JP4607311B2 - Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis - Google Patents

Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis Download PDF

Info

Publication number
JP4607311B2
JP4607311B2 JP2000355388A JP2000355388A JP4607311B2 JP 4607311 B2 JP4607311 B2 JP 4607311B2 JP 2000355388 A JP2000355388 A JP 2000355388A JP 2000355388 A JP2000355388 A JP 2000355388A JP 4607311 B2 JP4607311 B2 JP 4607311B2
Authority
JP
Japan
Prior art keywords
observed
wavefront shape
error
carrier
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000355388A
Other languages
Japanese (ja)
Other versions
JP2002162214A (en
Inventor
宗濤 ▲葛▼
萍 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2000355388A priority Critical patent/JP4607311B2/en
Publication of JP2002162214A publication Critical patent/JP2002162214A/en
Application granted granted Critical
Publication of JP4607311B2 publication Critical patent/JP4607311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、開口合成による大型被観察体の波面形状測定方法および大型被観察体の測定波面形状補正方法に関し、特に、干渉縞等の縞情報により被観察体の波面形状を観察する際に、被観察体のサイズが測定装置の測定範囲よりも大きい場合に、被観察体の観察位置を走査させる毎に縞を撮像し、各小開口縞画像を解析し、該各小開口縞画像に対応した位相を求め、最後にこれら複数の小開口位相を互いにつなぎ合わせて被観察体全体の波面形状を得る開口合成法を用いた大型被観察体の波面形状測定方法および大型被観察体の測定波面形状補正方法に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
一般に、干渉計等の測定器においては、その開口より大きい大型工作物の表面形状を測定する際には、この測定器の小開口により大型工作物の表面を走査し、得られた多数の小開口形状の測定画像をつなげて、大型工作物の表面形状を得るという開口合成法を利用している。しかし、測定器の小開口の走査により得られた多数の測定画像をつなぎ合わせる場合には、上記走査中の並進誤差と傾き誤差による影響で、各測定画像を高精度につなぎ合わせることが極めて困難である。
【0003】
このような、測定器における開口合成についての問題を解決する試みはなされているものの良好な具体策は見出されておらず、簡易かつ高精度な解決手法の開発が望まれていた。
【0004】
本発明は上記事情に鑑みなされたものであり、開口合成法を用い、多数の小開口形状の測定画像をつなげて、大型工作物の表面形状を得る場合に、各測定波面形状毎の並進誤差と傾き誤差の影響を排除して高精度な測定波面形状のつなぎ合わせが可能な開口合成法による大型被観察体の波面形状測定方法および大型被観察体の測定波面形状補正方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明の、請求項1に係る開口合成による大型被観察体の波面形状測定方法は、隣接する領域の一部が互いに重なるように複数の領域に分割された被観察体と測定器の相対的走査により得られた、空間的に連続する複数枚の前記被観察体の波面形状情報を担持した2次元の縞画像の各々に基づき縞解析を用いて要素位相データを得た後、得られた各要素位相データを開口合成によりつなぎ合わせて測定器の観察可能領域よりも面積の大きい被観察体の波面形状を測定する開口合成による大型被観察体の波面形状測定方法において、
前記各要素位相データを取得する際には、
前記縞画像にキャリア縞を重畳させ被観察体の波面形状情報を担持した、互いに隣接する複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、その変換結果に基づいて演算を行い、前記相対的走査に伴なう誤差を検出しておき、
前記互いに隣接する複数の要素位相データについての前記相対的走査に伴なう誤差を、前記検出値に基づいて補正した後、これら互いに隣接する複数の要素位相データを接続することを特徴とするものである。
【0006】
また、前記相対的走査に伴なう誤差は、前記複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、前記被観察体と前記測定器の相対的姿勢のずれに伴って変化するキャリア周波数を求め、複数の該キャリア周波数に基づき演算を行って求められる、該被観察体と該測定器との相対的な傾き量とすることが可能である。
【0007】
また、前記相対的走査に伴なう誤差は、前記複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、前記被観察体と前記測定器の相対的姿勢のずれに伴って変化する複素振幅を求め、複数の該複素振幅に基づき演算を行って求められる該被観察体と該測定器との相対的な並進誤差であることが可能である。
【0008】
また、前記相対的走査に伴なう誤差は、前記複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、前記被観察体と前記測定器の相対的姿勢のずれに伴って変化するキャリア周波数および複素振幅を求め、複数の該キャリア周波数および複数の該複素振幅に基づき演算を行って求められる、前記被観察体と該測定器との相対的な傾き量および並進誤差であることが可能である。
【0009】
また、本発明の大型被観察体の波面測定形状補正方法は、開口合成による大型被観察体の波面形状測定方法において、前記検出が行われた後、前記被観察体の波面形状情報を担持した縞画像の縞解析において、前記検出された傾き量および並進誤差を補償する補正演算を行うことを特徴とするものである。
【0010】
なお、本発明に係る前述した各方法は、フーリエ変換法を用いた縞画像解析手法全般に適用可能であり、例えば干渉縞やモアレ縞の解析、あるいは縞投影による3次元プロジェクタ等にも適用可能である。
ここで、波面形状とは、表面形状のみならず、透過波面形状(例えば厚みムラ、屈折率分布、レンズの収差等)も含むものとする。
【0011】
【作用】
上記本発明の開口合成による大型被観察体の波面形状測定方法および大型被観察体の測定波面形状補正方法は、本願発明者等が既に発明し開示している下記出願にヒントを得て、長年未解決のままであった開口合成の課題を解決するに到ったものである。
【0012】
すなわち、本願発明者は、走査案内により得られた隣接する小領域の縞画像データに対してフーリエ変換を施す場合に、被観察体からの波面と基準からの波面とのずれに伴って発生するキャリア周波数および/または複素振幅を求め、走査前後の複数の該キャリア周波数および/または複数の該複素振幅に基づき演算を行って、前記被観察体と前記基準との相対的な傾き量および/または変位量を求める手法を発明し、既に開示している(特願2000-277444号)。
【0013】
この技術は、被観察体と基準との相対的な傾き量および/または変位量を簡易かつ高精度で求めることが可能である。
そこで、本発明方法においては、上記開示発明を応用して、隣接する各開口波面形状の相対的な傾き誤差および/または並進誤差を測定し、この測定結果に基づき該誤差を補正し、高精度な波面形状を得ることを可能としている。
【0014】
【発明の実施の形態】
以下、本発明の実施形態に係る開口合成による大型被観察体の形状測定方法および測定形状補正方法について図面を用いて説明する。なお、本実施形態方法は、位相シフト干渉計装置に適用した場合を例にあげて説明する。
【0015】
また、本実施形態方法は、被観察体のサイズが干渉計装置の口径サイズよりも大きく、干渉計と被観察体とを互いに走査しながら複数枚の干渉縞画像データを取得し、これを開口合成によりつなぎ合せる場合に適用し得るものである。
【0016】
図1は本発明の実施形態方法を概略的に示すフローチャートであり、図2は図1に示す実施形態方法を実施するための干渉計装置を示すものである。すなわち、干渉計の開口を被観察体2上において走査し、所定距離だけ走査する毎に干渉縞画像を取得する(S100)。次に、走査の前後の2つの縞画像データにフーリエ変換を施し、該縞画像のキャリア周波数および複素振幅を抽出し、走査案内による、各小開口形状の傾き誤差および並進誤差を検出する(S101)。最後に、図3に示す如く、開口合成法により、走査案内の誤差を補正し、その補正された各小開口形状をつなぎあわせる(S102)。
【0017】
以下、上記ステップ101(S101)における、走査案内に伴なう傾き誤差および並進誤差を検出する方法およびその処理操作を図面を用いて説明する。
【0018】
この方法は、縞解析法を用いて被観察体表面形状を求める手法において、被観察体2の表面と参照(基準)面3との相対形状に基づき得られた該被観察体2の表面形状情報を担持した縞画像データにフーリエ変換を施し、走査前後の縞画像データのキャリア周波数と複素振幅を求め、該キャリア周波数と該複素振幅に基づき、前記走査案内の相対傾斜誤差および走査案内の並進誤差を検出するものであり、さらにこの後、前記縞画像データの縞画像解析による前記検出された走査案内誤差を補償する補正演算を行うものである。
【0019】
一般的に、フーリエ変換縞解析法はキャリア周波数(被観察体2表面と参照面3との相対的な傾斜)を導入することにより、一枚の縞画像のみで位相を求めることができる。キャリア周波数を導入すると干渉縞強度は次の式(1)で表される。
【0020】
【数1】

Figure 0004607311
【0021】
ξは前述したように、λを光の波長、xを被観察体2の表面の変位量としたとき、ξ=2πx/λで表わせるから上式(1)は下式(2)のように変形できる。
【0022】
【数2】
Figure 0004607311
ただし、c*(x,y)はc(x,y)の共役である。
【0023】
【数3】
Figure 0004607311
【0024】
上式(2)をフーリエ変換すると、下式(4)を得ることができる。
【0025】
【数4】
Figure 0004607311
【0026】
ここで、被観察体2の表面の初期位相をξ、被観察体2の移動後の位相をξとすると、開始位置における干渉縞画像データから下式(5)が得られる。
【0027】
【数5】
Figure 0004607311
【0028】
次に、被観察体2の移動後における干渉縞画像データから下式(6)が得られる。
【0029】
【数6】
Figure 0004607311
【0030】
これにより、下式(7)が得られる。
【0031】
【数7】
Figure 0004607311
【0032】
したがって、被観察体2移動前後の位相差は下式(8)で表わされる。
【0033】
【数8】
Figure 0004607311
【0034】
したがって、被観察体2の変位量は下式(9)で表わされる。
【0035】
【数9】
Figure 0004607311
【0036】
また、所定の被観察体2の移動により得られた各干渉縞画像毎に求めた変位量の平均を求めることにより高精度の変位(傾斜誤差および並進誤差)検出を行なうことができる。なお、フーリエ変換縞解析法により被観察体2の変位を検出する際には、必ずしも縞画像データ全体を用いる必要はなく、一部の縞画像データによっても充分に精度の高い変位検出を行なうことが可能である。
【0037】
なお、上記ステップ101(S101)について、位相シフトの変位量検出補正方法に適用された場合の一例を図4のフローチャートを用いて説明する。
【0038】
まず、空間キャリア縞が重畳された、被観察体2の形状情報を担持してなる干渉縞画像をCCDカメラ4により得る(S1)。次に、得られた干渉縞画像データに対してフーリエ変換を施し(S2)、空間キャリア周波数(fx,fy)を抽出し(S3)、このキャリア周波数に基づきフーリエ変換縞解析を行ない、後述する複素振幅c(x,y)を求める(S4)。次に、参照(基準)面3の変位量を求め(S5)、これにより位相シフトの変位量を求めることができ(S6)、さらに位相シフト法による縞画像解析を行なう場合に、(S6)で求めた変位量を補正し被観察体2の位相を求める(S7)。
【0039】
なお、変位量検出補正方法ではなく傾斜量検出補正方法に適用された場合も、図4に示す場合と同様に表わされる。
また、このように案内誤差を高精度に検出することができるから、この誤差を高精度に補償する補正演算が可能である。
【0040】
一般に、フーリエ変換方法においては、フィルタリングによって、C(η−fx ,ζ−fy)
を求め、図5に示す如く周波数座標系上の位置(fx ,fy)に存在するスペクトルのピークを座標原点に移動させ、キャリア周波数を除去する。次に、逆フーリエ変換を用いてc(x,y)を求めることにより、ラップ処理された位相が得られる。次に、アンラップ処理によって被測定物の位相Φ(x,y) が求められる。ここで、(fx ,fy) はキャリア周波数であるが、被観察体2の表面と参照面3との間には所定の角度関係(相対姿勢)、具体的には上記式(1a)の関係が存在することに着目し、(fx ,fy) の各値を求め、その値に基づき、被観察体2表面と参照面3の間の角度関係を求める。
【0041】
(fx ,fy) の各値は、上式(4)の結果から、座標原点にある最大ピーク以外のサブピーク位置、すなわち、C(η−fx ,ζ−fy)の位置を求めることで得られる。これにより、被観察体2のX方向、Y方向の傾斜(姿勢)であるθxとθyを求めることができる。
【0042】
このように、フーリエ変換縞解析法を用いることで、被観察体2の姿勢(傾斜)を検出できる。なお、フーリエ変換縞解析法により被観察体2の姿勢(傾斜)を求める際には、縞画像の全領域を使う必要がなく、一部の縞画像領域を解析することによっても充分に有効なデータを得ることが可能である。
【0043】
このように、ステップ101(S101)における走査案内誤差検出は、ステップ100(S100)において得られた、図3に示すような各小開口画像出力MIJ[N][M] (X方向番号I=0,1,2,…、Y方向番号J=0,1,2,…)のそれぞれについてなされる。すなわち、開口のサイズがN×Mの干渉計により、サイズがL×Pである大型被観察体2の表面の形状を測定するときには、隣接する撮影画像との間で、例えばX方向、Y方向に各々の一定の領域を重ねあわせるようにして、複数個の測定出力MIJ[N][M](I=0,1,2,…、J=0,1,2,…)が得られるが、このようにして得られた各測定出力に対して、走査案内の誤差の補正がなされる。
【0044】
なお、上述した場合における干渉計の出力値は、上記傾き誤差と並進誤差が含まれた下式(10)で表される。なお、この式(10)においては参照面3の誤差は考慮されていない。
【0045】
【数10】
Figure 0004607311
【0046】
そして、上述した如くして補正された各干渉縞画像データを、開口合成法を用いてつなぎあわせることになるが、この場合には、上式(10)を変形した下式(11)により、各小開口画像出力について、上記傾き誤差と並進誤差を除去する補正がなされ、この状態において各小開口画像が重なり領域(または対向する領域)での複数点での位相関係に基づいてつなぎあわせられる。各小開口画像をつなぎあわせる、開口合成の具体的な処理は干渉計開口合成の周知の技術(例えば特開平4-290905号公報、特開平4-290906号公報)を用いて行われる。
【0047】
【数11】
Figure 0004607311
【0048】
一般に、上記補正がなされない状態では、各小開口形状毎に、各々異なる傾き誤差と並進誤差が生じているから、隣接する2つの小開口形状をそのまま、つなげると、その後の結果に大きな測定誤差が生じてしまう。さらに、多数の小開口形状をつなげていくと、この測定誤差は累積的に拡大してしまう。
【0049】
そこで、本実施形態方法によれば、干渉計の走査案内により発生した並進誤差と傾き誤差を検出し、演算により補正してから開口合成処理を行うようにしており、これによって、測定誤差のない大型の被測定形状FIJ[N][M]を求めるようにしている。
【0050】
また、傾き誤差については、隣接する互いの領域に重なり部分を設けなくとも上記補正を行うことができるが、一般的に、並進誤差については、隣接する互いの領域における相対的な位置の基準が必要であるので、領域の重なり部分が必要である。
【0051】
上記実施形態方法においては、領域の重なり部分は図3に示す如く、X方向、Y方向各々が開口の半分となるようにしているが、領域の重なり部分を他の比率とすることも勿論可能であり、重なり部分を線とすることも可能である。
【0052】
このことは、上述した従来技術において、隣接する領域が互いに面において重なり合うことを必要としていることと相違する点である。
なお、各被測定領域毎に光反射率等が互いに異なることから、この差異を考慮して開口合成時の解析処理を行うことが好ましい。
【0053】
次に、本発明の実施形態方法を実施するための装置について、上記図2、図6および図7を用いて説明する。
【0054】
この装置は、上記実施形態方法を実施するためのもので、図2に示すように、マイケルソン型干渉計1において、被観察体2表面と参照(基準)面3からの両反射光束によって形成される干渉縞は、CCDカメラ4のCCD素子の撮像面5において形成され、画像入力基板6を介して、CPUおよび画像処理用のメモリを搭載したコンピュータ7に入力され、入力された干渉縞画像データに対して種々の演算処理が施され、その処理結果はモニタ画面7A上に表示される。なお、CCDカメラ4から出力される干渉縞画像データはCPUの処理により一旦メモリ内に格納されるようになっている。なお、演算された結果に対応した出力がD/A変換基板8を介してピエゾ駆動部9に入力され、PZT(ピエゾ素子)アクチュエータ10を駆動制御する。
【0055】
コンピュータ7は、図6に示すように、ソフト的に、FFT演算複素振幅演算手段11、位相シフト変位量検出手段12および位相シフト変位量補正手段13を備えている。FFT演算複素振幅演算手段11は、前述したように、得られた干渉縞画像データに対してフーリエ変換を施すとともにFFT演算複素振幅を抽出するステップ3(S3)の処理を行うものであり、位相シフト変位量検出手段12は、前記FFT演算複素振幅演算手段11において演算されたFFT演算複素振幅に基づいて、上記ステップ4(S4)から上記ステップ6(S6)に相当する処理を行うものである。さらに、位相シフト変位量補正手段13は、上記位相シフト変位量検出手段12において検出された変位量に基づいて該変位量を補償し、被観察体2の誤差補正された位相を求めるものである。
【0056】
また、コンピュータ7は、図7に示すように、ソフト的に、FFT演算キャリア周波数演算手段21、傾斜量検出手段22および傾斜量補正手段23を備えている。FFT演算キャリア周波数演算手段21は、前述したように、得られた干渉縞画像データに対してフーリエ変換を施すとともにFFT演算キャリア周波数(fx,fy)を抽出するステップ13(S13)の処理を行うものであり、傾斜量検出手段22は、前記FFT演算キャリア周波数演算手段21において演算されたFFT演算キャリア周波数に基づいて、上記ステップ14(S14)に相当する処理を行うものである。さらに、傾斜量補正手段23は、上記傾斜量検出手段22において検出された参照面3の傾斜量に応じて、該傾斜量を補償し、被観察体2の位相を求めるステップ15、16(S15、S16)に相当する処理を行なうものである。
【0057】
なお、上述した2つの実施形態方法(位相シフト素子の誤差量検出、補正方法および傾斜量の検出、補正方法)は、両者を1つの検査工程あるいは補正工程において行ってもよく、このようにすれば、より効率的に縞画像の解析精度を上げることができる。
【0058】
このように、本実施形態方法においては、干渉計の走査中に発生した並進誤差と傾き誤差を検出し、演算により補正してから開口合成処理を行うようにしており、これによって、測定誤差のない大型の被測定形状FIJ[N][M]を求めることができる。
【0059】
なお、本発明の開口合成による大型被観察体の形状測定方法は、上記実施形態のものに限られるものではなく、その他の種々の態様の変更が可能である。例えば、上記位相シフトを行うための装置構成としてはPZT(ピエゾ素子)アクチュエータ10に限られるものではなく、また、PZT(ピエゾ素子)アクチュエータ10としても種々の態様を採りうる。
【0060】
図8は、上記PZT(ピエゾ素子)アクチュエータ10の2つの態様を示すものである。
【0061】
すなわち、第1の態様は、図8(A)に示すように、参照面(参照ミラー)3の裏面を支持する3つのピエゾ素子121、122、123を備え、支点部材としても機能するピエゾ素子121と各ピエゾ素子122、123とを結ぶ参照面3を有する参照ミラー上の、2本の直線Lx、Lyが互いに直交するように構成されたものである。3本のピエゾ素子121、122、123が同量だけ伸縮することにより位相シフトが行なわれ、さらにピエゾ素子122のみの伸縮により参照ミラーの参照面3がy軸を中心として回転するようにx軸方向に傾き、ピエゾ素子123のみの伸縮により参照ミラーの参照面3がx軸を中心として回転するようにy軸方向に傾くことになる。一方、第2の態様は、図8(B)に示すように、参照面(参照ミラー)3の裏面中央部を円柱状のピエゾチューブ124によって支持するように構成されたものである。このピエゾチューブ124の偏奇しない伸縮により位相シフトが行なわれ、一方、偏奇した伸縮により参照ミラーの参照面3がx軸方向およびy軸方向に自在に傾けられることになる。
【0062】
なお、上記実施形態のものでは位相シフト干渉計を用いたものについて説明しているが、本発明方法を実施し得る測定器としてはその他の干渉計装置、モアレ装置あるいは他の縞解析装置とすることが可能である。
【0063】
【発明の効果】
本発明の開口合成による大型被観察体の波面形状測定方法によれば、大型被観察体上を干渉計等の測定器の開口により走査して、測定された各小開口領域について測定器の走査中に発生した並進誤差と傾き誤差を検出し、演算により補正してから開口合成処理を行うようにしており、これによって、測定誤差のない大型の被測定形状FIJ[N][M]を求めることが可能である。
【0064】
そして、並進誤差と傾き誤差の検出は、前記被観察体の波面形状情報を担持した、走査の前後の2つの縞画像データにフーリエ変換を施し、その変換結果に基づいて演算を行うことによりなされ、別途ハード的な構成を要しないので、装置構成が複雑化したり大型化する虞がない。
【図面の簡単な説明】
【図1】本発明の一実施形態方法を説明するためのフローチャート
【図2】図1に示す実施形態方法を実施するための干渉計装置を示すブロック図
【図3】本実施形態方法における開口合成を説明するための概念図
【図4】図1の一部を詳しく説明するためのフローチャート
【図5】図4に示す方法の一部を説明するための概念図
【図6】図4に示す方法を実施するための構成を示すブロック図
【図7】図4に示す方法とは別の態様の方法を実施するための構成を示すブロック図
【図8】図2の一部を具体的に示すブロック図
【符号の説明】
1 マイケルソン型干渉計
2 被観察体表面
3 参照面
4 CCDカメラ
5 CCD
7 コンピュータ
7A モニタ画面
9 ピエゾ駆動部
10 PZTアクチュエータ
11 複素振幅演算手段
12 位相シフト変位量検出手段
13 位相シフト変位量補正手段
21 キャリア周波数演算手段
22 傾斜量検出手段
23 傾斜量補正手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the wavefront shape of a large object to be observed by aperture synthesis and a method for correcting the wavefront shape of a large object to be observed, and in particular, when observing the wavefront shape of the object to be observed using fringe information such as interference fringes. When the size of the object to be observed is larger than the measurement range of the measuring device, each time the observation position of the object to be observed is scanned, fringes are imaged, each small aperture fringe image is analyzed, and each small aperture fringe image is supported. And finally, a plurality of small aperture phases are connected to each other to obtain a wavefront shape of the entire object to be observed, and a wavefront shape measuring method for a large object to be observed using an aperture synthesis method and a measurement wavefront of the large object to be observed The present invention relates to a shape correction method.
[0002]
[Background Art and Problems to be Solved by the Invention]
In general, in a measuring instrument such as an interferometer, when measuring the surface shape of a large workpiece larger than the opening, the surface of the large workpiece is scanned by the small opening of the measuring instrument, and a large number of small pieces obtained are obtained. An aperture synthesis method is used in which measurement images of aperture shapes are connected to obtain the surface shape of a large workpiece. However, when connecting a large number of measurement images obtained by scanning a small aperture of a measuring instrument, it is extremely difficult to connect the measurement images with high accuracy due to the effects of translation error and tilt error during the scan. It is.
[0003]
Although attempts have been made to solve such problems related to aperture synthesis in measuring instruments, no good concrete measures have been found, and the development of a simple and highly accurate solution method has been desired.
[0004]
The present invention has been made in view of the above circumstances, and when using the aperture synthesis method to connect a large number of small aperture shape measurement images to obtain the surface shape of a large workpiece, the translation error for each measurement wavefront shape. To provide a method for measuring the wavefront shape of a large object to be observed and a method for correcting the measurement wavefront shape of a large object to be observed by the aperture synthesis method, which can connect the measured wavefront shapes with high accuracy by eliminating the influence of the tilt error. It is the purpose.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a method for measuring a wavefront shape of a large object to be observed by aperture synthesis, wherein the object to be observed and a measuring instrument divided into a plurality of regions are arranged so that a part of adjacent regions overlap each other. Obtained after obtaining element phase data using fringe analysis based on each of two-dimensional fringe images carrying wavefront shape information of a plurality of spatially continuous objects obtained by scanning . In the method of measuring the wavefront shape of a large object to be observed by aperture synthesis, the element phase data is connected by aperture synthesis to measure the wavefront shape of the object to be observed having a larger area than the observable region of the measuring instrument.
When obtaining each element phase data,
The carrier fringe is superimposed on the carrier fringe to carry the wavefront shape information of the object to be observed, and a Fourier transform is performed on an overlapping portion of a plurality of adjacent carrier fringe images, and calculation is performed based on the transformation result, Detect errors associated with relative scanning,
A plurality of element phase data adjacent to each other are connected after correcting an error accompanying the relative scanning of the plurality of element phase data adjacent to each other based on the detection value. It is.
[0006]
Further, the error due to the relative scanning is a carrier that undergoes Fourier transform on the overlapping portion of the plurality of carrier fringe image regions, and changes with a relative attitude shift between the object to be observed and the measuring instrument. It is possible to obtain a relative inclination amount between the object to be observed and the measuring device, which is obtained by calculating a frequency and performing calculation based on a plurality of carrier frequencies.
[0007]
In addition, the error due to the relative scanning is a complex that changes with a shift in the relative posture between the object to be observed and the measuring instrument by performing Fourier transform on the overlapping portion of the regions of the plurality of carrier fringe images. It is possible to obtain a relative translation error between the object to be observed and the measuring device obtained by calculating the amplitude and performing a calculation based on the plurality of complex amplitudes.
[0008]
Further, the error due to the relative scanning is a carrier that undergoes Fourier transform on the overlapping portion of the plurality of carrier fringe image regions, and changes with a relative attitude shift between the object to be observed and the measuring instrument. It is possible to obtain a relative inclination amount and translation error between the object to be observed and the measuring device, which are obtained by calculating a frequency and a complex amplitude and performing an operation based on the plurality of carrier frequencies and the plurality of complex amplitudes. It is.
[0009]
Further, the wavefront measurement shape correction method for a large object to be observed according to the present invention carries the wavefront shape information of the object to be observed after the detection is performed in the wavefront shape measurement method for the large object to be observed by aperture synthesis. In the fringe analysis of the fringe image, a correction operation for compensating for the detected tilt amount and translation error is performed.
[0010]
Note that each of the above-described methods according to the present invention can be applied to all fringe image analysis methods using the Fourier transform method, and can be applied to, for example, an interference fringe and moire fringe analysis or a three-dimensional projector using fringe projection. It is.
Here, the wavefront shape includes not only the surface shape but also a transmitted wavefront shape (for example, thickness unevenness, refractive index distribution, lens aberration, etc.).
[0011]
[Action]
The method for measuring the wavefront shape of a large object to be observed and the method for correcting the measured wavefront shape of the large object to be observed according to the present invention have been inspired by the following application already invented and disclosed by the present inventors. It came to solve the subject of aperture synthesis that has remained unsolved.
[0012]
That is, when the inventors of the present application perform Fourier transform on the fringe image data of adjacent small regions obtained by scanning guidance, the inventor is generated due to a deviation between the wavefront from the observed object and the wavefront from the reference. A carrier frequency and / or complex amplitude is obtained, and calculation is performed based on the plurality of carrier frequencies and / or the plurality of complex amplitudes before and after scanning, and a relative amount of inclination between the object to be observed and the reference and / or A method for determining the amount of displacement has been invented and already disclosed (Japanese Patent Application No. 2000-277444).
[0013]
With this technique, the relative tilt amount and / or displacement amount between the object to be observed and the reference can be obtained easily and with high accuracy.
Therefore, in the method of the present invention, the above disclosed invention is applied to measure the relative tilt error and / or translation error of each adjacent aperture wavefront shape, and the error is corrected based on the measurement result, thereby achieving high accuracy. It is possible to obtain a simple wavefront shape.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a shape measurement method and a measurement shape correction method for a large object to be observed by aperture synthesis according to an embodiment of the present invention will be described with reference to the drawings. Note that the method of the present embodiment will be described by taking as an example a case where it is applied to a phase shift interferometer apparatus.
[0015]
In addition, the method of the present embodiment obtains a plurality of interference fringe image data while scanning the interferometer and the object to be observed while the size of the object to be observed is larger than the aperture size of the interferometer device. It can be applied to the case where they are connected by synthesis.
[0016]
FIG. 1 is a flowchart schematically showing an embodiment method of the present invention, and FIG. 2 shows an interferometer apparatus for carrying out the embodiment method shown in FIG. That is, the aperture of the interferometer is scanned on the observation object 2 and an interference fringe image is acquired each time scanning is performed for a predetermined distance (S100). Next, Fourier transform is performed on the two fringe image data before and after scanning, the carrier frequency and complex amplitude of the fringe image are extracted, and the tilt error and translation error of each small aperture shape due to scanning guidance are detected (S101). ). Finally, as shown in FIG. 3, the scanning guide error is corrected by the aperture synthesis method, and the corrected small aperture shapes are connected (S102).
[0017]
Hereinafter, a method for detecting an inclination error and a translation error associated with scanning guidance and its processing operation in step 101 (S101) will be described with reference to the drawings.
[0018]
In this method, the surface shape of the object to be observed 2 obtained based on the relative shape between the surface of the object to be observed 2 and the reference (reference) plane 3 in the method for obtaining the surface shape of the object to be observed using the fringe analysis method. The fringe image data carrying information is subjected to Fourier transform to obtain the carrier frequency and complex amplitude of the fringe image data before and after scanning, and based on the carrier frequency and the complex amplitude, the relative inclination error of the scanning guide and the translation of the scanning guide An error is detected, and thereafter, a correction operation for compensating for the detected scanning guide error by the fringe image analysis of the fringe image data is performed.
[0019]
In general, in the Fourier transform fringe analysis method, the phase can be obtained using only one fringe image by introducing a carrier frequency (relative inclination between the surface of the observation object 2 and the reference surface 3). When the carrier frequency is introduced, the interference fringe intensity is expressed by the following equation (1).
[0020]
[Expression 1]
Figure 0004607311
[0021]
As described above, ξ can be expressed by ξ = 2πx / λ, where λ is the wavelength of light and x is the amount of displacement of the surface of the object 2 to be observed. Can be transformed into
[0022]
[Expression 2]
Figure 0004607311
However, c * (x, y) is a conjugate of c (x, y).
[0023]
[Equation 3]
Figure 0004607311
[0024]
When the above equation (2) is Fourier transformed, the following equation (4) can be obtained.
[0025]
[Expression 4]
Figure 0004607311
[0026]
Here, when the initial phase of the surface of the observation object 2 is ξ 0 and the phase after the movement of the observation object 2 is ξ 1 , the following expression (5) is obtained from the interference fringe image data at the start position.
[0027]
[Equation 5]
Figure 0004607311
[0028]
Next, the following expression (6) is obtained from the interference fringe image data after the object 2 is moved.
[0029]
[Formula 6]
Figure 0004607311
[0030]
Thereby, the following formula (7) is obtained.
[0031]
[Expression 7]
Figure 0004607311
[0032]
Therefore, the phase difference before and after the object 2 is moved is expressed by the following equation (8).
[0033]
[Equation 8]
Figure 0004607311
[0034]
Therefore, the displacement amount of the observed object 2 is expressed by the following equation (9).
[0035]
[Equation 9]
Figure 0004607311
[0036]
Further, by obtaining the average of the displacement amounts obtained for each interference fringe image obtained by the predetermined movement of the object 2 to be observed, highly accurate displacement (tilt error and translation error) can be detected. In addition, when detecting the displacement of the observation object 2 by the Fourier transform fringe analysis method, it is not always necessary to use the entire fringe image data, and sufficiently accurate displacement detection is performed even with a part of the fringe image data. Is possible.
[0037]
Note that an example in which the step 101 (S101) is applied to a phase shift displacement amount detection correction method will be described with reference to the flowchart of FIG.
[0038]
First, an interference fringe image on which spatial carrier fringes are superimposed and carrying the shape information of the observation object 2 is obtained by the CCD camera 4 (S1). Next, Fourier transform is performed on the obtained interference fringe image data (S2), spatial carrier frequencies (f x , f y ) are extracted (S3), and Fourier transform fringe analysis is performed based on the carrier frequencies. A complex amplitude c (x, y) described later is obtained (S4). Next, the displacement amount of the reference (reference) surface 3 is obtained (S5), whereby the displacement amount of the phase shift can be obtained (S6), and when performing fringe image analysis by the phase shift method (S6). The phase of the object 2 to be observed is obtained by correcting the displacement obtained in step S7.
[0039]
Note that the case where the present invention is applied not to the displacement amount detection correction method but to the inclination amount detection correction method is also expressed in the same manner as the case shown in FIG.
In addition, since the guide error can be detected with high accuracy in this way, correction calculation for compensating for this error with high accuracy is possible.
[0040]
In general, in the Fourier transform method, C (η−f x , ζ−f y ) is obtained by filtering.
As shown in FIG. 5, the peak of the spectrum existing at the position (f x , f y ) on the frequency coordinate system is moved to the coordinate origin, and the carrier frequency is removed. Next, by obtaining c (x, y) using inverse Fourier transform, a lap-processed phase is obtained. Next, the phase Φ (x, y) of the object to be measured is obtained by unwrapping. Here, (f x , f y ) is a carrier frequency, and a predetermined angular relationship (relative posture) between the surface of the observation object 2 and the reference surface 3, specifically, the above formula (1a) In consideration of the existence of the relationship, the values of (f x , f y ) are obtained, and the angular relationship between the surface of the observation object 2 and the reference surface 3 is obtained based on the values.
[0041]
For each value of (f x , f y ), the sub-peak position other than the maximum peak at the coordinate origin, that is, the position of C (η−f x , ζ−f y ) is obtained from the result of the above equation (4). Can be obtained. Thereby, θ x and θ y which are inclinations (postures) of the object 2 in the X direction and the Y direction can be obtained.
[0042]
Thus, by using the Fourier transform fringe analysis method, the posture (tilt) of the observation object 2 can be detected. When obtaining the posture (tilt) of the observation object 2 by the Fourier transform fringe analysis method, it is not necessary to use the entire area of the fringe image, and it is sufficiently effective to analyze a part of the fringe image area. Data can be obtained.
[0043]
In this way, the scanning guide error detection in step 101 (S101) is performed in step 100 (S100), and each small aperture image output M IJ [N] [M] (X direction number I as shown in FIG. 3). .., 0, 1, 2,..., Y direction number J = 0, 1, 2,. That is, when measuring the shape of the surface of the large object 2 having a size of L × P with an interferometer having an aperture size of N × M, for example, the X direction and the Y direction between adjacent captured images. A plurality of measurement outputs M IJ [N] [M] (I = 0, 1, 2,..., J = 0, 1, 2,. However, the error of the scanning guide is corrected for each measurement output obtained in this way.
[0044]
Note that the output value of the interferometer in the above-described case is represented by the following expression (10) including the tilt error and the translation error. Note that the error of the reference surface 3 is not taken into account in this equation (10).
[0045]
[Expression 10]
Figure 0004607311
[0046]
Then, the interference fringe image data corrected as described above are connected using the aperture synthesis method. In this case, the following equation (11) obtained by modifying the above equation (10) is used. Each small aperture image output is corrected to remove the tilt error and translation error, and in this state, each small aperture image is connected based on the phase relationship at a plurality of points in the overlapping region (or the opposing region). . A specific process of aperture synthesis for joining the small aperture images is performed using a well-known technique of interferometer aperture synthesis (for example, Japanese Patent Laid-Open Nos. 4-290905 and 4-290906).
[0047]
## EQU11 ##
Figure 0004607311
[0048]
In general, in the state where the above correction is not made, different tilt errors and translation errors occur for each small aperture shape. If two adjacent small aperture shapes are connected as they are, a large measurement error is caused in the subsequent results. Will occur. Further, when a large number of small aperture shapes are connected, this measurement error is cumulatively expanded.
[0049]
Therefore, according to the method of the present embodiment, the translational error and the tilt error generated by the scanning guidance of the interferometer are detected, corrected by calculation, and then the aperture synthesis process is performed, whereby there is no measurement error. A large measured shape F IJ [N] [M] is obtained.
[0050]
In addition, with respect to the tilt error, the above correction can be performed without providing an overlapping portion in each adjacent region. However, in general, with respect to the translation error, the reference of the relative position in each adjacent region is Since it is necessary, an overlapping portion of the area is necessary.
[0051]
In the method of the above embodiment, as shown in FIG. 3, the overlapping portion of the regions is half of the opening in each of the X direction and the Y direction. It is also possible to make the overlapping part a line.
[0052]
This is different from the above-described prior art in that adjacent regions need to overlap each other in plane.
In addition, since the light reflectivity and the like are different for each measurement region, it is preferable to perform analysis processing during aperture synthesis in consideration of this difference.
[0053]
Next, an apparatus for carrying out the method according to the embodiment of the present invention will be described with reference to FIG. 2, FIG. 6, and FIG.
[0054]
This apparatus is for carrying out the above-described embodiment method. As shown in FIG. 2, in the Michelson interferometer 1, this apparatus is formed by both reflected light beams from the surface of the observation object 2 and the reference (reference) surface 3. The interference fringes that are formed are formed on the imaging surface 5 of the CCD element of the CCD camera 4 and are input to the computer 7 equipped with a CPU and a memory for image processing via the image input board 6 and input interference fringe images. Various arithmetic processes are performed on the data, and the processing results are displayed on the monitor screen 7A. The interference fringe image data output from the CCD camera 4 is temporarily stored in the memory by the processing of the CPU. An output corresponding to the calculated result is input to the piezo drive unit 9 via the D / A conversion board 8 to drive and control a PZT (piezo element) actuator 10.
[0055]
As shown in FIG. 6, the computer 7 includes, in software, an FFT calculation complex amplitude calculation means 11, a phase shift displacement amount detection means 12, and a phase shift displacement amount correction means 13. As described above, the FFT calculation complex amplitude calculation means 11 performs the process of step 3 (S3) for performing Fourier transform on the obtained interference fringe image data and extracting the FFT calculation complex amplitude, The shift displacement amount detection means 12 performs processing corresponding to the above step 4 (S4) to step 6 (S6) based on the FFT calculation complex amplitude calculated by the FFT calculation complex amplitude calculation means 11. . Further, the phase shift displacement correction means 13 compensates for the displacement based on the displacement detected by the phase shift displacement detection means 12 and obtains the error-corrected phase of the object 2 to be observed. .
[0056]
Further, as shown in FIG. 7, the computer 7 includes, in software, an FFT calculation carrier frequency calculation means 21, an inclination amount detection means 22, and an inclination amount correction means 23. As described above, the FFT calculation carrier frequency calculation means 21 performs the Fourier transform on the obtained interference fringe image data and extracts the FFT calculation carrier frequency (f x , f y ) in step 13 (S13). The tilt amount detection means 22 performs a process corresponding to step 14 (S14) based on the FFT calculation carrier frequency calculated by the FFT calculation carrier frequency calculation means 21. Further, the tilt amount correcting means 23 compensates the tilt amount according to the tilt amount of the reference surface 3 detected by the tilt amount detecting means 22 and obtains the phase of the object 2 to be observed 15, 16 (S 15 , S16) is performed.
[0057]
Note that the above-described two embodiment methods (error amount detection / correction method and inclination amount detection / correction method of the phase shift element) may be performed in one inspection step or correction step. Therefore, the analysis accuracy of the fringe image can be increased more efficiently.
[0058]
As described above, in the method of the present embodiment, the translational error and the tilt error generated during the scanning of the interferometer are detected and corrected by calculation, and then the aperture synthesis process is performed. A large measured shape F IJ [N] [M] can be obtained.
[0059]
Note that the method for measuring the shape of a large object to be observed by aperture synthesis according to the present invention is not limited to the above-described embodiment, and various other aspects can be changed. For example, the apparatus configuration for performing the phase shift is not limited to the PZT (piezo element) actuator 10, and the PZT (piezo element) actuator 10 can take various forms.
[0060]
FIG. 8 shows two modes of the PZT (piezo element) actuator 10.
[0061]
That is, as shown in FIG. 8A, the first mode includes three piezo elements 121, 122, and 123 that support the back surface of the reference surface (reference mirror) 3, and also functions as a fulcrum member. Two straight lines Lx and Ly on a reference mirror having a reference surface 3 connecting 121 and the piezoelectric elements 122 and 123 are orthogonal to each other. The three piezo elements 121, 122, 123 expand and contract by the same amount to perform phase shift, and the piezo element 122 expands and contracts to rotate the reference plane 3 of the reference mirror about the y axis. The reference surface 3 of the reference mirror is inclined in the y-axis direction so as to rotate about the x-axis by the expansion and contraction of only the piezo element 123. On the other hand, as shown in FIG. 8B, the second mode is configured such that the center of the back surface of the reference surface (reference mirror) 3 is supported by a cylindrical piezo tube 124. The phase shift is performed by the non-uniform expansion / contraction of the piezo tube 124, while the reference surface 3 of the reference mirror is freely tilted in the x-axis direction and the y-axis direction by the uneven expansion / contraction.
[0062]
In addition, although the thing using a phase shift interferometer is demonstrated in the thing of the said embodiment, it is set as other interferometer apparatus, a moire apparatus, or another fringe analysis apparatus as a measuring device which can implement the method of this invention. It is possible.
[0063]
【The invention's effect】
According to the method for measuring the wavefront shape of a large object to be observed by aperture synthesis of the present invention, the large object is scanned with the opening of a measuring instrument such as an interferometer, and the measuring instrument is scanned for each small aperture region measured. A translation error and a tilt error that occur inside are detected, corrected by calculation, and then an aperture synthesis process is performed. This allows a large measured shape F IJ [N] [M] with no measurement error to be measured. It is possible to ask.
[0064]
Then, the translation error and the tilt error are detected by performing Fourier transform on the two fringe image data before and after the scan carrying the wavefront shape information of the object to be observed, and performing an operation based on the conversion result. Since a separate hardware configuration is not required, there is no possibility that the device configuration becomes complicated or large.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a method according to an embodiment of the present invention. FIG. 2 is a block diagram showing an interferometer apparatus for carrying out the method according to the embodiment shown in FIG. FIG. 4 is a conceptual diagram for explaining a part of FIG. 1. FIG. 5 is a conceptual diagram for explaining a part of the method shown in FIG. FIG. 7 is a block diagram showing a configuration for carrying out a method according to a mode different from the method shown in FIG. 4. FIG. 8 is a block diagram showing a part of FIG. Block diagram shown in [Description of symbols]
1 Michelson interferometer 2 Object surface 3 Reference surface 4 CCD camera 5 CCD
7 Computer 7A Monitor screen 9 Piezo drive unit 10 PZT actuator 11 Complex amplitude calculation means 12 Phase shift displacement amount detection means 13 Phase shift displacement amount correction means 21 Carrier frequency calculation means 22 Inclination amount detection means 23 Inclination amount correction means

Claims (6)

隣接する領域の一部が互いに重なるように複数の領域に分割された被観察体と測定器の相対的走査により得られた、空間的に連続する複数枚の前記被観察体の波面形状情報を担持した2次元の縞画像の各々に基づき縞解析を用いて要素位相データを得た後、得られた各要素位相データをつなぎ合わせて測定器の観察可能領域よりも面積の大きい被観察体の波面形状を測定する開口合成による大型被観察体の波面形状測定方法において、
前記要素位相データを得る際には、
前記縞画像にキャリア縞を重畳させ被観察体の波面形状情報を担持したキャリア縞画像となし、互いに隣接する複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、その変換結果に基づいて演算を行い、前記相対的走査に伴なう誤差を検出しておき、
前記互いに隣接する複数の要素位相データについての前記相対的走査に伴なう誤差を、前記検出値に基づいて補正した後、これら互いに隣接する複数の要素位相データを接続することを特徴とする開口合成による大型被観察体の波面形状測定方法。
Wavefront shape information of a plurality of spatially continuous objects to be observed obtained by relative scanning of the object to be observed divided into a plurality of areas and a measuring instrument so that a part of adjacent areas overlap each other. After obtaining the element phase data using the fringe analysis based on each of the supported two-dimensional fringe images, the obtained element phase data are connected to obtain an object having an area larger than the observable region of the measuring instrument. In the wavefront shape measurement method of a large object to be observed by aperture synthesis to measure the wavefront shape,
When obtaining the element phase data,
A carrier fringe image is formed by superimposing carrier fringes on the fringe image and carrying the wavefront shape information of the object to be observed, and a Fourier transform is performed on an overlapping portion of a plurality of adjacent carrier fringe images, based on the transformation result Perform an operation to detect an error associated with the relative scanning,
The aperture is characterized in that the plurality of element phase data adjacent to each other is connected after correcting an error accompanying the relative scanning of the plurality of element phase data adjacent to each other based on the detection value. A method for measuring the wavefront shape of a large object to be observed by synthesis.
前記相対的走査に伴なう誤差が、前記隣接する複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、前記被観察体と前記測定器の相対的姿勢のずれに伴って変化するキャリア周波数を求め、複数の該キャリア周波数に基づきスペクトルの演算を行って求められる、該被観察体と該測定器との相対的な傾き量であることを特徴とする請求項1記載の開口合成による大型被観察体の波面形状測定方法。A carrier in which the error due to the relative scanning is subjected to a Fourier transform on an overlapping portion of the adjacent plurality of carrier fringe image regions, and changes in accordance with a relative posture deviation between the object to be observed and the measuring device. The aperture synthesis according to claim 1, wherein the frequency is a relative inclination amount between the object to be observed and the measuring device, which is obtained by calculating a spectrum based on the plurality of carrier frequencies. A method for measuring the wavefront shape of a large object. 前記相対的走査に伴なう誤差が、前記隣接する複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、前記被観察体と前記測定器の相対的姿勢のずれに伴って変化する複素振幅を求め、複数の該複素振幅に基づき演算を行って求められる該被観察体と該測定器との相対的な並進誤差であることを特徴とする請求項1記載の開口合成による大型被観察体の波面形状測定方法。An error caused by the relative scanning is a complex in which a Fourier transform is performed on an overlapping portion of the adjacent plurality of carrier fringe image regions, and the error varies with a relative attitude shift between the object to be observed and the measuring instrument. 2. A large object to be observed by aperture synthesis according to claim 1, characterized in that the amplitude is a relative translation error between the object to be observed and the measuring device obtained by calculating based on the plurality of complex amplitudes. Body wavefront shape measurement method. 前記相対的走査に伴なう誤差が、前記隣接する複数のキャリア縞画像の領域の重なり部分にフーリエ変換を施し、前記被観察体と前記測定器の相対的姿勢のずれに伴って変化するキャリア周波数および複素振幅を求め、複数の該キャリア周波数および複数の該複素振幅に基づき演算を行って求められる、前記被観察体と該測定器との相対的な傾き量および並進誤差であることを特徴とする請求項1記載の開口合成による大型被観察体の波面形状測定方法。A carrier in which the error due to the relative scanning is subjected to a Fourier transform on an overlapping portion of the adjacent plurality of carrier fringe image regions, and changes in accordance with a relative posture deviation between the object to be observed and the measuring device. A relative inclination amount and a translation error between the object to be observed and the measuring device, which are obtained by calculating a frequency and a complex amplitude and performing an operation based on the plurality of carrier frequencies and the plurality of complex amplitudes. The wavefront shape measuring method for a large object to be observed by aperture synthesis according to claim 1. 前記縞画像が干渉縞画像であることを特徴とする請求項1〜4のうちいずれか1項記載の開口合成による大型被観察体の波面形状測定方法。  The wavefront shape measuring method for a large object to be observed by aperture synthesis according to any one of claims 1 to 4, wherein the fringe image is an interference fringe image. 請求項4記載の開口合成による大型被観察体の波面形状測定方法において、前記検出が行われた後、前記被観察体の波面形状情報を担持した縞画像の縞解析において、前記検出された傾き量および並進誤差を補償する補正演算を行うことを特徴とする開口合成による大型被観察体の測定波面形状補正方法。  5. The method for measuring a wavefront shape of a large object to be observed by aperture synthesis according to claim 4, wherein after the detection, the detected inclination in a fringe analysis of a fringe image carrying the wavefront shape information of the object to be observed. A method for correcting a measured wavefront shape of a large object to be observed by aperture synthesis, comprising performing a correction operation to compensate for an amount and a translation error.
JP2000355388A 2000-11-22 2000-11-22 Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis Expired - Fee Related JP4607311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000355388A JP4607311B2 (en) 2000-11-22 2000-11-22 Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000355388A JP4607311B2 (en) 2000-11-22 2000-11-22 Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis

Publications (2)

Publication Number Publication Date
JP2002162214A JP2002162214A (en) 2002-06-07
JP4607311B2 true JP4607311B2 (en) 2011-01-05

Family

ID=18827807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000355388A Expired - Fee Related JP4607311B2 (en) 2000-11-22 2000-11-22 Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis

Country Status (1)

Country Link
JP (1) JP4607311B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064967A1 (en) * 2002-01-25 2003-08-07 Coherix Corporation Interferometry method based on changing frequency
JP4731951B2 (en) * 2005-02-28 2011-07-27 キヤノン株式会社 Interference fringe analysis method and apparatus, measurement apparatus, exposure apparatus, and device manufacturing method
JP2009079933A (en) * 2007-09-25 2009-04-16 Fujinon Corp Interferometer device for measuring large-sized sample
JP5235591B2 (en) * 2008-10-10 2013-07-10 富士フイルム株式会社 Method for measuring transmitted wavefront of birefringent optical element
JP5560628B2 (en) * 2009-09-04 2014-07-30 ソニー株式会社 Inspection apparatus and inspection method
JP7213465B2 (en) * 2019-03-25 2023-01-27 株式会社東京精密 Image processing method and measuring device
CN114812428B (en) * 2021-01-21 2023-09-01 中国科学院上海光学精密机械研究所 Planar surface shape sub-aperture splicing interferometry device and measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127007A (en) * 1989-09-14 1992-04-28 Ricoh Co Ltd Measuring method and measuring apparatus of toroidal surface
JP2002162205A (en) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd Method for detecting and correcting analytical error of striped image

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213704A (en) * 1985-03-20 1986-09-22 Ricoh Co Ltd Apparatus for measuring shape of wave front
JP2892747B2 (en) * 1990-02-28 1999-05-17 株式会社日立製作所 Tilt or height detection method and device, and projection exposure method and device
JPH10332350A (en) * 1997-05-30 1998-12-18 Nikon Corp Shape measuring method using interferometer
JP3835505B2 (en) * 1998-11-13 2006-10-18 株式会社東京精密 Non-contact surface shape measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127007A (en) * 1989-09-14 1992-04-28 Ricoh Co Ltd Measuring method and measuring apparatus of toroidal surface
JP2002162205A (en) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd Method for detecting and correcting analytical error of striped image

Also Published As

Publication number Publication date
JP2002162214A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
JP3946499B2 (en) Method for detecting posture of object to be observed and apparatus using the same
JP4583619B2 (en) Method for detecting fringe image analysis error and method for correcting fringe image analysis error
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
JP3871309B2 (en) Phase shift fringe analysis method and apparatus using the same
JP5597205B2 (en) Apparatus for measuring shape of test surface and program for calculating shape of test surface
JP2008544295A (en) Method for reconstructing the surface topology of an object
JP5037610B2 (en) System and method for erasing lines in an optical cross-sectional image
JP4607311B2 (en) Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis
JP3661865B2 (en) Spherical shape measurement analysis method
US6621579B2 (en) Fringe analysis method and apparatus using Fourier transform
JP4108085B2 (en) Optical distortion correction apparatus and optical distortion correction method
JP4610117B2 (en) Fourier transform fringe analysis method and apparatus
JP2000205822A (en) Image measurement system and its image correcting method
JP5082175B2 (en) Wavefront aberration measuring device
JP2004198382A (en) Interference device
Echter et al. Carrier fringe analysis algorithms for three degree of freedom optical probing
JP2004053307A (en) Microstructure measuring method and its measuring apparatus
JP4187124B2 (en) Interferometer device using fringe scan
CN116972956A (en) Detection device and detection method for three-mode vibration
JPH11325818A (en) Apparatus and method for absolute correction
Chen et al. One-Shot Three-Dimensional Surface Profilometry using DMD-Based Two-Frequency Moiré and Fourier Transform Technique
JP2002195886A (en) Method for detecting amount of wavelength shift
JP2019124561A (en) Displacement acquisition apparatus, displacement acquisition method, and program
JP2000321015A (en) Method and apparatus for measuring surface accuracy
JPH09297010A (en) Laser noncontact strain gauge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees