JP4625627B2 - 直接型燃料電池発電装置 - Google Patents

直接型燃料電池発電装置 Download PDF

Info

Publication number
JP4625627B2
JP4625627B2 JP2003400850A JP2003400850A JP4625627B2 JP 4625627 B2 JP4625627 B2 JP 4625627B2 JP 2003400850 A JP2003400850 A JP 2003400850A JP 2003400850 A JP2003400850 A JP 2003400850A JP 4625627 B2 JP4625627 B2 JP 4625627B2
Authority
JP
Japan
Prior art keywords
flow path
electromotive
fuel
electromotive unit
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003400850A
Other languages
English (en)
Other versions
JP2004319430A (ja
Inventor
征人 秋田
尚 山内
雅弘 高下
英一 坂上
敬 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003400850A priority Critical patent/JP4625627B2/ja
Publication of JP2004319430A publication Critical patent/JP2004319430A/ja
Application granted granted Critical
Publication of JP4625627B2 publication Critical patent/JP4625627B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料としてメタノールまたはメタノール水溶液等を使用する直接型燃料電池発電装置に関し、特に燃料が通流する流路板の流路の形状を改良することで安定した出力が得られるものに関する。
燃料電池は、電気化学反応により水素、炭化水素あるいはアルコール等の燃料の持つ化学エネルギを電気エネルギに変換する装置であり、高効率かつ低公害型の発電装置として期待されている。
この燃料電池の中で、イオン交換樹脂膜を電解質として用いる固体高分子形燃料電池は、電気自動車用の電源や、住宅用の電源として、近年開発が加速されている燃料電池である。この固体高分子形燃料電池は、アノード電極側に水素を含む燃料ガス、カソード電極側に酸素ガスあるいは空気を供給する。アノード電極・カソード電極において、それぞれ、(式I)及び(式II)に示す反応を起こし、起電力が発生する。
アノード電極:2H2 → 4H++4e− …(式I)
カソード電極:O2+4H++4e− → 2H2O …(式II)
すなわち、アノード電極内部の触媒により、水素から電子とプロトンが生成され、電子は外部回路に取り出される。プロトンはプロトン導電性電解質膜内を伝導しカソード電極に到達すると、カソード電極内部の触媒上で、電子及び酸素と反応して水が生成される。このような電気化学反応によって発電が行われる。
一方、近年は直接型メタノール燃料電池が注目を集めている。図59に、直接型メタノール燃料電池における起電部単位の構造を示す。直接型メタノール燃料電池の構成は、プロトン導電性電解質膜7(例えば、パーフルフルオロカーボンスルホン酸系イオン交換膜であり、デュポン社製Nafion等が好ましく用いられる)をアノード電極3とカソード電極6とで挟持したものとなっている。各々の電極は、基板1,5と触媒層2,4とで構成されており、触媒層は、パーフルオロカーボンスルホン酸樹脂に触媒または触媒が担持されたカーボンブラック等が分散されて構成される。触媒は一般に貴金属触媒あるいはその合金で、カーボンブラック等の担体に担持して用いられる場合が多い。アノード電極の触媒としてはPt−Ru合金、またカソード電極の触媒としてはPtが好ましく用いられる。この燃料電池を駆動するには、アノード電極側にメタノールと水、カソード電極に酸素ガスあるいは空気を供給することにより、アノード電極・カソード電極それぞれで(式III)、(式IV)に示す反応が生じる。
アノード電極:CH3OH+H2O → CO2+6H++6e−
…(式III)
カソード電極:(3/2)O2+6H++6e− → 3H2O
…(式IV)
すなわち、アノード電極触媒層中の触媒により、メタノールと水から電子とプロトンと二酸化炭素が生成され、生成した二酸化炭素は大気中に放出される。電子は電流として外部に取り出される。また、プロトンはプロトン導電性電解質膜を移動してカソード電極に到達し、電子及び酸素と反応して水が生成される。この電気化学反応に基づき、発電が行なわれる。
この直接型メタノール燃料電池発電装置においては、開回路電圧が通常0.6V〜0.8Vであり、負荷電流を伴う実際の発電においては0.5V付近の電圧にまで低下する。ゆえに電子回路や電気機器の動作が補償される電圧を得るために、複数個の起電部単位を電気的に接続することが必要となる。よって、これらの複数個の起電部単位を積層(スタック)し、これらに対し均等に燃料を供給するための流路形状や配管が必要となり、さまざまな提案がなされていきている。それら多くの流路または配管の構造を大別すると、燃料が収容されている燃料容器から導かれている配管や流路を起電部単位の個数だけ分岐させた並列型流路としているものと、一つの流路が複数個の起電部単位を順に巡る直列型流路の2つに分けることができる。
しかしながら、前者では流路の分岐や配管に起因した各起電部単位に対する燃料供給状態のばらつきが生じ易く、そのばらつきを減少させるための更なる工夫を必要とする。また後者においても、逐次複数の起電部単位で燃料が消費されてしまうために流路前半に位置する起電部単位と流路後半に位置する起電部単位での燃料濃度差による出力の差異を生じ、これにおいてもその差異を減少させるための綿密な流路形状の設計が必要となる。
また、複数の起電部単位と流路板をスタック化する方法としては、起電部単位のアノード電極またはカソード電極が一方向に揃うように交互に積層させるバイポーラ構造が広く採用されている。このバイポーラ構造では、起電部単位を隔てる流路板を電気良導体の部材で形成し、一枚の流路板の片面に燃料用流路を施して燃料を供給し、もう片面に酸化剤用流路を施して酸化剤を供給し、この流路板を起電部単位を単に交互に積層させるのみで電気的な直列状態を容易に得ることができる。すなわち、複数の起電部単位からの電気的出力を直列にするための電気配線が省略することができるため、スタック構造を簡略化することが可能となる。
しかしながら、実際には、機械的強度もしくは空間的制約が補償される積層数のスタック単位を複数個並列に配置し、各々を電気的に接続するという手段が取られる場合が多い。例えば、導電性である流路板同士を絶縁性の部材で互いに絶縁させ集合させるような構造が提案されている。
このバイポーラ型スタックの小型化を行うためには、起電部単位そのものに依存する要素を除くと、流路板自体の薄型化が最も効果的であり、構造的及び材料的観点から検討がなされている。
構造的に流路板の厚さを薄型化するためには、アノード及びカソード流路の深さを浅くする方法、及びアノード/カソード流路を仕切る層の厚さを薄くする方法が考えられる。前者に関しては、流路での圧力損失により制限され、ポンプへの負担を無視さえすれば理論的には非常に薄くすることは可能であるが、実際にはポンプに消費される電力を含めたシステム全体での発電効率や工作精度を考慮しなければならない。後者に関しては、材質の燃料や酸化剤に対する透過性に制限され、薄膜化するに従い材料の強度が制限となる。
また、材料的観点から流路板の薄型化をする試みもなされている。通常、流路板材質としては電気導電性を持つ材料としてカーボンが用いられることが多いが、純粋なカーボンでは強度、透過性、工作精度という観点から、1〜2mm以下の厚さにすることは不可能である。ゆえに多少の樹脂を浸透させるか混合させることで、上記特性を向上させたものが用いられる。しかしながら、カーボン以外の非導電性の成分の割合を高くすると、電気的抵抗が高くなるだけでなく、一般には薄型の成型に適するような樹脂またはプラスチックでの強度に匹敵するような特性を持たせるのは難しい。
そこで、上記したカーボン製の流路板における強度や透過性の問題を解決するという点で、金属を流路板として用いることも提案されている。しかしながら、流路板は燃料や酸化剤及び電極部と接し、電流を取り出す部分であるため、流路板材料として用いる金属は十分な耐食性を持たなければならない。化学的観点から利用可能な金属は、金、白金、ロジウム、イリジウム、ルテニウム等の貴金属であるが、これらの金属材料を用いた流路板は、コスト面から工業上応用されることは考えにくい。したがって、通常金属流路板を形成するにあたっては、若干耐食性を持つ卑金属であるチタンや一部の合金等を基材として、その表面全面に上記貴金属系の金属によるコーティングを施す手法をとっている。しかしながら、このように作成した流路板においても、電極締め付け時にピンホール程度の傷が生じれば、その部分から腐食が進行すると考えられ、上記コスト面も鑑みれば、流路板材料として金属よりもカーボンを用いる方が、現状では有利と考えられる。
以上述べたように、バイポーラ型スタックを薄型化する試みは、構造及び材料的観点から色々と試みがなされているが、現状を大きく改善するには至っていない。このような状況において、スタックを構造的に薄型化する方法の一つとして、一つの流路板に酸化剤または燃料のみを供給し、流路板両面にカソード電極またはアノード電極のみを配設する、モノポーラ型のスタック構造も近年提案された。
モノポーラ構造においては、バイポーラ構造と比較して、起電部単位の両極の向きがスタック積層方向で揃わないために、積層するのみでは簡単に複数起電部単位による電気的直列状態を形成できないという欠点がある。一方、一枚の流路板には酸化剤か燃料のどちらか一方のみが供給されるため、裏表の流路を独立させる必要が無く、したがって裏表の流路を仕切る厚さ分を排除することができるという点で構造的に有利となる。また、バイポーラ構造と同じ深さ相当の流路でも、ぬれ縁長さが短くなることから、流路の圧力損失が下がることが予想され、流路深さをさらに浅くすることが可能となる。
そこで、特に小型化の要求が強い、携帯情報端末向けの燃料電池発電装置のスタック構造としては、モノポーラ型スタック構造が有望である。さらに、このような応用を考えた場合、気化器や改質器等の補器を必要としない直接型メタノール燃料電池が用いられる可能性が高く、直接型メタノール燃料電池用途モノポーラ型スタック構造の提案が待たれている。
ここで、直接型メタノール燃料電池においては、アノード電極においてメタノール水溶液の消費が行われると伴に、同じアノード電極において反応生成物である二酸化炭素が気泡として発生する。また、発生する気体の二酸化炭素の体積は、供給される液体のメタノール水溶液と比較して数倍の体積であり、流路中での二酸化炭素の体積膨張は、流路内でのメタノール水溶液の流れを妨げる大きな原因となる。一旦、流路内部におけるメタノール水溶液の流れの妨げが起こると、アノード電極において燃料供給律速を引き起こし、高負荷電流密度をひくことができなくなってしまう。
すなわち、このことは、直接型メタノール燃料電池の出力低下を意味し、流路内部に滞留する二酸化炭素が掃けるまで出力が回復されることはない。この気液二層流の問題は、カソード電極側の流路においても起こりうるが、気体と比較して液体の体積変化率が小さい点、また、壁間摩擦力が大きい点等の理由により、カソード電極側の流路内部で生じる問題よりもはるかに深刻である。すなわち、燃料として気体の水素をアノード電極に供給し、さらには、気体生成物を生じることのない固体高分子形燃料電池(PEM、PEFC)よりも、液体燃料を供給する直接型メタノール燃料電池において深刻となる問題であり、この観点からの流路設計が、直接型メタノール燃料電池用途モノポーラ型流路板を提案する上での重要なポイントとなる。
そこで、まず、直接型メタノール燃料電池において流路内部におけるメタノール水溶液の円滑な流れを実現するためには、流路断面を小さくすることが一般に行なわれている。これは、流路を流れる燃料の流速を実効的に増大させることにより流路内部に発生する二酸化炭素を押し出しやすくするためである。さらに、流路断面を小さくした状態で、燃料が起電部単位の全面に行き渡るようにするためは、細い流路が幾度にも折り返した形状を呈する、サーペンタイン型流路が、直接型メタノール燃料電池の流路として良く用いられる。
特に、このサーペンタイン型流路は、バイポーラ型流路板として容易に形成できるため、バイポーラ型流路板を形成する際にサーペンタイン型流路を採用することが多い。さらに、発電効率を上げるために、起電部単位とメタノール水溶液が接する面積を大きくするように、逆行して隣り合う流路を仕切る櫛状凸部の幅を狭くすることが行なわれる。
しかしながら、発電効率を上げるために、極端に櫛状凸部の幅を狭くすると、起電部単位の電極の最も外側の集電部は多孔質であるため、そこから膨張する二酸化炭素の気泡が隣り合う流路に短絡し、流路の進行方向に秩序正しく圧力が掛かからなくなってしまう。それにより、短絡され二酸化炭素の気泡の通過しなくなった流路部分には燃料が滞留するという問題を生じる。逆に、燃料の短絡が起きると、二酸化炭素の滞留という問題を生じてしまう。よって、一般的には、櫛状凸部構造の幅はおおよそ1mm前後を基本として設計されることが多い。
すなわち、直接型メタノール燃料電池におけるバイポーラ型流路板に適切な燃料供給を行うためには、櫛状凸部構造の幅が1mm程度のサーペンタイン型流路を採用することが望ましく、さらに、適切な圧力により起電部単位の電極面を流路板に押し付けることが必要である。
しかしながら、モノポーラ型流路板に対して、同様の流路構造を用いることはできない。なぜなら、流路板の両面を貫通するように作られたサーペンタイン型流路においては、櫛状凸部構造が、流路板の周囲からごく小さな1箇所の部分のみで浮いている状態となり、バイポーラ型流路板ではさほど問題にもならない流路内の圧力においても、たやすく二酸化炭素や燃料の短絡を引き起こすためである。また、この問題を解決する方法は、いまだ提案されておらず、近年研究が行なわれているモノポーラ型流路板の流路形状としては、直線の複数の流路が平行に並んでいるだけの単純な構造を用いるに留まっている。そこで、発電効率を向上させるための流路形状及びその形状を実現させるための流路板構造、材料の提案が待たれている。
以上に挙げたようなモノポーラ構造の問題は、形成が容易な金属製流路板の場合においても同様であり、また、流路板の切断面が非常に多くなる分、耐食性処理の均一性を上げることがさらに難しくなる。また、バイポーラ構造と同様に、起電部単位を流路板平面方向に並列させて配列させるにおいては、絶縁部材を介する複雑な構造を取らざるを得ない。
特開平11−67258号公報
上述した直接型メタノール燃料電池であると次のような問題があった。すなわち、直接型メタノール燃料電池においては、液体燃料であるメタノールのエネルギ密度の高さから携帯電子機器の電源として期待されており、また燃料が液体であるという点からも燃料の加圧の必要が無く、さらに水素を燃料とする固体高分子形燃料電池と比較して流路と起電部単位の隙間からの燃料の漏出の可能性も少ない。したがって、固体高分子形燃料電池の燃料供給用流路とは異なり、比較的複雑な流路構造や流路配置が可能と考えられるが、未だ並列型流路と直列型流路のそれぞれの問題点を解決した直接型メタノール燃料電池発電装置における流路構造の提案がされていない。
さらに、集電のためのカーボンを主体とした流路板を採用する限りは、流路板一枚当たりの薄型化を行うためのカーボン材の改良と開発の必要性、平面方向での並列化のための絶縁性部材を用いた一体成型化の技術の必要性、複数種の部材が製造工程で必要とされる煩雑性等により、携帯機器用小型燃料電池発電装置の迅速な開発と生産の障害となる。
そこで本発明は、複数の起電部単位より構成される直接型メタノール燃料電池発電装置において、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行なえる直接型燃料電池発電装置を提供することを目的としている。
上記課題を解決し目的を達成するために、本発明の直接型燃料電池発電装置は次のように構成されている。
(1)電解質膜をアノード触媒層を含むアノード極とカソード触媒層を含むカソード極とで挟んで形成された複数の起電部単位から成る起電部単位群と、これら起電部単位群のアノード極に当接して配置されるとともに内部を燃料が通流する第1の流路が形成された第1の流路板と、前記起電部単位群のカソード極に当接して配置されるとともに内部を酸化剤が通流する第2の流路が形成された第2の流路板とを備え、前記第1の流路は、その入口から出口に亘って分岐することなく前記起電部単位群の全てのアノード極に接触するように通過するとともに、少なくとも一つの起電部単位のアノード極には複数回接触するように形成され、nは前記起電部単位群が有する起電部単位の数、sは前記第1の流路が各起電部単位をそれぞれ通過する回数、hは流路領域の数であってnとsの積、br,m(1≦m≦n,1≦r≦s)は前記流路領域に割り当てられた番号であってh以下の自然数、Zbr,mは各流路領域の流路供給口からの距離、L0は前記第1の流路の実効的な長さを示すとき、
Figure 0004625627
を満たすことを特徴とする。
(2)電解質膜をアノード触媒層を含むアノード極とカソード触媒層を含むカソード極とで挟んで形成された複数の起電部単位から成る起電部単位群と、これら起電部単位群のカソード極に当接して配置されるとともに内部を酸化剤が通流する第1の流路が形成された第1の流路板と、前記起電部単位群のアノード極に当接して配置されるとともに内部を燃料が通流する第2の流路が形成された第2の流路板とを備え、前記第1の流路は、その入口から出口に亘って分岐することなく前記起電部単位群の全てのカソード極に接触するように通過するとともに、少なくとも一つの起電部単位のカソード極には複数回接触するように形成され、nは前記起電部単位群が有する起電部単位の数、sは前記第1の流路が各起電部単位をそれぞれ通過する回数、hは流路領域の数であってnとsの積、br,m(1≦m≦n,1≦r≦s)は前記流路領域に割り当てられた番号であってh以下の自然数、Zbr,mは各流路領域の流路供給口からの距離、L0は前記第1の流路の実効的な長さを示すとき、
Figure 0004625627
を満たすことを特徴とする。
)上記(1)又は(2)に記載された直接型燃料電池発電装置であって、nは前記起電部単位群が有する起電部単位の数、Iは各起電部単位ごとで出力されている電流、CMeOHは供給されるメタノール水溶液燃料の濃度(mol/l)、Yは前記起電部単位群に供給されているメタノール水溶液燃料の総量(l/min)であって、各起電部単位の温度が40℃から70℃の範囲であるとき、
Y≦Y×2 …(101)
=1.04×10−4×nI/CMeOH …(102)
1.0≦CMeOH≦5.0 …(103)
を満たすことを特徴とする。
)上記(1)〜(3)のいずれかに記載された直接型燃料電池発電装置であって、前記起電部単位群のアノード極に接触する前記流路板に液体燃料を供給する液体燃料供給装置と、前記起電部単位群のカソード極に接触する前記流路板に酸化剤を供給する酸化剤供給装置と、液体燃料を収容し、前記液体燃料供給装置に液体燃料を供給する液体燃料容器と、前記アノード極の排出物から気体成分のみを分離する気液分離機構と、前記起電部単位群から得られた電力出力のうち一部を前記液体燃料供給装置と前記酸化剤供給装置に供給し、残りの電力出力のうち少なくとも一部を外部の電気機器に供給する電気回路とを備えていることを特徴とする。
本発明によれば、複数の起電部単位より構成される直接型メタノール燃料電池発電装置において、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となる。
[第1の実施の形態]
図1は本発明の第1の実施の形態に係る起電部単位を直接型メタノール燃料電池発電装置100を示す斜視図、図2の(a)〜(d)はこの直接型メタノール燃料電池発電装置100の要部を示す図であって、(a)は図中上側に位置する絶縁性流路板101の上面図、(b)は図中上側に位置する絶縁性流路板101の底面図、(c)は直接型メタノール燃料電池発電装置100を(a),(b)におけるα1−α1線の位置で切断して矢印方向に見た断面図、(d)は直接型メタノール燃料電池発電装置100を(a),(b)におけるα2−α2線で切断して矢印方向に見た断面図である。
図2中101が絶縁性流路板(燃料側)、102が絶縁性流路板(酸化剤側)、103が燃料流路、104が燃料流路供給口、105が燃料流路排出口、106が流路裏面の流路蓋体、107が樹脂性封止材、108a,108bが起電部単位、109が空気流路、110が流路が起電部単位108a,108bに面しないよう流路蓋体106側に屈曲させた流路部分、111が電流引出用金属製薄膜を示している。また、起電部単位108a,108bは、前述した図58に示した構造が採用されている。なお、図2中103a〜103hは、燃料流路103のうち個々の領域を示している。
この発電部要部の燃料流路供給口104には、燃料ポンプ(不図示)を介して燃料供給手段に接続され燃料が供給されるようになっている。また、空気流路109には、空気などの酸化剤を供給するためのこれも空気ポンプ(不図示)が接続され、また電流引出用金属製薄膜111にはこれも電極端子(不図示)が接続され、燃料電池発電装置を構成している。空気を供給する空気流路109の形状は、従来の並列型流路と同じである(図15参照)。
このように構成された直接型メタノール燃料電池発電装置では、次のようにして発電が行われる。すなわち、燃料供給手段から供給されるメタノール水溶液などの燃料は、燃料流路供給口104から供給される。続いて、燃料は起電部単位108aに面する燃料流路103を領域103a、103b、103cを順次通過し、さらに、起電部単位108bに面する燃料流路103を領域103d、103e、103f、103gの順で通過し、さらに、起電部単位108aに面する領域103hを経由して燃料流路排出口105から系外に排出される。このように燃料が領域103a、103b、103c、103hを通過する間は、起電部単位108aのアノード電極基板に燃料を供給し、領域103d、103e、103f、103gを通過する間は起電部単位108bに燃料を供給することになる。
このような本実施の形態に係る直接型メタノール燃料電池発電装置においては、第1の起電部単位108aと第2の起電部単位108bに燃料を供給する燃料流路103において、燃料流路103の分岐を形成することなく、第1の起電部単位108aから第2の起電部単位108bを通過した燃料流路103は再度第1の起電部単位108aに燃料を供給するように循環する。そして、複数の起電部単位108a,108bにおいて燃料供給量がほぼ同等となるように燃料流路103と起電部単位108a,108bの発電要素との接触面積を調整することによって、発電出力の安定性を改善することができる。
図3の(a)は上述した流路板101の第1変形例に係る流路板131の底面図である。図3の(a)中、131が流路板、132が起電部単位108の電極部が配置される部分、133及び134が燃料流路135の供給口または排出口、135が燃料流路である。これらの流路形状においては、一番目の起電部単位の電極部に対して燃料の供給を行った後、他の起電部単位の電極部に供給を行い、さらにその後、燃料流路の分岐を行うことなく、再び一番目のまたはその他の起電部単位に供給を行っている。本変形例においても、上述した直接型メタノール燃料電池発電装置100と同様の効果を得ることができる。
図3の(b)は上述した流路板101の第2変形例に係る流路板141の底面図である。図3の(b)中、141が流路板、142が起電部単位108の電極部が配置される部分、143及び144が燃料流路145の供給口または排出口、145が燃料流路である。これらの流路形状においては、一番目の起電部単位の電極部に対して燃料の供給を行った後、他の起電部単位の電極部に供給を行い、さらにその後、燃料流路の分岐を行うことなく、再び一番目のまたはその他の起電部単位に供給を行っている。本変形例においても、上述した直接型メタノール燃料電池発電装置100と同様の効果を得ることができる。
なお、上記第1の実施形態において、起電部単位への燃料の供給量は起電部単位での電流密度と同等であることから、重量保存則より式(3)のように記述することができる。
Figure 0004625627
但し、式(3)におけるZは燃料流路の流路供給口からの距離(cm)、Sは起電部単位の面積(cm2)、L0は実効的な燃料流路の全長(cm)、S0は流路の断面積(cm2)、Jは電流密度(A/cm2)、ρは位置Zにおける燃料密度(g/cm3)、ρ0は初期の燃料密度(g/cm3)、uは燃料流路内における燃料の流速(cm/sec)、Fはファラデイ定数であり96487C/molとし、メタノールの分子量を32、水の分子量を18、1反応当たりから得られる電子数を6とした。式(3)の解は、式(4)によって与えられる。
Figure 0004625627
式(4)における燃料濃度は、後述する式(5)によりメタノール水溶液燃料のモル濃度C(mol/l)と結び付けられ、最終的に式(6)が導出される。但し、希釈されていないメタノールの密度を0.8g/cm3とした。
Figure 0004625627
図4は直接型メタノール燃料電池の起電部単位における電流電圧特性のメタノール水溶液の初期濃度に対する依存性を示した特性図である。測定時の条件は、温度70℃、メタノール水溶液燃料の流速は0.07cm/min、供給空気の流速は11cm/minであり、燃料流路の長さまたは燃料濃度の変化が無視できる面積の起電部単位を用いた。この図4に示した電流電圧特性の燃料濃度依存性から、燃料濃度の差異が10%以内の範囲である場合、限界負荷電流密度の50±10%の負荷電流値における電圧値の違いは無視できることが理解されるが、式(6)により、流路供給口からの距離の変化は燃料濃度の変化分ΔC=C0−Cと同値であることが理解でき、すなわち、一定の燃料濃度起電部単位における流路長が10%異なっても、限界負荷電流密度の50±10%の負荷電流値における電圧値の違いは無視できると考えられる。
また、燃料電池発電装置をできる限り少ない燃料によって長時間駆動するためには、供給した燃料のもつ電気量のうち外部回路へ取り出される発電量の割合、すなわち、燃料利用効率を向上させる必要がある。しかしながら、式(6)からも分かるように、燃料流路中の燃料濃度の減少は流路供給口からの距離に比例し、燃料供給口から排出口に至るまでの燃料利用効率が高くなればなるほど、燃料流路後半に位置する起電部単位における出力が著しく低下するのは明らかである。すなわち、これは、燃料流路後半部における燃料濃度の著しい減少(10%以上の)が、限界負荷電流密度の減少につながってしまうからである。したがって、全ての起電部単位に供給される燃料の濃度差を小さくする工夫が必要であり、後述する燃料流路の電極部への割り当ての方法を用いれば、各起電部単位に供給される燃料濃度の平均を、起電部単位間において近くすることが可能となる。
図5の(a),(b)は、式(2)に定義された燃料流路の割り当て方法を模式的に示す説明図である。なお、図5の(c)については後述する。図5の(a),(b)中、151は起電部単位、152は分割された実効的な流路領域、153は実効的でない流路領域、154は分割された起電部単位の領域、155は燃料流路の燃料供給口、156は燃料流路の燃料排出口である。なお、図5の(a)はbr,mの分割された実効的な燃料流路の領域に対する対応関係を示しており、図5の(b)はLbr,mの分割された実効的な流路領域に対する対応関係を示している。
図5の(a),(b)中で、流路幅はいずれの場所においても同じであり、nは流路が燃料を供給する起電部単位の数であり、mはその中の任意の起電部単位を表す。sは燃料流路が各起電部単位を通過する回数を表し、全ての起電部単位で等しい値をとる。すなわち、燃料流路は、各起電部単位でs個の領域に分割されることになり、全体では、ns(=h)個の領域に分割されることになる。ここで、燃料流路に燃料が供給されている場合には、図中ns個の電極部の領域は全てアノード電極である。なお、燃料流路の代わりに空気流路とした場合には空気(酸化剤)が供給されることとなり、この場合には、ns個の電極部の領域は全てカソード電極となる。
数列br,mは1以上h以下の自然数で、h個に分割された領域に対して、図5の(a)に記したように割り当てられた番号を示している。図5の(a)において、燃料流路は、1番目の領域b1,1を経由した後、2番目の領域b1,2を経由し、さらに3番目の領域b1,3を経由し、これをn番目の領域まで繰り返す。その後、最後に経由したn番目の起電部単位における別の領域b2,nを経由し、そこを起点として逆の順番で各領域を経由し、最初の起電部単位に戻る。図5の(a)においては、これをs/2回繰り返しており、したがって、sは偶数の場合である。
また、数列br,mは、式(7)の漸化式を満足することが示される。一般的に、この式(7)の解は式(8)と書くことができるから、式(8)に式(7)を代入した式(9)より、上述した式(2)が導かれる
Figure 0004625627
式(6)に示されているように、燃料流路中の燃料濃度の濃度は、流路供給口からの距離に比例して減少する。よって、各起電部単位に供給される燃料濃度の差を小さくするためには、各起電部単位を通過する流路領域1からsの流路供給口からの平均距離の、起電部単位ごとの差を小さくすればよい。そこで、任意の起電部単位m(1≦m≦n)で分割される流路領域r(1≦r≦s)の燃料供給口からの実効的長さを、式(10)によって定義する。
Figure 0004625627
但し、Lbr,mは、起電部単位mによって分割される流路領域rの長さである。さらに、起電部単位mに流路から供給される実効的な燃料濃度は、起電部単位mを通過するs個の流路領域で平均する必要がある。そこで、この起電部単位mに供給される実効的な燃料濃度は、式(10)で定義されるZbr,mをs個の流路領域に関して平均した長さによって決まると考えて良いであろう。この起電部単位mと流路供給口との実効的長さZmを、式(11)によって定義する。
Figure 0004625627
さらに、最も理想的には、全てのLbr,mを同じ長さに設計し流路の配分を行えばよい。この同じ長さに設定されたLbr,mをLeとおくと、式(11)に式(10)を代入した式は、以下の式(12)のように書き直すことができる。
Figure 0004625627
ここで、<Zm>は、全てのLbr,mがLeとされたときの、m番目の起電部単位におけるZbr,mの平均を表す。さらに、この<Zm>をn個の起電部単位に関して平均した長さを<Z>とすると、<Z>は式(13)として定義され、実際に計算を実行すると、式(14)によって与えられることが示される。
Figure 0004625627
さらに、Leに全ての流路領域の数sn(=h)を掛けた長さを、実効的な流路の全長としてL0を用いて表すと、式(15)のようにLeを書くことができる。さらに、式(15)で定義される<Z>は、式(16)と書くことができる。
Figure 0004625627
ここで、全ての電極単位mにおける流路供給口からの実効的長さの平均<Zm>が、後述する式(17)の不等式を満足するとすれば、式(18)に示されるように、任意の起電部単位m,m′に対する<Zm>、<Zm′>の差は<Z>の10%以内の差に収まることになる。よって、上記議論からも分かるように、起電部単位ごとの濃度差もn個の起電部単位に供給される燃料濃度の平均値の10%以内に収まることになる。このことは、全ての起電部単位から得られる出力がほぼ等しくなることを意味し、安定した高い出力の燃料電池発電装置を提供することが可能となる。
Figure 0004625627
次に、直接型メタノール燃料電池の起電部単位の形成について説明する。公知のプロセス(R. Ramakumar et al. J. Power Sources 69 (1997) 75)により、アノード用触媒(Pt:Ru=1:1)担持カーボンブラックとカソード用触媒(Pt)担持カーボンブラックを形成した。触媒担持量は、カーボン100に対して重量比でアノードは30、カソードは15とした。
前記プロセスにおいて形成したアノード用触媒担持カーボンブラックにパーフルオロカーボンスルホン酸溶液(Dupont社 Nafion溶液 SE−20092)とイオン交換水を添加し、前記触媒担持カーボンブラックを分散させてペーストを調製した。アノード集電体としての撥水処理済カーボンペーパーTGPH−120(E−TEK社製)の上にペーストを550μm塗布し、乾燥させ、アノード触媒層を形成することによりアノード電極を得た。
前記プロセスにおいて形成したカソード用触媒担持カーボンブラックにパーフルオロカーボンスルホン酸溶液(Dupont社 Nafion溶液 SE−20092)とイオン交換水を加え、前記触媒担持カーボンブラックを分散させてペーストを調製した。カソード集電体としての撥水処理済カーボンペーパーTGPH−090(E−TEK社製)の上にペーストを225μm塗布した後、乾燥させ、カソード触媒層を形成することにより、カソード電極を得た。
アノード電極のアノード触媒層とカソード電極のカソード触媒層の間に、電解質膜としての市販のパーフルオロカーボンスルホン酸膜(Dupont社 Nafion117)を配置し、これらにホットプレス(125℃、5分間、50kg/cm2)を施すことにより、アノード電極、電解質膜及びカソード電極を接合し、起電部単位を得た。起電部単位中のアノード触媒層の断面積は10cm2であった。また、起電部を切断し、断面積を電子顕微鏡で観察したところ、アノード触媒層の厚さLは105μmで、カソード触媒層の厚さは50μmであった。また、この電子顕微鏡観察により、アノード電極と電解質膜とカソード電極との接合状態が良好であることを確認することができた。
次に、形成した起電部単位の評価について説明する。形成した起電部単位を評価用セパレータに装着し、70℃に維持しながら、電流電圧特性の評価を行なった。但し、運転条件は、メタノール水溶液流速0.01cm/min、空気流速10cm/min、メタノール水溶液濃度は0.5M、1.0M、1.25M、1.5M、1.75M、2.0M、2.5Mの範囲で測定を行なった。その結果、図4で得られた電流電圧特性とほぼ同等の結果を得た。同様の評価方法によりほぼ同等の電流電圧特性が得られることを確認した断面積10cm2の起電部単位を100枚形成し、本発明の実施の形態における実験に用いた。
[第2の実施の形態]
図6は、本発明の第2の実施の形態に係る直接型メタノール燃料電池発電装置200の要部を示す図であって、(a)は図中上側に位置する絶縁性流路板201の底面図、(b)は直接型メタノール燃料電池発電装置200を(a)におけるβ1−β1線の位置で切断して矢印方向に見た断面図、(c)は直接型メタノール燃料電池発電装置200を(a)におけるβ2−β2線で切断して矢印方向に見た断面図である。
図6中201が絶縁性流路板(燃料側)、202が絶縁性流路板(酸化剤側)、203が燃料流路、204が燃料流路供給口、205が燃料流路排出口、206が流路裏面の流路蓋体、207が樹脂性封止材、208a,208bが起電部単位、209が空気流路、210が流路が起電部単位208a,208bに面しないよう流路蓋体206側に屈曲させた流路部分、211が電流引出用金属製薄膜を示している。また、起電部単位208a,208bは、前述した図59に示した構造が採用されている。なお、燃料流路203は、2個の起電部単位208a,208bを交互に流通するように構成した例である(以下、このような流路の構成を「交互型流路」と称する)。
直接型メタノール燃料電池発電装置200では、燃料が燃料流路供給口204から、系内に供給され、起電部単位208aと208bに、交互に燃料を供給するように燃料流路を形成し、燃料流路排出口205から排出される。一方、酸化剤は、空気流路209を流通し、起電部単位表面で発電が行われる。この実施の形態において、燃料流路203は、起電部単位208aに燃料を供給した後、起電部単位208bに燃料を供給し、さらに、起電部単位208aに戻って、燃料を供給する。以下、起電部単位208aと208bとに交互に燃料を供給しながら燃料流路排出口205から排出される。このように、燃料流路203を構成することによって燃料は、起電部単位208a及び208bにほぼ均等に安定して燃料を供給することができるため、その出力はさらに安定することになる。
この実施の形態において、式(2)の条件を容易に満たせるようにするためには、流路の折り返す回数sは、偶数であり、かつ、大きいことが望ましく、奇数である場合においては、sが大きくなるほど<Zm>と<Z>の差が小さくなるので、特にs≧5であることが望ましい。
上記2つの実施の形態においては、起電部単位が2個の例を示したが、3個以上の起電部単位を有する発電装置においても同様な手法によって発電出力の安定性を改善することができる。
また、さらに式(2)の条件を満たすような流路形状の一例を図7〜図10に示す。これらの図中271は流路板、272は起電部単位の電極部が配置される部分、273及び274は流路の供給口または排出口、275は流路を示している。図10の(a)〜(c)においては、流路板両面に2つずつの起電部単位が配設されており、流路の両面を貫通する流路の貫通口276を経由して両面の起電部単位に対して交互に燃料または酸化剤を供給することとなる。
各分断された流路の距離が大きく異なる場合においても、式(1)及び式(2)の条件を満たすことが可能となるような流路の設計または割り当てを行えばよく、流路幅が領域ごとに異なる場合でも、領域ごとに、長さに対して流路全体での流路幅の平均に対する比率を掛け合わせることによって換算し代用してもよい。例えば、流路が折り返される部分を、図5の(a)のような電極部の範囲の外側ではなく、内側に配置した場合でも、図5の(c)に示されるように流路を区切り、割り当てることができる。
さらに、モノポーラ型の流路板に用いられるような、流路板の両面に配設された起電部単位に対し燃料または酸化剤を供給する流路板においても、後述の実施例7等のように、本実施の形態に記載された流路の構造の効果を発揮させることが可能である。
技術例1
上述した直接型メタノール燃料電池発電装置100について、次の条件の下での発電試験を行なった。すなわち、メタノール水溶液燃料の初期濃度を3mol/l、流路板温度70℃、燃料流量を0.02cm/min、空気流量を20cm/minとした。この条件を、以後、技術例1の運転条件と称する。
図11は、直接型メタノール燃料電池発電装置100の電流電圧特性の結果を示す図である。この図11から分かるように、流路供給口側の起電部単位における限界負荷電流密度は約95mA/cmであり、流路排出口側の起電部単位では77mA/cmとなることが観測された。したがって、両者を電気的に直列に接続した場合には、実質的に77mA/cmの負荷電流が得られ、後述する比較例1の従来の直列型流路を採用した場合に比べて、約10%の限界負荷電流密度の向上が確認された。このことは、流路板101が従来の直列型流路と比較して、燃料供給が良くなったことを示している。
(実施例
技術例1の運転条件において電流電圧特性を測定した結果を図12に示す。この図12に示されているように、流路供給口側の起電部単位1の限界負荷電流密度の値は約90mA/cmであり、流路排出口側の起電部単位2での値は約87mA/cmであることが分かった。したがって、両者を電気的に直列に接続した場合には、実質87mA/cm2の負荷電流を得られ、後述する比較例1の従来の直列型流路を採用した場合に比べて、約24%の限界負荷電流密度の向上が確認された。また、本実施例及び技術例1における流路板においては、ともに、実効的な分割された8つの流路領域の長さは全て等しくなっているが、本実施例では<Z1>−<Z2>=0であり式(1)の条件を満たしているが、技術例1では|<Z>−<Zm>|=1/5<Z>で条件を満足していない。すなわち、実施例で使用された流路板は、式(1)を満足するように設計されているので、技術例1で形成した流路板よりも、限界負荷電流密度の大きな向上があったと考えられる。
(比較例1)
起電部単位を2個備え、従来の直列型流路を採用して、図13の(a)〜(c)に示すように直接型メタノール燃料電池発電装置を構成した。図13において図6と同一機能部分には同一符号を付しその詳細は説明は省略する。
本比較例1では、酸化剤を供給するための流路280としては並列型流路を用いた。技術例1の運転条件の下、比較例1のスタック部の発電試験を行った結果、図14に示す電流電圧特性が得られた。図14に見られるように、流路供給口側の起電部単位208aの限界負荷電流密度の値が約100mA/cmであり、流路排出口側の起電部単位208bでは、約70mA/cmである。したがって、両者を電気的に直列に接続した場合には、70mA/cmの負荷電流しか得られなかった。
(比較例2)
起電部単位を2個備え、従来の並列型流路を採用して、図15の(a)〜(c)に示すように直接型メタノール燃料電池発電装置を構成した。なお、図15において図6と同一機能部分には同一符号を付しその詳細は説明は省略する。
この燃料電池発電装置を、技術例1の運転条件において発電した結果、図16に示す電流電圧特性が得られた。図16は二つの起電部単位を電気的に直列な回路として75mA/cm2の負荷電流をとり経時変化を追ったものである。
また、図16には、実施例の流路板を用いた燃料電池発電装置を運転した場合の負荷電流特性も合わせて示す。図16の両プロットにおける規則的な細かい変動は、温度制御器によるものである。図16から、従来の並列型流路を用いた際には二つの起電部単位に対する燃料供給量の偏りによる出力の不安定性が見られているが、実施例で形成した流路板を用いた場合には、安定した出力が運転時間によらず得られていることがわかる。この結果は、従来の並列型流路では、配管の分岐した部分で燃料が均一に流れなくなったため安定した出力が得られなかったが、本発明の流路板を採用すれば、配管の分岐がないため、均一に燃料供給が行なえるため安定した出力が得られることを示している。
(比較例3)
図17は、比較例3における発電試験の結果を示す図である。比較例3は、実施例2において形成した流路板と同様の流路形状ではあるが、起電部単位1側を通過する実効的な流路の全長に対して、起電部単位2側を通過する実効的な流路の全長が20%短い流路を形成し、起電部単位を2個備えた直接型メタノール燃料電池発電装置を構成した。
実施例における図12と比較して、両起電部単位間での限界負荷電流密度の差異が大きくなっていることが分かる。これは、2個の起電部単位を通過する実効的な流路長が異なるために生じた結果であり、燃料流路から各起電部単位に供給される平均のメタノール濃度が等しくなるような流路形状を用いたとしても、各起電部単位に供給されるメタノールの絶対量が20%異なってしまったからである。よって、式(1)を導出する際にも仮定したように、また、流路設計を容易にするためにも、各起電部単位によって分割される流路領域の実効的な長さは、等しくなるよう構成されるべきである。
上述したように本実施の形態に係る直接型メタノール燃料電池発電装置300によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図18は、参考技術に係る直接型メタノール燃料電池発電装置300を示す側面図、図19は直接型メタノール燃料電池発電装置300を示す図であって、(a)は斜視図、(b)は横断面図、図20の(a)〜(e)は直接型メタノール燃料電池発電装置300を分解して示す図であって、適宜断面図も示している。
直接型メタノール燃料電池発電装置300は、図18中上方から第1の流路板310、第1の起電部層320、第2の流路板330、第2の起電部層340、第3の流路板350とが積層された積層体をステンレス材製の厚板360,361で挟み、ボルト362で締め付けて形成されている。なお、370〜373は金属製端子を示しており、それぞれ後述するカーボン材311,351に接続されている。さらに、374は銅線を示しており、金属製端子371と金属製端子372を導通させている。
第1の流路板310は、2つの正方形状のカーボン材311を熱硬化型エポキシ樹脂312により絶縁するように一体成型されている。カーボン材311の面積及び形状は配設される後述する起電部単位と同じである。また、下面には凹溝状に形成された燃料用の第1の流路313が形成されている。さらに、燃料供給口314、燃料排出口315、酸化剤供給口316、酸化剤排出口317とが形成され、それぞれパイプ318a〜318dが接続されている。
第1の起電部層320は、起電部単位を構成する2組の電解質膜321と、これら電解質膜321を挟み込むように設けられたアノード触媒層を含むアノード極322及びカソード触媒層を含むカソード極323と、さらにこれらを挟み込むシリコンゴム樹脂製シール部材324とを備えている。なお、アノード極322は図中上側、カソード極323は図中下側に配置されている。
シリコンゴム樹脂製シール部材324は、流路または起電部単位の側面から燃料または酸化剤が漏出するのを防ぐため、流路の供給口及び排出口及び起電部単位の電極部分を切り抜いて形成されている。シリコンゴム樹脂製シール材324の厚さは、アノード電極322及びカソード電極323の厚さよりも0.1mm厚いものを用い、電解質膜321をこれらで挟み込むようにした。
また、並列して配列するアノード電極322同士またはカソード電極323同士の間隔は第1の流路板310の2つのカーボン材311の間の距離と同じにした。
第2の流路板330は、バイポーラ型の流路板であって、2つの正方形状のカーボン材331を熱硬化型エポキシ樹脂332により絶縁するように一体成型されている。カーボン材331の面積及び形状は配設される後述する起電部単位と同じである。また、上面には凹溝状に形成された酸化剤用の第2の流路333及び下面には凹溝状に形成された燃料用の第3の流路334が形成されている。
第2の起電部層340には、2つの起電部単位が設けられている。第2の起電部層340は、起電部単位を構成する2組の電解質膜341と、これら電解質膜341を挟み込むように設けられたアノード触媒層を含むアノード極342及びカソード触媒層を含むカソード極343と、さらにこれらを挟み込むシリコンゴム樹脂製シール部材344とを備えている。なお、アノード極342は図中上側、カソード極343は図中下側に配置されている。
シリコンゴム樹脂製シール部材344は、流路または起電部単位の側面から燃料または酸化剤が漏出するのを防ぐため、流路の供給口及び排出口及び起電部単位の電極部分を切り抜いて形成されている。シリコンゴム樹脂製シール材344の厚さは、アノード電極342及びカソード電極343の厚さよりも0.1mm厚いものを用い、電解質膜341をこれらで挟み込むようにした。
また、並列して配列するアノード電極342同士またはカソード電極343同士の間隔は第1の流路板310の2つのカーボン材311の間の距離と同じにした。
第3の流路板350は、2つの正方形状のカーボン材351を熱硬化型エポキシ樹脂352により絶縁するように一体成型されている。カーボン材351の面積及び形状は配設される起電部単位と同じである。また、上面には凹溝状に形成された酸化剤用の第4の流路353が形成されている。
燃料ポンプ(不図示)から送られた燃料はパイプ318cを介して燃料供給口314に供給され、第1の流路313と第3の流路334を通って燃料排出口315からパイプ318dを介して電池外に排出される。すなわち、アノード電極322,342に燃料が供給される。また、空気ポンプ(不図示)から送られた酸化剤はパイプ318aを介して酸化剤供給口316に供給され、第2の流路333と第4の流路353を通って酸化剤排出口317からパイプ318bを介して電池外に排出される。すなわち、カソード電極323,343に酸化剤が供給される。
技術例2
上述したような直接型メタノール燃料電池発電装置300においては、燃料と酸化剤を供給すると、4つの起電部単位が電気的な直列接続となっているため、金属製端子370,373から電子負荷装置により電気的出力が得られる。なお、直径0.1mmの金線を各起電部単位のアノード電極とカソード電極に接触させてスタックの外側に引き出し、各起電部単位ごとの電圧を測定した。
直接型メタノール燃料電池発電装置300の運転は技術例1の運転条件とほぼ同じである。但し、起電部単位の個数が技術例1の2倍となっている分、酸化剤及び燃料の供給量は2倍とした。すなわち、メタノール水溶液燃料の初期濃度を3mol/l、流路板温度70℃、燃料流量を0.04cm/min、空気流量を40cm/minとした。以後、この運転条件を、技術例2の運転条件と呼ぶことにする。
図21は上述した直接型メタノール燃料電池発電装置300の電流電圧特性を示す図である。図21から分かるように、平面方向に並列に配列する起電部単位同士の出力差は小さく、後述する比較例4及び比較例5の従来の直列型流路及び並列型流路に比べて均一な燃料供給が行なわれていることを示している。
しかしながら、上下に位置した起電部単位の組の間において、限界負荷電流密度の値に大きな差異を生じた。これは、スタックの燃料供給口及び酸化剤供給口から配管を2つに分岐することによって、上下の起電部単位の組に燃料または酸化剤の供給を行なっているため、上下起電部単位の組への燃料及び酸化剤の供給が均等でなくなったと考えられる。
(比較例4)
図22の(a)〜(c)は、起電部単位を4個備えた直接型メタノール燃料電池発電装置に組み込まれた直列型流路が形成された流路板391〜393を示す図である。なお、流路板392はバイポーラ型である。図22において図20と同一機能部分には同一符号を付し、その詳細な説明は省略する。
比較例4においては、燃料供給口側の起電部単位から得られる限界負荷電流密度の値に比して、図23のように排出口側の起電部単位で観測される限界負荷電流密度の値は約30%程低下することが分かった。また、上下起電部単位の組に関しても、限界負荷電流値に大きな差を生じることが分かった。この結果は、流路形状が従来の直列型流路を採用している点と上下方向に配管の分岐を行なっているという2点から生じたと考えられる。
(比較例5)
図24及び図25は、比較例5として起電部単位を4個備えた直接型メタノール燃料電池発電装置に組み込まれた並列型流路が形成された流路板393〜395を示す図である。これらの図において図20と同一機能部分には同一符号を付し、その詳細な説明は省略する。なお、流路板394はバイポーラ型である。
流路形状として並列型を用いたので、配管を分岐させる分、流路板393〜39の短辺方向の幅を若干広くし、それとともに起電部単位の電解質膜321,341とシリコンゴム樹脂製のシール部材324,344の幅も同様に広くした。
図26は、このように構成した直接型メタノール燃料電池発電装置に関して、技術例2の運転条件において、電流電圧特性を測定した結果を示す図である。この図からも分かるように、全ての起電部単位に関して電圧が不安定になるだけでなく、上下起電部単位の組に関しても限界負荷電流に大きな差異を生じた。この結果は、従来の並列型流路では、配管の分岐部分において均一な燃料供給が行えなかったために生じた結果と考えられる。
上述したように直接型メタノール燃料電池発電装置300によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図27は、参考技術に係る直接型メタノール燃料電池発電装置400を示す側面図、図28は直接型メタノール燃料電池発電装置400の流路板410,430,450を示す平面図であり、適宜断面図も示している。
直接型メタノール燃料電池発電装置400は、図27中上方から第1の流路板410、第1の起電部層420、第2の流路板430、第2の起電部層440、第3の流路板450とが積層された積層体をステンレス材製の厚板460,461で挟み、ボルト462で締め付けて形成されている。なお、470〜473は金属製端子を示している。さらに、474は銅線を示しており、金属製端子471と金属製端子472を導通させている。
第1の流路板410は、アクリル樹脂で形成されており、その表面には厚さ20μmで幅2mmの金リボン411及び412が設けられている。また、下面には凹溝状に形成された燃料用の第1の流路413が形成されている。さらに、燃料供給口414、燃料排出口415、酸化剤供給口416、酸化剤排出口417とが形成され、それぞれパイプ418a〜418dが接続されている。
金リボン411及び412は、各起電部単位から電流を取り出すために、各起電部単位のほぼ中央に位置し、かつ、流路413における通流方向と垂直な位置関係になるよう、流路板410の上面・一方の側面・下面に配置されている。上述した金リボン411及び412が側面を通して第1の流路板410の裏表に回しこむことで、起電部単位同士の電気的直列状態が可能となる。
なお、金リボン411及び412の代わりに他の導電部材を用いても良い。例えば、白金、ルテニウム、ロジウム、イリジウム等の材料であることが望ましく、卑金属を基材として用いる場合には、チタン等の上に約10μmの厚さの上記の貴金属で覆うことで、代用することもできる。
第1の起電部層420は、上述した直接型メタノール燃料電池発電装置300の第1の起電部層320と同様に構成されているので、詳細な説明は省略する。
第2の流路板430は、バイポーラ型の流路板であって、アクリル樹脂で形成されており、その表面には厚さ20μmで幅2mmの金リボン431及び432が設けられている。また、上面には凹溝状に形成された酸化剤用の第2の流路433及び下面には凹溝状に形成された燃料用の第3の流路434が形成されている。
金リボン431及び432は、各起電部単位から電流を取り出すために、各起電部単位のほぼ中央に位置し、かつ、流路433,434における通流方向と垂直な位置関係になるよう、流路板430の上面・一方の側面・下面に配置されている。すなわち、金リボン431及び432が側面を通して第2の流路板430の裏表に回しこむことで、起電部単位同士の電気的直列状態が可能となる。
第2の起電部層440は、上述した直接型メタノール燃料電池発電装置300の第2の起電部層340と同様に構成されているので、詳細な説明は省略する。
第3の流路板450は、アクリル樹脂で形成されており、その表面には厚さ20μmで幅2mmの金リボン451及び452が設けられている。また、上面には凹溝状に形成された酸化剤用の第4の流路453が形成されている。上述した金リボン451及び452が側面を通してを第3の流路板450の裏表に回しこむことで、起電部単位同士の電気的直列状態が可能となる。
このように構成された直接型メタノール燃料電池発電装置400では、上述した直接型メタノール燃料電池発電装置300と同様に燃料及び酸化剤が供給・排出される。そして、4つの起電部単位が電気的な直列接続となっているため、金属製端子470,473から電子負荷装置により電気的出力が得られた。
技術例3
図29は上述した直接型メタノール燃料電池発電装置400を上述した技術例2の運転条件で運転したときの電流電圧特性を示す図である。図29に示すように、技術例3においては、後述する技術例4及び技術例5の従来の直列型流路及び並列型流路を使用した場合に比較して安定した出力が得られることが分かる。この結果は、均一な燃料供給が行なわれていることを示している。
さらに、電流電圧特性の結果は、同じ流路構造をカーボン材料で形成したスタック部に関して測定を行なった技術例2の実験結果(図21)と同等であり、起電部のごく一部分のみに導電部材を接触させるのみでも、カーボン材を用いるのとなんら劣らない発電運転が可能であることが実証できた。これは、起電部単位から電気的出力を引き出すために導電部が電極に接触する部分は必ずしも電極全面の可能な限り広い範囲である必要は無く、すなわち、流路板そのものを絶縁性の部材で形成し、一部に導電性の部材を配設するのみで十分に電流を取り出すことが可能であることを実証しており、特に、大きな電流での出力を必要としない小型携帯用電子機器用燃料等のための電池発電装置に十分適用可能であることを示している。
さらに、従来の積層構造のように、カーボン材を絶縁性樹脂と共に一体成型し流路板を形成する場合、カーボン部材と絶縁性樹脂の一体化において部材間のずれや硬度の違いによる流路の隙間が生じることが考えれる。また、大量生産に向くような型による成型が可能であるようなカーボン−樹脂複合材料を電気導電部として用いる場合には、周囲の絶縁性樹脂部材との熱膨張率や変形温度等の違いを考慮しなければならず、仮に一体成型した後に切削により流路を形成するとした場合でも、カーボン材を一部でも含むがゆえに高い硬度の工具を用いる必要がある。
しかしながら、カーボン材を含まない樹脂のみでバイポーラ型の流路板を形成する場合には、従来行われてきている射出成型の僅か1回の工程で形成するのみで良いことになる。さらには、スタック積層方向での電気的直列構造による配線の簡略化というバイポーラ型の流路板の優位性は、薄型化が重要となる携帯型電気機器用燃料電池の場合には小さくなり、むしろ、同一平面方向に起電部単位を配列させるための流路板同士の絶縁を取るための手段の開発が重要になる。その点において、本流路板を用いれば、導電性の部分とそれらを互いに絶縁させるための絶縁部とを一体成型した複雑な流路板を形成する必要がなく、さらには樹脂を用いることによる成型性の容易さ、すなわち容易な薄型化がさらに可能となる。
上述したように直接型メタノール燃料電池発電装置400によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図30は参考技術に係る直接型メタノール燃料電池発電装置500(不図示)に組み込まれた第1〜第3の流路板510,530,550を示す図である。各流路板の材料として絶縁性樹脂であるアクリル樹脂を採用した。比較例4の場合と同じ形状である従来の直列型流路を具備したバイポーラ型の流路板510,530,550を用いて構成した。図中511,512,531,532,551,552は技術例3と同様に配置された金リボン、513,533,534,553は流路を示している。
技術例4
図31は上述した直接型メタノール燃料電池発電装置500を上述した技術例2の運転条件で運転したときの電流電圧特性を示す図である。技術例4においても、比較例4で示したのと同様の出力特性が得られた。すなわち、流路板510,530,550を絶縁性の樹脂部材で形成し、起電部のごく一部分のみに導電部材を接触させるのみでも、カーボン材を用いるのとなんら劣らない発電運転が可能であることが実証できた。
但し、燃料の供給口側の起電部単位の限界負荷電流密度に比して、排出口側の起電部単位の限界負荷電流密度が約30%程低下していることが分かった。これは、比較例4のスタックに関する実験結果(図23参照)でも観測されており、流路板の材料の問題ではなく、流路構造を反映した結果と考えられる。
但し、燃料の供給口側の起電部単位の限界負荷電流密度に比して、排出口側の起電部単位の限界負荷電流密度が約30%程低下していることが分かった。これは、比較例4のスタックに関する実験結果(図23参照)でも観測されており、流路板の材料の問題ではなく、流路構造を反映した結果と考えられる。
上述したように直接型メタノール燃料電池発電装置500によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図32は参考技術に係る直接型メタノール燃料電池発電装置600を示す図であって、(a)は縦断面図、(b)は(a)におけるγ−γ線で切断して矢印方向に見た断面図、図33の(a)〜(c)は直接型メタノール燃料電池発電装置600に組み込まれた第1〜第3の流路板610,630,650を示す図である。
直接型メタノール燃料電池発電装置600は、図32中上方から第1の流路板610、第1の起電部層620、第2の流路板630、第2の起電部層640、第3の流路板650とが積層されて形成されている。
絶縁性樹脂であるアクリル樹脂を流路板の部材として採用し、流路が比較例5の場合と同じ形状である並列型でストライプ形状である流路板を用いた。なお、導電部材の配設方法に関しては技術例3と同様に行った。
各流路板の材料として絶縁性樹脂であるアクリル樹脂を採用した。比較例4の場合と同じ形状である従来の直列型流路を具備したバイポーラ型の流路板610,630,650を用いて構成した。図中611,612,631,632,651,652は金リボン、613,633,634,653は流路を示している。なお、金リボン611,612,631,632,651,652は、流路板610,630,650の長辺に沿って配置されている。
第1の起電部層620は、上述した直接型メタノール燃料電池発電装置300の第1の起電部層320と同様に構成されているので、詳細な説明は省略する。また、第2の起電部層640は、上述した直接型メタノール燃料電池発電装置300の第2の起電部層340と同様に構成されているので、詳細な説明は省略する。
技術例5
図34は上述した直接型メタノール燃料電池発電装置600を上述した技術例2の運転条件で運転したときの電流電圧特性を示す図である。図34から分かるように比較例5で示されたのと同様の出力特性を得ることができる。すなわち、流路を絶縁性の樹脂部材で形成し、起電部のごく一部分のみに導電部材を接触させるのみでも、カーボン材を用いるのとなんら劣らない発電運転が可能であることが実証できた。
但し、比較例2及び比較例5で示されたの同様に、同一平面上に配設された二つの起電部単位に対する燃料供給量の偏りによる出力の不安定性が見られた。この結果は流路構造を反映した結果であり、アクリル材料を用いたために生じた結果ではないと考えられる。
上述したように本実施の形態に係る直接型メタノール燃料電池発電装置600によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
[第7の実施の形態]
図35は本発明の第7の実施の形態に係る直接型メタノール燃料電池発電装置700を示す側面図、図36は直接型メタノール燃料電池発電装置700を示す図であって、(a)は斜視図、(b)は断面図、図37の(a)〜(c)は直接型メタノール燃料電池発電装置700に組み込まれた第1〜第3の流路板710,730,750を示す図である。
絶縁性樹脂であるアクリル樹脂を材料とし、交互型の流路形状を有するモノポーラ型流路板を使用した。直接型メタノール燃料電池発電装置700は、図36の中上方から第1の流路板710、第1の起電部層720、第2の流路板730、第2の起電部層740、第3の流路板750とが積層された積層体をステンレス材製の厚板760,761で挟み、ボルト762で締め付けて形成されている。なお、770a〜770hは金属製端子を示している。
第1の流路板710は、金リボン711,712を備えている。下面には凹溝状に形成された酸化剤用の第1の流路713が形成されている。さらに、酸化剤供給口714、酸化剤排出口715、燃料供給口716、燃料排出口717とが形成され、それぞれパイプ718a〜718dが接続されている。
アノード電極723は、図36中下側に配置され、カソード電極722は、上側に配置されている。アノード電極743は、図36中上側に配置され、カソード電極742は、下側に配置されている。
第2の流路板730は、モノポーラ型の流路板であって、アクリル材により形成されている。第2の流路板730には、その厚さ方向に貫通して形成される燃料用の第2の流路733が設けられている。
第3の流路板750は、金リボン751,752を備えている。上面には凹溝状に形成された酸化剤用の第3の流路753が形成されている。
さらに、771a〜771eは銅線を示しており、銅線771aは、金属製端子770a,770b相互間、銅線771bは、金属製端子770c,770e相互間、銅線771cは、金属製端子770d,770f相互間、銅線771dは、金属製端子770g,770i相互間、銅線771eは、金属製端子770h,770j相互間を導通させている。
空気ポンプ(不図示)から送られた酸化剤はパイプ718cを介して酸化剤供給口714に供給され、第1の流路713と第3の流路753を通って酸化剤排出口715からパイプ718dを介して電池外に排出される。すなわち、カソード電極722,742に酸化剤が供給される。また、燃料ポンプ(不図示)から送られた燃料はパイプ718aを介して燃料供給口716に供給され、第2の流路733を通って燃料排出口717からパイプ718bを介して電池外に排出される。すなわち、アノード電極723,743に燃料が供給される。
図中711,712,751,752は金リボン、713,733,734,753は流路を示している。さらに、酸化剤供給口714、酸化剤排出口715、燃料供給口716、燃料排出口717とが形成され、それぞれパイプ718a〜718dが接続されている。
4つ起電部の間に位置するモノポーラ型流路板に関しては、流路は流路板を裏表で貫通しており、流路には供給口より燃料を供給した。起電部単位1つ当たりの流路の深さが技術例2での流路の深さと同等になるよう、モノポーラ型流路板の厚さを技術例2での流路の深さの2倍とした。
各起電部単位から電気的出力を引き出すための金リボン711,712,751,752は、技術例3と同様の厚さと幅であるが、モノポーラ型流路板に関してのみは、裏表で絶縁した状態にするために流路板の表裏を回り込ませなかった。さらに、モノポーラ型流路板の4つの金リボン間の電気的配線を行うために、図35に示すように、スタック形成時に直径0.1mmの金線771a〜771eを流路板端部において金リボン711,712,751,752とシリコンゴム樹脂製シール材の間に挿入した。
起電部単位は、モノポーラ型流路板730に対してアノード電極が向くように設置し、アノード電極が接する流路に燃料が供給されるようパイプ718aに燃料を供給し、パイプ718cより酸化剤を供給した。また、各起電部単位間を電気的に接続している金線を利用し、各起電部単位ごとの電圧を測定した。
技術例6
図38は上述した直接型メタノール燃料電池発電装置600を上述した技術例2の運転条件で運転したときの電流電圧特性を示す図である。実施例技術例2及び技術例3と同様に、交互型流路の効果がよく反映されていることが確認された。さらに、モノポーラ型の流路板730の裏表に配設されている起電部単位の間の出力差が、技術例2及び技術例3に比べて非常に小さくなっていることが分かる。これは、技術例2及び技術例3の場合においては、分岐した2つの流路により2つの起電部単位の組に燃料が供給されていたのに対し、技術例6では、分岐していない1つの流路により4つの起電部単位に対し燃料の供給が行われていることにより改善されたと考えられる。すなわち、モノポーラ型の流路板730においても、交互型流路が効果的であることが実証され、その正当性が確認された。
モノポーラ型の流路板730において、流路板の両面において貫通している形状をとる流路733を採用することによって、流路板両面に配設されている起電部単位への燃料の供給量をほぼ均一にすることが可能であることが、本技術例及び後述の技術例7技術例10の結果から確認された。さらに、その流路形状を並列型の形状ではなく、本技術例や後述の技術例7に示される交互型の流路に代表されるような屈曲し蛇行するような形状を採用することで、燃料及び酸化剤のより安定した供給を行うことが可能となることが分かる。
すなわち、本実施の形態に係る流路板を用いることで、流路での圧力損失の低減による補機負荷の負担、発電時の生成物の滞留防止、燃料及び酸化剤の供給と排出口位置等、燃料電池発電装置全体の運転効率を十分考慮した流路形状を、柔軟に設計することが可能となる。さらに、交互型流路を有する流路板を採用することにより、本技術例で示したような複数のいずれの起電部単位においても均一かつ安定した出力を得ることが可能となることが確認された。
上述したように直接型メタノール燃料電池発電装置700によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図39は参考技術に係る直接型メタノール燃料電池発電装置800(不図示)を示す平面図及び要部断面図であって、(a)は第1の流路板810、(b)は第2の流路板830、(c)は第3の流路板850である。
技術例6と同様に、絶縁性樹脂であるアクリル樹脂を流路板の部材として採用し、直列型の流路を具備した図35のようなモノポーラ型の流路板を形成し、直接型メタノール燃料電池発電装置を構成した。図中811,812,831,832,851,852は金リボン、813,833,853は流路を示している。
技術例7
図40は上述した直接型メタノール燃料電池発電装置800を上述した技術例2の運転条件で運転したときの電流電圧特性を示す図である。図40から分かるように比較例1や比較例4及び技術例4と同様に、燃料の供給口側の起電部単位の限界負荷電流密度に比して、排出口側の起電部単位の限界負荷電流密度が約30%程低下したが、技術例6と同様、モノポーラ型流路板の裏表に配設されている起電部単位の2つの組の間における出力差が小さくなることが確認された。
上述したように直接型メタノール燃料電池発電装置800によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図41は本発明の参考技術に係る直接型メタノール燃料電池発電装置900(不図示)に組み込まれた流路板930を示す平面図及び断面図を適宜示したものである。
絶縁性樹脂であるアクリル樹脂を用いてモノポーラ型の流路板930を形成した。図中933は交互型の流路を示している。また、流路933内には補強部材934が設けられている。補強部材934は、流路深さの約75%分の厚さを有している。
技術例8
図42は上述した直接型メタノール燃料電池発電装置900及び上述した直接型メタノール燃料電池発電装置700をそれぞれ70℃での75mA/cm2の負荷電流での1時間の連続運転を行った場合の電流電圧特性を比較して示す図である。図42から、直接型メタノール燃料電池発電装置700においては、不規則な電圧出力の変動があることが確認された。この原因を解明するために、シリコンゴム樹脂のシートをモノポーラ型の流路板の上部に位置する起電部単位の組のダミーとしてスタックに挟みこみ、モノポーラ型の流路板の可視化を行った。その結果、スタック形成時の流路板鉛直方向からの締め付け圧力と、運転中の起電部単位の厚さ方向の膨張等によって、流路を形成する櫛状構造部が大きく傾くかまたは若干捩れ、燃料の供給されているモノポーラ型流路板の流路中に生成した二酸化炭素の気泡が流路を短絡していることが判明した。これにより流路の一部の領域に二酸化炭素の気泡が不規則に滞留し、ひいては起電部単位の一部の領域に不規則に燃料の供給不足が起こることが分かった。
直接型メタノール燃料電池発電装置900においては、上述したように、補強部材934が形成されていることから、図42に見られたような不規則な電圧出力の変動振れ幅を対策前の50%程度に減少させることが可能となることが確認された。
参考技術
図43は参考技術に係る直接型メタノール燃料電池発電装置1000(不図示)に組み込まれた流路板1030を示す平面図及び断面図を適宜示したものである。
絶縁性樹脂であるアクリル樹脂を用いてモノポーラ型の流路板1030を形成した。図中1033は直列型の流路を示している。また、流路1033内には補強部材1034が設けられている。補強部材1034は、流路深さの約75%分の厚さを有している。
技術例9
技術例8と同様な発電運転試験を、技術例7に採用した直列型流路の形成されたモノポーラ型の流路板においても行い、さらに図43のように補強部材1030の形成により櫛状構造部の対策を行った流路板との比較を行った。その結果、技術例8と同様、対策前に現れていた電圧の変動が対策前の約40%に減少することが確認された。
上述したように本実施の形態に係る直接型メタノール燃料電池発電装置1000によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図44は参考技術に係る直接型メタノール燃料電池発電装置1100(不図示)に組み込まれた流路板を示す図であって、第1〜第3の流路板1110,1130,1150を示す図である。各流路板の材料として絶縁性樹脂であるアクリル樹脂を採用した。並列型の流路を具備したモノポーラ型の流路板1130を用いている。図中1111,1112,1131,1132,1151,1152は金リボン、1113,1133,1153は流路を示している。また、1134は補強部材を示している。
直接型メタノール燃料電池発電装置600に採用したような並列型の流路は、櫛状構造部が流路板周囲から支持されなくなるため、直接型メタノール燃料電池発電装置700や直接型メタノール燃料電池発電装置800のように流路板の裏表を貫通する形状では形成できない。直接型メタノール燃料電池発電装置1100では、補強部材1134を設けることで、流路板の裏表を貫通する形状で流路の形成が可能となった。
技術例10A
図45は上述した直接型メタノール燃料電池発電装置1100を上述した技術例8(または技術例9)の運転条件で運転したときの電流電圧特性を示す図である。図45から分かるように、技術例5と同様に、同一平面上に配設された二つの起電部単位に対する燃料供給量の偏りによる出力の不安定性が見られたものの、技術例6及び技術例7と同様に、上下起電部単位の組の間における出力差が減少することが確認された。
また、技術例8及び技術例9と同様に、流路中に形成された補強部材により、締め付け時や発電時における流路のずれを抑え流路間の短絡や閉塞を防止することが可能となることが判明したが、さらに、外部マニホールドを具備しないストライプ型流路を形成する場合においても、流路を仕切る流路内の島状の部分が流路板の周辺から完全に抜け落ちてしまうことも防止するのに非常に有用であることが分かった。
技術例10B
図46は上述した直接型メタノール燃料電池発電装置1100を上述した技術例8または技術例9の運転条件で運転したときの電流電圧特性を示す図である。技術例8では、温度70℃、電流密度75mA/cm2の1時間の連続運転を行った際に、図42に示したように、約50%の電圧出力変動の減少を達成したが、いまだ若干の電圧出力の変動が観測された。これに関して、可視化した状態で同条件の連続運転を行ってみると、流路中で発生した二酸化炭素の気泡が補強部材において引っかかり滞留することが、電圧出力の規則的な変動の原因であることが判明した。
そこで、技術例8で採用した流路板の補強部材の厚さを流路深さに対し段階的に薄くした物を数通り形成し、電圧出力の変動との依存性を調べる試みを行なった。
流路の深さに対して補強部材の厚さが約50〜40%以下になることで、電圧の変動が急激に小さくなることが明らかとなり、また、流路の可視化運転においても、同程度厚さ以下において補強部材による1秒以上の二酸化炭素の滞留を起こさなくなったのが確認された。
さらに、この補強部材による二酸化炭素の気泡の滞留は、流路断面に対して補強部材の断面が垂直であればある程生じやすく、より二酸化炭素の気泡の滞留を減少させるためには、燃料または酸化剤の進行する方向面に対抗する補強部材の断面形状を鋭角にすることが好ましいことも分かった。
上述したように直接型メタノール燃料電池発電装置1100によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図47は参考技術に係る直接型メタノール燃料電池発電装置1200(不図示)に組み込まれた流路板1230を示す図である。
流路板1230は、金リボン1231,1232を補強部材1234に密着するように這わせ、さらにシアノアクリレート系接着剤によりに密着させた。密着させる際、起電部単位に接する金リボン1231,1232の部位が接着剤により被覆されないよう、接着剤は補強部材の部分のみに塗布した。なお、1233は流路を示している。
技術例11
上述した技術例10Bにおけるモノポーラ型流路板を用いた直接型メタノール燃料電池発電装置1100では、70℃、電流密度75mA/cm2の1時間の連続運転を行うと、金リボン1131,1132が流路中央方向にたわみ、そのたわみにより二酸化炭素の気泡の滞留が起こることが確認されている。また、上記運転を数回繰り返す後、起電部単位の膨張・収縮によってまれに金リボン1131,1132の断裂が起こることも確認された。
技術例12
直接型メタノール燃料電池発電装置1200においては、温度70℃における75mA/cm2の負荷電流での1時間の連続運転を数十回繰り返した場合でも、金リボンの変形やずれが起こらず、導電部材の不具合による電圧出力の変動や出力低下を防ぐことに成功した。
起電部からの集電を導電部材で行う場合は導電部材を流路板平面方向で引き回さなければならないが、起電部に接するという状況である点から、貴金属または貴金属にコーティングされた卑金属部材または比較的抵抗の高くなりやすいカーボンを導電部材として用いる必要がある。しかしながら導電部材の引き回しが長くなればなるほど、貴金属である場合にはコストが高くなり、カーボン材である場合には電気抵抗が無視できなくなる。すなわち、導電部材はできうる限り短い距離で配設する必要があり、本技術例のように、流路を横断せざるを得ない状況が起こる。このような場合、発電時における導電部材同士の短絡等の誤動作を防止することが可能となるだけでなく、起電部単位の表面を不必要に導電部材で覆ってしまうことも避けることが可能となることが確認された。
上述したように直接型メタノール燃料電池発電装置1200によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図48の(a),(b)は参考技術に係る直接型メタノール燃料電池発電装置1300(不図示)に組み込まれた流路板1330を示す平面図及び断面図を適宜示す図、図49は貫通部形成前の流路板、図50の(a)〜(c)は貫通部形成工程を示す断面図である。
流路板1330は、交互型の流路1333を有しており、流路内部には補強部材1334が設けられている。図48の(a)に示すように、同一の起電部単位層に形成された起電部単位同士の間には、アノード電極やカソード電極に覆われていない部位Qが数ミリ程度ある。この部位Qにおいては反応が行われないので、流路1333を流路板1330の表面に露出させる必要は無い。したがって、流路板1330に境界壁1335を残した後、境界壁1335にトンネル状の貫通部1336を形成する。このとき、貫通部1336の出口または入口を、アノード電極またはカソード電極の端部からアノード電極またはカソード電極の電極の内側方向で1.0mmの位置になるように形成した。
貫通部1336の形成方法は、図49及び図50の(a)に示すように、起電部単位同士の境界となる境界壁1335を残して流路1333を形成する。同時に供給口1333a、排出口1333bを形成する。次に、図49の(b)のように境界壁1335側面より貫通孔をドリルにより切削し貫通部1336を形成する。
技術例12
このように構成された直接型メタノール燃料電池発電装置1300によれば、流路の閉塞や流路間での短絡または燃料及び酸化剤の漏出が起こることを防止することができる。すなわち、起電部単位においては、運転中に電解質膜が膨潤し、シール部材が歪むことがある。このため、同一起電部単位層内で隣り合う起電部単位同士の間に位置する流路の閉塞や、逆に起電部単位の端部が流路を横切る線上における燃料または酸化剤の短絡が起こる虞がある。このため、出力の低下を生じることが分かった。
一方、トンネル状構造の入口及び出口を、アノード電極またはカソード電極の端面に合わせて流路板を形成したころ、電極の断面とシリコンゴム樹脂シール部材の断面の接触部にできた隙間を通り、隣り合う流路間で酸化剤及び燃料が短絡するという現象が生じた。
ゆえに、トンネル状構造の入口及び出口はアノード電極及びカソード電極の内側に位置しているのが望ましいが、形成される位置がアノード電極またはカソード電極の内部方向に深くなればなるほど、流路のカソード電極に面している面積が小さくなり発電効率が悪くなると考えられる。
そこで、実験によれば、0.5mmの内側に入口及び出口を形成した場合には、長時間の運転試験後において、電解質膜やシリコンゴム樹脂シール材の伸縮により、まれに燃料及び酸化剤の短絡の現象が見られることがあった。さらに1mm内部に形成した場合においては、全く不具合が観測されなかった。
これらのことから、貫通部の入口及び出口は、アノード電極及びカソード電極の内部方向で約1.0mm前後に位置することが望ましく、周囲1mm幅の面積での燃料供給のロスが無視できないような小さい面積のアノード電極またはカソード電極を採用する場合においても、短絡や漏れを防止するために0.5mm程度内側に位置することが望ましいことが分かった。
交互型流路の形状に関し、その特徴をより効果的に発揮するためには、同一平面上に並列に配列する複数の起電部単位または電極の間を何度も往復または跨ぐことが好ましいと結論づけられる。しかしながら、その結果として、流路がシリコン系またはテフロン系の部材を用いたシール材に面する可能性が多くなり、特に、本技術例で示されたような流路におけるトンネル状の構造を形成することが、交互型流路の形状の特徴をより発揮させる上で重要であることが分かった。
また、このようなトンネル状の構造は、流路板の供給口または排出口と電極の間に位置する流路部分に対しても有効であることが分かった。さらには、このようなトンネル状構造は、カーボンのような脆い部材に対し適用することは、堅牢性の観点から現実的ではなく、上述した絶縁性樹脂部材を用いる場合、有効性が顕著になるものである。
図51,52は、流路板に境界壁を設け、その境界壁に貫通部を設けた変形例を示す平面図である。なお、これらの図中1360は流路、1361,1362は供給口または排出口、1363は補強部材、1364は境界壁であり、内部に貫通部(不図示)が設けられており、複数の流路1360を結合している。また、1370はアノード電極またはカソード電極の流路板に接している範囲を示している。
上述したように直接型メタノール燃料電池発電装置1300によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図53は本発明の参考技術に係る直接型メタノール燃料電池発電装置1400に組み込まれた流路板を示す図である。
図53の(a),(b)は貫通部を有する流路板1400を示す図である。流路板1400は、2つの樹脂材製の板状部材1410,1420を貼り合わせることにより形成する際の一例を示したもので、図53の(b)は、図53(a)の二つの板状部材1410,1420とを接着し貼り合せることにより形成された流路板1400の完成図である。板状部材1410は、部材本体1411を有し、この部材本体1411には、組立後に流路板1400の各部分になる部位が形成されている。1412は、排出口及び供給口を形成するための孔部形成部、1413は境界壁形成部、1414は補強部形成部、1415は流路形成部、1416は櫛状構造部形成部である。
同様に、板状部材1420は、部材本体1421を有し、この部材本体1411には、組立後に流路板1400の各部分になる部位が形成されている。1422は、排出口及び供給口を形成するための孔部形成部、1423は境界壁形成部、1424は補強部成部、1425は流路形成部、1426は櫛状構造部形成部である。
なお、板状部材1410,1420の流路形成部1415,1425は両者を貼り合わせる際に鏡像を為すように形成される。境界壁形成部1413の部分の厚さは部材本体1411の厚さよりも薄く、板状部材1410,1420が貼り合わされる面の反対側の面において板状部材1410,1420の表面と同一平面を為すように形成される。流路形成部1415の幅は流路形成部1425と同じ幅で形成し、厚さは部材本体1411の厚さの半分以下で強度が十分である厚さ以上であることが望ましい。
補強部成部1414は、板状部材1410,1420の両方に形成されていても良いが、両方の厚さの合計の厚さで、1410か1420のどちらか一方のみに形成されていても良い。但し、補強部形成部1414,1424の合計の厚さは部材本体1411,1421の厚さの合計の半分以下で0.2mm以上とし、貼り合わされる面側で同一表面となるように形成されることが望ましく、板状部材1410,1420の両方に補強部材形成部1414,1424を形成する場合には、板状部材1410,1420の貼り合わされる面において板状部材1410,1420の表面と同一平面を為すように形成することが望ましい。
これら板状部材1410,1420を接着し貼り合わせるにおいては、耐薬品性と耐熱性及び耐水性を考慮し、シアノアクリレート系及びポリマーアロイ型の熱硬化性樹脂による接着剤の使用が好ましく、次いで熱硬化型エポキシ樹脂性接着剤等も板状部材1410,1420の材質と接着剤の適合性や運転状況に応じて選択してよい。また、流路の閉塞を防ぐために、板状部材1410,1420の接着面側の最表面に均一にかつできるだけ薄く接着剤が塗布することが望ましい。
貫通部をもつ流路板においては、流路の閉塞や流路間での短絡または燃料及び酸化剤の漏出等が解消されたことが確認されたが、一方で、貫通している穴の断面が流路深さよりも小さい直径の円の形状であるため、技術例11及び技術例12で観測されたような二酸化炭素の気泡の滞留による顕著な電圧出力の変動が観測されるようになった。二酸化炭素の気泡の滞留は、少なくとも10秒以上で、最長、1時間の運転の間に、30分以上二酸化炭素の気泡による出力の低下が認められた。このことは、技術例12の流路板における貫通部の断面積が狭いために、気泡が詰まったと考えられる。
よって、貫通部の断面積を広くする必要があり、技術例12のように流路板形成後ドリルを用いて貫通孔を開けるという方法では、技術的に困難である。また、射出成型を用いたとしても、成型前に望んだ断面形状の部材を設置し、成型後に抜き取るため、起電部単位の数が多くなればなるほどまた流路の折り返し回数が増えるほど、貫通部を形成するための工程や手間が非常に煩雑になると考えられる。
そこで、流路板1400によれば、射出成型により形成した貫通部を持たない部材の、最低2つ1組の接着のみで、堅牢なトンネル構造をもつ流路板を形成することが容易に可能となる。また、部材同士を接着するにおいては、耐薬品性と耐熱性及び耐水性を考慮し、シアノアクリレート系及びポリマーアロイ型の熱硬化性樹脂による接着剤の使用が好ましい。
技術例13
アクリルを流路板部材として用い以上のように形成し、図46(c)のように導電部材1430を形成したモノポーラ型の流路板1400においては、所望の貫通部を容易に形成できる。また、この流路板1400を用いた流路の可視化を行なう下での1時間の連続発電運転においては、気泡の滞留は長くとも10秒以下であり、良好な発電状態を得られた。
上述したように直接型メタノール燃料電池発電装置に組み込まれた流路板1400によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
参考技術
図54の(a),(b)は参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた貫通部が形成されている流路板1500を示す図である。流路板1500は、3つの樹脂材製の板状部材1510,1520,1530を貼り合わせることにより形成する際の一例を示したもので、図53の(b)は、図53(a)の板状部材1510〜1530を接着し貼り合せることにより形成された流路板の完成図である。
流路板の更なる薄型化を行なう場合には、トンネル状の構造を形成することも困難になる場合があるが、導電性を必要とする流路板の場合とは異なり、腐食や極度な薄板の形成法を考慮する必要のない絶縁性の樹脂製薄膜を流路板全面に密着させて具備させることが可能である。
図54はトンネル状構造の形成された流路板を、3つの板状部材1510〜1530を貼り合わせることにより形成する際の一例を示したもので、図54(b)は、図54(a)の3つの部材を接着し貼り合せることにより形成された流路板の完成図である。
板状部材1520は図54(b)の流路板を形成する際の流路の基部となる役目を持ち、板状部材1510,1530は貫通部を形成するための蓋の役目を主に持つ。図中1511,1521,1531は供給口形成部または排出口形成部、1512,1522,1532は流路形成部、1523は流路の補強部材、1514,1524,1534は貫通口形成部、1515,1525,1535は櫛状構造形成部、1536は貫通部が形成される境界壁である。
板状部材1510,1530の厚さは板状部材1520の厚さの半分以下で強度が十分である厚さ以上であることが望ましく、補強部材1523の厚さは完成された流路板の厚さの半分以下で0.2mm以上であることが望ましい。
これら板状部材1510〜1530を接着し貼り合わせるにおける接着剤と接着方法は、技術例13の場合と同様であり、板状部材1520の両面に接着剤を塗布し接着するのでも、板状部材1510,1530の接着面側に接着剤を塗布するのでもよい。
以上のような工程により、流路板の基部となる部材に厚さ1.5mmアクリル樹脂を、蓋となる部分に厚さ約0.2mmポリイミド樹脂フィルムを用い、形成された流路板において、
技術例14A
1時間の連続発電運転中、数秒以上の二酸化炭素の気泡の滞留が見られず、良好な発電状態を保つことができた。
技術例14B
技術例14Aに採用した流路板をアクリル樹脂で形成して用い、70℃での75mA/cm2の負荷電流での連続運転においたところ、図55のように、約3時間前後で次第に出力の低下が認められるようになり、6時間後においてほとんど出力が得られなくなった。運転終了後スタックを解体したところ、温度による部材の変形により、メタノール水溶液燃料及び空気の供給が全く正常に行なわれなくなっていることが判明した。
そこで、熱変形温度を140〜150℃に持つポリカーボネート樹脂を用い、技術例14Aと同形状の流路板を形成し、70℃での75mA/cm2の負荷電流での連続運転を行なったが、図55のように約200時間の連続運転後において、10%程度の出力の低下が認められるようになった。スタックの解体後、流路板の状況を確認したところ、起電部単位に具備されているカーボンペーパによる細かい凹凸が流路板表面に生じていることが確認され、流路板全体に僅かな歪みも生じていることが確認された。
さらに、より高い熱変形温度を持つ、ポリエーテルイミド樹脂やポリイミド樹脂においては、図55に示されるように、300時間以上の連続運転においても5%程度の出力低下のみしか観測されなかった。スタックの解体後流路板の表面においてはなんら損傷や変化が見られず、また、約5%の出力低下は、起電部単位そのものの出力低下によるものであることが、通常のカーボン製流路板を用いた結果から明かとなった。
以上の結果より、少なくとも運転温度よりも100℃以上高い熱変形温度を持つ樹脂部材においてのみ、長期にわたって安定な運転を行なうことの可能な燃料電池用流路板が形成できることが明かとなった。
これまでに述べた流路板に使用する樹脂部材としては、発電が行われる温度に十分耐えうるものである必要がある。これは、発電時のスタックや燃料の温度に対し長期的に見た熱変形が無視できることが望まれることが一つの理由であるが、より重要な点として、実際の発電運転時においては、起電部単位のカソード電極表面の温度はスタックや燃料の温度よりさらに高く、燃料電池発電装置の運転条件によっては、スタック内部表面温度より100℃の上昇を示すことがある。これは、流路板が直に起電部材に接していることを考慮すれば、少なくとも100℃以上高い点に熱変形温度を持つ樹脂部材を流路板として用いなければならないことを示している。
したがって、燃料及びスタック環境温度が40〜50℃であるとした場合に、確実に140℃以上の温度において熱変形温度を持つ、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、メラミン・フェノール樹脂、シリコン樹脂を、まず望ましい流路板用樹脂部材とし、次いでさらに室温に近い燃料電池の運転条件においては、ポリカーボネート樹脂、耐熱ビニルエステル樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリアミド樹脂、ポリブチレンテレフタレート樹脂、等を適用することが好ましい。また、これ以外の温度においても、スタックの表面温度より100℃以上高い樹脂部材を流路板として用いることが好ましいと結論づけれられる。
上述したように直接型メタノール燃料電池発電装置1500によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
[第の実施の形態]
図56は本発明の第の実施の形態に係る直接型メタノール燃料電池発電装置1600を示す図であって、(a)は縦断面図、(b)は横断面図、図57の(a)〜(e)は、図56におけるδ1−δ1〜δ5−δ5における断面図である。
直接型メタノール燃料電池発電装置1600は、図49のように流路板1622〜1624を配管ならびに燃料タンクと一体となるよう、技術例14Aで採用した流路板を、後述するように長期の安定性が実証されたポリエーテルイミド樹脂を用いて形成した。
直接型メタノール燃料電池発電装置1600は、筐体1610と、この筐体1610に保持されたスタック部1620と、このスタック部1620に燃料及び酸化剤を供給するための供給部1630と、筐体1610に対し着脱自在に設けられた燃料及び酸化剤のタンク部1650とを備えている。
スタック部1620は、水平方向に2つの起電部単位を配列させた起電部単位の組を1つのモノポーラ型の流路板1623の裏表に配設しており、この流路板1623に対してはメタノール水溶液燃料を供給している。また、モノポーラ型流路板1623と4つの起電部単位の上下に配置されている流路板1622,1624は、起電部単位の配設される面にのみ流路1622a,1624aが形成され、空気が供給される。
スタック部の最表面に断熱材を備えた締め付け板1621が設置され、図示していない締め付け具により、スタックに含まれているシール部材によるシールが行なわれる。
このように構成された直接型メタノール燃料電池発電装置1600においては、次のようにして動作する。すなわち、送気ポンプ1631によりスタック部1610に送られ、モノポーラ型流路板の最も外側に形成されている空気供給用の供給路1632を通り、スタック積層方向へ貫通する部分1633において、上下の流路板1622,1624の流路に分岐される。起電部単位部分を通過した空気と水蒸気は、再び別の貫通口1634においてモノポーラ型流路板の最外部の排出路1635に合流し、メタノール水溶液燃料を一時保持するための空間1636に流入する。
一方、メタノール水溶液燃料は、送液用ポンプ1641により空間1636より送られ、燃料送液路1642を通過し、スタックを経た後、再び二酸化炭素とともに空間1636に流入する。空間1636には、高濃度メタノールカートリッジ1651から高濃度メタノール供給用ポンプ1638により高濃度メタノールを供給するための供給路1737が形成されている。
(実施例
運転においては、メタノール水溶液燃料の初期濃度を3mol/l、とし、燃料流量を0.04cm/min、空気流量を40cm/minとした。運転の結果、スタック部分の温度は、50℃前後の温度にしか上昇しなかったが、供給された空気及びメタノール水溶液燃料の漏れは全く観測されず、また、空間4907等を含めた流路板4902等にも歪み等は認められないまま、300時間の連続運転を行なうことが可能であることが確認された。
一般に燃料電池発電装置においては、燃料容器と配管とスタックを独立の構成要素として扱い、ポンプ等他の要素も含めて、これらを組み合わせることにより全体を構成する。しかしながら、携帯型電子機器用途に応用されるような燃料電池発電装置においては、構造の簡略化と同時に、装置の薄型化を進める必要が生じる。ゆえに内包されるスタックに関しても、積層数を大幅に下げ、装置の厚さと垂直である方向に対して起電部単位の平面方向が平行になるように起電部を並列に配列させることが好ましくなる。これは同時に、スタックとの燃料または酸化剤の供給や排出を行うための配管においても薄型化を施す必要性を生じ、また、流路板が薄型化されるために流路板側面との配管を施すことも極端に困難になることを意味する。さらには、薄型化されるゆえに装置の堅牢性を保つことも難しくなる。燃料容器や配管は樹脂製であることが好ましくまたそれで十分であるが、装置全体の薄型化に特化しなければならないような状況においては、各構成要素を独立して形成する際に、スタックの燃料または酸化剤の供給口もしくは排出口と燃料容器や配管を接続するための構造や、全体の堅牢性を上げるための構造にも十分考慮しなければならない。
一方、直接型メタノール燃料電池発電装置1600においては、流路板の延長として配管や燃料容器の一部を作成すること、すなわち、タンクや配管を流路板と同じ樹脂部材による一体成型で形成することが可能となり、構成部品点数の大幅な削減と、一体化による燃料電池発電装置の構造的堅牢性が容易性が同時に得られ、生産性を大幅に向上させることが可能となる。なお、流路板をカーボンを主体とする材質や金属により形成している場合には非常に困難であることから、流路板1622〜1624の材料は樹脂材であることが要求される。
上述したように本実施の形態に係る直接型メタノール燃料電池発電装置1600によれば、起電部単位ごとの出力の偏りが少なくなり、かつ安定した燃料供給を行うことが可能となり、安定した出力を得ることができる。
なお、上述した直接型メタノール燃料電池発電装置1600において起電部単位群から得られた電力出力のうち一部を送液用ポンプ1641及び高濃度メタノール供給用ポンプ1638と送気ポンプ1631に供給し、残りの電力出力を外部の電気機器に供給する電気回路1660を備えるようにしてもよい。
なお、FIG.56A中1661は、アノード極の排出物から気体成分のみを分離する気液分離機構、1660は起電部単位群から得られた電力出力のうち一部を送液用ポンプ1641及び高濃度メタノール供給用ポンプ1638と送気ポンプ1631に供給し、残りの電力出力のうち少なくとも一部を外部の電気機器に供給する電気回路を示している。
このように外部の電気機器に電力出力の一部を供給するようにした場合であっても、実施例と同様に良好な発電運転が行えることが確認できた。
図58は、直接型メタノール燃料電池発電装置1600において、4つの起電部単位ごとに出力される負荷電流を0.75Aとし、メタノール水溶液燃料濃度と燃料流量を変え発電試験を行った。空気の供給量は240ml/minとした。
式IIIまたは数式3、数式4より明らかなように、発電においては、対になったメタノールと水の1分子から6電子が得られるため、単一の起電部単位により1Aの電流を得るためには、1.725(mol/s)のメタノールと水が理論的に最低でも必要な供給量となる。また、電気的に直列かまたは並列に相互に配線されたn個の起電部単位を持つ場合には、1.725×n(mol/sec)の供給量が理論量として必要となる。
これは、単一の起電部単位から1Aの電流を得るためには、3mol/lの濃度の燃料を用いる場合に34.5(μl/min)の理論供給量が必要であり、2mol/lの濃度の燃料を用いる場合に51.8(μl/min)、1mol/lの濃度の燃料を用いる場合に104(μl/min)、4mol/lの濃度の燃料を用いる場合に25.9(μl/min)の理論供給量が必要となる。
また、起電部単位がn個あり、それぞれから1Aの電流を得る場合には、これらの供給量のn倍の供給量が総量として必要となる。
図58から、3mol/lの燃料濃度では、約0.17ml/minのメタノール水溶液燃料の供給量において最大の電圧が得られており、同様に2mol/lの燃料濃度では約0.3ml/minの供給量において、1mol/lの燃料濃度では0.8ml/minにおいても最大値が得られていないことが分かる。一方で、4mol/lの燃料濃度では約0.12ml/minにおいて最大値が得られるが3mol/lにおける値よりも若干低くなり、5mol/lにおいては最大値の減少が著しいことが分かる。表1はこれらの結果をまとめたものである。
Figure 0004625627
表1から分かるように、各濃度で得られる最大の電圧に到達できないか、もしくは全く電圧を得られず、理論量の約1.5〜2.0倍の供給量において最大電圧の90%以上の値が得られるようになることが分かる。ただし、逆にそれ以上の供給量の場合には一方的な電圧の低下が見られるようになる。
さらに、4mol/l前後以上の濃度においては、濃度上昇に伴う最大電圧値の低下が著しく、高くとも約5mol/l以下のメタノール水溶液燃料濃度を用いるのが好ましく、濃度が低い場合には理論量の2倍よりはるかに多い供給量が必要となるため、流路板から受ける圧力損失を低減し補器の消費電力を節約するためにも、少なくとも1mol/l以上のメタノール水溶液燃料濃度を用いるのが好ましいということが分かる。
これらをまとめると、nは起電部単位群が有する起電部単位の数、Iは各起電部単位ごとで出力されている電流、CMeOHは供給されるメタノール水溶液燃料の濃度(mol/l)、Yは前記起電部単位群に供給されているメタノール水溶液燃料の総量(l/min)であって、各起電部単位の温度が40℃から70℃の範囲であるとき、
Y≦Y×2 (101)
=1.04×10−4×nI/CMeOH (102)
1.0≦CMeOH≦5.0 (103)
すなわち、式(101)〜(103)を満たすメタノール水溶液燃料濃度と供給量の条件が適切であることがわかる。
なお、上述した実施の形態及び実施例においては、燃料流路についてのみ交互型としているが、空気流路についても交互型としてもよい。また、燃料流路と空気流路を両方とも交互型としてもよい。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の第1の実施の形態に係る直接型メタノール燃料電池発電装置を示す斜視図。 同直接型メタノール燃料電池発電装置の要部を示す図。 同流路板の第1変形例に係る流路板を示す底面図。 直接型メタノール燃料電池の起電部単位における電流電圧特性のメタノール水溶液の初期濃度に対する依存性を示す特性図。 燃料流路の割り当て方法を模式的に示す説明図。 本発明の第2の実施の形態に係る直接型メタノール燃料電池発電装置の要部を示す図。 流路板の変形例を示す平面図。 流路板の変形例を示す平面図。 流路板の変形例を示す平面図。 流路板の変形例を示す図。 直接型メタノール燃料電池発電装置の電流電圧特性の結果を示す図。 技術例1の運転条件において電流電圧特性を測定した結果を示す図。 直列型流路を用いた直接型メタノール燃料電池発電装置を示す図。 技術例1の運転条件の下、比較例1の電流電圧特性を示す図。 並列型流路を用いた直接型メタノール燃料電池発電装置を示す図。 技術例1の運転条件における電流電圧特性を示す図。 比較例3における発電試験の結果を示す図。 参考技術に係る直接型メタノール燃料電池発電装置を示す側面図。 同直接型メタノール燃料電池発電装置を示す図であって、(a)は斜視図、(b)は横断面図。 同直接型メタノール燃料電池発電装置を分解して示す図。 同直接型メタノール燃料電池発電装置の電流電圧特性を示す図。 起電部単位を4個備えた直接型メタノール燃料電池発電装置に組み込まれた直列型流路が形成された流路板を示す図。 比較例4のスタックに関する実験結果を示す図。 比較例5として起電部単位を4個備えた直接型メタノール燃料電池発電装置に組み込まれた並列型流路が形成された流路板を示す図。 比較例5として起電部単位を4個備えた直接型メタノール燃料電池発電装置に組み込まれた並列型流路が形成された流路板を示す図。 技術例2の運転条件において、電流電圧特性を測定した結果を示す図。 参考技術に係る直接型メタノール燃料電池発電装置を示す側面図。 同直接型メタノール燃料電池発電装置の流路板を示す平面図。 同直接型メタノール燃料電池発電装置を技術例2の運転条件で運転したときの電流電圧特性を示す図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた第1〜第3の流路板を示す図。 同直接型メタノール燃料電池発電装置を技術例2の運転条件で運転したときの電流電圧特性を示す図。 参考技術に係る直接型メタノール燃料電池発電装置を示す図であって、(a)は縦断面図、(b)は(a)におけるγ−γ線で切断して矢印方向に見た断面図。 同直接型メタノール燃料電池発電装置に組み込まれた第1〜第3の流路板を示す図。 同直接型メタノール燃料電池発電装置を技術例2の運転条件で運転したときの電流電圧特性を示す図。 参考技術に係る直接型メタノール燃料電池発電装置を示す側面図。 直接型メタノール燃料電池発電装置を示す図であって、(a)は斜視図、(b)は断面図。 同直接型メタノール燃料電池発電装置に組み込まれた第1〜第3の流路板を示す図である。 同直接型メタノール燃料電池発電装置を技術例2の運転条件で運転したときの電流電圧特性を示す図。 参考技術に係る直接型メタノール燃料電池発電装置を示す平面図及び要部断面図。 同直接型メタノール燃料電池発電装置を技術例2の運転条件で運転したときの電流電圧特性を示す図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた流路板を示す平面図及び要部断面図。 同直接型メタノール燃料電池発電装置の電流電圧特性を比較して示す図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた流路板を示す平面図及び要部断面図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた流路板を示す図。 同直接型メタノール燃料電池発電装置を技術例8の運転条件で運転したときの電流電圧特性を示す図。 同直接型メタノール燃料電池発電装置を技術例8の運転条件で運転したときの電流電圧特性を示す図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた流路板を示す図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた流路板を示す平面図及び要部断面図。 貫通部形成前の流路板を示す図。 貫通部形成工程を示す断面図。 境界壁に貫通部を設けた流路板の変形例を示す平面図。 境界壁に貫通部を設けた流路板の変形例を示す平面図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた流路板を示す図。 参考技術に係る直接型メタノール燃料電池発電装置に組み込まれた貫通部が形成されている流路板を示す図。 同直接型メタノール燃料電池発電装置における電流電圧特性を示す図。 本発明の第3の実施の形態に係る直接型メタノール燃料電池発電装置を示す図であって、(a)は縦断面図、(b)は横断面図。 図56におけるδ1−δ1〜δ5−δ5における断面図である。 同直接型メタノール燃料電池発電装置における電圧と燃料供給量との関係を燃料濃度毎に示す図。 一般的な起電部単位の構成を模式的に示す説明図。
符号の説明
100…直接型メタノール燃料電池発電装置、101…絶縁性流路板、102…絶縁性流路板、103…燃料流路、104…燃料流路供給口、105…燃料流路排出口、106…流路蓋体、107…樹脂性封止材、108a,108b…起電部単位、109…空気流路。

Claims (4)

  1. 電解質膜をアノード触媒層を含むアノード極とカソード触媒層を含むカソード極とで挟んで形成された複数の起電部単位から成る起電部単位群と、
    これら起電部単位群のアノード極に当接して配置されるとともに内部を燃料が通流する第1の流路が形成された第1の流路板と、
    前記起電部単位群のカソード極に当接して配置されるとともに内部を酸化剤が通流する第2の流路が形成された第2の流路板とを備え、
    前記第1の流路は、その入口から出口に亘って分岐することなく前記起電部単位群の全てのアノード極に接触するように通過するとともに、少なくとも一つの起電部単位のアノード極には複数回接触するように形成され、
    nは前記起電部単位群が有する起電部単位の数、sは前記第1の流路が各起電部単位をそれぞれ通過する回数、hは流路領域の数であってnとsの積、br,m(1≦m≦n,1≦r≦s)は前記流路領域に割り当てられた番号であってh以下の自然数、Zbr,mは各流路領域の流路供給口からの距離、L0は前記第1の流路の実効的な長さを示すとき、
    Figure 0004625627
    を満たすことを特徴とする直接型液体燃料電池発電装置。
  2. 電解質膜をアノード触媒層を含むアノード極とカソード触媒層を含むカソード極とで挟んで形成された複数の起電部単位から成る起電部単位群と、
    これら起電部単位群のカソード極に当接して配置されるとともに内部を酸化剤が通流する第1の流路が形成された第1の流路板と、
    前記起電部単位群のアノード極に当接して配置されるとともに内部を燃料が通流する第2の流路が形成された第2の流路板とを備え、
    前記第1の流路は、その入口から出口に亘って分岐することなく前記起電部単位群の全てのカソード極に接触するように通過するとともに、少なくとも一つの起電部単位のカソード極には複数回接触するように形成され、
    nは前記起電部単位群が有する起電部単位の数、sは前記第1の流路が各起電部単位をそれぞれ通過する回数、hは流路領域の数であってnとsの積、br,m(1≦m≦n,1≦r≦s)は前記流路領域に割り当てられた番号であってh以下の自然数、Zbr,mは各流路領域の流路供給口からの距離、L0は前記第1の流路の実効的な長さを示すとき、
    Figure 0004625627
    を満たすことを特徴とする直接型液体燃料電池発電装置。
  3. nは前記起電部単位群が有する起電部単位の数、Iは各起電部単位ごとで出力されている電流、CMeOHは供給されるメタノール水溶液燃料の濃度(mol/l)、Yは前記起電部単位群に供給されているメタノール水溶液燃料の総量(l/min)であって、各起電部単位の温度が40℃から70℃の範囲であるとき、
    Y≦Y×2 …(101)
    =1.04×10−4×nI/CMeOH …(102)
    1.0≦CMeOH≦5.0 …(103)
    を満たすことを特徴とする請求項1または2記載の直接型液体燃料電池発電装置。
  4. 前記起電部単位群のアノード極に接触する前記流路板に液体燃料を供給する液体燃料供給装置と、
    前記起電部単位群のカソード極に接触する前記流路板に酸化剤を供給する酸化剤供給装置と、
    液体燃料を収容し、前記液体燃料供給装置に液体燃料を供給する液体燃料容器と、
    前記アノード極の排出物から気体成分のみを分離する気液分離機構と、
    前記起電部単位群から得られた電力出力のうち一部を前記液体燃料供給装置と前記酸化剤供給装置に供給し、残りの電力出力のうち少なくとも一部を外部の電気機器に供給する電気回路とを備えていることを特徴とする請求項1〜3のいずれかに記載の直接型液体燃料電池発電装置。
JP2003400850A 2002-11-28 2003-11-28 直接型燃料電池発電装置 Expired - Fee Related JP4625627B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400850A JP4625627B2 (ja) 2002-11-28 2003-11-28 直接型燃料電池発電装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002346213 2002-11-28
JP2003096694 2003-03-31
JP2003400850A JP4625627B2 (ja) 2002-11-28 2003-11-28 直接型燃料電池発電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009009379A Division JP2009140934A (ja) 2002-11-28 2009-01-19 直接型燃料電池発電装置

Publications (2)

Publication Number Publication Date
JP2004319430A JP2004319430A (ja) 2004-11-11
JP4625627B2 true JP4625627B2 (ja) 2011-02-02

Family

ID=33479576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400850A Expired - Fee Related JP4625627B2 (ja) 2002-11-28 2003-11-28 直接型燃料電池発電装置

Country Status (1)

Country Link
JP (1) JP4625627B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991098B2 (ja) * 2004-11-05 2012-08-01 株式会社リコー 燃料電池、燃料電池集合体、電源及び電子機器
KR100647666B1 (ko) 2004-11-29 2006-11-23 삼성에스디아이 주식회사 바이폴라 플레이트 및 직접액체연료전지 스택
JP2006318823A (ja) * 2005-05-13 2006-11-24 Electric Power Dev Co Ltd 燃料電池
CN100449833C (zh) * 2005-08-26 2009-01-07 比亚迪股份有限公司 一种燃料电池的流场板
KR100816238B1 (ko) * 2007-03-22 2008-03-21 삼성에스디아이 주식회사 연료전지 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507572A (ja) * 1994-10-18 1998-07-21 ユニバーシティ オブ サザン カリフォルニア 有機燃料電池並びにその作動方法およびその電極の製造方法
JP2002510851A (ja) * 1998-04-03 2002-04-09 プラグ パワー インコーポレイテッド 複数の並列燃料電池サブスタックを有するpem型燃料電池アッセンブリ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507572A (ja) * 1994-10-18 1998-07-21 ユニバーシティ オブ サザン カリフォルニア 有機燃料電池並びにその作動方法およびその電極の製造方法
JP2002510851A (ja) * 1998-04-03 2002-04-09 プラグ パワー インコーポレイテッド 複数の並列燃料電池サブスタックを有するpem型燃料電池アッセンブリ

Also Published As

Publication number Publication date
JP2004319430A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
JP2009140934A (ja) 直接型燃料電池発電装置
US5958616A (en) Membrane and electrode structure for methanol fuel cell
US6497975B2 (en) Direct methanol fuel cell including integrated flow field and method of fabrication
US7951506B2 (en) Bipolar plate and direct liquid feed fuel cell stack
JP3331117B2 (ja) 燃料電池、燃料電池の製造方法、複合ガスセパレータ、およびその製造方法
US7794891B2 (en) Fuel cell with interweaving current collector and membrane electrode assembly
US8211582B2 (en) Fuel cell system
JP5269372B2 (ja) 燃料電池
US20070231669A1 (en) Design of fuel cell and electrolyzer for small volume, low cost and high efficiency
WO2006039536A1 (en) Electrochemical cell bipolar plate with laminated arrangement of bonded layers
WO2006039540A1 (en) Electrochemical cell bipolar plate
CN101442131A (zh) 燃料电池用集电复合板及利用其制造的燃料电池
JP2006156398A (ja) バイポーラプレートおよび直接液体燃料電池スタック
US20050191517A1 (en) Separator and direct methanol type fuel cell therewith
JP4625627B2 (ja) 直接型燃料電池発電装置
US7491463B2 (en) Electrochemical cell bipolar plate with sealing feature
US20090181281A1 (en) Electrochemical cell bipolar plate
US7452623B2 (en) Electrochemical cell bipolar plate with sealing feature
KR100526368B1 (ko) 직접형 연료 전지 발전 장치
US8440361B2 (en) Monopolar separator with an insulation layer for a fuel cell system
KR20070036501A (ko) 연료전지 시스템 및 이에 사용하기 위한 스택
JP2009231111A (ja) 燃料電池ユニット、燃料電池スタックおよび電子機器
JP2008282672A (ja) 燃料電池及びその製造方法
JP2002198072A (ja) 固体高分子型燃料電池
JP2001185173A (ja) 燃料電池の複合ガスセパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R151 Written notification of patent or utility model registration

Ref document number: 4625627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees