JP4601212B2 - Data transmission equipment - Google Patents

Data transmission equipment Download PDF

Info

Publication number
JP4601212B2
JP4601212B2 JP2001190557A JP2001190557A JP4601212B2 JP 4601212 B2 JP4601212 B2 JP 4601212B2 JP 2001190557 A JP2001190557 A JP 2001190557A JP 2001190557 A JP2001190557 A JP 2001190557A JP 4601212 B2 JP4601212 B2 JP 4601212B2
Authority
JP
Japan
Prior art keywords
power value
received signal
data transmission
average power
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001190557A
Other languages
Japanese (ja)
Other versions
JP2003008543A (en
Inventor
隆朗 小山
樹広 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001190557A priority Critical patent/JP4601212B2/en
Publication of JP2003008543A publication Critical patent/JP2003008543A/en
Application granted granted Critical
Publication of JP4601212B2 publication Critical patent/JP4601212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直交周波数分割多重変調方式を用いたデータ伝送装置の同期検出方法及びこの同期検出方法を適用したデータ伝送装置に関するものである。
【0002】
【従来の技術】
近年、移動体や地上系のディジタル無線通信用の多重方式として、マルチパスやフェージングやゴーストに強いという特徴を有する直交周波数分割多重変調方式(Orthogonal Frequency Division Multiplex:OFDM)が注目されている。この方式は、互いに同じ周波数間隔FSをもって配置された、数十〜数百種類の多数本の搬送波を、それぞれのシンボル周波数FSy(=1/TSy)でディジタル変調した信号、すなわち、OFDM信号(直交周波数分割多重変調信号)を用いて情報符号を伝送する方式である。
この方式で変調送信された伝送信号を、受信側で受信し復調する場合、まず、受信したOFDM信号から同期を再生する必要がある。
そのため、送信側で、前もってデータ伝送処理の単位であるフレームの最初に無信号期間であるヌル区間と、所定期間に伝送帯域の最大周波数から最小周波数まで変化する信号成分を持つスイープ信号等の同期シンボル群を挿入し、受信側でこれらを検出して同期を再生する方式が、提案(テレビジョン学会技術報告 VOL.19,NO.18 1995年8月発行)されている。 また、ヌル区間の検出、スイープ信号を用いたクロック同期の具体的な方法の一例としては、特開平11−168446号の公報に記載の発明がある。
【0003】
以下、この例を図3、図5を用いて簡単に説明する。
図5は一定周期毎にヌル区間の挿入された伝送信号を受信し、前述のヌル区間を検出し、受信信号と同期をとるディジタルデータ伝送装置の受信機側の構成を示したものである。
送信機Txから出力された、一定周期毎にヌル区間の挿入された伝送信号を受信機Rxで受信し、受信機RxのRF/IF復調部31にてベースバンド信号に変換し、A/D変換器32でディジタル変換されたディジタル受信信号S13がヌル区間検出器10に与えられる。 ヌル区間検出器10は後述する図3の構成により、受信したディジタル受信信号S13がヌル区間であるか否かを判定し、ヌル区間検出パルスS14を出力する。
図3は前述のヌル期間検出器10の具体的な構成を示したブロック図である。前述のディジタル受信信号S13は電力算出器2に入力され、受信信号の電力値S11が求められる。 電力算出器2で求められた受信信号電力値S11は、受信信号振幅判定器6及び平均電力算出器3に入力される。 平均電力算出器3は所定期間の受信信号電力値S11を基に、例えば1シンボル毎に、その平均電力値が求められる。
更に、遅延器4において、平均電力算出器3で求められた平均電力値に所定の遅延(例えば、1シンボル期間)が施され、遅延平均電力値となって出力される。
そして、乗算器5において、この遅延平均電力値に所定の係数値が乗算され、受信信号の平均電力値に応じたしきい値となり、受信信号振幅判定器6に出力される。
そして、受信信号振幅判定器6において、入力されてくる受信信号電力値S11が、乗算器5から出力される受信信号の平均電力値に応じた、レベル可変のしきい値と比較され、判定結果S12として出力される。 判定結果S12は、例えば受信信号電力値S11がしきい値を上回った場合“H”レベルを、下回った場合“L”レベルとなる。
判定結果12に基づいて、ヌル区間判定器7は、受信信号電力値S11が上記しきい値を下回るLレベル期間が所定の長さ(時間)続くか否かを判別し、ヌル区間であると判定すると、ヌル区間検出パルスS14を出力する。
以上のような構成により、受信信号からヌル区間を検出し、フレームの開始点として同期再生を行うものである。
【0004】
【発明が解決しようとする課題】
空間等の無線伝送路を用いてデータを伝送する場合、受信機で受信した信号に雑音が混入してC/N比が劣化する場合がある。 この場合、上記のようなデータ伝送装置では、単にデータ誤りを引き起こすだけでなく、前述のヌル区間にも雑音が重畳されることによって、ヌル区間の検出が困難になってくる。
以下、前述の受信信号のヌル区間の電力値と、受信信号振幅判定器で使用されるしきい値の関係を図4に示す。
図4(c)は雑音が少ない場合の受信信号電力値S11の一例を示したもので、21はヌル区間を示す。 また、22は前記受信信号振幅判定器6で使用されるしきい値を示す。
ここで、ヌル区間21での受信信号電力値は十分に低いため、他の期間の受信信号電力値の平均電力から算出されるしきい値22との差が確保されている。
この場合、受信信号振幅判定器6において、受信信号電力値S11としきい値22が比較され、その判定結果S12は、図4(d)に示したようになる。
判定結果S12はヌル期間21にLレベルが連続した波形となり、ヌル区間の存在が正しく検出できる状態になっている。
一方、図4(e)は、雑音が大きい場合の受信信号電力値S11の一例を示したものである。 この波形のヌル区間21の受信電力値S11は、雑音が混入した分、上昇してしまい、しきい値22との差が確保されなくなる。 この場合、判定結果S12は、図4(f)に示したようになり、ヌル区間21の受信電力値S11は、連続してしきい値22以下にならなくなる。 その結果、ヌル区間の存在を正しく検出できないという問題が生じる。
本発明は、これらの欠点を除去し、大きな雑音が混入した場合においてもヌル区間を確実に検出することができ、悪条件の伝送路でも安定した同期検出のできるデータ伝送装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、ディジタル変調方式を用いたデータ伝送装置であって、伝送信号に挿入された所定の同期シンボル群に基づき受信側の同期再生を行うデータ伝送装置において、受信側に、受信信号の帯域外ノイズを除去するフィルタ回路を設け、当該帯域外ノイズを除去した受信信号の電力値を求め、その受信信号電力値における所定期間の平均電力値に基づきしきい値を算出し、該受信信号電力値と該しきい値を用いて上記同期シンボル群の内の無信号期間を検出判定し、該判定結果に基づき受信側の同期再生を行うことを特徴とするデータ伝送装置である。
また、該データ伝送装置は、直交周波数分割多重変調方式を用いたデータ伝送装置であり、フィルタ回路としてディジタルフィルタを用いる。
さらに、上記フィルタ回路を通して求めた平均電力値と、該フィルタ回路を通さずに求めた平均電力値を求め、双方の値の差によって帯域外ノイズの大きさを検出した結果を表示する手段を付加したデータ伝送装置である。
即ち、受信信号の電力算出を行う前段に、フィルタ手段を設けることにより、本来受信すべき信号のみについて受信電力算出及び平均電力算出を行い、その結果を用いて無信号期間(ヌル区間)の検出判定を行うものである。
その結果、受信信号に雑音が混入した場合でも、ヌル区間の受信電力の上昇を抑えることができる。 つまり、ヌル区間の判定用のしきい値との差が確保できることになり、ヌル区間を正常に検出できるようになる。
【0006】
【発明の実施の形態】
本発明のヌル区間の判定検出の第1の実施例を図1を用いて説明する。
ヌル区間検出器10の前段にフィルタ1を設けることにより、ディジタル受信信号に混入した雑音の除去処理を施したディジタル受信信号S13を得て、ヌル区間検出器10に与えられる。 なお、フィルタ1は、FIR型やIIR型などのごく一般的なフィルタ回路から、その他の特殊な構成のフィルタ回路など、受信信号の帯域、雑音の性質や回路規模等、それぞれのアプリケーションに適した回路で構成すればよい。 特に図示していないが、本実施例では5タップのFIR型フィルタ(タップ係数:−0.125、+0.75、+0.375、+0.75、−0.125)を用いた。
そのフィルタ処理の結果得られた信号は、電力算出器2に出力され、受信信号電力値S11が求められる。 電力算出器2で求められた受信信号電力値S11は、受信信号振幅判定器6及び平均電力算出器3に入力される。 平均電力算出器3は、所定期間の受信信号電力値S11を基に、例えば1シンボル毎に、その平均電力値が求められる。
更に、遅延器4において、平均電力算出器3で求められた平均電力値に所定の遅延(例えば、1シンボル期間)が施され、遅延平均電力値となって出力される。
そして、乗算器5において、この遅延平均電力値に所定の係数値が乗算され、受信信号の平均電力値に応じたしきい値となり、受信信号振幅判定器6に出力される。
そして、受信信号振幅判定器6において、入力されてくる受信信号電力値S11が、乗算器5から出力される受信信号の平均電力値に応じた、レベル可変のしきい値と比較され、判定結果S12として出力される。 判定結果S12は例えば受信信号電力値S11がしきい値を上回った場合Hレベルを、下回った場合Lレベルとなる。
判定結果12に基づいて、ヌル区間判定器7は、受信信号電力値S11が上記しきい値を下回るLレベル期間が所定の長さ(時間)続くかを判別し、ヌル区間であると判定すると、ヌル区間検出パルス14を出力する。
【0007】
次に、前述の受信信号のヌル区間の電力値と、受信信号振幅判定器で使用されるしきい値の関係を図2に示す。
図2(a)は、フィルタ1によって雑音除去された信号に基づいて求められた受信信号電力値S11の一例を示したもので、21はヌル区間を示す。 また、22は前記受信信号振幅判定器6で使用されるしきい値を示す。
ここでは、受信信号に雑音が混入しても、従来での図4(e)の波形のようなヌル区間21での受信信号電力値の上昇は抑えられ、他の期間の受信信号電力値の平均電力から算出されるしきい値22との差が確保されている。 この場合、受信信号振幅判定器6において受信信号電力値S11としきい値22が比較され、その判定結果S12は図2(b)に示したようになる。 判定結果S12はヌル期間21にLレベルが連続した波形となり、ヌル区間の存在が正しく検出することができる。
【0008】
次に、本発明の第2の実施例を、図1を用いて説明する。
ここでは、ヌル区間検出器10とは別に、電力算出器11、平均電力算出器12、ノイズ検出器13を設けることにより帯域外ノイズの大きさを求め、その検出結果を表示装置14によって外部に表示するものである。
まず、ディジタル受信信号S13を電力算出器11に与え、雑音が混入した状態での受信信号電力値を求め、平均電力算出器12に出力する。 平均電力算出器12によってフィルタ1を通さずに求めた平均電力値は、前記の平均電力算出器3によるフィルタ1を通して求めた平均電力値と共にノイズ検出器13に与えられる。 ノイズ検出器13では双方の値の差によって帯域外ノイズの大きさを検出し、その結果を表示装置14出力する。 この表示装置14では、LED、メータ等を用いて、受信機外部に帯域外ノイズの大きさを表示することにより、受信機が使用される現場において雑音の状況を把握でき、より安定した受信地点を見つける場合の有効な判断材料に利用できる。
また、図5におけるA/D変換器32の前段に受信信号レベルを制御するAGC回路15が設けられている場合、上記の平均電力算出器12によって得られたフィルタ1を通さない信号の平均電力値をAGC回路15の制御信号として用いることにより、雑音を含めた受信信号の電力にあわせたAGC処理を行うことができ、後段のA/D変換器32が飽和することを回避することが可能となる。
なお、以上の実施形態は、同期シンボル群のひとつであるヌルシンボルの検出に適用した例を示したが、例えば同じ同期シンボルであるスイープ信号の検出などに際しても適用してもよく、また、受信信号に混入する雑音についても、例えば空間に伝播しているガウス雑音だけでなく、隣接チャネルからの干渉波などにも効果があることはいうまでもない。
【0009】
【発明の効果】
以上説明したように本発明によれば、受信信号をフィルタ回路によって雑音を除去することによりヌル区間の平均電力値の上昇を抑えるので、大きな雑音が混入した場合においてもヌル区間を確実に検出することができ、悪条件の伝送路でも安定した同期検出のできるデータ伝送装置を提供することができる。
【図面の簡単な説明】
【図1】本発明のヌル区間検出器の一実施例を示すブロック図である。
【図2】本発明の動作を説明する各部波形図である。
【図3】従来技術のヌル区間検出器を示すブロック図である。
【図4】従来技術の動作を説明する各部波形図である。
【図5】受信機の構成を示すをブロック図である。
【符号の説明】
1:フィルタ、2:電力算出器、3:平均電力算出器、4:遅延器、5:乗算器、6:受信信号振幅判定器、7:ヌル区間判定器、10:ヌル区間検出器、11:電力算出器、12:平均電力算出器、13:ノイズ検出器、14:表示装置15:AGC、21:ヌル区間、22:しきい値、31:RF/IF復調部、32:A/D変換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synchronization detection method for a data transmission apparatus using an orthogonal frequency division multiplexing modulation system and a data transmission apparatus to which this synchronization detection method is applied.
[0002]
[Prior art]
2. Description of the Related Art In recent years, an orthogonal frequency division multiplex modulation (OFDM) has been attracting attention as a multiplexing scheme for mobile radio and terrestrial digital radio communications, which has the characteristics of being resistant to multipath, fading, and ghosting. In this method, a signal obtained by digitally modulating a large number of tens to several hundreds of carriers arranged at the same frequency interval FS at each symbol frequency FSy (= 1 / TSy), that is, an OFDM signal (orthogonal) This is a method for transmitting an information code using a frequency division multiplexed modulation signal.
When a transmission signal modulated and transmitted by this method is received and demodulated on the receiving side, first, it is necessary to regenerate synchronization from the received OFDM signal.
Therefore, on the transmission side, synchronization of a null signal that is a no-signal period at the beginning of a frame that is a unit of data transmission processing in advance and a sweep signal that has a signal component that changes from the maximum frequency to the minimum frequency of the transmission band in a predetermined period A method of inserting symbols and detecting them on the receiving side to reproduce the synchronization has been proposed (TVJ Technical Report VOL.19, NO.18 issued in August 1995). Moreover, as an example of a specific method of detecting a null interval and clock synchronization using a sweep signal, there is an invention described in Japanese Patent Laid-Open No. 11-168446.
[0003]
Hereinafter, this example will be briefly described with reference to FIGS.
FIG. 5 shows the configuration of the receiver side of the digital data transmission apparatus that receives a transmission signal in which a null interval is inserted at regular intervals, detects the aforementioned null interval, and synchronizes with the received signal.
The transmission signal output from the transmitter Tx and having a null interval inserted at regular intervals is received by the receiver Rx, converted into a baseband signal by the RF / IF demodulator 31 of the receiver Rx, and A / D The digital reception signal S13 digitally converted by the converter 32 is supplied to the null section detector 10. The null interval detector 10 determines whether or not the received digital reception signal S13 is a null interval, and outputs a null interval detection pulse S14 with the configuration of FIG. 3 described later.
FIG. 3 is a block diagram showing a specific configuration of the null period detector 10 described above. The aforementioned digital reception signal S13 is input to the power calculator 2, and the power value S11 of the reception signal is obtained. The received signal power value S <b> 11 obtained by the power calculator 2 is input to the received signal amplitude determiner 6 and the average power calculator 3. The average power calculator 3 obtains the average power value for each symbol, for example, based on the received signal power value S11 for a predetermined period.
Further, in the delay unit 4, a predetermined delay (for example, one symbol period) is applied to the average power value obtained by the average power calculator 3, and output as a delayed average power value.
Then, the multiplier 5 multiplies the delay average power value by a predetermined coefficient value to obtain a threshold value corresponding to the average power value of the received signal, and outputs the threshold value to the received signal amplitude determiner 6.
Then, the received signal amplitude determination unit 6 compares the input received signal power value S11 with a level variable threshold value corresponding to the average power value of the received signal output from the multiplier 5, and the determination result. Output as S12. The determination result S12 is, for example, “H” level when the received signal power value S11 exceeds the threshold value, and “L” level when the received signal power value S11 falls below the threshold value.
Based on the determination result 12, the null section determiner 7 determines whether or not the L level period in which the received signal power value S11 falls below the threshold value continues for a predetermined length (time). If determined, a null section detection pulse S14 is output.
With the configuration as described above, a null interval is detected from the received signal, and synchronous reproduction is performed as the start point of the frame.
[0004]
[Problems to be solved by the invention]
When data is transmitted using a wireless transmission path such as a space, noise may be mixed in a signal received by a receiver and the C / N ratio may be deteriorated. In this case, the data transmission apparatus as described above not only causes a data error but also makes noise difficult to detect because noise is also superimposed on the above-described null period.
FIG. 4 shows the relationship between the power value in the null section of the received signal and the threshold value used in the received signal amplitude determiner.
FIG. 4C shows an example of the received signal power value S11 when there is little noise, and 21 indicates a null section. Reference numeral 22 denotes a threshold value used in the received signal amplitude determiner 6.
Here, since the received signal power value in the null section 21 is sufficiently low, a difference from the threshold value 22 calculated from the average power of the received signal power values in other periods is secured.
In this case, the received signal amplitude determiner 6 compares the received signal power value S11 with the threshold value 22, and the determination result S12 is as shown in FIG.
The determination result S12 has a waveform in which the L level continues in the null period 21, and is in a state where the presence of the null section can be detected correctly.
On the other hand, FIG. 4E shows an example of the received signal power value S11 when the noise is large. The received power value S11 of the null section 21 of this waveform rises as noise is mixed in, and a difference from the threshold value 22 is not ensured. In this case, the determination result S12 is as shown in FIG. 4F, and the received power value S11 in the null section 21 does not continuously become the threshold value 22 or less. As a result, there arises a problem that the presence of the null interval cannot be detected correctly.
The present invention eliminates these drawbacks, and provides a data transmission device that can reliably detect a null interval even when large noise is mixed, and that can perform stable synchronization detection even in an unfavorable transmission path. It is the purpose.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a data transmission apparatus using a digital modulation method, and performing data reproduction on the receiving side based on a predetermined synchronization symbol group inserted in a transmission signal. A filter circuit for removing out-of-band noise of the received signal is provided on the receiving side, the power value of the received signal from which the out-of-band noise has been removed is obtained, and a threshold value is determined based on the average power value of the received signal power value for a predetermined period. , And using the received signal power value and the threshold value, detect and determine a no-signal period in the synchronization symbol group, and perform synchronous reproduction on the receiving side based on the determination result It is a transmission device.
The data transmission apparatus is a data transmission apparatus using an orthogonal frequency division multiplexing modulation system, and uses a digital filter as a filter circuit.
Furthermore, a means for obtaining the average power value obtained through the filter circuit and the average power value obtained without passing through the filter circuit and displaying the result of detecting the magnitude of the out-of-band noise by the difference between both values is added. This is a data transmission device.
In other words, by providing a filter means before the power calculation of the received signal, the received power calculation and average power calculation are performed for only the signal that should be received, and the result is used to detect the no-signal period (null section). Judgment is performed.
As a result, an increase in received power in the null section can be suppressed even when noise is mixed in the received signal. That is, a difference from the threshold value for determining the null section can be secured, and the null section can be normally detected.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the determination and detection of the null interval according to the present invention will be described with reference to FIG.
By providing the filter 1 in the preceding stage of the null interval detector 10, a digital reception signal S13 that has been subjected to a process for removing noise mixed in the digital reception signal is obtained and provided to the null interval detector 10. The filter 1 is suitable for each application such as the band of received signals, the nature of the noise, the circuit scale, etc., from a very general filter circuit such as an FIR type or an IIR type to a filter circuit having another special configuration. What is necessary is just to comprise with a circuit. Although not particularly illustrated, a 5-tap FIR filter (tap coefficients: −0.125, +0.75, +0.375, +0.75, and −0.125) was used in this example.
A signal obtained as a result of the filtering process is output to the power calculator 2 to obtain a received signal power value S11. The received signal power value S <b> 11 obtained by the power calculator 2 is input to the received signal amplitude determiner 6 and the average power calculator 3. The average power calculator 3 obtains the average power value for each symbol, for example, based on the received signal power value S11 for a predetermined period.
Further, in the delay unit 4, a predetermined delay (for example, one symbol period) is applied to the average power value obtained by the average power calculator 3, and output as a delayed average power value.
Then, the multiplier 5 multiplies the delay average power value by a predetermined coefficient value to obtain a threshold value corresponding to the average power value of the received signal, and outputs the threshold value to the received signal amplitude determiner 6.
Then, the received signal amplitude determination unit 6 compares the input received signal power value S11 with a level variable threshold value corresponding to the average power value of the received signal output from the multiplier 5, and the determination result. Output as S12. The determination result S12 is, for example, H level when the received signal power value S11 exceeds the threshold value, and L level when the reception signal power value S11 falls below the threshold value.
Based on the determination result 12, the null section determiner 7 determines whether or not the L level period in which the received signal power value S11 falls below the threshold value continues for a predetermined length (time), and determines that it is a null section. The null interval detection pulse 14 is output.
[0007]
Next, FIG. 2 shows the relationship between the power value in the null section of the received signal and the threshold value used in the received signal amplitude determiner.
FIG. 2A shows an example of the received signal power value S11 obtained based on the signal from which noise has been removed by the filter 1, and 21 indicates a null interval. Reference numeral 22 denotes a threshold value used in the received signal amplitude determiner 6.
Here, even if noise is mixed in the received signal, an increase in the received signal power value in the null section 21 as in the conventional waveform of FIG. 4E is suppressed, and the received signal power value in other periods is suppressed. A difference from the threshold value 22 calculated from the average power is secured. In this case, the received signal amplitude determination unit 6 compares the received signal power value S11 with the threshold value 22, and the determination result S12 is as shown in FIG. The determination result S12 has a waveform in which the L level continues in the null period 21, and the presence of the null section can be detected correctly.
[0008]
Next, a second embodiment of the present invention will be described with reference to FIG.
Here, in addition to the null interval detector 10, the power calculator 11, the average power calculator 12, and the noise detector 13 are provided to obtain the magnitude of the out-of-band noise, and the detection result is externally displayed by the display device 14. To display.
First, the digital reception signal S <b> 13 is given to the power calculator 11, a reception signal power value in a state where noise is mixed is obtained, and is output to the average power calculator 12. The average power value obtained without passing through the filter 1 by the average power calculator 12 is given to the noise detector 13 together with the average power value obtained through the filter 1 by the average power calculator 3. The noise detector 13 detects the magnitude of out-of-band noise based on the difference between the two values, and outputs the result to the display device 14. In this display device 14, by displaying the magnitude of out-of-band noise on the outside of the receiver using an LED, a meter, etc., the situation of noise can be grasped at the site where the receiver is used, and a more stable reception point It can be used as an effective judgment material when finding.
Further, when the AGC circuit 15 for controlling the reception signal level is provided in the previous stage of the A / D converter 32 in FIG. By using the value as a control signal for the AGC circuit 15, AGC processing can be performed in accordance with the power of the received signal including noise, and saturation of the A / D converter 32 in the subsequent stage can be avoided. It becomes.
Although the above embodiment shows an example applied to the detection of a null symbol that is one of the synchronization symbol groups, it may be applied to the detection of a sweep signal that is the same synchronization symbol, for example. Needless to say, the noise mixed in the signal is effective not only for Gaussian noise propagating in space but also for interference waves from adjacent channels.
[0009]
【The invention's effect】
As described above, according to the present invention, since the noise of the received signal is removed by the filter circuit to suppress the increase in the average power value in the null section, the null section is reliably detected even when large noise is mixed. Therefore, it is possible to provide a data transmission apparatus that can perform stable synchronization detection even in a transmission path under adverse conditions.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a null interval detector according to the present invention.
FIG. 2 is a waveform diagram of each part for explaining the operation of the present invention.
FIG. 3 is a block diagram illustrating a prior art null interval detector.
FIG. 4 is a waveform diagram of each part for explaining the operation of the prior art.
FIG. 5 is a block diagram showing a configuration of a receiver.
[Explanation of symbols]
1: filter, 2: power calculator, 3: average power calculator, 4: delay unit, 5: multiplier, 6: received signal amplitude determiner, 7: null interval determiner, 10: null interval detector, 11 : Power calculator, 12: average power calculator, 13: noise detector, 14: display device 15: AGC, 21: null section, 22: threshold value, 31: RF / IF demodulator, 32: A / D converter.

Claims (4)

ディジタル変調方式を用いたデータ伝送装置であって、伝送信号に挿入された所定の同期シンボル群に基づき受信側の同期再生を行うデータ伝送装置において、受信側に、受信信号の帯域外ノイズを除去するフィルタ回路を設け、当該帯域外ノイズを除去した受信信号の電力値を求め、その受信信号電力値における所定期間の平均電力値に基づきしきい値を算出し、該受信信号電力値と該しきい値を用いて上記同期シンボル群の内の無信号期間を検出判定し、該判定結果に基づき受信側の同期再生を行う手段を付加したこと、
上記フィルタ回路を通して求めた平均電力値と、上記フィルタ回路を通さずに求めた平均電力値を求め、双方の値の差によって帯域外ノイズの大きさを検出した結果を表示する手段を付加したこと、
を特徴とするデータ伝送装置。
A data transmission apparatus using a digital modulation method, which performs synchronous reproduction on the reception side based on a predetermined synchronization symbol group inserted in the transmission signal, and removes out-of-band noise of the reception signal on the reception side. A filter circuit is provided to obtain a power value of the received signal from which the out-of-band noise has been removed, and a threshold value is calculated based on an average power value of the received signal power value for a predetermined period. Detecting and determining a no-signal period in the synchronization symbol group using a threshold value, and adding means for performing synchronous reproduction on the receiving side based on the determination result ;
Means for obtaining the average power value obtained through the filter circuit and the average power value obtained without passing through the filter circuit and displaying the result of detecting the magnitude of the out-of-band noise by the difference between the two values are added. ,
A data transmission device characterized by the above.
請求項1記載のデータ伝送装置を、直交周波数分割多重変調方式を用いた伝送装置としたことを特徴とするデータ伝送装置。  A data transmission apparatus according to claim 1, wherein the data transmission apparatus is a transmission apparatus using an orthogonal frequency division multiplexing modulation system. 請求項1または2記載のデータ伝送装置において、上記フィルタ回路としてディジタルフィルタを用いたことを特徴とするデータ伝送装置。  3. The data transmission apparatus according to claim 1, wherein a digital filter is used as the filter circuit. 直交周波数分割多重変調方式を用いたデータ伝送装置であって、伝送信号に挿入された所定の同期シンボル群に基づき受信側の同期再生を行うデータ伝送装置において、受信側に、受信信号の帯域外ノイズを除去するディジタルフィルタを設け、
当該帯域外ノイズを除去した受信信号の電力値を求め、その受信信号電力値における所定期間の平均電力値に基づきしきい値を算出し、該受信信号電力値と該しきい値を用いて上記同期シンボル群の内の無信号期間を検出判定し、該判定結果に基づき受信側の同期再生を行う手段を付加したこと、
上記フィルタ回路を通して求めた平均電力値と、上記フィルタ回路を通さずに求めた平均電力値を求め、双方の値の差によって帯域外ノイズの大きさを検出した結果を表示する手段を付加したこと、
を特徴とするデータ伝送装置。
A data transmission apparatus using an orthogonal frequency division multiplexing modulation system that performs synchronous reproduction on the reception side based on a predetermined synchronization symbol group inserted in the transmission signal. Provide a digital filter to remove noise,
A power value of the received signal from which the out-of-band noise is removed is obtained, a threshold value is calculated based on an average power value of the received signal power value for a predetermined period, and the received signal power value and the threshold value are used to calculate the threshold value. Detecting and determining a no-signal period in the synchronization symbol group, and adding means for performing synchronous reproduction on the receiving side based on the determination result ;
Means for obtaining the average power value obtained through the filter circuit and the average power value obtained without passing through the filter circuit and displaying the result of detecting the magnitude of the out-of-band noise by the difference between the two values are added. ,
A data transmission device characterized by the above.
JP2001190557A 2001-06-25 2001-06-25 Data transmission equipment Expired - Fee Related JP4601212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190557A JP4601212B2 (en) 2001-06-25 2001-06-25 Data transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190557A JP4601212B2 (en) 2001-06-25 2001-06-25 Data transmission equipment

Publications (2)

Publication Number Publication Date
JP2003008543A JP2003008543A (en) 2003-01-10
JP4601212B2 true JP4601212B2 (en) 2010-12-22

Family

ID=19029308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190557A Expired - Fee Related JP4601212B2 (en) 2001-06-25 2001-06-25 Data transmission equipment

Country Status (1)

Country Link
JP (1) JP4601212B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102769A (en) * 1994-09-30 1996-04-16 Toshiba Corp Ofdm synchronization demodulation circuit
JPH09214465A (en) * 1996-02-06 1997-08-15 Toshiba Corp Ofdm receiver
JPH1070518A (en) * 1996-08-26 1998-03-10 Pioneer Electron Corp Digital broadcast receiver
JPH114210A (en) * 1997-06-12 1999-01-06 Hitachi Denshi Ltd Data transmitter
JPH11168446A (en) * 1997-12-03 1999-06-22 Hitachi Denshi Ltd Method for detecting synchronization in data transmitting device and device therefor
JP2000151551A (en) * 1998-11-09 2000-05-30 Mitsubishi Electric Corp Receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102769A (en) * 1994-09-30 1996-04-16 Toshiba Corp Ofdm synchronization demodulation circuit
JPH09214465A (en) * 1996-02-06 1997-08-15 Toshiba Corp Ofdm receiver
JPH1070518A (en) * 1996-08-26 1998-03-10 Pioneer Electron Corp Digital broadcast receiver
JPH114210A (en) * 1997-06-12 1999-01-06 Hitachi Denshi Ltd Data transmitter
JPH11168446A (en) * 1997-12-03 1999-06-22 Hitachi Denshi Ltd Method for detecting synchronization in data transmitting device and device therefor
JP2000151551A (en) * 1998-11-09 2000-05-30 Mitsubishi Electric Corp Receiver

Also Published As

Publication number Publication date
JP2003008543A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
JP3568182B2 (en) Data transmission device synchronization detection method and device
JP3568180B2 (en) Data transmission equipment
US7177615B2 (en) Receiver with adjacent interfering wave elimination function
US7099397B2 (en) Receiver of an orthogonal frequency division multiplexing system
EP0618687B1 (en) Phase correction for radio receiver based an training sequence
JP2004134883A (en) Receiver
JP2002354057A (en) Multi-channel frequency shift keying modulator and demodulator for power-line communication system
US6038275A (en) Digital broadcasting receiver
JP2006174218A (en) Ofdm reception apparatus and ofdm reception method
JP4601212B2 (en) Data transmission equipment
JP3768108B2 (en) OFDM receiver
JPH11154925A (en) Digital transmitter
JP3145054B2 (en) Orthogonal frequency division multiplexing receiver
JP3768090B2 (en) Data transmission apparatus synchronization control method
JP4336248B2 (en) Transmission control signal receiver and digital terrestrial television broadcast receiver using the same
JP3351412B2 (en) DC offset removing method and receiving circuit provided with DC offset removing circuit
JP4365056B2 (en) Transmission state information display method and OFDM receiver
JP2701745B2 (en) Symbol clock controller
JP2000269921A (en) Null signal detector
JP2003258759A (en) Demodulation method for transmission signal, receiver, and signal transmission system
JP3860485B2 (en) Preamble detection method in radio receiver
KR100502019B1 (en) frequency offset detection method
KR20050006397A (en) Apparutus and Method for detecting Pseudo Noise sequence in OFDM receiver
JP4918882B2 (en) Symbol determining apparatus, symbol determining method and program for digital modulation signal
EP1117178A2 (en) Receiver for digital broadcasting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees