JP4599997B2 - Manufacturing method of wiring board with built-in solid electrolytic capacitor - Google Patents

Manufacturing method of wiring board with built-in solid electrolytic capacitor Download PDF

Info

Publication number
JP4599997B2
JP4599997B2 JP2004323264A JP2004323264A JP4599997B2 JP 4599997 B2 JP4599997 B2 JP 4599997B2 JP 2004323264 A JP2004323264 A JP 2004323264A JP 2004323264 A JP2004323264 A JP 2004323264A JP 4599997 B2 JP4599997 B2 JP 4599997B2
Authority
JP
Japan
Prior art keywords
layer
forming
capacitor electrode
insulating
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004323264A
Other languages
Japanese (ja)
Other versions
JP2006135132A (en
Inventor
達広 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004323264A priority Critical patent/JP4599997B2/en
Publication of JP2006135132A publication Critical patent/JP2006135132A/en
Application granted granted Critical
Publication of JP4599997B2 publication Critical patent/JP4599997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、固体コンデンサを内蔵した配線基板の製造方法に関する。 The present invention relates to a method for manufacturing a wiring board incorporating a solid capacitor.

高容量のコンデンサを基板内部に埋め込んだ構成とするためには、多層配線基板の一層では形成できず、2層以上の層にわたって設けなければならなかった(特許文献1〜3参照)。
このように高容量のコンデンサを基板内部に埋め込むと、2層以上の層を必要とするため、基板内部の専有面積が大きくなり、配線層を引き回すのことが困難となってくる。
また、2層以上の層を必要とするため、複数のコンデンサを基板内部に埋め込むことは困難であった。
In order to have a configuration in which a high-capacitance capacitor is embedded in the substrate, it cannot be formed by one layer of the multilayer wiring board, and must be provided over two or more layers (see Patent Documents 1 to 3).
When a capacitor having a high capacity is embedded in the substrate as described above, two or more layers are required. Therefore, the area occupied by the substrate becomes large, and it becomes difficult to route the wiring layer.
Further, since two or more layers are required, it is difficult to embed a plurality of capacitors inside the substrate.

特開2002−100870号公報JP 2002-100870 A 特開2002−100875号公報JP 2002-1000087 A 特開2002−246759号公報JP 2002-246759 A

本発明の目的は、高容量の固体電解コンデンサを配線基板に内蔵した配線基板の製造方法を提供することである。 An object of the present invention is to provide a method of manufacturing a wiring board in which a high-capacity solid electrolytic capacitor is built in the wiring board.

本発明は、請求項1に記載のように、
(1) 表面に酸化アルミニウム層からなる絶縁被膜を設けたアルミニウム箔の片面に、導電性高分子層を形成する工程、
(2) 前記導電性高分子層上に、部分的にパターン状絶縁性樹脂層を形成する工程、
(3) 前記アルミニウム箔面、導電性高分子樹脂層およびパターン状絶縁性樹脂層面上に、金属薄膜層を形成する工程、
(4) 前記金属薄膜層上に電解銅めっき層を形成する工程、
(5) 前記絶縁性樹脂層上のパターン形状の周縁部を残して、電解銅めっき層を除去し、コンデンサ電極を形成する工程、
(6) 前記アルミニウム箔の絶縁性樹脂層面に、プリント配線基板を積層する工程、
(7) 前記アルミニウム箔の他方の面を、フォトリソ法、エッチングによりコンデンサ電極を形成する工程、
(8) 前記コンデンサ電極形成面に絶縁層を形成する工程、
(9) 前記絶縁層にレーザー加工により、コンデンサ電極の導通路を形成する工程、
(10) 前記導通路にめっき金属層を形成する工程、
(11) 前記電解銅めっき層に配線層を形成する工程、
の工程により、固体電解コンデンサを内蔵した配線基板の製造方法である。
The present invention as described in claim 1
(1) A step of forming a conductive polymer layer on one surface of an aluminum foil provided with an insulating film comprising an aluminum oxide layer on the surface;
(2) A step of partially forming a patterned insulating resin layer on the conductive polymer layer;
(3) forming a metal thin film layer on the aluminum foil surface, the conductive polymer resin layer, and the patterned insulating resin layer surface;
(4) forming an electrolytic copper plating layer on the metal thin film layer;
(5) The step of removing the electrolytic copper plating layer to leave a peripheral edge of the pattern shape on the insulating resin layer and forming a capacitor electrode;
(6) A step of laminating a printed wiring board on the insulating resin layer surface of the aluminum foil,
(7) forming a capacitor electrode on the other surface of the aluminum foil by photolithography, etching;
(8) forming an insulating layer on the capacitor electrode forming surface;
(9) A step of forming a conduction path of the capacitor electrode by laser processing on the insulating layer,
(10) A step of forming a plated metal layer on the conduction path;
(11) forming a wiring layer on the electrolytic copper plating layer;
This is a method for manufacturing a wiring board having a solid electrolytic capacitor built-in.

本発明は、請求項2に記載のように、
(1) 表面に酸化アルミニウム層からなる絶縁被膜を設けたアルミニウム箔の片面に、部分的に絶縁性樹脂層を形成する工程、
(2) 前記絶縁性樹脂層を形成されていないアルミニウム箔上に、部分的に導電性高分子樹脂層を形成する工程、
(3) 前記アルミニウム箔面、導電性高分子樹脂層およびパターン状絶縁性樹脂層面上に、金属薄膜層を形成する工程、
(4) 前記金属薄膜層上に電解銅めっき層を形成する工程、
(5) 前記絶縁性樹脂層上のパターン形状の周縁部を残して、電解銅めっき層を除去し、コンデンサ電極を形成する工程、
(6) 前記アルミニウム箔の絶縁性樹脂層面に、プリント配線基板を積層する工程、
(7) 前記アルミニウム箔の他方の面を、フォトリソ法、エッチングによりコンデンサ電極を形成する工程、
(8) 前記コンデンサ電極形成面に絶縁層を形成する工程、
(9) 前記絶縁層にレーザー加工により、コンデンサ電極の導通路を形成する工程、
(10) 前記導通路にめっき金属層を形成する工程、
(11) 前記電解銅めっき層に配線層を形成する工程、
の工程により、固体電解コンデンサを内蔵した配線基板の製造方法である。
The present invention, as described in claim 2,
(1) A step of partially forming an insulating resin layer on one surface of an aluminum foil provided with an insulating coating composed of an aluminum oxide layer on the surface;
(2) A step of partially forming a conductive polymer resin layer on an aluminum foil on which the insulating resin layer is not formed,
(3) forming a metal thin film layer on the aluminum foil surface, the conductive polymer resin layer, and the patterned insulating resin layer surface;
(4) forming an electrolytic copper plating layer on the metal thin film layer;
(5) The step of removing the electrolytic copper plating layer to leave a peripheral edge of the pattern shape on the insulating resin layer and forming a capacitor electrode;
(6) A step of laminating a printed wiring board on the insulating resin layer surface of the aluminum foil,
(7) forming a capacitor electrode on the other surface of the aluminum foil by photolithography, etching;
(8) forming an insulating layer on the capacitor electrode forming surface;
(9) A step of forming a conduction path of the capacitor electrode by laser processing on the insulating layer,
(10) A step of forming a plated metal layer on the conduction path;
(11) forming a wiring layer on the electrolytic copper plating layer;
This is a method for manufacturing a wiring board having a solid electrolytic capacitor built-in.

本発明は、請求項3に記載のように、
(1) 表面に酸化アルミニウム層からなる絶縁被膜を設けたアルミニウム箔の片面に、導電性高分子樹脂層を形成する工程、
(2) 前記導電性高分子樹脂層上に、パターン状導電性ペーストからなるコンデンサ電極を形成する工程、
(3) 前記コンデンサ電極が設けられていない導電性高分子樹脂層を除去する工程、
(4) 前記アルミニウム箔の絶縁被膜を除去する工程、
(5) 前記絶縁被膜を除去したアルミニウム箔の、コンデンサ電極が設けられている面側に、パターン状導電性ペースト層からなるコンデンサ電極を形成する工程、
(6) 前記絶縁被膜を除去したアルミニウム箔のコンデンサ電極が形成されていない面に、プリント配線基板を積層する工程、
(7) 前記コンデンサ電極の形成面に絶縁樹脂層を形成する工程、
(8) 前記絶縁層にレーザー加工により、コンデンサ電極の導通路を形成する工程、
(9) 前記導通路にめっき金属層を形成する工程、
(10)前記電解銅めっき層に配線層を形成する工程、
の工程により、固体電解コンデンサを内蔵した配線基板の製造方法である。
The present invention, as described in claim 3,
(1) A step of forming a conductive polymer resin layer on one surface of an aluminum foil provided with an insulating film comprising an aluminum oxide layer on the surface;
(2) forming a capacitor electrode made of a patterned conductive paste on the conductive polymer resin layer;
(3) removing the conductive polymer resin layer not provided with the capacitor electrode;
(4) removing the insulating film of the aluminum foil;
(5) A step of forming a capacitor electrode made of a patterned conductive paste layer on the surface of the aluminum foil from which the insulating film has been removed, on which the capacitor electrode is provided,
(6) A step of laminating a printed wiring board on a surface of the aluminum foil from which the insulating film has been removed, on which the capacitor electrode is not formed,
(7) forming an insulating resin layer on the capacitor electrode forming surface;
(8) A step of forming a conduction path of the capacitor electrode by laser processing on the insulating layer,
(9) a step of forming a plated metal layer on the conductive path;
(10) forming a wiring layer on the electrolytic copper plating layer;
This is a method for manufacturing a wiring board having a solid electrolytic capacitor built-in.

本発明は、アルミニウム箔に予めコンデンサを形成し、このアルミニウムを多層配線基板と一体化することで、高容量の固体電解コンデンサを内蔵した配線基板の製造が可能となった。 According to the present invention, a capacitor is formed in advance on an aluminum foil, and this aluminum is integrated with a multilayer wiring substrate, thereby making it possible to manufacture a wiring substrate incorporating a high-capacity solid electrolytic capacitor.

本発明の製造方法の例を図1に基づいて説明する。
化成処理により表面に酸化アルミニウム膜からなる絶縁被膜を形成し、粗面化された厚さアルミニウム箔1(図1(a)参照)の片面に、例えば、スピンコートにより導電性高分子樹脂をコートし、導電性高分子樹脂層2を形成する(図1(b)参照)。
次に、前記導電性高分子樹脂層2上に、例えば、スクリーン印刷法によりコンデンサ電極部以外の部分の位置に絶縁性樹脂層3を形成する(図1(c)参照)。
次に、前記アルミニウム箔1の全面にスパッタリング法により、金属薄膜4を形成する(図1(d)参照)。
そして、前記金属薄膜4上に、電解めっき法によりめっきし、金属層5を形成する(図1(e)参照)。
この前記導電性高分子樹脂層2を設けた側の金属層5の表面に、前記金属層5をパターニングし、コンデンサ電極6aを形成する(図1(f)参照)。
前記コンデンサ電極形成後、前記アルミニウム箔1を、多層配線基板7上に、例えば、プリプレグからなる接着層8を用いて積層一体化した(図1(g)参照)。
次に、アルミニウム箔1側の金属層5の表面を、パターニングし、コンデンサ電極4a,1aを形成した(図1(h)参照)。
前記コンデンサ電極形成後、絶縁層9を積層した。そして、コンデンサの電極を絶縁層9の上部に取り出すため、絶縁層9に炭酸ガスレーザー等を用いて穴を形成した(図1(i)参照)。
次に、無電解めっき法により、前記絶縁層9(穴の部分を含む)にめっき膜からなる金属薄膜を形成後、電解めっき法により、めっき膜からなる金属層10を形成した(図1(j)参照)。
そして、前記金属層10をパターニングし、配線層10aを形成し、配線基板を製造した(図1(l)参照)。
以上の工程を経ることで、固体電解コンデンサを内蔵した配線基板を製造することができた。
The example of the manufacturing method of this invention is demonstrated based on FIG.
An insulating coating made of an aluminum oxide film is formed on the surface by chemical conversion treatment, and a conductive polymer resin is coated on one side of the roughened aluminum foil 1 (see FIG. 1A) by, for example, spin coating Then, the conductive polymer resin layer 2 is formed (see FIG. 1B).
Next, the insulating resin layer 3 is formed on the conductive polymer resin layer 2 at a position other than the capacitor electrode portion by, for example, screen printing (see FIG. 1C).
Next, a metal thin film 4 is formed on the entire surface of the aluminum foil 1 by sputtering (see FIG. 1D).
Then, a metal layer 5 is formed on the metal thin film 4 by electroplating (see FIG. 1 (e)).
On the surface of the metal layer 5 on the side where the conductive polymer resin layer 2 is provided, the metal layer 5 is patterned to form a capacitor electrode 6a (see FIG. 1 (f)).
After the capacitor electrode was formed, the aluminum foil 1 was laminated and integrated on the multilayer wiring board 7 by using, for example, an adhesive layer 8 made of a prepreg (see FIG. 1G).
Next, the surface of the metal layer 5 on the aluminum foil 1 side was patterned to form capacitor electrodes 4a and 1a (see FIG. 1 (h)).
After the capacitor electrode was formed, an insulating layer 9 was laminated. And in order to take out the electrode of a capacitor | condenser in the upper part of the insulating layer 9, the hole was formed in the insulating layer 9 using the carbon dioxide laser etc. (refer FIG.1 (i)).
Next, after forming a metal thin film made of a plating film on the insulating layer 9 (including the hole portion) by electroless plating, a metal layer 10 made of plating film was formed by electrolytic plating (FIG. 1 ( j)).
And the said metal layer 10 was patterned, the wiring layer 10a was formed, and the wiring board was manufactured (refer FIG.1 (l)).
Through the above steps, a wiring board incorporating a solid electrolytic capacitor could be manufactured.

本発明の他の製造方法を図2に基づいて説明する。
化成処理により表面に酸化アルミニウム膜からなる絶縁被膜を形成し、粗面化された厚さ40μmのアルミニウム箔1(図2(a)参照)の片面に、コンデンサ電極部以外の部分の位置に絶縁性樹脂層3を形成した(図2(b)参照)。
次に、前記絶縁性樹脂層3の開口部に、導電性高分子樹脂をコートし、導電性高分子樹脂層2を形成した(図2(c)参照)。
次に、前記アルミニウム箔1の全面に例えば、スパッタリング法により、金属薄膜4を形成した(図2(d)参照)。
そして、前記金属薄膜4上に、例えば、電解めっき法によりめっきし、厚さ12μmの金属層5を形成した(図2(e)参照)。
この前記導電性高分子樹脂層2を設けた側の金属層5をパターニングし、コンデンサ電極6aを形成した(図2(f)参照)。
前記コンデンサ電極形成後、接着層8を用いて多層配線基板7と積層一体化した(図2(g)参照)。
次に、アルミニウム箔1側の金属層5をパターニングし、コンデンサ電極4a,1aを形成した(図2(h)参照)。
前記コンデンサ電極形成後、絶縁層9を積層した。そして、コンデンサの電極を絶縁層9の上部に取り出すため、絶縁層9に炭酸ガスレーザー等を用いて穴を形成した(図2(i)参照)。
次に、無電解めっき法により、前記絶縁層9(穴の部分を含む)にめっき膜からなる金属薄膜を形成後、電解めっき法により、めっき膜からなる金属層10を形成した(図2(j)参照)。
そして、前記金属層10をパターニングし、配線層10aを形成した(図2(l)参照)。
以上の工程を経ることで、固体電解コンデンサを内蔵した配線基板を製造することができた。
Another manufacturing method of the present invention will be described with reference to FIG.
An insulating coating made of an aluminum oxide film is formed on the surface by chemical conversion treatment, and insulation is provided at a position other than the capacitor electrode portion on one side of a roughened aluminum foil 1 having a thickness of 40 μm (see FIG. 2A). A functional resin layer 3 was formed (see FIG. 2B).
Next, a conductive polymer resin was coated on the opening of the insulating resin layer 3 to form a conductive polymer resin layer 2 (see FIG. 2C).
Next, a metal thin film 4 was formed on the entire surface of the aluminum foil 1 by, eg, sputtering (see FIG. 2D).
Then, a metal layer 5 having a thickness of 12 μm was formed on the metal thin film 4 by, for example, an electrolytic plating method (see FIG. 2E).
The metal layer 5 on the side where the conductive polymer resin layer 2 was provided was patterned to form a capacitor electrode 6a (see FIG. 2 (f)).
After the capacitor electrode was formed, it was laminated and integrated with the multilayer wiring board 7 using the adhesive layer 8 (see FIG. 2G).
Next, the metal layer 5 on the aluminum foil 1 side was patterned to form capacitor electrodes 4a and 1a (see FIG. 2 (h)).
After the capacitor electrode was formed, an insulating layer 9 was laminated. And in order to take out the electrode of a capacitor | condenser on the upper part of the insulating layer 9, the hole was formed in the insulating layer 9 using the carbon dioxide laser etc. (refer FIG.2 (i)).
Next, after forming a metal thin film made of a plating film on the insulating layer 9 (including the hole portion) by electroless plating, a metal layer 10 made of plating film was formed by electrolytic plating (FIG. 2 ( j)).
Then, the metal layer 10 was patterned to form a wiring layer 10a (see FIG. 2 (l)).
Through the above steps, a wiring board incorporating a solid electrolytic capacitor could be manufactured.

図3は、本発明の製造方法の他の例を示すものである。
まず、図3(a)に示すように、アルミニウム箔1を化成処理し、表面に酸化アルミニウムからなる絶縁被膜を形成する。
次に、図3(b)に示すように、前記アルミニウム箔1の片面に導電性高分子樹脂層2を形成する。
図3(c)に示すように、前記導電性高分子樹脂層2上に、スクリーン印刷法で部分的に導電性ペースト層を設け、コンデンサ電極6を形成する。そして、前記コンデンサ電極6を硬化後、コンデンサ電極以外の部分の導電性高分子樹脂層、および絶縁被膜を酸処理により除去する。
次に、乾燥後、図3(d)に示すように、前記導電性高分子樹脂層2を除去したアルミニウム箔1面に、導電性ペーストをスクリーン印刷することによりコンデンサ電極20を形成する。
そして、図3(e)に示すように、このようにして形成した固体電解コンデンサを接着層8を介して多層配線基板7と積層する。この時、前記コンデンサ電極6,20上に絶縁性樹脂層30も同時に形成する。
次に、図3(f)に示すように、コンデンサ電極を回路に接続するため、前記絶縁性樹脂層30にレーザー加工によりコンデンサ電極のある部分に穴開け加工を行い、穴開け加工絶縁樹脂30aを形成する。
図3(g)に示すように、この穴開け加工絶縁樹脂30aを無電解めっきにより、金属薄膜を形成後、電解めっきにより金属層10を形成する。
そして、図3(h)に示すように、前記金属層10を、フォトリソグラフィ工程、エッチングによって、配線層10aを形成することで、固体電解コンデンサを内蔵した配線基板を製造する。
FIG. 3 shows another example of the production method of the present invention.
First, as shown in FIG. 3A, the aluminum foil 1 is subjected to chemical conversion treatment, and an insulating film made of aluminum oxide is formed on the surface.
Next, as shown in FIG. 3B, a conductive polymer resin layer 2 is formed on one surface of the aluminum foil 1.
As shown in FIG. 3C, a conductive paste layer is partially provided on the conductive polymer resin layer 2 by screen printing to form a capacitor electrode 6. Then, after the capacitor electrode 6 is cured, the conductive polymer resin layer and the insulating film other than the capacitor electrode are removed by acid treatment.
Next, after drying, as shown in FIG. 3D, the capacitor electrode 20 is formed by screen-printing a conductive paste on the surface of the aluminum foil 1 from which the conductive polymer resin layer 2 has been removed.
Then, as shown in FIG. 3 (e), the solid electrolytic capacitor thus formed is laminated on the multilayer wiring board 7 via the adhesive layer 8. At this time, an insulating resin layer 30 is simultaneously formed on the capacitor electrodes 6 and 20.
Next, as shown in FIG. 3 (f), in order to connect the capacitor electrode to the circuit, the insulating resin layer 30 is subjected to drilling in a portion where the capacitor electrode is provided by laser processing, and the drilling insulating resin 30a. Form.
As shown in FIG. 3G, a metal thin film is formed on the perforated insulating resin 30a by electroless plating, and then the metal layer 10 is formed by electrolytic plating.
And as shown in FIG.3 (h), the said metal layer 10 forms the wiring layer 10a by the photolithographic process and an etching, and the wiring board incorporating a solid electrolytic capacitor is manufactured.

(実施例1)
本発明の実施例を図1に基づいて説明する。
化成処理により表面に酸化アルミニウム膜からなる絶縁被膜を形成し、粗面化された厚さ40μmのアルミニウム箔1(図1(a)参照)の片面に、1000rpm、30秒の条件でスピンコートにより導電性高分子樹脂をコートし、80℃のオーブンで乾燥することで、厚さ1μmの導電性高分子樹脂層2を形成した(図1(b)参照)。
次に、前記導電性高分子樹脂層2上に、プリント配線基板の表面にコーティングされるソルダーレジストをスクリーン印刷法によりコンデンサ電極部以外の部分の位置に印刷、140℃で乾燥させることで、厚さ10μmの絶縁性樹脂層3を形成した(図1(c)参照)。
次に、前記アルミニウム箔1の全面に銅をスパッタリング法により、厚さ0.3μmの金属薄膜4を形成した(図1(d)参照)。
そして、前記金属薄膜4上に、銅を電解めっき法によりめっきし、厚さ12μmの金属層5を形成した(図1(e)参照)。
この前記導電性高分子樹脂層2を設けた側の金属層5の表面に、ドライレジストフィルム(日立化成工業製 RY3315 厚さ15μm)をラミネート後、露光量40mJ/cm2でマスクパターン露光後、1%濃度の炭酸ナトリウム溶液で現像処理し、さらに、塩化第二鉄液からなるエッチング液で金属層5をパターニングし、コンデンサ電極6aを形成した(図1(f)参照)。
前記コンデンサ電極形成後、残ったドライレジストフィルムを、5%濃度の水酸化ナトリウム溶液を用いて除去した前記アルミニウム箔1を、多層配線基板7上に、厚さ80μmのプリプレグ(日立化成工業製 AS−5000GP)からなる接着層8を用いて真空プレスにより積層一体化した(図1(g)参照)。
次に、アルミニウム箔1側の金属層5の表面に、ドライレジストフィルム(日立化成工業製 RY3315 厚さ15μm)をラミネート後、露光量40mJ/cm2でマスクパターン露光後、1%濃度の炭酸ナトリウム溶液で現像処理し、さらに、塩化第二鉄液からなるエッチング液で金属層5をパターニングし、コンデンサ電極4a,1aを形成した(図1(h)参照)。
前記コンデンサ電極形成後、残ったドライレジストフィルムを、5%濃度の水酸化ナトリウム溶液を用いて除去し、再度、コンデンサ電極4a,1a上に、厚さ80μmのプリプレグ(日立化成工業製 AS−5000GP)からなる絶縁層9を積層した。そして、コンデンサの電極を絶縁層9の上部に取り出すため、絶縁層9に炭酸ガスレーザーを用いて直径80μmの穴を形成した(図1(i)参照)。
次に、無電解銅めっき法により、前記絶縁層9(穴の部分を含む)に銅めっき膜からなる1μmの金属薄膜を形成後、電解銅めっき法により、厚さ12μmの銅めっき膜からなる金属層10を形成した(図1(j)参照)。
そして、前記金属層10の表面に、ドライレジストフィルム(日立化成工業製 RY3315 厚さ15μm)をラミネート後、露光量40mJ/cm2でマスクパターン露光後、1%濃度の炭酸ナトリウム溶液で現像処理し、さらに、塩化第二鉄液からなるエッチング液で金属層10をパターニングし、配線層10aを形成した。続いて、前記配線層形成後、残ったドライレジストフィルムを、5%濃度の水酸化ナトリウム溶液を用いて除去し、配線基板を製造した(図1(l)参照)。
以上の工程を経ることで、固体電解コンデンサを内蔵した配線基板を製造することができた。
Example 1
An embodiment of the present invention will be described with reference to FIG.
An insulating coating composed of an aluminum oxide film is formed on the surface by chemical conversion treatment, and spin coating is performed on one side of a roughened aluminum foil 1 having a thickness of 40 μm (see FIG. 1 (a)) at 1000 rpm for 30 seconds. The conductive polymer resin was coated and dried in an oven at 80 ° C. to form a conductive polymer resin layer 2 having a thickness of 1 μm (see FIG. 1B).
Next, a solder resist coated on the surface of the printed wiring board is printed on the conductive polymer resin layer 2 at a position other than the capacitor electrode portion by screen printing, and dried at 140 ° C. An insulating resin layer 3 having a thickness of 10 μm was formed (see FIG. 1C).
Next, a metal thin film 4 having a thickness of 0.3 μm was formed on the entire surface of the aluminum foil 1 by sputtering copper (see FIG. 1D).
Then, copper was plated on the metal thin film 4 by an electrolytic plating method to form a metal layer 5 having a thickness of 12 μm (see FIG. 1 (e)).
After laminating a dry resist film (RY3315, thickness 15 μm, manufactured by Hitachi Chemical Co., Ltd.) on the surface of the metal layer 5 on the side where the conductive polymer resin layer 2 is provided, the mask pattern is exposed at an exposure amount of 40 mJ / cm 2. The metal layer 5 was patterned with an etching solution made of ferric chloride solution to form a capacitor electrode 6a (see FIG. 1 (f)).
After forming the capacitor electrode, the aluminum foil 1 from which the remaining dry resist film was removed using a 5% sodium hydroxide solution was placed on a multilayer wiring board 7 with a prepreg having a thickness of 80 μm (AS manufactured by Hitachi Chemical Co., Ltd.). The adhesive layer 8 made of -5000GP) was laminated and integrated by vacuum pressing (see FIG. 1 (g)).
Next, after laminating a dry resist film (RY3315, thickness 15 μm, manufactured by Hitachi Chemical Co., Ltd.) on the surface of the metal layer 5 on the aluminum foil 1 side, the mask pattern is exposed at an exposure amount of 40 mJ / cm 2, and then a 1% sodium carbonate solution Then, the metal layer 5 was patterned with an etching solution made of ferric chloride solution to form capacitor electrodes 4a and 1a (see FIG. 1 (h)).
After the capacitor electrode was formed, the remaining dry resist film was removed using a 5% strength sodium hydroxide solution, and again on the capacitor electrodes 4a and 1a, a prepreg having a thickness of 80 μm (AS-5000GP manufactured by Hitachi Chemical Co., Ltd.). The insulating layer 9 made of And in order to take out the electrode of a capacitor | condenser on the upper part of the insulating layer 9, the hole of 80 micrometers in diameter was formed in the insulating layer 9 using the carbon dioxide laser (refer FIG.1 (i)).
Next, after forming a 1 μm metal thin film made of a copper plating film on the insulating layer 9 (including the hole portion) by electroless copper plating, the film is made of a 12 μm thick copper plating film by electrolytic copper plating. A metal layer 10 was formed (see FIG. 1 (j)).
Then, after laminating a dry resist film (RY3315 thickness 15 μm, manufactured by Hitachi Chemical Co., Ltd.) on the surface of the metal layer 10, the mask pattern is exposed with an exposure amount of 40 mJ / cm 2, and then developed with a 1% concentration sodium carbonate solution, Further, the metal layer 10 was patterned with an etching solution made of ferric chloride solution to form a wiring layer 10a. Subsequently, after the wiring layer was formed, the remaining dry resist film was removed using a 5% strength sodium hydroxide solution to manufacture a wiring board (see FIG. 1 (l)).
Through the above steps, a wiring board incorporating a solid electrolytic capacitor could be manufactured.

(実施例2)
本発明の実施例を図2に基づいて説明する。
化成処理により表面に酸化アルミニウム膜からなる絶縁被膜を形成し、粗面化された厚さ40μmのアルミニウム箔1(図2(a)参照)の片面に、プリント配線基板の表面にコーティングされるソルダーレジストをスクリーン印刷法によりコンデンサ電極部以外の部分の位置に印刷、140℃で乾燥させることで、厚さ10μmの絶縁性樹脂層3を形成した(図2(b)参照)。
次に、前記絶縁性樹脂層3の開口部に、スクリーン印刷法により導電性高分子樹脂をコートし、80℃のオーブンで乾燥することで、厚さ1μmの導電性高分子樹脂層2を形成した(図2(c)参照)。
次に、前記アルミニウム箔1の全面に銅をスパッタリング法により、厚さ0.3μmの金属薄膜4を形成した(図2(d)参照)。
そして、前記金属薄膜4上に、銅を電解めっき法によりめっきし、厚さ12μmの金属層5を形成した(図2(e)参照)。
この前記導電性高分子樹脂層2を設けた側の金属層5の表面に、ドライレジストフィルム(日立化成工業製 RY3315 厚さ15μm)をラミネート後、露光量40mJ/cm2でマスクパターン露光後、1%濃度の炭酸ナトリウム溶液で現像処理し、さらに、塩化第二鉄液からなるエッチング液で金属層5をパターニングし、コンデンサ電極6aを形成した(図2(f)参照)。
前記コンデンサ電極形成後、残ったドライレジストフィルムを、5%濃度の水酸化ナトリウム溶液を用いて除去した前記アルミニウム箔1を、多層配線基板7上に、厚さ80μmのプリプレグ(日立化成工業製 AS−5000GP)からなる接着層8を用いて真空プレスにより積層一体化した(図2(g)参照)。
次に、アルミニウム箔1側の金属層5の表面に、ドライレジストフィルム(日立化成工業製 RY3315 厚さ15μm)をラミネート後、露光量40mJ/cm2でマスクパターン露光後、1%濃度の炭酸ナトリウム溶液で現像処理し、さらに、塩化第二鉄液からなるエッチング液で金属層5をパターニングし、コンデンサ電極4a,1aを形成した(図2(h)参照)。
前記コンデンサ電極形成後、残ったドライレジストフィルムを、5%濃度の水酸化ナトリウム溶液を用いて除去し、再度、コンデンサ電極4a,1a上に、厚さ80μmのプリプレグ(日立化成工業製 AS−5000GP)からなる絶縁層9を積層した。そして、コンデンサの電極を絶縁層9の上部に取り出すため、絶縁層9に炭酸ガスレーザーを用いて直径80μmの穴を形成した(図2(i)参照)。
次に、無電解銅めっき法により、前記絶縁層9(穴の部分を含む)に銅めっき膜からなる1μmの金属薄膜を形成後、電解銅めっき法により、厚さ12μmの銅めっき膜からなる金属層10を形成した(図2(j)参照)。
そして、前記金属層10の表面に、ドライレジストフィルム(日立化成工業製 RY3315 厚さ15μm)をラミネート後、露光量40mJ/cm2でマスクパターン露光後、1%濃度の炭酸ナトリウム溶液で現像処理し、さらに、塩化第二鉄液からなるエッチング液で金属層10をパターニングし、配線層10aを形成した。続いて、前記配線層形成後、残ったドライレジストフィルムを、5%濃度の水酸化ナトリウム溶液を用いて除去し、配線基板を製造した(図2(l)参照)。
以上の工程を経ることで、固体電解コンデンサを内蔵した配線基板を製造することができた。
(Example 2)
An embodiment of the present invention will be described with reference to FIG.
A solder that forms an insulating film made of an aluminum oxide film on the surface by chemical conversion treatment, and is coated on the surface of the printed wiring board on one side of the roughened aluminum foil 1 (see FIG. 2A) having a thickness of 40 μm. The resist was printed at a position other than the capacitor electrode portion by screen printing and dried at 140 ° C. to form an insulating resin layer 3 having a thickness of 10 μm (see FIG. 2B).
Next, the conductive polymer resin layer 2 having a thickness of 1 μm is formed by coating the opening of the insulating resin layer 3 with a conductive polymer resin by screen printing and drying in an oven at 80 ° C. (See FIG. 2 (c)).
Next, a thin metal film 4 having a thickness of 0.3 μm was formed on the entire surface of the aluminum foil 1 by sputtering copper (see FIG. 2D).
Then, copper was plated on the metal thin film 4 by an electrolytic plating method to form a metal layer 5 having a thickness of 12 μm (see FIG. 2E).
After laminating a dry resist film (RY3315, thickness 15 μm, manufactured by Hitachi Chemical Co., Ltd.) on the surface of the metal layer 5 on the side where the conductive polymer resin layer 2 is provided, the mask pattern is exposed at an exposure amount of 40 mJ / cm 2. Development processing was performed with a sodium carbonate solution having a concentration of%, and the metal layer 5 was patterned with an etching solution made of a ferric chloride solution to form a capacitor electrode 6a (see FIG. 2 (f)).
After forming the capacitor electrode, the aluminum foil 1 from which the remaining dry resist film was removed using a 5% sodium hydroxide solution was placed on a multilayer wiring board 7 with a prepreg having a thickness of 80 μm (AS manufactured by Hitachi Chemical Co., Ltd.). The adhesive layer 8 made of -5000GP) was laminated and integrated by vacuum pressing (see FIG. 2 (g)).
Next, after laminating a dry resist film (RY3315, thickness 15 μm, manufactured by Hitachi Chemical Co., Ltd.) on the surface of the metal layer 5 on the aluminum foil 1 side, the mask pattern is exposed at an exposure amount of 40 mJ / cm 2, and then a 1% sodium carbonate solution Then, the metal layer 5 was patterned with an etching solution made of ferric chloride to form capacitor electrodes 4a and 1a (see FIG. 2 (h)).
After the capacitor electrode was formed, the remaining dry resist film was removed using a 5% strength sodium hydroxide solution, and again on the capacitor electrodes 4a and 1a, a prepreg having a thickness of 80 μm (AS-5000GP manufactured by Hitachi Chemical Co., Ltd.). The insulating layer 9 made of And in order to take out the electrode of a capacitor | condenser on the upper part of the insulating layer 9, the hole of 80 micrometers in diameter was formed in the insulating layer 9 using the carbon dioxide laser (refer FIG.2 (i)).
Next, after forming a 1 μm metal thin film made of a copper plating film on the insulating layer 9 (including the hole portion) by electroless copper plating, the film is made of a 12 μm thick copper plating film by electrolytic copper plating. A metal layer 10 was formed (see FIG. 2 (j)).
Then, after laminating a dry resist film (RY3315 thickness 15 μm, manufactured by Hitachi Chemical Co., Ltd.) on the surface of the metal layer 10, the mask pattern is exposed with an exposure amount of 40 mJ / cm 2, and then developed with a 1% concentration sodium carbonate solution, Further, the metal layer 10 was patterned with an etching solution made of ferric chloride solution to form a wiring layer 10a. Subsequently, after the wiring layer was formed, the remaining dry resist film was removed using a 5% strength sodium hydroxide solution to manufacture a wiring board (see FIG. 2 (l)).
Through the above steps, a wiring board incorporating a solid electrolytic capacitor could be manufactured.

(実施例3)
本発明の実施例を図3に基づいて説明する。
化成処理により表面に酸化アルミニウム膜からなる絶縁被膜を形成し、粗面化された厚さ40μmのアルミニウム箔1(図3(a)参照)の片面に、1000rpm、30秒の条件でスピンコートにより導電性高分子樹脂をコートし、80℃のオーブンで乾燥することで、厚さ1μmの導電性高分子樹脂層2を形成した。
次に、前記導電性高分子樹脂層2上に、銅ペースト、銀ペーストからなる導電性ペーストをスクリーン印刷法によりコンデンサ電極6を形成した(図3(b)参照)。
ここで、コンデンサ電極6は、導電性ペーストを15〜20μmの厚さの設けた後、80℃、30分仮乾燥し、150℃、1時間ベーキングし形成した。
次に、電極部以外の導電性高分子樹脂層2と絶縁被膜を、10%の塩酸溶液に浸漬することにより除去した(図3(c)参照)。
そして、前記導電性ペーストをスクリーン印刷法により、コンデンサ電極20を、前記コンデンサ電極間に形成した(図3(d)参照)。
前記アルミニウム箔1を、多層配線基板7上に、厚さ80μmのプリプレグ(日立化成工業製 AS−5000GP)からなる接着層8を用いて真空プレスにより積層一体化した。また、コンデンサ電極6a,20上に、厚さ80μmのプリプレグ(日立化成工業製 AS−5000GP)からなる絶縁層30を積層した(図3(e)参照)。
次に、コンデンサの電極を絶縁層20の上部に取り出すため、絶縁層20に炭酸ガスレーザーを用いて直径80μmの穴を形成した絶縁層20aとした(図3(f)参照)。
次に、無電解銅めっき法により、前記絶縁層20a(穴の部分を含む)に銅めっき膜からなる1μmの金属薄膜を形成後、電解銅めっき法により、厚さ12μmの銅めっき膜からなる金属層10を形成した(図3(G)参照)。
そして、前記金属層10の表面に、ドライレジストフィルム(日立化成工業製 RY3215 厚さ15μm)をラミネート後、露光量40mJ/cm2でマスクパターン露光後、1%濃度の炭酸ナトリウム溶液で現像処理し、さらに、塩化第二鉄液からなるエッチング液で金属層10をパターニングし、配線層10aを形成した。続いて、前記配線層形成後、残ったドライレジストフィルムを、5%濃度の水酸化ナトリウム溶液を用いて除去し、配線基板を製造した(図3(H)参照)。
以上の工程を経ることで、固体電解コンデンサを内蔵した配線基板を製造することができた。
(Example 3)
An embodiment of the present invention will be described with reference to FIG.
An insulating film made of an aluminum oxide film is formed on the surface by chemical conversion treatment, and spin coating is performed on one surface of a roughened aluminum foil 1 having a thickness of 40 μm (see FIG. 3A) at 1000 rpm for 30 seconds. The conductive polymer resin was coated, and dried in an oven at 80 ° C. to form a conductive polymer resin layer 2 having a thickness of 1 μm.
Next, a capacitor electrode 6 was formed on the conductive polymer resin layer 2 by screen printing using a conductive paste made of copper paste and silver paste (see FIG. 3B).
Here, the capacitor electrode 6 was formed by providing a conductive paste with a thickness of 15 to 20 μm, followed by preliminary drying at 80 ° C. for 30 minutes and baking at 150 ° C. for 1 hour.
Next, the conductive polymer resin layer 2 and the insulating film other than the electrode part were removed by dipping in a 10% hydrochloric acid solution (see FIG. 3C).
And the capacitor electrode 20 was formed between the said capacitor electrodes by the said screen paste printing method (refer FIG.3 (d)).
The aluminum foil 1 was laminated and integrated on the multilayer wiring board 7 by a vacuum press using an adhesive layer 8 made of a prepreg (AS-5000GP manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 80 μm. Further, an insulating layer 30 made of a prepreg (AS-5000GP manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 80 μm was laminated on the capacitor electrodes 6a and 20 (see FIG. 3 (e)).
Next, in order to take out the electrode of the capacitor above the insulating layer 20, an insulating layer 20a in which a hole having a diameter of 80 μm was formed in the insulating layer 20 using a carbon dioxide gas laser was formed (see FIG. 3F).
Next, a 1 μm metal thin film made of a copper plating film is formed on the insulating layer 20a (including the hole portion) by an electroless copper plating method, and then a copper plating film having a thickness of 12 μm is formed by an electrolytic copper plating method. A metal layer 10 was formed (see FIG. 3G).
Then, after laminating a dry resist film (RY3215 thickness 15 μm, manufactured by Hitachi Chemical Co., Ltd.) on the surface of the metal layer 10, the mask pattern is exposed at an exposure amount of 40 mJ / cm 2 and developed with a 1% concentration sodium carbonate solution. Further, the metal layer 10 was patterned with an etching solution made of ferric chloride solution to form a wiring layer 10a. Subsequently, after the wiring layer was formed, the remaining dry resist film was removed using a 5% strength sodium hydroxide solution to manufacture a wiring board (see FIG. 3H).
Through the above steps, a wiring board incorporating a solid electrolytic capacitor could be manufactured.

本発明の電解コンデンサ内蔵配線基板の製造方法の一例を示す説明図。Explanatory drawing which shows an example of the manufacturing method of the wiring board with a built-in electrolytic capacitor of this invention. 本発明の電解コンデンサ内蔵配線基板の製造方法の他の例を示す説明図。Explanatory drawing which shows the other example of the manufacturing method of the electrolytic capacitor built-in wiring board of this invention. 本発明の電解コンデンサ内蔵配線基板の製造方法の他の例を示す説明図。Explanatory drawing which shows the other example of the manufacturing method of the electrolytic capacitor built-in wiring board of this invention.

符号の説明Explanation of symbols

1………アルミニウム箔
2………導電性高分子樹脂層
2a………パターニング導電性高分子樹脂層
3、9、30………絶縁性樹脂層
4………金属薄膜
5、10………金属層
6、6a、20………コンデンサ電極
7………多層配線基板
8………接着層
10a………配線層
30a………穴開け加工された絶縁層
DESCRIPTION OF SYMBOLS 1 ......... Aluminum foil 2 ......... Conductive polymer resin layer 2a ......... Patterning conductive polymer resin layer 3, 9, 30 ......... Insulating resin layer 4 ......... Metal thin film 5, 10 ... ... Metal layers 6, 6a, 20 ......... Capacitor electrode 7 ......... Multilayer wiring substrate 8 ...... Adhesive layer 10a ......... Wiring layer 30a ......... Perforated insulating layer

Claims (3)

(1) 表面に酸化アルミニウム層からなる絶縁被膜を設けたアルミニウム箔の片面に、導電性高分子層を形成する工程、
(2) 前記導電性高分子層上に、部分的にパターン状絶縁性樹脂層を形成する工程、
(3) 前記アルミニウム箔面、導電性高分子樹脂層およびパターン状絶縁性樹脂層面上に、金属薄膜層を形成する工程、
(4) 前記金属薄膜層上に電解銅めっき層を形成する工程、
(5) 前記絶縁性樹脂層上のパターン形状の周縁部を残して、電解銅めっき層を除去し、コンデンサ電極を形成する工程、
(6) 前記アルミニウム箔の絶縁性樹脂層面に、プリント配線基板を積層する工程、
(7) 前記アルミニウム箔の他方の面を、フォトリソ法、エッチングによりコンデンサ電極を形成する工程、
(8) 前記コンデンサ電極形成面に絶縁層を形成する工程、
(9) 前記絶縁層にレーザー加工により、コンデンサ電極の導通路を形成する工程、
(10)前記導通路にめっき金属層を形成する工程、
(11)前記電解銅めっき層に配線層を形成する工程、
の工程により、固体電解コンデンサを内蔵した配線基板の製造方法。
(1) A step of forming a conductive polymer layer on one surface of an aluminum foil provided with an insulating film comprising an aluminum oxide layer on the surface;
(2) A step of partially forming a patterned insulating resin layer on the conductive polymer layer;
(3) forming a metal thin film layer on the aluminum foil surface, the conductive polymer resin layer, and the patterned insulating resin layer surface;
(4) forming an electrolytic copper plating layer on the metal thin film layer;
(5) The step of removing the electrolytic copper plating layer to leave a peripheral edge of the pattern shape on the insulating resin layer and forming a capacitor electrode;
(6) A step of laminating a printed wiring board on the insulating resin layer surface of the aluminum foil,
(7) forming a capacitor electrode on the other surface of the aluminum foil by photolithography, etching;
(8) forming an insulating layer on the capacitor electrode forming surface;
(9) A step of forming a conduction path of the capacitor electrode by laser processing on the insulating layer,
(10) A step of forming a plated metal layer on the conduction path;
(11) forming a wiring layer on the electrolytic copper plating layer;
A method of manufacturing a wiring board incorporating a solid electrolytic capacitor by the above process.
(1) 表面に酸化アルミニウム層からなる絶縁被膜を設けたアルミニウム箔の片面に、部分的に絶縁性樹脂層を形成する工程、
(2) 前記絶縁性樹脂層を形成されていないアルミニウム箔上に、部分的に導電性高分子樹脂層を形成する工程、
(3) 前記アルミニウム箔面、導電性高分子樹脂層およびパターン状絶縁性樹脂層面上に、金属薄膜層を形成する工程、
(4) 前記金属薄膜層上に電解銅めっき層を形成する工程、
(5) 前記絶縁性樹脂層上のパターン形状の周縁部を残して、電解銅めっき層を除去し、コンデンサ電極を形成する工程、
(6) 前記アルミニウム箔の絶縁性樹脂層面に、プリント配線基板を積層する工程、
(7) 前記アルミニウム箔の他方の面を、フォトリソ法、エッチングによりコンデンサ電極を形成する工程、
(8) 前記コンデンサ電極形成面に絶縁層を形成する工程、
(9) 前記絶縁層にレーザー加工により、コンデンサ電極の導通路を形成する工程、
(10)前記導通路にめっき金属層を形成する工程、
(11)前記電解銅めっき層に配線層を形成する工程、
の工程により、固体電解コンデンサを内蔵した配線基板の製造方法。
(1) A step of partially forming an insulating resin layer on one surface of an aluminum foil provided with an insulating coating composed of an aluminum oxide layer on the surface;
(2) A step of partially forming a conductive polymer resin layer on an aluminum foil on which the insulating resin layer is not formed,
(3) forming a metal thin film layer on the aluminum foil surface, the conductive polymer resin layer, and the patterned insulating resin layer surface;
(4) forming an electrolytic copper plating layer on the metal thin film layer;
(5) The step of removing the electrolytic copper plating layer to leave a peripheral edge of the pattern shape on the insulating resin layer and forming a capacitor electrode;
(6) A step of laminating a printed wiring board on the insulating resin layer surface of the aluminum foil,
(7) forming a capacitor electrode on the other surface of the aluminum foil by photolithography, etching;
(8) forming an insulating layer on the capacitor electrode forming surface;
(9) A step of forming a conduction path of the capacitor electrode by laser processing on the insulating layer,
(10) A step of forming a plated metal layer on the conduction path;
(11) forming a wiring layer on the electrolytic copper plating layer;
A method of manufacturing a wiring board incorporating a solid electrolytic capacitor by the above process.
(1) 表面に酸化アルミニウム層からなる絶縁被膜を設けたアルミニウム箔の片面に、導電性高分子樹脂層を形成する工程、
(2) 前記導電性高分子樹脂層上に、パターン状導電性ペーストからなるコンデンサ電極を形成する工程、
(3) 前記コンデンサ電極が設けられていない導電性高分子樹脂層を除去する工程、
(4) 前記アルミニウム箔の絶縁被膜を除去する工程、
(5) 前記絶縁被膜を除去したアルミニウム箔の、コンデンサ電極が設けられている面側に、パターン状導電性ペースト層からなるコンデンサ電極を形成する工程、
(6) 前記絶縁被膜を除去したアルミニウム箔のコンデンサ電極が形成されていない面に、プリント配線基板を積層する工程、
(7) 前記コンデンサ電極の形成面に絶縁樹脂層を形成する工程、
(8) 前記絶縁層にレーザー加工により、コンデンサ電極の導通路を形成する工程、
(9) 前記導通路にめっき金属層を形成する工程、
(10)前記電解銅めっき層に配線層を形成する工程、
の工程により、固体電解コンデンサを内蔵した配線基板の製造方法。
(1) A step of forming a conductive polymer resin layer on one surface of an aluminum foil provided with an insulating film comprising an aluminum oxide layer on the surface;
(2) forming a capacitor electrode made of a patterned conductive paste on the conductive polymer resin layer;
(3) removing the conductive polymer resin layer not provided with the capacitor electrode;
(4) removing the insulating film of the aluminum foil;
(5) A step of forming a capacitor electrode made of a patterned conductive paste layer on the surface of the aluminum foil from which the insulating film has been removed, on which the capacitor electrode is provided,
(6) A step of laminating a printed wiring board on a surface of the aluminum foil from which the insulating film has been removed, on which the capacitor electrode is not formed,
(7) forming an insulating resin layer on the capacitor electrode forming surface;
(8) A step of forming a conduction path of the capacitor electrode by laser processing on the insulating layer,
(9) a step of forming a plated metal layer on the conductive path;
(10) forming a wiring layer on the electrolytic copper plating layer;
A method of manufacturing a wiring board incorporating a solid electrolytic capacitor by the above process.
JP2004323264A 2004-11-08 2004-11-08 Manufacturing method of wiring board with built-in solid electrolytic capacitor Expired - Fee Related JP4599997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323264A JP4599997B2 (en) 2004-11-08 2004-11-08 Manufacturing method of wiring board with built-in solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323264A JP4599997B2 (en) 2004-11-08 2004-11-08 Manufacturing method of wiring board with built-in solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006135132A JP2006135132A (en) 2006-05-25
JP4599997B2 true JP4599997B2 (en) 2010-12-15

Family

ID=36728397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323264A Expired - Fee Related JP4599997B2 (en) 2004-11-08 2004-11-08 Manufacturing method of wiring board with built-in solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4599997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093619B2 (en) * 2009-01-07 2012-12-12 住友金属鉱山株式会社 Valve metal anode sheet and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272957A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2003297702A (en) * 2002-04-04 2003-10-17 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2004031641A (en) * 2002-06-26 2004-01-29 Nec Toppan Circuit Solutions Inc Printed wiring board and its manufacturing method as well as semiconductor device
JP2004095804A (en) * 2002-08-30 2004-03-25 Toppan Printing Co Ltd Printed circuit board with built-in passive element and method of manufacturing the same
JP2004128242A (en) * 2002-10-03 2004-04-22 Matsushita Electric Ind Co Ltd Manufacturing method of solid electrolytic capacitor
JP2004221534A (en) * 2002-12-27 2004-08-05 Matsushita Electric Ind Co Ltd Capacitor, circuit board containing capacitors, and manufacturing method thereof
JP2004228190A (en) * 2003-01-21 2004-08-12 Toppan Printing Co Ltd Metal foil with laminate, and method of manufacturing substrate with passive element using it built therein

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272957A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2003297702A (en) * 2002-04-04 2003-10-17 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2004031641A (en) * 2002-06-26 2004-01-29 Nec Toppan Circuit Solutions Inc Printed wiring board and its manufacturing method as well as semiconductor device
JP2004095804A (en) * 2002-08-30 2004-03-25 Toppan Printing Co Ltd Printed circuit board with built-in passive element and method of manufacturing the same
JP2004128242A (en) * 2002-10-03 2004-04-22 Matsushita Electric Ind Co Ltd Manufacturing method of solid electrolytic capacitor
JP2004221534A (en) * 2002-12-27 2004-08-05 Matsushita Electric Ind Co Ltd Capacitor, circuit board containing capacitors, and manufacturing method thereof
JP2004228190A (en) * 2003-01-21 2004-08-12 Toppan Printing Co Ltd Metal foil with laminate, and method of manufacturing substrate with passive element using it built therein

Also Published As

Publication number Publication date
JP2006135132A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
TWI305480B (en) Method of fabricating printed circuit board having embedded multi-layer passive devices
JP4520392B2 (en) Printed circuit board manufacturing method
KR100722624B1 (en) Manufacturing method of PCB for embedded chip
JP2006086488A (en) Printed circuit board including embedded passive element and manufacturing method thereof
JP2007208263A (en) Method for manufacturing printed-circuit substrate with built-in thin-film capacitor
JP2009260204A (en) Printed circuit board and method of manufacturing the same
JP2009283671A (en) Method of manufacturing printed-wiring board
JP2006100631A (en) Wiring board and its manufacturing method
JP4599997B2 (en) Manufacturing method of wiring board with built-in solid electrolytic capacitor
JP2008085083A (en) Manufacturing method of capacitor
JP3500977B2 (en) Manufacturing method of double-sided circuit board
TWI636720B (en) Circuit board structure and method for fabricating the same
JP3786028B2 (en) Method for manufacturing printed circuit board having capacitor element
JP4479180B2 (en) Multilayer circuit board manufacturing method
JP2009146926A (en) Multilayer wiring board and its manufacturing method
KR100670594B1 (en) Method of forming a fine circuit for printed circuit board
JP2003008204A (en) Method of manufacturing double-sided printed wiring board
JP4547958B2 (en) Manufacturing method of multilayer wiring board
JP4593009B2 (en) Method for manufacturing printed circuit board
JP3048360B1 (en) Double-sided printed wiring board and method for manufacturing the same
JP4337408B2 (en) Method for manufacturing printed wiring board
JP4244721B2 (en) Forming method of coaxial structure through hole
JP2003188535A (en) Double-sided flexible wiring board and manufacturing method therefor
JP4552624B2 (en) Resistor built-in wiring board and manufacturing method thereof
JP2011018830A (en) Method of manufacturing multilayer printed wiring board, and multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees