties of an electrical steel sheet that is difficult to handle due to its complexity in practice. In order to improve the accuracy of the calculation results for the sake of convenience, a correction is made to the simplified characteristic curve. Although there are unknown variable quantities that are not taken into account in the calculation, the optimization design of the rotating machine can be performed with high accuracy by incorporating the variable quantities into the core material characteristics. If the processing method of the prototype is the same as the processing method of the actual rotating machine, an unknown variable amount at the time of manufacturing such as processing strain is also taken into the core material characteristics.
Here, it is preferable to select the prototype specifications at the specific stage of the core material characteristics and the specifications of the actual rotating machine at the optimization stage that are the same or close. As described above, unknown variable quantities (such as errors due to machining strain) are also included in the core material characteristics, so that the reliability of the core material characteristics after correction improves as the specifications of both are closer.

また、上記説明では、最適化設計を行うたびに、鉄心材料特性の補正のための試作機を作製するようにしているが、これに限定されない。同一の鉄心材料からなる鉄心材料について、複数の異なった設計仕様(鉄心部仕様もしくは駆動条件仕様の異なった複数の設計仕様)毎に、予め上記鉄心材料特性の特定段階の処理を施して補正後の鉄心材料特性を求めてデータベース化等を行っておき、その複数の設計仕様から、実際の設計仕様に近い設計仕様(すなわち、所望する回転機の目標特性値との差が所定値以下となる回転機が得られる設計仕様)に対応する補正後の鉄心材料特性を適宜選択して使用して、回転機の最適化設計仕様を求めるようにしても良い。この場合には、設計期間が大幅に短縮される。   In the above description, every time optimization design is performed, a prototype for correcting the core material characteristics is manufactured. However, the present invention is not limited to this. For iron core materials made of the same iron core material, after performing a specific stage processing of the above iron core material characteristics in advance for each of a plurality of different design specifications (a plurality of design specifications with different core specifications or driving condition specifications) From the multiple design specifications, the design specifications close to the actual design specifications (that is, the difference from the target characteristic value of the desired rotating machine is less than the predetermined value) The optimized design specifications of the rotating machine may be obtained by appropriately selecting and using the corrected iron core material characteristics corresponding to the design specifications obtained by the rotating machine. In this case, the design period is greatly shortened.

ここで、予め求めた複数の鉄心材料特性から選択するとしているが、実施モータの設計仕様と同じ設計仕様が無い場合に、その実際の設計仕様に近い2以上の設計仕様に対応する複数の補正された鉄心材料特性の平均値を用いて対応する設計仕様の鉄心材料特性を決めても良い。
または、予め求めた複数の鉄心材料特性と設計仕様の組に基づき、鉄心材料特性を設計仕様の関数式やグラフ等としておき、その関数式等を使用して使用する鉄心材料特性を演算して特定するようにしても良い。
Here, it is assumed that a plurality of core material characteristics determined in advance are selected, but when there is no design specification that is the same as the design specification of the actual motor, a plurality of corrections corresponding to two or more design specifications close to the actual design specification The core material characteristics of the corresponding design specification may be determined using the average value of the core material characteristics.
Or, based on a set of core material characteristics and design specifications obtained in advance, put the core material characteristics as a function expression or graph of the design specifications, and calculate the core material characteristics to be used using the function expression etc. It may be specified.

また、本発明の適用範囲は電磁気学的作用に基づいた回転機(電動機、発電機)であれば適用可能である。電動機には、ブラシ付き直流モータ、ブラシレスDCモータ、誘導モータ、リラクタンスモータ等があるが、これらのいずれにも適用可能である。この中でブラシレスDCモータは高効率であることから近年重要視されつつあり、モータ効率向上に寄与する本発明の適用はきわめて有用性が高い。また、発電機については、界磁を電磁石で行うタイプや永久磁石を用いるもの、スイッチトリラクタンスモータに発電機能を持たせたものなど種々存在するが、いずれについても適用可能である。   The applicable range of the present invention is applicable to any rotating machine (electric motor, generator) based on electromagnetic action. Examples of the electric motor include a brushed DC motor, a brushless DC motor, an induction motor, a reluctance motor, and the like, and any of these can be applied. Of these, brushless DC motors have been gaining importance in recent years because of their high efficiency, and application of the present invention that contributes to improving motor efficiency is extremely useful. There are various types of generators, such as a type that uses an electromagnet for the field, a type that uses a permanent magnet, and a type that provides a switched reluctance motor with a power generation function, and any of them can be applied.

計算機による回転機特性の計算は、解析的な方法や有限要素法、積分要素法など従来から知られたいずれの方法も適用可能であるが、局所領域の測定結果を用いて計算上の変数を補正することを考慮した場合には、計算機による回転機特性の計算方法としては局所領域の磁気特性が計算可能なものである必要がある。また、材料の磁気特性の非線形性はもとより、二次元特性、鉄損特性等の計算が一定の精度で実施可能なものである必要がある。   Any conventional method such as an analytical method, finite element method, or integral element method can be applied to the calculation of rotating machine characteristics by a computer. In consideration of correction, the calculation method of the rotating machine characteristics by the computer needs to be able to calculate the magnetic characteristics of the local region. In addition to the non-linearity of the magnetic characteristics of the material, it is necessary that calculations such as two-dimensional characteristics and iron loss characteristics can be performed with a certain degree of accuracy.

局所磁気特性の実測に供する試作回転機は、前述のように、従来存在した仕様のものをそのまま用いる方法や、従来的な解析的な方法、電磁界解析等を用いる方法、これらに適当な最適化手法を用いる場合など、種々が採用可能である。さらに、数種の典型的な回転機での実測結果を、特定の設計課題以前に得ておき、この結果に基づいて補正・変更した材料特性を使用して新規な最適化の設計を行ってもよい。この場合、事前に得ていた典型的な回転機でのデータが新規設計に適用可能であるかどうかは、典型的な回転機と新規回転機の仕様や要求特性がどれだけ近いかに依存しているが、従来手法と比べれば高い精度での模擬計算が可能である。   As described above, the prototype rotating machine used for the actual measurement of the local magnetic characteristics is a method using the existing specifications as it is, a method using a conventional analytical method, an electromagnetic field analysis, etc. Various methods can be employed, for example, in the case of using a conversion method. In addition, actual measurement results with several typical rotating machines are obtained before a specific design problem, and a new optimization design is performed using material properties corrected and changed based on this result. Also good. In this case, whether the data for a typical rotating machine obtained in advance can be applied to a new design depends on how close the specifications and required characteristics of the typical rotating machine and the new rotating machine are. However, compared with the conventional method, simulation calculation can be performed with higher accuracy.

計算結果と実験結果を比較する際の量としては、局所領域の磁束密度の挙動や鉄損とするのがよい。これらの局所的な量の総体が回転機のトルクや効率を形成しているからである。また、上記量に関する乖離量を所定の値以下とするために行う補正は、透磁率行列や鉄損曲線などの変数を変更するのがよい。
また、上記の計算値と実測値との乖離量を小さくしていく際は、回転数やトルクなどの使用条件が設計する回転機とほぼ同じ条件で行うのがよいが、回転数やトルクなどが広い範囲で使用される場合は、乖離量の評価を使用条件での平均値や重み付け平均値で行うのがよい。
The amount of comparison between the calculation result and the experimental result is preferably the behavior of the magnetic flux density in the local region or the iron loss. This is because these local quantities together form the torque and efficiency of the rotating machine. Moreover, the correction | amendment performed in order to make the deviation | shift amount regarding the said quantity below a predetermined value is good to change variables, such as a permeability matrix and an iron loss curve.
Also, when reducing the amount of deviation between the calculated value and the measured value, it is better to use the same conditions as the rotating machine for which the operating conditions such as the rotational speed and torque are designed, but the rotational speed and torque, etc. Is used in a wide range, it is preferable to evaluate the deviation amount using an average value or a weighted average value under the use conditions.

鉄心材料特性に関する変数の変更は、鉄心全体にわたる平均値を用いて行ってもよいし、鉄心内部をいくつかの領域に区切って、各部分ごとに異なった変数を与えてもよい。
鉄心内部の局所的な磁束密度の測定にあたっては、従来から用いられている探りコイル法を用いてもよいし、探針法や、ロゴスキーコイル法などいずれも適用可能である。これらの方法の中で非破壊かつ迅速な多点測定が可能である点において探針法がもっとも優れた方法である。また、二次元的な回転磁束挙動が従来の電磁界解析では正確に予測できない点から、局所磁束密度の実測も二次元で行うことが好ましい。探針法による回転機鉄心内部での局所磁気測定に関する模式図を図2に示す。探針法による回転機固定子内部の局所磁気測定法についてはすでに特開2000−352579号公報にて開示している。この探針法は特に、十分に薄い磁性材料において磁束密度の測定精度が保証されるものであるが、板状磁性体を積層したタイプの鉄心であればその効果が発揮される。
The change of the variable related to the core material characteristics may be performed using an average value over the entire core, or the inside of the core may be divided into several regions, and different variables may be given to each part.
In the measurement of the local magnetic flux density in the iron core, a conventionally used probe coil method may be used, or a probe method, a Rogowski coil method, or the like can be applied. Among these methods, the probe method is the most excellent method in that non-destructive and quick multipoint measurement is possible. In addition, since the two-dimensional rotating magnetic flux behavior cannot be accurately predicted by the conventional electromagnetic field analysis, it is preferable to actually measure the local magnetic flux density in two dimensions. FIG. 2 shows a schematic diagram relating to the local magnetic measurement inside the rotating machine iron core by the probe method. Japanese Unexamined Patent Publication No. 2000-352579 has already disclosed a method for measuring local magnetism inside a rotating machine stator by a probe method. In particular, this probe method guarantees the measurement accuracy of the magnetic flux density in a sufficiently thin magnetic material, but the effect is exhibited if the iron core is a type in which plate-like magnetic bodies are laminated.

局所鉄損を評価する場合は、探針法で局所領域の磁束密度を測定するとともに、二本の探針の中央部にホール素子などの磁界検出センサを置いて鋼板表面の磁界を測定し、局所領域の磁束密度と磁界から局所鉄損を求める方法が、精度と迅速性において優れている。この方法による局所鉄損測定では、磁束密度測定と同様に直交する二方向の鉄損成分を測定し、これらの和をとることで局所鉄損を得ることが出来る。このように、探針と磁界検出素子からなる測定プローブによれば、局所領域の磁束密度、磁界、鉄損を迅速に測定することが可能であり、本発明の有用性を高めることが可能である。局所鉄損の測定法としてはこの外、局所的な温度上昇を測定する方法もあり、本発明への適用が可能である。   When evaluating the local iron loss, the magnetic flux density in the local region is measured by the probe method, and the magnetic field on the steel sheet surface is measured by placing a magnetic field detection sensor such as a Hall element at the center of the two probes. The method for obtaining the local iron loss from the magnetic flux density and the magnetic field in the local region is excellent in accuracy and speed. In the local iron loss measurement by this method, the iron loss components in two directions orthogonal to each other are measured in the same manner as the magnetic flux density measurement, and the local iron loss can be obtained by taking these sums. As described above, according to the measurement probe including the probe and the magnetic field detection element, it is possible to quickly measure the magnetic flux density, the magnetic field, and the iron loss in the local region, and the usefulness of the present invention can be enhanced. is there. As a method for measuring local iron loss, there is also a method for measuring a local temperature rise, which can be applied to the present invention.

回転機の最適化段階での目標値としては、モータのトルク、トルク脈動、効率など回転機にとって重要であり、電磁界解析により計算可能ないずれの数値ともできる。一般に効率やトルクは最大化する方向で、トルク脈動は最小化する方向で最適な設計が得られる。また、トルクやトルク脈動、効率等を一定範囲内とする条件で回転機のサイズを最小化しようとするような最適化についても本発明は有用である。
回転機設計の最適化のために変更される仕様としては、鉄心のサイズ、形状や巻線の巻き数、結線方法など鉄心そのものに関する項目の他、回転機の駆動・制御方法等も含まれる。
The target value at the optimization stage of the rotating machine is important for the rotating machine such as motor torque, torque pulsation, and efficiency, and can be any numerical value that can be calculated by electromagnetic field analysis. In general, an optimum design can be obtained in a direction in which efficiency and torque are maximized and torque pulsation is minimized. The present invention is also useful for optimization that attempts to minimize the size of the rotating machine under conditions where torque, torque pulsation, efficiency, etc. are within a certain range.
The specifications changed for the optimization of the rotating machine design include items related to the iron core itself such as the size, shape, number of windings and connection method of the iron core, as well as the driving / control method of the rotating machine.

「実施例1」
図3に示す8極12スロットの集中巻き表面磁石型ブラシレスDCモータ(出力300W、直径160mm)において、下記の手順にて回転磁束挙動を厳密に評価したモータの最適化設計を行った。
1)JISグレード35A300の無方向性電磁鋼板を鉄心材料として用い、過去の同種のモータの仕様(鉄心材料特性及び設計仕様)に基づき試作モータを設計した。
2)このモータ仕様に関して計算機上で二次元静磁場解析による有限要素法(FEM)の模擬計算を行い、局所領域の磁束密度の挙動を計算した。
3)上記1)の仕様によって局所磁気特性測定用の試験モータを試作した。この際、ティース内部の磁束密度が、探針法によって測定出来るようにティース部の巻線は嵩上げした。
4)上記3)の試験モータの局所磁束密度を探針法にて二次元測定した。
5)測定点P(r、θ)[但しr、θは径方向および周方向]における局所領域の磁束密度の計算結果をBcal =( Brcal 、 Bθcal ) 、実測結果をBmeas=( Brmeas、 Bθmeas) とし、計算値と実測値の乖離量ΔBを下記式とするとき、
ΔB=|{(Brcal 2 +(Bθcal 2 1/2
−{(Brmeas2 +(Bθmeas2 1/2
"Example 1"
In the 8-pole 12-slot concentrated winding surface magnet type brushless DC motor (output: 300 W, diameter: 160 mm) shown in FIG.
1) Using a JIS grade 35A300 non-oriented electrical steel sheet as the iron core material, a prototype motor was designed based on the past specifications of the same type of motor (iron core material characteristics and design specifications).
2) A simulation of the finite element method (FEM) by two-dimensional static magnetic field analysis was performed on the computer with respect to this motor specification, and the behavior of the magnetic flux density in the local region was calculated.
3) A test motor for measuring the local magnetic characteristics was prototyped according to the specifications of 1) above. At this time, the windings of the teeth were raised so that the magnetic flux density inside the teeth could be measured by the probe method.
4) The local magnetic flux density of the test motor of 3) above was measured two-dimensionally by the probe method.
5) B cal = (Br cal , Bθ cal ) for the magnetic flux density in the local region at the measurement point P (r, θ) [where r and θ are radial and circumferential directions], and B meas = ( Br meas , Bθ meas ), and when the difference ΔB between the calculated value and the measured value is expressed by the following equation:
ΔB = | {(Br cal ) 2 + (Bθ cal ) 2 } 1/2
− {(Br meas ) 2 + (Bθ meas ) 2 } 1/2 |

実測点すべてに渡る乖離量△Bの平均値<△B>が乖離量目標値以下となるなるように変数(θ、μ11、μ12、μ21、μ22)を適宜変えて計算した。ここでこれらの変数の計算方法としては、材料の透磁率をμとするとき、μ11=μ22=μ、μ12=μ21=0としてまずθを計算し、実測結果と合うθを求めたのち、θを固定してμ11=μ22=μ、μ12=μ21=0から少しずつ値をずらしながら<△B>を乖離量目標値以下とする値(関数)(μ11、μ22、μ12、μ21)を求めた。 Calculation was performed by appropriately changing the variables (θ, μ 11 , μ 12 , μ 21 , μ 22 ) so that the average value <ΔB> of the deviation amount ΔB over all the measurement points was equal to or less than the deviation amount target value. Here, as a calculation method of these variables, when the magnetic permeability of the material is μ, θ 11 is first calculated by setting μ 11 = μ 22 = μ and μ 12 = μ 21 = 0, and the θ that matches the actual measurement result is obtained. and then, fixing the θ μ 11 = μ 22 = μ , μ 12 = μ 21 = 0 while shifting a value slightly from <△ B> value less divergence amount target value (function) (mu 11, μ 22, μ 12, was determined mu 21).

続けて、これらの変数:θ、μ11、μ22、μ12、μ21を用いた駆動電圧波形入力による電磁界解析を計算機上で行い、この結果から上記(2)式に基づいて鉄損を計算し、モータ効率を最大化するようにモータ設計の最適化を行った。最適化計算にあたってはステータ外径を一定とし、図3に示した変数(ヨーク幅a、ティース幅b、ティース先端の角度c、ギャップ長d、隣接するティース先端間の距離e)を変更した。
上記モータ設計の最適化によって得られた最適化設計に従ってモータを製作した。その製作したモータを使用して測定した最大効率を、従来法および最適化前の試験モータとを表1に示す。ここで従来法とは、材料磁気特性の変更・補正をいっさい行わずに電磁界解析から求めた最適計算とした。
Subsequently, an electromagnetic field analysis was performed on the computer by driving voltage waveform input using these variables: θ, μ 11 , μ 22 , μ 12 , and μ 21 , and the iron loss was calculated based on the above formula (2) from the result. The motor design was optimized to maximize motor efficiency. In the optimization calculation, the stator outer diameter was constant, and the variables shown in FIG. 3 (yoke width a, tooth width b, tooth tip angle c, gap length d, distance e between adjacent tooth tips) were changed.
The motor was manufactured according to the optimization design obtained by the optimization of the motor design. Table 1 shows the maximum efficiency measured using the manufactured motor and the conventional method and the test motor before optimization. Here, the conventional method is the optimum calculation obtained from the electromagnetic field analysis without any change or correction of the magnetic material characteristics.

Figure 0004631298
Figure 0004631298

この表1のように、本発明に基づく補正後の鉄心材料特定を使用して最適化設計を行うと、従来法では得られない高い効率が得られているのが分かる。
「実施例2」
図3に示した8極12スロットの集中巻き表面磁石型ブラシレスDCモータ(出力300W、直径160mm)において、下記の手順にて回転磁束挙動を厳密に評価したモータの最適化設計を行った。
As shown in Table 1, it can be seen that when optimization design is performed using the iron core material after correction based on the present invention, high efficiency that cannot be obtained by the conventional method is obtained.
"Example 2"
In the 8-pole 12-slot concentrated winding surface magnet type brushless DC motor (output 300 W, diameter 160 mm) shown in FIG. 3, the optimization design of the motor was performed by strictly evaluating the rotating magnetic flux behavior by the following procedure.

1)JISグレード35A300の無方向性電磁鋼板を鉄心材料として用い、過去の同種のモータの仕様(鉄心材料特性及び設計仕様)に基づき試作モータを設計した。
2)このモータ仕様に関して計算機上で二次元静磁場解析による有限要素法(FEM)の模擬計算を行い、局所領域の磁束密度の挙動を計算した。
3)上記1)の仕様に基づき局所磁気特性測定用の試験モータを試作した。この際、ティース内部の磁束密度が測定出来るようにティース部の巻線は嵩上げした。
4)上記3)の試験モータの局所磁束密度を探針法にて二次元測定した。
5)測定点P(r、θ)[但しr、θは径方向および周方向]における局所領域の磁束密度の計算結果をBcal =( Brcal 、 Bθcal ) 、実測結果をBmeas=( Brmeas、 Bθmeas) とし、計算値と実測値の乖離量ΔBを下記式とするとき、
ΔB=|{(Brcal 2 +(Bθcal 2 1/2
−{(Brmeas2 +(Bθmeas2 1/2
1) Using a JIS grade 35A300 non-oriented electrical steel sheet as the iron core material, a prototype motor was designed based on the past specifications of the same type of motor (iron core material characteristics and design specifications).
2) A simulation of the finite element method (FEM) by two-dimensional static magnetic field analysis was performed on the computer with respect to this motor specification, and the behavior of the magnetic flux density in the local region was calculated.
3) A test motor for measuring local magnetic properties was made on the basis of the specifications of 1) above. At this time, the winding of the tooth part was raised so that the magnetic flux density inside the tooth could be measured.
4) The local magnetic flux density of the test motor of 3) above was measured two-dimensionally by the probe method.
5) B cal = (Br cal , Bθ cal ) for the magnetic flux density in the local region at the measurement point P (r, θ) [where r and θ are radial and circumferential directions], and B meas = ( Br meas , Bθ meas ), and when the difference ΔB between the calculated value and the measured value is expressed by the following equation:
ΔB = | {(Br cal ) 2 + (Bθ cal ) 2 } 1/2
− {(Br meas ) 2 + (Bθ meas ) 2 } 1/2 |

実測点すべてに渡る乖離量△Bの平均値<△B>が乖離量目標値以下となるなるように変数(θ、μ11、μ12、μ21、μ22)を計算した。ここでこれらの変数の計算方法としては、材料の透磁率をμとするとき、μ11=μ22=μ、μ12=μ21=0としてまずθを計算し、実測結果と合うθを求めたのち、θを固定してμ11=μ22=μ、μ12=μ21=0から少しずつ値をずらしながら<△B>を乖離量目標値以下とする値(関数)(μ11、μ22、μ12、μ21)を求めた。 The variables (θ, μ 11 , μ 12 , μ 21 , μ 22 ) were calculated so that the average value <ΔB> of the deviation amount ΔB over all the measurement points was less than the deviation amount target value. Here, as a calculation method of these variables, when the magnetic permeability of the material is μ, θ 11 is first calculated by setting μ 11 = μ 22 = μ and μ 12 = μ 21 = 0, and the θ that matches the actual measurement result is obtained. and then, fixing the θ μ 11 = μ 22 = μ , μ 12 = μ 21 = 0 while shifting a value slightly from <△ B> value less divergence amount target value (function) (mu 11, μ 22, μ 12, was determined mu 21).

続けて、これらの変数:θ、μ11、μ22、μ12、μ21を用いた駆動電圧波形入力による電磁界解析を計算機上で行い、モータの効率とトルクを計算し、モータ効率92%以上、トルク2Nmの条件でトルク脈動を最小化するようにモータ設計の最適化を行った。ここで、トルク脈動量は下記(3)式にて定義した。
トルク脈動量[%]
={(平均トルクからのずれの絶対値の平均値)/平均トルク}×100・・・(3)
Subsequently, the electromagnetic field analysis by the drive voltage waveform input using these variables: θ, μ 11 , μ 22 , μ 12 , μ 21 is performed on the computer, the motor efficiency and torque are calculated, and the motor efficiency is 92%. As described above, the motor design is optimized so as to minimize the torque pulsation under the condition of the torque of 2 Nm. Here, the torque pulsation amount was defined by the following equation (3).
Torque pulsation [%]
= {(Average value of absolute value of deviation from average torque) / average torque} × 100 (3)

最適化計算にあたってはステータ外径を一定とし、図3に示した変数(ヨーク幅a、ティース幅b、ティース先端の角度c、ギャップ長d、隣接するティース先端間の距離e)を変更した。
上記モータ設計の最適化によって得られた最適化設計に従ってモータを製作した。その製作したモータを使用して測定したトルク脈動量と、従来法および最適化計算前の試験機で測定したトルク脈動量とを表2に示す。ここで従来法とは材料磁気特性の変更・補正をいっさい行わずに電磁界解析から求めた最適計算とした。
In the optimization calculation, the stator outer diameter was constant, and the variables shown in FIG. 3 (yoke width a, tooth width b, tooth tip angle c, gap length d, distance e between adjacent tooth tips) were changed.
The motor was manufactured according to the optimization design obtained by the optimization of the motor design. Table 2 shows the torque pulsation amount measured using the manufactured motor and the torque pulsation amount measured by the conventional method and the test machine before the optimization calculation. Here, the conventional method is the optimum calculation obtained from the electromagnetic field analysis without any change or correction of the material magnetic properties.

Figure 0004631298
Figure 0004631298

この表2から分かるように、本発明の適用により解析精度が向上し、これによりトルク脈動の少ないモータが設計可能となっている。
「実施例3」
8極48スロットの分布巻き・埋め込み磁石型ブラシレスDCモータ(出力10kW、直径200mm)において、下記の手順にて回転磁束挙動を厳密に評価したモータの最適化設計を行った。
As can be seen from Table 2, the accuracy of analysis is improved by applying the present invention, and thus a motor with less torque pulsation can be designed.
"Example 3"
In the 8-pole 48-slot distributed winding / embedded magnet type brushless DC motor (output 10 kW, diameter 200 mm), the optimization design of the motor was performed by strictly evaluating the rotating magnetic flux behavior according to the following procedure.

1)JISグレード35A250の無方向性電磁鋼板を鉄心材料として用い、過去の同種のモータの仕様に基づき試作モータを設計した。
2)このモータ仕様に関して計算機上で有限要素法(FEM)による模擬計算を行い、局所領域の磁束密度の挙動を計算した。
3)上記1)の仕様のモータから局所磁気特性測定用の試験モータを試作した。この際、ティース内部の局所鉄損が測定出来るようにティース部の巻線は嵩上げした。
4)上記3)の試験モータの局所鉄損を探針法にて測定した。この際、回転数を1000〜5000rpmの範囲で500rpm刻みにて変化させ、トルクを20〜50Nmの範囲で10Nm刻みにて変化させ、それぞれの回転数・トルク条件にてモータ効率の測定および探針法とホール素子からなるプローブによる局所磁気測定を行った。
5)測定点P(r、θ)[r、θは径方向および周方向]における局所領域の鉄損を下式により計算した。
W=∫{Σ(c1 ・fi ・Bi 1.6 +c2 ・fi 2 ・Bi 2 )}dv ・・・(4)
1) Using a non-oriented electrical steel sheet of JIS grade 35A250 as the iron core material, a prototype motor was designed based on the specifications of the same type of motor in the past.
2) A simulation calculation by a finite element method (FEM) was performed on the computer for this motor specification, and the behavior of the magnetic flux density in the local region was calculated.
3) A test motor for measuring the local magnetic characteristics was prototyped from the motor having the specifications of 1) above. At this time, the winding of the tooth part was raised so that the local iron loss inside the tooth could be measured.
4) The local iron loss of the test motor of 3) above was measured by a probe method. At this time, the rotational speed is changed in the range of 1000 to 5000 rpm in increments of 500 rpm, the torque is changed in the range of 20 to 50 Nm in increments of 10 Nm, and the motor efficiency is measured and probed at each rotational speed and torque condition. The local magnetism was measured with a probe consisting of a method and a Hall element.
5) The iron loss in the local region at the measurement point P (r, θ) [r and θ are radial and circumferential directions] was calculated by the following equation.
W = ∫ {Σ (c 1 · f i · B i 1.6 + c 2 · f i 2 · B i 2 )} dv (4)

ここで、fi はFFT解析による磁束密度波形の各調波成分の周波数、Bi は磁束密度波形の各調波成分の波高値、Σは十分高次までの調波成分での和であり、∫{ }dvはステータ全体に関する和とした。c1 、c2 は材料に依存した係数である。埋め込み磁石型モータの場合、表面磁石型モータに比べて回転子内部でも損失が発生するが固定子鉄損に比べて小さいため、ここでは無視した。 Here, f i is the frequency of each harmonic component of the magnetic flux density waveform by FFT analysis, B i is the peak value of each harmonic component of the magnetic flux density waveform, and Σ is the sum of harmonic components up to a sufficiently high order. , ∫ {} dv is the sum for the entire stator. c 1 and c 2 are coefficients depending on the material. In the case of an embedded magnet type motor, a loss is also generated inside the rotor as compared with a surface magnet type motor, but this is neglected here because it is smaller than the stator iron loss.

続いて、局所鉄損の計算値と実測値の乖離量を、(1)ティース先端部分、(2)ティース部分、(3)ティースとヨークの接合部分、(4)ヨーク部分に分けて下記(5)式により求めた。
△W= |Wcal −Wmeas | ・・・(5)
ここで、Wcal : (4)式に基づいた計算による鉄損
meas :図2の局所磁気測定プローブを用いて測定した局所鉄損
である。
Subsequently, the difference between the calculated value of the local iron loss and the actually measured value is divided into (1) a tooth tip portion, (2) a teeth portion, (3) a joint portion between a tooth and a yoke, and (4) a yoke portion as follows ( 5) Obtained by the equation.
ΔW = | W cal −W meas | (5)
Where W cal : Iron loss by calculation based on equation (4)
W meas : Local iron loss measured using the local magnetic measurement probe of FIG.

続いて、上記(l)〜(4)の部分ごとに△Wの平均値<△W>を求め、これを乖離量目標値以下とするような変数(c1 、c2 )を各部分ごとに求めた。ここで、これらの変数の計算方法としては、(4)式のc1 、c2 の値を少しずつずらしながら(1)〜(4)の各部分の<△W>を乖離量目標値以下とするような値(c1 、c2 )を求めた。
続いて、補正後の鉄心材料特性の変数であるc1 、c2 を用いて電磁界解析によるモータ設計の最適化を行った。最適化計算にあたってはステータ外径を一定とし、図3に示した変数を変更した(モータ仕様は図3と異なるが変数の決め方は同じである)。
このようにして本願発明を適用して求めた最適化設計時の効率および計算値と予測値との誤差を、従来法での結果とともに表3に示す。ここで従来法とは材料磁気特性の変更・補正をいっさい行わずに電磁界解析から求めた最適計算とした。
Subsequently, an average value <ΔW> of ΔW is obtained for each of the above parts (l) to (4), and variables (c 1 , c 2 ) are set for each part so as to be equal to or less than the deviation amount target value. Asked. Here, as a calculation method of these variables, <ΔW> of each part of (1) to (4) is less than the deviation amount target value while gradually shifting the values of c 1 and c 2 in the equation (4). Values (c 1 , c 2 ) were obtained.
Subsequently, the motor design was optimized by electromagnetic field analysis using c 1 and c 2 which are variables of the iron core material characteristics after correction. In the optimization calculation, the outer diameter of the stator was made constant, and the variables shown in FIG. 3 were changed (the motor specifications are different from those in FIG. 3 but the variable determination method is the same).
Table 3 shows the efficiency at the time of optimization design obtained by applying the present invention in this way and the error between the calculated value and the predicted value together with the result of the conventional method. Here, the conventional method is the optimum calculation obtained from the electromagnetic field analysis without any change or correction of the material magnetic properties.

Figure 0004631298
Figure 0004631298

表3に示されるように、本発明による方法で設計したモータでは従来の最適化手法で得られるよりも高い平均効率が得られている。
次に、第2実施形態を図面を参照しながら説明する。
本実施形態は、補正後の最適化された鉄心材料特性を演算する鉄心材料特性特定装置10の例を説明するものである。
本装置は、図7に示すように、予め決めた鉄心材料特性及び設計仕様と、試験機で測定した鉄心部の測定磁気特性とがデータとして入力される。入力された各データは記憶部10Aに格納される。なお、鉄心材料特性は式として後述の特性変更手段10Dに設定され、実際には、その鉄心材料特性を表す式の変数値が装置に入力される。設計仕様についても同様である。
As shown in Table 3, the motor designed by the method according to the present invention has a higher average efficiency than that obtained by the conventional optimization method.
Next, a second embodiment will be described with reference to the drawings.
In the present embodiment, an example of an iron core material characteristic specifying device 10 that calculates an optimized iron core material characteristic after correction will be described.
As shown in FIG. 7, the present apparatus receives as input data the predetermined core material characteristics and design specifications, and the measured magnetic characteristics of the core measured by the testing machine. Each input data is stored in the storage unit 10A. Note that the core material characteristics are set as formulas in the characteristic changing means 10D, which will be described later, and actually, variable values of formulas representing the core material characteristics are input to the apparatus. The same applies to the design specifications.

この鉄心材料特性特定装置10は、記憶部10A、磁気特性演算手段10B、特性変更手段10D、及び比較評価部10Cを備える。
磁気特性演算手段10Bは、記憶部10Aに格納されている鉄心材料特性及び設計仕様のデータを使用して、上述に述べたような公知の電磁気界解析に基づく模擬計算を行い磁気特性のうちの比較評価する計算値を求め比較評価部10Cに出力する。
The iron core material property specifying device 10 includes a storage unit 10A, a magnetic property calculation unit 10B, a property change unit 10D, and a comparative evaluation unit 10C.
The magnetic characteristic calculation means 10B performs simulation calculation based on the well-known electromagnetic field analysis as described above using the core material characteristic and design specification data stored in the storage unit 10A. A calculated value for comparative evaluation is obtained and output to the comparative evaluation unit 10C.

評価比較部では、磁気特性演算手段10Bから入力した計算値と測定磁気特性とを比較し、両者の乖離量を演算し、その乖離量が予め決められている乖離量目標値以下か否かを判定し、乖離量目標値以下であれば、記憶部10Aに格納してある鉄心材料特性を補正後の最適化した鉄心材料特性として、不図示の表示部やデータベースなどに出力する。一方、乖離量が予め決められている乖離量目標値より大きければ、その乖離量を特性変更手段10Dに出力する。   The evaluation comparison unit compares the calculated value input from the magnetic characteristic calculation means 10B with the measured magnetic characteristic, calculates the divergence amount between them, and determines whether the divergence amount is equal to or less than a predetermined divergence amount target value. If it is determined and the deviation amount is equal to or less than the target value, the iron core material characteristic stored in the storage unit 10A is output as an optimized iron core material characteristic after correction to a display unit or database (not shown). On the other hand, if the deviation amount is larger than a predetermined deviation amount target value, the deviation amount is output to the characteristic changing means 10D.

特性変更手段10Dでは、鉄心材料特性のうちの予め決められている変数を変更し、記憶部10Aに格納し直し、磁気特性演算手段10Bに再計算指令を送る。なお、変更量は、一定でも良いし、乖離量に応じて変更量を決めても良い。
上記構成の鉄心材料特性特定装置10では、予め決めた鉄心材料特性及び設計仕様と、試験機で測定した鉄心部の測定磁気特性とを入力するだけで、最適化した鉄心材料特性を得ることが可能となる。
The characteristic changing means 10D changes a predetermined variable among the core material characteristics, stores it again in the storage unit 10A, and sends a recalculation command to the magnetic characteristic calculation means 10B. Note that the amount of change may be constant, or the amount of change may be determined according to the amount of deviation.
In the core material characteristic specifying device 10 having the above-described configuration, an optimized core material characteristic can be obtained only by inputting a predetermined core material characteristic and design specification and a measured magnetic characteristic of the core measured by a testing machine. It becomes possible.

次に、第3実施形態について図面を参照して説明する。
本実施形態は、補正後の最適化された鉄心材料特性を特定する鉄心材料特性特定装置12の例を説明するものである。
本装置は、図8に示すように、予め決めた鉄心材料を特定するデータ及び設計仕様とが入力され、データベース11を参照して補正後の最適化した鉄心材料特性を出力する。
Next, a third embodiment will be described with reference to the drawings.
In the present embodiment, an example of the core material property specifying device 12 that specifies the optimized core material property after correction will be described.
As shown in FIG. 8, this apparatus receives data and design specifications for specifying a predetermined core material, and outputs the optimized core material characteristics after correction with reference to the database 11.

ここで、データベース11には、第2実施形態のような装置その他の方法で求めた、鉄心材料毎の、各設計仕様データ及び上記補正後の鉄心材料特性データを少なくとも含むテーブルからなるデータが予め格納されている。
そして、上記鉄心材料特性特定装置12は、入力した鉄心材料に対応するテーブルをデータベース11中から検索すると共に、そのテーブル内における、入力した設計仕様と同一若しくは近いデータに対応するテーブルを取得する。
続いて、入力した設計仕様と同じ設計仕様データのテーブルがあれば、そのテーブルの補正後の鉄心材料特性を出力する。
Here, the database 11 is preliminarily stored with data including a table including at least each design specification data and the corrected core material characteristic data for each core material obtained by the apparatus or other methods as in the second embodiment. Stored.
And the said iron core material characteristic specific | specification apparatus 12 searches the table corresponding to the input iron core material from the database 11, and acquires the table corresponding to the data which is the same as or close | similar to the input design specification in the table.
Subsequently, if there is a table of design specification data that is the same as the input design specification, the corrected core material characteristics of the table are output.

一方、入力した設計仕様と同じ設計仕様データのテーブルが無ければ、その入力した設計仕様に近い設計仕様データのテーブルを複数選択し、その選択したテーブル内の鉄心材料特性から所定の演算方式(平均値を取るなど)で補完して鉄心材料特性を演算し、その演算した鉄心材料特性を出力する。
上記構成の鉄心材料特性特定装置12では、予め決めた鉄心材料特性及び設計仕様と、試験機で測定した鉄心部の測定磁気特性とを入力するだけで、最適化した鉄心材料特性を得ることが可能となる。
また、最適演算の度に試験機を作製して測定した磁気特性を求めていない分だけ、モータ仕様の特性期間が短縮される。
On the other hand, if there is no table of design specification data that is the same as the input design specification, multiple tables of design specification data close to the input design specification are selected, and a predetermined calculation method (average) is selected from the core material characteristics in the selected table. The core material properties are calculated by complementing the values by taking values, and the calculated core material properties are output.
In the core material characteristic specifying device 12 having the above-described configuration, an optimized core material characteristic can be obtained only by inputting a predetermined core material characteristic and design specification, and a measured magnetic characteristic of the core measured by a testing machine. It becomes possible.
In addition, the characteristic period of the motor specification is shortened by the amount that the magnetic characteristic measured by making the test machine is not obtained for each optimum calculation.

本発明によれば、従来よりも高い精度での回転機特性の予測が可能となり、これを設計最適化に適用することで従来よりも効率、トルク特性等に優れた回転機を得ることができる。   According to the present invention, it becomes possible to predict the characteristics of a rotating machine with higher accuracy than before, and by applying this to design optimization, it is possible to obtain a rotating machine that is superior in efficiency, torque characteristics, and the like. .

本発明に基づく第1実施形態に係る設計手順を説明する図である。It is a figure explaining the design procedure which concerns on 1st Embodiment based on this invention. 本発明に基づく第1実施形態に係る探針法の状態を示す図である。It is a figure which shows the state of the probe method which concerns on 1st Embodiment based on this invention. 本発明に基づく第1実施形態に係る実施例の鉄心仕様を示す図である。It is a figure which shows the iron core specification of the Example which concerns on 1st Embodiment based on this invention. 局所磁束密度ベクトルの軌跡を示す図である。It is a figure which shows the locus | trajectory of a local magnetic flux density vector. 局所鉄損の分布を示す図である。It is a figure which shows distribution of a local iron loss. 局所磁束密度の分布を示す図である。It is a figure which shows distribution of local magnetic flux density. 本発明に基づく第2実施形態に係る鉄心材料特性装置の例を示す構成図である。It is a block diagram which shows the example of the iron core material characteristic apparatus which concerns on 2nd Embodiment based on this invention. 本発明に基づく第3実施形態に係る鉄心材料特性装置の例を示す構成図である。It is a block diagram which shows the example of the iron core material characteristic apparatus which concerns on 3rd Embodiment based on this invention.

符号の説明Explanation of symbols

10 鉄心材料特性特定装置
10A 記憶部
10B 磁気特性演算手段
10C 比較評価部
10D 特性変更手段
11 データベース
12 鉄心材料特性特定装置
DESCRIPTION OF SYMBOLS 10 Iron core material characteristic identification apparatus 10A Memory | storage part 10B Magnetic characteristic calculation means 10C Comparison evaluation part 10D Characteristic change means 11 Database 12 Iron core material characteristic identification apparatus

Claims (7)

鉄心材料特性及び設計仕様に基づいて回転機の最適化設計を行う回転機の設計方法であって、
まず、予め決めた鉄心材料特性及び設計仕様に基づき回転機における鉄心部の磁気特性を計算すると共に、上記材料特性とされる鉄心材料及び設計仕様にて作製した試験回転機を駆動させた状態における鉄心部の局所的な磁気特性を測定し、上記磁気特性についての計算値と測定値との乖離量に基づき、上記鉄心材料特性における変数を補正し、その補正後の鉄心材料特性を上記最適化設計で使用する鉄心材料特性として定め、
つぎに最適化設計において、前記定めた鉄心材料特性を使用するとともに、当該鉄心材料特性以外の設計仕様を変化させながら計算した回転機の特性値が目標特性を満足するように設計することを特徴とする回転機の設計方法
A design method for a rotating machine that performs an optimized design of the rotating machine based on iron core material characteristics and design specifications,
First, the magnetic properties of the core part of the rotating machine are calculated based on the predetermined iron core material characteristics and design specifications, and the test rotating machine manufactured with the core material and design specifications described above is driven . Measure the local magnetic properties of the iron core, correct the variables in the iron core material properties based on the amount of deviation between the calculated values and the measured values, and optimize the iron core material properties after the correction Determined as the core material characteristics used in the design ,
Next, in the optimization design, the specified core material characteristics are used, and the calculated characteristic value of the rotating machine while changing the design specifications other than the core material characteristics is designed to satisfy the target characteristics. Rotating machine design method .
上記最適化設計で使用する鉄心材料特性を定める際、上記乖離量が所定値以下になるまで、上記鉄心材料特性の補正及び上記鉄心部の磁気特性の計算を繰り返すことを特徴とする請求項1に記載した回転機の設計方法 2. When determining the core material characteristics to be used in the optimization design, the correction of the core material characteristics and the calculation of the magnetic characteristics of the core section are repeated until the deviation amount becomes a predetermined value or less. The design method of the rotating machine described in 1. 同一の材料特性とされる鉄心材料を使用して、複数の設計仕様について、それぞれ上記請求項1又は請求項2に記載の方法で各設計仕様毎の鉄心材料特性を特定することで、上記各設計仕様と補正後の鉄心材料特性との組を予め求めておき、
上記予め求めた各設計仕様と補正後の鉄心材料特性との組に基づいて、作製する回転機の設計仕様と同じ若しくは近い上記設計仕様での補正後の鉄心材料特性を定め
つぎに最適化設計において、前記定めた鉄心材料特性を使用するとともに、当該鉄心材料特性以外の設計仕様を変化させながら計算した回転機の特性値が目標特性を満足するように設計することを特徴とする回転機の設計方法
By using the iron core material having the same material characteristics, for each of the plurality of design specifications, the core material characteristics for each design specification are specified by the method according to claim 1 or 2, respectively. Find a set of design specifications and corrected core material properties in advance,
Based on the set of the iron core material characteristics and the corrected each design specification above previously obtained, defining a core material characteristics after the correction in the same or close to the design specifications and the rotating machine design specifications to produce,
Next, in the optimization design , the specified core material characteristics are used, and the calculated characteristic value of the rotating machine while changing the design specifications other than the core material characteristics is designed to satisfy the target characteristics. Rotating machine design method .
上記設計仕様は、少なくとも鉄心部仕様及び駆動条件仕様であることを特徴とする請求項1〜請求項3のいずれか1項に記載した回転機の設計方法The said design specification is an iron core part specification and a drive condition specification at least , The design method of the rotating machine of any one of Claims 1-3 characterized by the above-mentioned. 上記鉄心材料特性のうち補正される変数は、鉄心材料の磁化曲線に関わる変数、及び鉄心材料の鉄損特性に関わる変数の少なくとも一方であることを特徴とする請求項1〜請求項4のいずれか1項に記載した回転機の設計方法The variable to be corrected among the iron core material characteristics is at least one of a variable related to a magnetization curve of the iron core material and a variable related to iron loss characteristics of the iron core material. A method for designing a rotating machine as described in 1 above. 上記鉄心部の局所的な磁気特性の測定は、探針法による局所的な磁束密度測定により行うことを特徴とする請求項1〜請求項5のいずれか1項に記載した回転機の設計方法The method for designing a rotating machine according to any one of claims 1 to 5, wherein the measurement of the local magnetic characteristics of the iron core is performed by local magnetic flux density measurement by a probe method. . 上記請求項1〜請求項6のいずれか1項に記載の設計方法を用いて製造することを特徴とする回転機の製造方法。 It manufactures using the design method of any one of the said Claims 1-6, The manufacturing method of the rotary machine characterized by the above-mentioned.
JP2004077022A 2004-03-17 2004-03-17 Rotating machine design method and rotating machine manufacturing method Expired - Fee Related JP4631298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077022A JP4631298B2 (en) 2004-03-17 2004-03-17 Rotating machine design method and rotating machine manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077022A JP4631298B2 (en) 2004-03-17 2004-03-17 Rotating machine design method and rotating machine manufacturing method

Publications (2)

Publication Number Publication Date
JP2005269746A JP2005269746A (en) 2005-09-29
JP4631298B2 true JP4631298B2 (en) 2011-02-16

Family

ID=35093699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077022A Expired - Fee Related JP4631298B2 (en) 2004-03-17 2004-03-17 Rotating machine design method and rotating machine manufacturing method

Country Status (1)

Country Link
JP (1) JP4631298B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2432516C2 (en) * 2006-01-20 2011-10-27 Эксонмобил Апстрим Рисерч Компани Method for determination of limits of functionality of threaded connections
JP5696469B2 (en) * 2010-12-22 2015-04-08 Jfeスチール株式会社 Motor iron loss analysis method, motor core material selection method, and motor manufacturing method
JP5699797B2 (en) * 2011-05-17 2015-04-15 Jfeスチール株式会社 How to select motor core material
JP5673401B2 (en) * 2011-07-07 2015-02-18 Jfeスチール株式会社 Motor characteristics analysis method
JP5884160B2 (en) * 2011-12-07 2016-03-15 Jfeスチール株式会社 Performance analysis method of motor for hybrid vehicle
EP4060869A4 (en) * 2019-11-15 2022-12-28 Nippon Steel Corporation Stator core, rotary electric machine, and design method for stator core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189485A (en) * 1989-01-19 1990-07-25 Tokyo Electric Co Ltd Evaluating method for characteristic of permanent magnet and apparatus therefor
JPH11146689A (en) * 1997-11-11 1999-05-28 Sanyo Electric Co Ltd Motor analyzer
JP2000352579A (en) * 1999-06-10 2000-12-19 Kawasaki Steel Corp Measuring device and measuring method for dynamic magnetic characteristic of motor stator iron core
JP2002006009A (en) * 2000-06-16 2002-01-09 Nissan Motor Co Ltd Analyzing method for motor loss and information medium storing its instruction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189485A (en) * 1989-01-19 1990-07-25 Tokyo Electric Co Ltd Evaluating method for characteristic of permanent magnet and apparatus therefor
JPH11146689A (en) * 1997-11-11 1999-05-28 Sanyo Electric Co Ltd Motor analyzer
JP2000352579A (en) * 1999-06-10 2000-12-19 Kawasaki Steel Corp Measuring device and measuring method for dynamic magnetic characteristic of motor stator iron core
JP2002006009A (en) * 2000-06-16 2002-01-09 Nissan Motor Co Ltd Analyzing method for motor loss and information medium storing its instruction

Also Published As

Publication number Publication date
JP2005269746A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
Parreira et al. Obtaining the magnetic characteristics of an 8/6 switched reluctance machine: from FEM analysis to the experimental tests
Torkaman et al. Static, dynamic, and mixed eccentricity faults diagnosis in switched reluctance motors using transient finite element method and experiments
EP2184847A1 (en) System and method for controlling a rotating electromagnetic machine
JP6206608B1 (en) Electromagnetic field analysis apparatus, electromagnetic field analysis method, and program
Brisset et al. Analytical model for the optimal design of a brushless DC wheel motor
Fratila et al. Iron loss calculation in a synchronous generator using finite element analysis
Faiz et al. Time stepping finite element analysis of broken bars fault in a three-phase squirrel-cage induction motor
Cho et al. Torque ripple-minimizing control of IPMSM with optimized current trajectory
JP2011243126A (en) Optimum design system of electromagnetic equipment
JP4631298B2 (en) Rotating machine design method and rotating machine manufacturing method
KhajueeZadeh et al. Development of a hybrid reference model for performance evaluation of resolvers
Duan et al. A useful multi-objective optimization design method for PM motors considering nonlinear material properties
Bîrte et al. Study of torque ripple and noise for different rotor topologies of a synchronous reluctance machine
Mejuto et al. Thermal modelling investigation of heat paths due to iron losses in synchronous machines
Faiz et al. Loss prediction in switched reluctance motors using finite element method
Zhang et al. Numerical iron loss calculation of a new axial flux machine with segmented-armature-torus topology
Fontchastagner et al. Efficient design using successive analytical subproblems method: Application to axial magnetic couplings
Lorenz Electrical machine iron loss predictions-A unique engineering approach utilizing transient finite element methods-Part 1: Theory and calculation method
Faiz et al. Electromagnetic modeling of switched reluctance motor using finite element method
Terzic et al. Comparison of experimental methods for electromagnetic characterization of switched reluctance motors
Jun et al. Design process of spoke-type PM motor using six sigma process with tolerance design
EP2541757A1 (en) Control device and method for controlling an electric machine
JP6441661B2 (en) Characteristic table creation device and computer program
Enokizono Design Method by Vector Magnetic Characteristic Analysis for upgrading Efficiency of Motor
Weber et al. HIGH SPEED SYNCHRONOUS RELUCTANCE DRIVES FOR MOTOR SPINDLES.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees