JP4596808B2 - Laser joining method and apparatus for optical component unit - Google Patents

Laser joining method and apparatus for optical component unit Download PDF

Info

Publication number
JP4596808B2
JP4596808B2 JP2004112613A JP2004112613A JP4596808B2 JP 4596808 B2 JP4596808 B2 JP 4596808B2 JP 2004112613 A JP2004112613 A JP 2004112613A JP 2004112613 A JP2004112613 A JP 2004112613A JP 4596808 B2 JP4596808 B2 JP 4596808B2
Authority
JP
Japan
Prior art keywords
laser
optical component
wall
laser irradiation
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004112613A
Other languages
Japanese (ja)
Other versions
JP2005300621A5 (en
JP2005300621A (en
Inventor
誠二 熊澤
洋介 川人
浩司 船見
敏幸 岡田
正弥 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004112613A priority Critical patent/JP4596808B2/en
Priority to US11/098,435 priority patent/US7411748B2/en
Priority to CNB200510063894XA priority patent/CN100354114C/en
Publication of JP2005300621A publication Critical patent/JP2005300621A/en
Publication of JP2005300621A5 publication Critical patent/JP2005300621A5/ja
Application granted granted Critical
Publication of JP4596808B2 publication Critical patent/JP4596808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1226Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least one bevelled joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Lens Barrels (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、樹脂によって形成された収容部品の内壁に沿って収容する光学部品を内壁に固定するための光学部品ユニットのレーザ接合方法および装置に関する。   The present invention relates to a laser joining method and apparatus for an optical component unit for fixing an optical component accommodated along an inner wall of an accommodating component formed of resin to the inner wall.

熱可塑性樹脂製の収容部品に光学部品を固定する従来の方法としては、収容部品の光学部品を収める機構に絞めしろを設け、この収容部品を受け治具に固定し、アンビルと呼ばれるもので加える熱と圧力で絞めしろを変形させることで、光学部品を収容部品に固定する熱絞めを用いた固定方法がある。あるいは、紫外線硬化性の接着剤を用いて収容部品に光学部品を接着する固定方法が知られている。   As a conventional method for fixing an optical component to a thermoplastic resin housing component, a mechanism for housing the optical component of the housing component is provided with a tightening margin, this housing component is fixed to a jig, and an anvil is added. There is a fixing method using a thermal constriction in which an optical component is fixed to a housing component by deforming the constriction margin with heat and pressure. Or the fixing method which adhere | attaches an optical component to an accommodation component using an ultraviolet curable adhesive agent is known.

一般的に、精度があまり必要でない場合には熱絞めを用いた固定方法を採用し、精度が必要な場合には紫外線硬化性の接着剤を用いる固定方法を採用する場合が多い。
ところで、従来ではレーザ溶接の方法によるガラスと樹脂との接合は非常に難しいものと考えられてきた。しかし、例えば、特許文献1に記載するように、最近になってレーザを用いてガラスと樹脂との接合が可能となってきた。この方法はレーザによって樹脂を局部的に熱溶融させて粘性流動状態となし、光学部品と樹脂製収容部品との間に樹脂が押し込められるようにするものである。
特願2003−130688
In general, a fixing method using thermal constriction is employed when accuracy is not so necessary, and a fixing method using an ultraviolet curable adhesive is often employed when accuracy is required.
By the way, conventionally, it has been considered that joining of glass and resin by a laser welding method is very difficult. However, for example, as described in Patent Document 1, it has recently become possible to bond glass and resin using a laser. In this method, the resin is locally melted by a laser to form a viscous flow state, and the resin is pushed between the optical component and the resin housing component.
Japanese Patent Application No. 2003-130688

前述した熱絞めを用いた固定方法では、光学部品および収容部品に対して各機種毎に専用のアンビルおよび受け治具が必要であり、機種の変更に伴ってアンビルおよび受け治具の作り直し、および位置調整が必要となる。   In the fixing method using the thermal constriction described above, a dedicated anvil and receiving jig are required for each model for the optical component and the housing component, and the anvil and the receiving jig are remade according to the model change, and Position adjustment is required.

このため、従来の技術では製造する機種を切り替えて立ち上げるまでの時間が長くかかるので、光学部品と収容部品との固定にミクロンオーダーの精度が必要で、且つ光学部品と収容部品に多機種が存在し、製造工程で機種の切り替えサイクルが短い場合には生産性が低下するという問題が生じる。   For this reason, since it takes a long time to start up by switching the model to be manufactured in the conventional technology, accuracy of micron order is required for fixing the optical component and the housing component, and there are many types of optical components and the housing component. When the model switching cycle is short in the manufacturing process, there is a problem that productivity is lowered.

一方、前述した紫外線硬化性の接着剤を用いる固定方法では、接着剤に紫外線を弱く照射した状態で光学部品の位置を調整し、その後接着剤が硬化するまで紫外線を照射するが、接着剤の硬化まで早くても10秒程度の時間がかかるためにタクトが低下し、生産開始初期時から大量生産する場合には、生産性が低下する原因となる問題があった。   On the other hand, in the fixing method using the ultraviolet curable adhesive described above, the position of the optical component is adjusted in a state where the adhesive is weakly irradiated with ultraviolet rays, and then the ultraviolet rays are irradiated until the adhesive is cured. Since it takes about 10 seconds at the earliest to cure, the tact is reduced, and in the case of mass production from the beginning of production, there is a problem that causes the productivity to be lowered.

また、例えばカメラのレンズのように複数のレンズを一体の収納部品に固定する場合に、光軸方向におけるレンズと受け面との間に接着剤が入り込むことで、レンズの光軸方向の位置ずれによってレンズ間距離が変化して不良を作る原因となることもある。   In addition, for example, when a plurality of lenses are fixed to an integrated storage component such as a camera lens, an adhesive enters between the lens and the receiving surface in the optical axis direction, so that the lens is displaced in the optical axis direction. Depending on the distance, the distance between the lenses may change and cause a defect.

さらに、光学部品の耐抜け強度がある程度に必要な光学部品ユニットの場合に、光学部品の側面にしか接着剤を塗布できないと、十分な耐抜け強度が得られないという問題もある。   Furthermore, in the case of an optical component unit that requires a certain degree of resistance to the optical component, there is a problem that sufficient resistance to disconnection cannot be obtained if an adhesive can be applied only to the side surface of the optical component.

従来のレーザ溶接の方法において、ガラスと樹脂との接合は非常に難しいものと考えられてきた理由は以下のものである。レーザ溶接は原子間の結合および化学的な結合が可能であるということが大きな前提であり、金属同士を接合する場合には原子間の結合が接合強度を左右し、樹脂同士を接合する場合には化学的な結合が接合強度を左右することが多い。   In the conventional laser welding method, the reason why it has been considered that the bonding of glass and resin is very difficult is as follows. In laser welding, it is a major premise that bonding between atoms and chemical bonding is possible. When bonding metals, bonding between atoms affects bonding strength, and when bonding resins. In many cases, chemical bonding affects the bonding strength.

しかし、ガラスと樹脂とを接合する場合には、アンカー効果のような物理的な結合によってしか接合することができないので、原子間の結合および化学的な結合と比較すると、接合強度が2桁程度小さくなる。そのため、ガラスと樹脂とを接合する場合には、接合面積を広くする必要がある。接合面積を広くするためには、樹脂とガラスとの接合部となり得るところに樹脂を可能な限り充填しなければならない。しかし、粘性流動状態にある樹脂は、毛細管現象によって移動する等の性質に乏しいため、樹脂とガラスとの接合部となり得るところに十分に樹脂を充填することができない。   However, when glass and resin are joined, they can be joined only by physical bonds such as the anchor effect, so the bond strength is about two orders of magnitude compared to bonds between atoms and chemical bonds. Get smaller. Therefore, when joining glass and resin, it is necessary to enlarge a joining area. In order to increase the bonding area, it is necessary to fill the resin as much as possible where it can be a bonding portion between the resin and the glass. However, since the resin in a viscous flow state is poor in properties such as moving by capillary action, the resin cannot be sufficiently filled in a place where the resin and glass can be joined.

このため、従来のレーザを用いて光学部品を樹脂製の収容部品に固定する方法では、内壁を構成する樹脂を局部的に熱溶融させて粘性流動性状態となし、熱溶融した樹脂に対する重力の作用によって光学部品と内壁の間の隙間に樹脂を押し込んでいる。   For this reason, in the conventional method of fixing an optical component to a resin housing component using a laser, the resin constituting the inner wall is locally melted into a viscous fluid state, and the gravity of the heat-melted resin is reduced. The resin is pushed into the gap between the optical component and the inner wall by the action.

この方法は図5に示すものである。光学部品固定装置100において、収容部品5を保持部材9に固定し、凸レンズ8を収容部品5の内壁6に嵌め込む。次に、レーザ光源3からレーザ11を出射する。レーザ光源3から出射されたレーザ11は、集光光学系駆動装置10によって駆動する集光光学系2を透過して収容部品5の内壁6に照射される。   This method is shown in FIG. In the optical component fixing device 100, the housing component 5 is fixed to the holding member 9, and the convex lens 8 is fitted into the inner wall 6 of the housing component 5. Next, the laser 11 is emitted from the laser light source 3. The laser 11 emitted from the laser light source 3 passes through the condensing optical system 2 driven by the condensing optical system driving device 10 and is applied to the inner wall 6 of the housing component 5.

図6に示すように、レーザ11が照射された収容部品5の内壁6は、照射されたレーザ11によって加熱される。次に、加熱された内壁6は軟化・溶解して局所的に分解を始める。この分解時に発生する反力12によって、収容部品5の内壁6において粘性流動状態にある樹脂に、重力の作用方向に向かう力が加わる。このため、内壁6において粘性流動状態にある樹脂16が、凸レンズ8と収容部品5の内壁6との間の隙間に押し込められる。その結果、収容部品5に凸レンズ8が固定される。   As shown in FIG. 6, the inner wall 6 of the housing component 5 irradiated with the laser 11 is heated by the irradiated laser 11. Next, the heated inner wall 6 softens and dissolves and starts to decompose locally. Due to the reaction force 12 generated at the time of decomposition, a force in the direction of gravity is applied to the resin in a viscous flow state on the inner wall 6 of the housing component 5. For this reason, the resin 16 in the viscous flow state on the inner wall 6 is pushed into the gap between the convex lens 8 and the inner wall 6 of the housing component 5. As a result, the convex lens 8 is fixed to the housing component 5.

この操作において、ノズルユニット13から噴出する窒素ガス18を凸レンズ8の中央部の上方位置から鉛直下方へ向けて流すことにより、凸レンズ8の周辺部に樹脂が流れ込むのを防ぐと同時に、凸レンズ8の表面に樹脂の分解により生じたガスやゴミが付着するのを防ぎながら固定を行う。   In this operation, the nitrogen gas 18 ejected from the nozzle unit 13 is caused to flow vertically downward from the upper position of the central portion of the convex lens 8, thereby preventing the resin from flowing into the peripheral portion of the convex lens 8 and at the same time of the convex lens 8. Fixing is performed while preventing gas and dust generated by decomposition of the resin from adhering to the surface.

照射位置移動装置4によってレーザ照射装置1が回転することにより、凸レンズ8の周縁全体に渡って、数秒で固定が行われる。収容部品5の内壁6には、内壁6へ照射されたレーザ11のレーザ照射痕が形成される。   When the laser irradiation device 1 is rotated by the irradiation position moving device 4, the entire periphery of the convex lens 8 is fixed in a few seconds. On the inner wall 6 of the housing component 5, a laser irradiation mark of the laser 11 irradiated to the inner wall 6 is formed.

しかし、図6に示すように、光学部品である凸レンズ8の中央部上面に窒素ガス18を吹き付けると、光学部品表面の中央部から全周の端に向かって窒素ガス17が流れ、その後内壁6に沿って窒素ガス17は上昇気流となる。そのため、内壁6の上部の溶融した樹脂を持ち上げて、上面盛り上がりの原因となり、外観上好ましくない上他の部品と干渉してしまう。   However, as shown in FIG. 6, when nitrogen gas 18 is blown onto the upper surface of the central portion of the convex lens 8 that is an optical component, nitrogen gas 17 flows from the central portion of the optical component surface toward the end of the entire circumference, and then the inner wall 6. The nitrogen gas 17 becomes an upward airflow along the line. Therefore, the melted resin at the upper part of the inner wall 6 is lifted up, causing the upper surface to rise, and interfering with other parts that are undesirable in appearance.

また、照射部分の樹脂の流れ込みを防ぐ窒素ガス流量を確保するためには、全体として非常に多くの窒素流量が必要となりコストが高くなる上、窒素流量が安定するまでの時間が長く必要で、生産性が低下する。   In addition, in order to secure a nitrogen gas flow rate that prevents the flow of resin in the irradiated part, a very large amount of nitrogen flow rate is required as a whole, which increases the cost and requires a long time until the nitrogen flow rate is stabilized, Productivity decreases.

さらに、光学部品である凸レンズ8の中央部から端までの距離が機種により違うため、レーザ照射部での窒素ガス流量を一定にするためには全体の流量を機種に応じて最適化する必要があるため、機種切り替え時の立ち上げ時間が長くなるために、生産性が低下するという問題を生じる。   Furthermore, since the distance from the center to the end of the convex lens 8 that is an optical component differs depending on the model, it is necessary to optimize the entire flow rate according to the model in order to make the nitrogen gas flow rate constant in the laser irradiation unit. For this reason, a problem arises in that productivity is reduced because the startup time at the time of model switching becomes longer.

本発明の目的は、内壁の盛り上がりが無く、生産コストが低く、機種切り替え時の立ち上げ時間を短縮することができる光学部品ユニットのレーザ接合方法および装置を提供することにある。   An object of the present invention is to provide a laser joining method and apparatus for an optical component unit that does not swell an inner wall, has a low production cost, and can shorten the start-up time when switching models.

本発明に係る光学部品ユニットのレーザ接合方法は、光軸を有する光学部品を樹脂製収容部品の内壁に固定するレーザ接合方法であって、前記内壁にレーザを照射してレーザ照射部の内壁を粘性流動状態となすレーザ照射工程と、前記光学部品の光軸上に配置されたガス噴射手段から前記レーザ照射部に対し放射状にガスを噴射するガス噴射工程と、前記内壁に前記光学部品を固定する固定工程とを包含することを特徴とする。 A laser joining method for an optical component unit according to the present invention is a laser joining method for fixing an optical component having an optical axis to an inner wall of a resin housing component, and irradiating the inner wall with a laser so as to attach an inner wall of a laser irradiation unit. A laser irradiation step for achieving a viscous flow state, a gas injection step for injecting gas radially from the gas injection means disposed on the optical axis of the optical component to the laser irradiation portion, and fixing the optical component to the inner wall And a fixing step.

本発明に係る光学部品ユニットのレーザ接合装置は、光軸を有する光学部品を樹脂製収容部品の内壁に固定するレーザ接合装置であって、前記収容部品を保持する保持部材と、前記内壁のレーザ照射部にレーザを照射するレーザ照射手段と、前記光学部品の光軸上に配置され、かつレーザ照射部と対向する斜め方向のガス噴射口を有するガス噴射手段とを具備することを特徴とする。 A laser joining device for an optical component unit according to the present invention is a laser joining device for fixing an optical component having an optical axis to an inner wall of a resin housing component, a holding member for holding the housing component, and a laser for the inner wall. It comprises: laser irradiation means for irradiating a laser to the irradiation section; and gas injection means that is disposed on the optical axis of the optical component and has an oblique gas injection port facing the laser irradiation section. .

以上のように本発明によれば、レーザ照射部に対して直接に吹き付けるガスが内壁の上部より下部へ向けて流れるために、粘性流動状態に溶融した樹脂の上方への流動を抑制し、溶融した樹脂が内壁上部へ持ち上がることが無くなり、他の部品と干渉してしまう不良の原因となる上面盛り上がりが無く、コストが低く生産性が向上する。   As described above, according to the present invention, since the gas blown directly to the laser irradiation part flows from the upper part of the inner wall toward the lower part, the upward flow of the resin melted in the viscous flow state is suppressed, The resin does not lift up to the upper part of the inner wall, and there is no rise of the upper surface that causes a defect that interferes with other parts, resulting in low cost and improved productivity.

また、ガスは光学部品の表面に流れ込む樹脂を内壁の方向へ押し込み、分解した樹脂やゴミ等が表面に付着することを防ぎ、不良が減少しコストが低く生産性が向上する。
また、光学部品の中央部から端までの距離が機種により異なる場合には、内壁からノズルユニットの噴射口までの距離が同じになるように複数種のノズルユニットを用意するだけで、機種切り替えの立ち上げ時間を短くして生産性を向上させることができる。
In addition, the gas pushes the resin flowing into the surface of the optical component toward the inner wall to prevent the decomposed resin, dust, and the like from adhering to the surface, reducing defects, reducing costs, and improving productivity.
In addition, when the distance from the center to the end of the optical component varies depending on the model, it is possible to change the model only by preparing multiple types of nozzle units so that the distance from the inner wall to the nozzle unit injection port is the same. Productivity can be improved by shortening the startup time.

本実施の形態に係る光学部品ユニットのレーザ接合方法は、樹脂によって形成された収容部品の内壁に沿って収容する光学部品を前記内壁に固定する光学部品ユニットのレーザ接合方法であって、レーザ照射手段により前記内壁にレーザを照射してレーザ照射部の樹脂を局部的な熱溶融によって粘性流動状態となし、この粘性流動状態の樹脂を前記光学部品と前記内壁との間に押し込めるレーザ照射工程と、ガス噴射手段により前記光学部品の中央部に対応する上側位置から斜め下方向へ放射状に噴射するガスを前記レーザ照射部に対して直接に吹き付ける。   A laser joining method for an optical component unit according to the present embodiment is a laser joining method for an optical component unit in which an optical component to be accommodated along an inner wall of an accommodation component formed of resin is fixed to the inner wall. A laser irradiation step of irradiating the inner wall with a laser by means to make the resin of the laser irradiation portion into a viscous flow state by local thermal melting, and forcing the resin in the viscous flow state between the optical component and the inner wall; Then, the gas jetting means directly blows a gas which is jetted radially from the upper position corresponding to the central portion of the optical component to the laser irradiation section.

この構成によれば、レーザ照射部に対して直接に吹き付けるガスが内壁の上部より下部へ向けて流れるために、粘性流動状態に溶融した樹脂の上方への流動を抑制し、溶融した樹脂が内壁上部へ持ち上がることが無くなり、他の部品と干渉してしまう不良の原因となる上面盛り上がりが無く、外観上好ましい。   According to this configuration, since the gas blown directly to the laser irradiation part flows from the upper part of the inner wall toward the lower part, the upward flow of the molten resin in the viscous flow state is suppressed, and the molten resin is The upper surface is not lifted to the upper side, and there is no upper surface rise that causes a defect that interferes with other components, which is preferable in appearance.

また、レーザ照射部へ必要量のみのガスを吹き付けるため、低コストでの光学部品の固定が可能となる上、ガス流量が安定するまでの時間が短くて済み、生産性が向上する。
さらに、光学部品の中央部から端までの距離が機種により異なる場合にあっても、内壁から噴射口までの距離が同じになるガス噴射手段を用意するだけで、機種切り替え時の立ち上げ時間が短く、生産性が向上する。
In addition, since only a necessary amount of gas is blown to the laser irradiation unit, it is possible to fix the optical component at a low cost, and it is possible to shorten the time until the gas flow rate is stabilized, thereby improving productivity.
In addition, even when the distance from the center to the end of the optical component varies depending on the model, it is only necessary to prepare gas injection means with the same distance from the inner wall to the injection port. Shorter and more productive.

前記ガス噴射手段により噴射するガスは、レーザ照射時に高温の樹脂と空気中の酸素が反応することを防ぐために、不活性ガスであることが好ましい。
前記ガス噴射手段により噴射するガスは、コストの面より、空気であることが好ましい。
The gas injected by the gas injection means is preferably an inert gas in order to prevent a high-temperature resin and oxygen in the air from reacting during laser irradiation.
The gas injected by the gas injection means is preferably air from the viewpoint of cost.

前記光学部品は、ガラスからなるレンズであることが好ましい。
前記レンズは、凸レンズであることが好ましい。
前記収容部品は、円筒形状あるいは円筒形状の一部分を省いた形状であることが好ましい。
The optical component is preferably a lens made of glass.
The lens is preferably a convex lens.
It is preferable that the housing component has a cylindrical shape or a shape that omits a part of the cylindrical shape.

本実施の形態に係る光学部品のレーザ接合装置は、樹脂によって形成された収容部品の内壁に沿って収容する光学部品を前記内壁に固定する光学部品のレーザ接合装置であって、前記光学部品を収容した収容部品を保持する保持部材と、前記内壁にレーザを照射してレーザ照射部の樹脂を局部的な熱溶融によって粘性流動状態となし、この粘性流動状態の樹脂を前記光学部品と前記内壁との間に押し込めるレーザ照射手段と、前記光学部品の中央部に対応する上側位置に配置したノズルユニットから斜め下方向へ放射状に噴射するガスを前記レーザ照射部に対して直接に吹き付けるガス噴射手段とを具備する。   An optical component laser bonding apparatus according to the present embodiment is an optical component laser bonding apparatus that fixes an optical component to be accommodated along an inner wall of an accommodation component formed of resin to the inner wall. A holding member that holds the housed housing component, and a laser beam is irradiated on the inner wall to make the resin in the laser irradiation section into a viscous flow state by local thermal melting, and the resin in the viscous flow state is made into the optical component and the inner wall. And a gas injection means for directly blowing a gas radially ejected obliquely downward from a nozzle unit disposed at an upper position corresponding to the central portion of the optical component. It comprises.

この構成によれば、内壁の上部よりガスが流れてくる機構のため、内壁上部の溶融した樹脂を持ち上げることが無いので上面盛り上がりが無くなり、他の部品と干渉してしまう不良の原因となる上面盛り上がりが無く、外観上好ましい。   According to this configuration, since the gas flows from the upper part of the inner wall, the molten resin on the upper part of the inner wall is not lifted, so that the upper surface is not raised and the upper surface causes a defect that interferes with other parts. There is no excitement, which is preferable in appearance.

また、レーザ照射部へ必要量のみのガスを吹き付けるため、低コストでの光学部品の固定が可能となる上、ガス流量が安定するまでの時間が短くて済み、生産性が向上する。
さらに、光学部品の中央部から端までの距離が機種により異なる場合にあっても、内壁から噴射口までの距離が同じになるガス噴射手段を用意するだけで、機種切り替え時の立ち上げ時間が短く、生産性が向上する。
In addition, since only a necessary amount of gas is blown to the laser irradiation unit, it is possible to fix the optical component at a low cost, and it is possible to shorten the time until the gas flow rate is stabilized, thereby improving productivity.
In addition, even when the distance from the center to the end of the optical component varies depending on the model, it is only necessary to prepare gas injection means with the same distance from the inner wall to the injection port. Shorter and more productive.

前記レーザ照射手段は、レーザを出射するために設けられたレーザ光源と、前記レーザ光源から出射した前記レーザを収容部品の内壁へ集光する集光光学系とを有することが好ましい。   The laser irradiation means preferably includes a laser light source provided for emitting a laser and a condensing optical system for condensing the laser emitted from the laser light source onto an inner wall of a housing component.

前記集光光学系は、非球面レンズあることが好ましい。
前記集光光学系は、マスクと対面する2個の凸レンズを具備することが好ましい。
また、光学部品のレーザ接合装置は、レーザを照射する内壁の位置を変更するためにレーザ照射手段を移動させる照射位置移動装置を具備することが好ましい。
The condensing optical system is preferably an aspheric lens.
The condensing optical system preferably includes two convex lenses facing the mask.
Moreover, it is preferable that the laser bonding apparatus for optical components includes an irradiation position moving apparatus that moves the laser irradiation means in order to change the position of the inner wall to be irradiated with the laser.

前記照射位置移動装置は、レーザ照射手段を収容部品の内壁の周方向に沿って回転移動させることが好ましい。
前記レーザ照射手段は、少なくとも2個以上具備することが好ましい。
The irradiation position moving device preferably rotates and moves the laser irradiation means along the circumferential direction of the inner wall of the housing component.
It is preferable that at least two laser irradiation means are provided.

前記ガス噴射手段は、ノズルユニットにレーザ照射部へ向けたリング状の噴射口を有することことが好ましい。
前記ガス噴射手段は、ノズルユニットにレーザ照射部へ向けたガス噴射口をレーザ照射手段と同じ数だけ有するとともに、ノズルユニットが前記レーザ照射手段と同時に回転する機構をなすことが好ましい。
The gas injection means preferably has a ring-shaped injection port directed to the laser irradiation unit in the nozzle unit.
It is preferable that the gas injection unit has a mechanism in which the nozzle unit has the same number of gas injection ports directed to the laser irradiation unit as the laser irradiation unit and the nozzle unit rotates simultaneously with the laser irradiation unit.

本実施の形態に係る光学部品ユニットにおいては、樹脂によって形成された収容部品と、前記収容部品の内壁に沿って収容された光学部品とを具備する光学部品ユニットであって、前記光学部品から前記内壁の頂端まで高さが1mm以下で、前記収容部品の内壁にレーザ照射痕を有し、前記レーザ照射痕は内壁を局部的に熱溶融させて粘性流動状態とした樹脂が前記光学部品と前記内壁との間に押し込められてなり、かつ前記内壁からの盛り上がりが0.1mm以下である。   The optical component unit according to the present embodiment is an optical component unit including a housing component formed of resin and an optical component housed along an inner wall of the housing component, and the optical component unit The height up to the top end of the inner wall is 1 mm or less, and the inner wall of the housing component has a laser irradiation mark, and the laser irradiation mark is a resin in which the inner wall is locally melted and made into a viscous flow state. It is pressed between the inner wall and the bulge from the inner wall is 0.1 mm or less.

この構成により、光学部品表面の周辺部における熱溶融した樹脂の流れ込みが小さく、固定精度が必要な光学部品の固定において高い抜け強度を有している。また、内壁上部の溶融した樹脂の持ち上がりによる上面盛り上がりがないので、他の部品と干渉する不良となる原因がない。   With this configuration, the flow of the heat-melted resin in the peripheral portion of the optical component surface is small, and it has a high pulling strength in fixing an optical component that requires fixing accuracy. Further, since there is no upper surface rise due to the rise of the molten resin at the upper part of the inner wall, there is no cause of a defect that interferes with other parts.

以下、図面を参照して本発明の実施の形態を説明する。
(実施の形態1)
図1は、実施の形態1に係る光学部品ユニットのレーザ接合装置をなす光学部品固定装置100の構成を示す模式図である。光学部品固定装置100は、凸レンズ8が収容された収容部品5を保持する保持部材9を備えている。収容部品5は、内壁6が形成された円筒形状をしており、ポリカーボネイトにカーボンブラックを混入させた材料によって構成されている。凸レンズ8は収容部品5に形成された内壁6に沿って保持されている。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of an optical component fixing device 100 that constitutes a laser bonding apparatus for an optical component unit according to the first embodiment. The optical component fixing device 100 includes a holding member 9 that holds the housing component 5 in which the convex lens 8 is housed. The housing component 5 has a cylindrical shape with an inner wall 6 formed, and is made of a material obtained by mixing carbon black into polycarbonate. The convex lens 8 is held along the inner wall 6 formed in the housing component 5.

光学部品固定装置100にはレーザ照射装置1が設けられており、レーザ照射装置1はレーザ光源3を有している。レーザ光源3は、収容部品5に形成された内壁6を構成する樹脂を粘性流動状態となり、かつ局所的に分解が起こる状態にすることができる波長810mmのレーザ11を照射する。   The optical component fixing device 100 is provided with a laser irradiation device 1, and the laser irradiation device 1 has a laser light source 3. The laser light source 3 irradiates a laser 11 having a wavelength of 810 mm that can cause the resin constituting the inner wall 6 formed in the housing component 5 to be in a viscous flow state and to be locally decomposed.

レーザ照射装置1には集光光学系2が設けられている。集光光学系2は、レーザ光源3から出射したレーザ11を収容部品5の内壁6へビーム幅50μmのレーザラインビームにするものであり、1個の非球面レンズであることが小型、軽量なため好ましい。集光光学系2はビーム幅300μm以下に集光が可能であれば、複数の凸レンズや凹レンズあるいは非球面レンズの組み合わせでも問題はない。   The laser irradiation apparatus 1 is provided with a condensing optical system 2. The condensing optical system 2 converts the laser 11 emitted from the laser light source 3 into a laser line beam having a beam width of 50 μm on the inner wall 6 of the housing component 5. One aspheric lens is small and lightweight. Therefore, it is preferable. As long as the condensing optical system 2 can collect light with a beam width of 300 μm or less, there is no problem even if a plurality of convex lenses, concave lenses, or aspherical lenses are combined.

光学部品固定装置100は集光光学系駆動装置10を備えており、集光光学系駆動装置10は、集光光学系2をxyz方向と角度をあおることによって、集光光学系2の位置および傾きを調整するものである。   The optical component fixing device 100 includes a condensing optical system driving device 10, and the condensing optical system driving device 10 sets the position of the condensing optical system 2 and the angle of the condensing optical system 2 by increasing the angle with the xyz direction. The tilt is adjusted.

光学部品固定装置100には照射位置移動装置4が設けられており、照射位置移動装置4は、レーザ照射光源3から照射するレーザ11が凸レンズ8の周囲全体に対して照射されるようにレーザの当たる内壁の位置を変更するもので、レーザ照射装置1を収容部品の内壁の周方向に沿って凸レンズ8の光軸周りに回転移動させる。   The optical component fixing device 100 is provided with an irradiation position moving device 4. The irradiation position moving device 4 is configured so that the laser 11 irradiated from the laser irradiation light source 3 is irradiated to the entire periphery of the convex lens 8. The position of the inner wall is changed, and the laser irradiation device 1 is rotated around the optical axis of the convex lens 8 along the circumferential direction of the inner wall of the housing component.

光学部品固定装置100はガス噴射手段(図示省略)を備えており、ガス噴射手段の一部をなすノズルユニット50を有している。ガス噴射手段はノズルユニット50にガスを供給する機構を有するものであれば如何なるものでも適用可能であり、詳細な説明を省略する。   The optical component fixing device 100 includes gas injection means (not shown), and has a nozzle unit 50 that forms part of the gas injection means. Any gas injection means may be applied as long as it has a mechanism for supplying gas to the nozzle unit 50, and detailed description thereof is omitted.

ノズルユニット50は凸レンズ8の中心線上のレーザ11に干渉しない上側位置に配置しており、内壁6のレーザ照射部へ向けたリング状の噴射口51を有し、噴射口51から斜め下方向へ放射状に窒素ガスを総流量50(l/分)で噴射し、レーザが照射される内壁5に窒素ガスを直接に吹き付ける機能を果たすものである。   The nozzle unit 50 is disposed at an upper position on the center line of the convex lens 8 so as not to interfere with the laser 11, and has a ring-shaped injection port 51 directed to the laser irradiation portion of the inner wall 6, and obliquely downward from the injection port 51. A function of spraying nitrogen gas radially at a total flow rate of 50 (l / min) and blowing the nitrogen gas directly onto the inner wall 5 irradiated with the laser is achieved.

以下に上記した構成の光学部品固定装置100の動作を説明する。図2は、実施の形態1に係る光学部品固定装置100によって、凸レンズ8を収容部品5の内壁6に固定する方法を説明するための断面図である。   The operation of the optical component fixing device 100 having the above-described configuration will be described below. FIG. 2 is a cross-sectional view for explaining a method of fixing the convex lens 8 to the inner wall 6 of the housing component 5 by the optical component fixing device 100 according to the first embodiment.

まず、収容部品5を保持部材9に固定する。そして、凸レンズ8を収容部品5の内壁6に嵌め込む。次に、レーザ照射装置1によりレーザ光源3からレーザ11を出射し、集光光学系2を透過したレーザ11を収容部品5の内壁6に照射する。ノズルユニット50は、レーザ11が照射される内壁5に窒素ガスを総流量50(1/分)で直接吹き付ける。   First, the housing component 5 is fixed to the holding member 9. Then, the convex lens 8 is fitted into the inner wall 6 of the housing component 5. Next, the laser 11 is emitted from the laser light source 3 by the laser irradiation device 1, and the inner wall 6 of the housing component 5 is irradiated with the laser 11 transmitted through the condensing optical system 2. The nozzle unit 50 blows nitrogen gas directly onto the inner wall 5 irradiated with the laser 11 at a total flow rate of 50 (1 / min).

図2に示すように、収容部品5の内壁6は照射されたレーザ11によってレーザ照射部が加熱され、軟化・溶解する。このとき、熱伝導によりレーザ11が照射される幅より広い部分で軟化・溶解が起こる。   As shown in FIG. 2, the laser irradiation portion of the inner wall 6 of the housing component 5 is heated and softened and melted by the irradiated laser 11. At this time, softening / dissolution occurs in a portion wider than the width irradiated with the laser 11 by heat conduction.

そして、軟化・溶解した内壁6は局所的に分解を始める。この分解時に発生する反力12によって、収容部品5の内壁6において粘性流動状態にある樹脂に、重力の作用方向に向かう力が加わる。このため、内壁6において粘性流動状態にある樹脂は、凸レンズ8と収容部品5の内壁6との間の数十マイクロメータ(μm)の隙間に押し込められる。その結果、収容部品5に凸レンズ8が固定される。   Then, the softened / dissolved inner wall 6 starts to be locally decomposed. Due to the reaction force 12 generated at the time of decomposition, a force in the direction of gravity is applied to the resin in a viscous flow state on the inner wall 6 of the housing component 5. For this reason, the resin in the viscous flow state on the inner wall 6 is pushed into a gap of several tens of micrometers (μm) between the convex lens 8 and the inner wall 6 of the housing component 5. As a result, the convex lens 8 is fixed to the housing component 5.

このとき、ノズルユニット50から噴出する窒素ガス17をレーザ照射部に対して直接に吹き付け、窒素ガス17を内壁6の上部より下部へ向けて流し、粘性流動状態にある樹脂が内壁6の上方へ流動することを抑制することで、凸レンズ8と収容部品5の内壁6との間の隙間へ樹脂が効率良く押し込まれる。このため、溶融した樹脂が内壁6の上部へ持ち上がることが無くなり、他の部品と干渉してしまう不良の原因となる上面盛り上がりが無く、コストが低く生産性が向上する。   At this time, the nitrogen gas 17 ejected from the nozzle unit 50 is blown directly onto the laser irradiation part, and the nitrogen gas 17 is caused to flow from the upper part to the lower part of the inner wall 6, so that the resin in the viscous flow state moves upward from the inner wall 6. By suppressing the flow, the resin is efficiently pushed into the gap between the convex lens 8 and the inner wall 6 of the housing component 5. For this reason, the melted resin is not lifted to the upper portion of the inner wall 6, and there is no upper surface rise that causes a defect that interferes with other components, resulting in low cost and improved productivity.

凸レンズ8の表面には、凸レンズ8と収容部品5の内壁6との間の隙間に押し込められずに、凸レンズ8の表面の周辺部に流れ込んでくる樹脂16が僅かに存在する。この粘性流動状態にある樹脂が凸レンズ8の有効径内まで流れ込むと不良となる。   On the surface of the convex lens 8, there is a slight amount of resin 16 that flows into the periphery of the surface of the convex lens 8 without being pushed into the gap between the convex lens 8 and the inner wall 6 of the housing component 5. If the resin in this viscous flow state flows into the effective diameter of the convex lens 8, it becomes defective.

しかし、この凸レンズ8の表面に流れ込んでくる樹脂16も、ノズルユニット50から吹き付ける窒素ガス17が内壁6の方向へ押し込み、凸レンズ8の有効径内まで到達することを防ぐ。また、窒素ガス17は分解した樹脂やゴミ等が凸レンズ8表面に付着することを防ぐ。よって、不良が減少しコストが低く生産性が向上する。   However, the resin 16 flowing into the surface of the convex lens 8 also prevents the nitrogen gas 17 sprayed from the nozzle unit 50 from being pushed toward the inner wall 6 and reaching the effective diameter of the convex lens 8. Further, the nitrogen gas 17 prevents the decomposed resin or dust from adhering to the surface of the convex lens 8. Therefore, defects are reduced, cost is low, and productivity is improved.

照射位置移動装置4がレーザ照射装置1を回転移動させることで、レーザ11の当たる内壁6の位置が移動し、レーザ照射光源3から照射するレーザ11が凸レンズ8の周囲全体に対して照射され、凸レンズ8の周縁全体に渡って数秒で固定が行われる。この結果、収容部品5の内壁6にはレーザ11によるレーザ照射痕が形成される。   When the irradiation position moving device 4 rotates and moves the laser irradiation device 1, the position of the inner wall 6 where the laser 11 hits moves, and the laser 11 irradiated from the laser irradiation light source 3 is irradiated to the entire periphery of the convex lens 8, Fixing is performed in a few seconds over the entire periphery of the convex lens 8. As a result, a laser irradiation mark by the laser 11 is formed on the inner wall 6 of the housing component 5.

光学部品である凸レンズ8の中央部から端までの距離が機種により異なる場合には、内壁6から噴射口51までの距離が同じになるように複数種のノズルユニット50を用意するだけで、機種切り替えの立ち上げ時間を短くして生産性を向上させることができる。   If the distance from the central part to the end of the convex lens 8 that is an optical component varies depending on the model, it is only necessary to prepare a plurality of types of nozzle units 50 so that the distance from the inner wall 6 to the injection port 51 is the same. Productivity can be improved by shortening the startup time of switching.

なお、本実施の形態では不活性ガスとして窒素ガスを用いたが、アルゴンガス等の他の不活性ガスを用いても同様の効果が得られる。
(実施の形態2)
この実施の形態では、ノズルユニット51から噴射するガスが空気である以外は、実施の形態1と同様である。この場合には、空気中に存在する酸素と軟化・溶解した樹脂が反応する可能性があるが、樹脂が分解するまで温度が上昇しないか、もしくは分解温度を超えても吹き付けるガスによって直ちに冷却されるため、樹脂が酸素と殆ど反応しない。
In this embodiment, nitrogen gas is used as the inert gas, but the same effect can be obtained by using other inert gas such as argon gas.
(Embodiment 2)
This embodiment is the same as the first embodiment except that the gas injected from the nozzle unit 51 is air. In this case, oxygen present in the air may react with the softened / dissolved resin, but the temperature does not rise until the resin decomposes, or it is immediately cooled by the blowing gas even if the decomposition temperature is exceeded. Therefore, the resin hardly reacts with oxygen.

窒素ガスと比較すると空気は材料コストが不要であり、ガスボンベの交換等の作業が不必要なため生産性が向上する。
(実施の形態3)
図3は、本発明の他の実施の形態に係る光学部品固定装置100の構成を示す模式図である。図1において説明した光学部品固定装置100の構成要素と同一の構成要素には同一の参照符号を付して、これらの構成要素の詳細な説明を省略する。
Compared with nitrogen gas, air does not require material costs, and work such as replacement of gas cylinders is unnecessary, so productivity is improved.
(Embodiment 3)
FIG. 3 is a schematic diagram showing a configuration of an optical component fixing device 100 according to another embodiment of the present invention. The same components as those of the optical component fixing device 100 described in FIG. 1 are denoted by the same reference numerals, and detailed description of these components is omitted.

図3において、収容部品5は内壁6を形成する円筒形状の一部分が無い形状をしており、例えば上から見て凸レンズ8の周囲に3等配分して内壁6を形成し、3等配分した内壁6と内壁6の間に間隙を形成する。   In FIG. 3, the housing component 5 has a shape without a part of the cylindrical shape forming the inner wall 6. For example, when viewed from above, the inner wall 6 is formed by distributing 3 parts around the convex lens 8. A gap is formed between the inner wall 6 and the inner wall 6.

光学部品固定装置100はチャック機構(図示省略)を備えており、チャック機構は収容部品5の3等配分した内壁6と内壁6の間の間隙において作動する爪等の把持手段を有し、凸レンズ8を把持して収容部品5に対する凸レンズ8の位置を数μmオーダー以下の精度によって調整する構成をなす。チャック機構は凸レンズ8を把持する機構を有するものであれば如何なるものでも適用可能であり、詳細を説明を省略する。   The optical component fixing device 100 includes a chuck mechanism (not shown). The chuck mechanism has gripping means such as a claw that operates in a gap between the inner wall 6 and the inner wall 6 that are equally distributed in the housing component 5, and has a convex lens. 8 is configured to adjust the position of the convex lens 8 relative to the housing component 5 with an accuracy of the order of several μm or less. Any chuck mechanism can be applied as long as it has a mechanism for gripping the convex lens 8, and a detailed description thereof will be omitted.

それぞれにレーザ光源3を備えた3つのレーザ照射装置1を120°等配分で配置しており、照射位置移動装置4は各レーザ照射装置1から照射するレーザ11が凸レンズ8の周囲の2/3、つまり3等配分した内壁6にのみに照射されるように各レーザ照射装置1を同時に回転移動させる。   Three laser irradiation apparatuses 1 each having a laser light source 3 are arranged at an equal distribution of 120 °, and the irradiation position moving apparatus 4 has a laser 11 irradiated from each laser irradiation apparatus 1 2/3 around the convex lens 8. That is, the laser irradiation devices 1 are simultaneously rotated so as to irradiate only the inner wall 6 that is equally distributed.

ノズルユニット50はレーザ照射部へ向けたガス噴射口52をレーザ照射装置1と同じ数だけ有しており、レーザ照射装置1と同時に回転しながらレーザ11が照射される内壁6に空気18を総流量40(1/分)で直接吹き付ける。ノズルユニット50が回転する機構は、レーザ照射装置1とノズルユニット50を機械的に接続することで実現しても良く、モータ等を使用して電気的な同期手段によって実現しても良く、詳細な説明を省略する。   The nozzle unit 50 has the same number of gas injection ports 52 directed to the laser irradiation section as the laser irradiation apparatus 1, and the air 18 is totally applied to the inner wall 6 irradiated with the laser 11 while rotating simultaneously with the laser irradiation apparatus 1. Spray directly at a flow rate of 40 (1 / min). The mechanism for rotating the nozzle unit 50 may be realized by mechanically connecting the laser irradiation device 1 and the nozzle unit 50, or may be realized by an electric synchronization means using a motor or the like. The detailed explanation is omitted.

このように構成された光学部品固定装置100の動作を説明する。まず、収容部品5を保持部材9に固定する。そして、凸レンズ8を収容部品5の内壁6に嵌め込む。次に、各レーザ照射装置1の各レーザ光源3から出射されて集光光学系2を透過したレーザ11を収容部品5の内壁6に照射しながら、照射位置移動装置4によって各レーザ照射装置1を120°回転させることにより、3等配分した内壁6に対して凸レンズ8の周囲の2/3を数秒で固定する。   The operation of the optical component fixing device 100 configured as described above will be described. First, the housing component 5 is fixed to the holding member 9. Then, the convex lens 8 is fitted into the inner wall 6 of the housing component 5. Next, each laser irradiation device 1 is irradiated by the irradiation position moving device 4 while irradiating the inner wall 6 of the housing component 5 with the laser 11 emitted from each laser light source 3 of each laser irradiation device 1 and transmitted through the condensing optical system 2. Is rotated by 120 °, 2/3 around the convex lens 8 is fixed to the inner wall 6 equally distributed in several seconds.

この間、ノズルユニット50がレーザ照射装置1と同時に回転しながらレーザ照射部へ向けたガス噴射口52から空気18を総流量40(1/分)で直接吹き付けることで、先の実施の形態と同様に、粘性流動状態にある樹脂が内壁6の上方へ流動することを抑制すし、溶融した樹脂が内壁6の上部へ持ち上がることを無くし、他の部品と干渉してしまう不良の原因となる上面盛り上がりを無くし、生産性を向上させることができる。また、この凸レンズ8の表面に流れ込んでくる樹脂16も、ノズルユニット50から吹き付ける空気18で内壁6の方向へ押し込んで凸レンズ8の有効径内まで到達することを防ぎ、分解した樹脂やゴミ等が凸レンズ8表面に付着することを防ぐ。   During this time, the nozzle unit 50 rotates simultaneously with the laser irradiation apparatus 1 and blows air 18 directly from the gas injection port 52 toward the laser irradiation unit at a total flow rate of 40 (1 / min), which is the same as in the previous embodiment. In addition, it prevents the resin in the viscous flow state from flowing upwards of the inner wall 6, prevents the molten resin from lifting up to the upper part of the inner wall 6, and causes the top surface to rise, causing a defect that interferes with other parts. Can be eliminated and productivity can be improved. Further, the resin 16 flowing into the surface of the convex lens 8 is also prevented from being pushed in the direction of the inner wall 6 by the air 18 blown from the nozzle unit 50 and reaching the effective diameter of the convex lens 8, and decomposed resin, dust, etc. The adhesion to the surface of the convex lens 8 is prevented.

この実施の形態においても、凸レンズ8の中央部から端までの距離が機種により異なる場合には、内壁6から噴射口52までの距離が同じになる各種のノズルユニット50を用意するだけで、機種切り替えの立ち上げ時間を短くして生産性の向上を図れる。   Also in this embodiment, when the distance from the center portion to the end of the convex lens 8 differs depending on the model, the model can be obtained only by preparing various nozzle units 50 having the same distance from the inner wall 6 to the injection port 52. Productivity can be improved by shortening the startup time of switching.

なお、本実施例では吹き付けるガスとして空気を用いたが、窒素あるいはアルゴンガス等の他の不活性ガスを用いても同様の効果が得られる。
(実施の形態4)
図4に示すように、レーザ光源3から照射されたレーザ11を2組の凸レンズからなる集光光学系2により集光し、ビーム幅300μmの集光されたレーザ11を収容部品5の内壁6に照射することも可能である。この場合に他の構成は実施の形態3と同様である。
In the present embodiment, air is used as the gas to be blown, but the same effect can be obtained by using other inert gas such as nitrogen or argon gas.
(Embodiment 4)
As shown in FIG. 4, the laser 11 irradiated from the laser light source 3 is condensed by the condensing optical system 2 including two sets of convex lenses, and the condensed laser 11 having a beam width of 300 μm is collected on the inner wall 6 of the housing component 5. It is also possible to irradiate. In this case, the other configuration is the same as that of the third embodiment.

また、ビーム幅をより小さくする場合には、集光光学系2の後ろにマスク14を設置しても良い。   In order to make the beam width smaller, a mask 14 may be installed behind the condensing optical system 2.

以上のように本発明は、溶融した樹脂が有効径内までくることがないために不良が減少しコストが低く生産性が向上し、内壁上部の溶融した樹脂が持ち上がることが無いために上面盛り上がりが無く、他の部品と干渉してしまう不良が生じないためコストが低く生産性が向上し、機種切り替え時の立ち上げ時間が短くて生産性が向上するので、光学部品ユニットのレーザ接合方法、光学部品ユニットのレーザ接合装置および光学部品ユニットに利用できる。   As described above, according to the present invention, since the molten resin does not reach the effective diameter, defects are reduced, the cost is low, the productivity is improved, and the molten resin at the upper part of the inner wall is not lifted, so that the upper surface is raised. Since there is no failure that interferes with other parts, the cost is low and the productivity is improved, and the startup time when switching models is shortened and the productivity is improved. It can be used for a laser bonding apparatus and an optical component unit of an optical component unit.

(a)は本発明の実施の形態1に係る光学部品固定装置の構成を示す模式図、(b)はA−A矢視図(A) is a schematic diagram which shows the structure of the optical component fixing device which concerns on Embodiment 1 of this invention, (b) is an AA arrow directional view. 同実施の形態1に係る光学部品固定装置によって光学部品を収容部品の内壁に固定する方法を説明するための断面図Sectional drawing for demonstrating the method to fix an optical component to the inner wall of an accommodation component with the optical component fixing device which concerns on the same Embodiment 1. FIG. (a)は本発明の実施の形態3に係る光学部品固定装置の構成を示す模式図、(b)はA−A矢視図(A) is a schematic diagram which shows the structure of the optical component fixing device which concerns on Embodiment 3 of this invention, (b) is an AA arrow directional view. (a)は本発明の実施の形態4に係る光学部品固定装置の構成を示す模式図、(b)はA−A矢視図(A) is a schematic diagram which shows the structure of the optical component fixing device which concerns on Embodiment 4 of this invention, (b) is an AA arrow directional view. (a)は従来の光学部品固定装置の構成を示す模式図、(b)はA−A矢視図(A) is a schematic diagram which shows the structure of the conventional optical component fixing device, (b) is an AA arrow line view. 従来の光学部品固定装置によって光学部品を収容部品の内壁に固定する方法を説明するための断面図Sectional drawing for demonstrating the method to fix an optical component to the inner wall of an accommodation component with the conventional optical component fixing device.

符号の説明Explanation of symbols

1 レーザ照射装置
2 集光光学系
3 レーザ光源
4 照射位置移動装置
5 収容部品
6 内壁
7 樹脂
8 凸レンズ
9 保持部材
10 集光光学系駆動装置
11 レーザ
12 反力
14 マスク
16 流れ込んでくる樹脂
17 窒素ガス
18 空気
50 ノズルユニット
51、52 噴射口
100 光学部品固定装置
DESCRIPTION OF SYMBOLS 1 Laser irradiation apparatus 2 Condensing optical system 3 Laser light source 4 Irradiation position moving apparatus 5 Housing component 6 Inner wall 7 Resin 8 Convex lens 9 Holding member 10 Condensing optical system drive apparatus 11 Laser 12 Reaction force 14 Mask 16 Flowing resin 17 Nitrogen Gas 18 Air 50 Nozzle units 51 and 52 Injection port 100 Optical component fixing device

Claims (9)

光軸を有する光学部品を樹脂製収容部品の内壁に固定するレーザ接合方法であって、前記内壁にレーザを照射してレーザ照射部の内壁を粘性流動状態となすレーザ照射工程と、前記光学部品の光軸上に配置されたガス噴射手段から前記レーザ照射部に対し放射状にガスを噴射するガス噴射工程と、前記内壁に前記光学部品を固定する固定工程とを包含することを特徴とする光学部品ユニットのレーザ接合方法。 A laser joining method for fixing an optical component having an optical axis to an inner wall of a resin housing component , wherein a laser irradiation step of irradiating the inner wall with a laser to bring the inner wall of a laser irradiation section into a viscous flow state; and the optical component Including a gas injection step of radially injecting gas from the gas injection means disposed on the optical axis of the laser irradiation unit and a fixing step of fixing the optical component to the inner wall. Laser bonding method for component units. ガス噴射工程で噴射するガスが不活性ガスであることを特徴とする請求項1記載の光学部品ユニットのレーザ接合方法。   2. The laser joining method for an optical component unit according to claim 1, wherein the gas injected in the gas injection step is an inert gas. ガス噴射工程で噴射するガスが空気であることを特徴とする請求項1記載の光学部品ユニットのレーザ接合方法。   The laser joining method for an optical component unit according to claim 1, wherein the gas injected in the gas injection step is air. 光学部品が凸レンズであることを特徴とする請求項1から3のいずれか1項に記載の光学部品ユニットのレーザ接合方法。   The optical component unit laser joining method according to any one of claims 1 to 3, wherein the optical component is a convex lens. 光軸を有する光学部品を樹脂製収容部品の内壁に固定するレーザ接合装置であって、前記収容部品を保持する保持部材と、前記内壁のレーザ照射部にレーザを照射するレーザ照射手段と、前記光学部品の光軸上に配置され、かつレーザ照射部と対向する斜め方向のガス噴射口を有するガス噴射手段とを具備することを特徴とする光学部品ユニットのレーザ接合装置。 A laser joining apparatus for fixing an optical component having an optical axis to an inner wall of a resin housing component, a holding member for holding the housing component, a laser irradiation means for irradiating a laser on a laser irradiation portion of the inner wall, and A laser bonding apparatus for an optical component unit, comprising: a gas injection unit disposed on an optical axis of the optical component and having an oblique gas injection port facing the laser irradiation unit. レーザ照射手段が、マスクと対面する2個の凸レンズを具備することを特徴とする請求項5記載の光学部品ユニットのレーザ接合装置。   6. The laser joining device for an optical component unit according to claim 5, wherein the laser irradiation means includes two convex lenses facing the mask. レーザ照射手段を収容部品の内壁の周方向に沿って回転移動させる照射位置移動装置を更に具備することを特徴とする請求項5または6記載の光学部品ユニットのレーザ接合装置。   The laser joining apparatus for an optical component unit according to claim 5 or 6, further comprising an irradiation position moving device for rotating the laser irradiation means along the circumferential direction of the inner wall of the housing component. レーザ照射手段を少なくとも2個具備することを特徴とする請求項5から7のいずれか1項に記載の光学部品ユニットのレーザ接合装置。   The laser joining apparatus for an optical component unit according to any one of claims 5 to 7, further comprising at least two laser irradiation means. ガス噴射手段が、ガス噴射口をレーザ照射手段と同じ数だけ有するとともに前記レーザ照射手段と同時に回転する機構をなすことを特徴とする請求項5から8のいずれか1項に記載の光学部品ユニットのレーザ接合装置。   9. The optical component unit according to claim 5, wherein the gas injection unit has the same number of gas injection ports as the laser irradiation unit and forms a mechanism that rotates simultaneously with the laser irradiation unit. Laser bonding equipment.
JP2004112613A 2004-04-07 2004-04-07 Laser joining method and apparatus for optical component unit Expired - Fee Related JP4596808B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004112613A JP4596808B2 (en) 2004-04-07 2004-04-07 Laser joining method and apparatus for optical component unit
US11/098,435 US7411748B2 (en) 2004-04-07 2005-04-05 Optical component unit, laser joining method and apparatus for joining optical component
CNB200510063894XA CN100354114C (en) 2004-04-07 2005-04-07 Optical component unit, laser welding method and apparatus for optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004112613A JP4596808B2 (en) 2004-04-07 2004-04-07 Laser joining method and apparatus for optical component unit

Publications (3)

Publication Number Publication Date
JP2005300621A JP2005300621A (en) 2005-10-27
JP2005300621A5 JP2005300621A5 (en) 2007-03-15
JP4596808B2 true JP4596808B2 (en) 2010-12-15

Family

ID=35332263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004112613A Expired - Fee Related JP4596808B2 (en) 2004-04-07 2004-04-07 Laser joining method and apparatus for optical component unit

Country Status (1)

Country Link
JP (1) JP4596808B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149496B2 (en) * 2006-08-25 2013-02-20 リコー光学株式会社 Lens welding method
KR20080032759A (en) * 2006-10-10 2008-04-16 삼성전기주식회사 A lens barrel of camera module and laser apparatus for assembling the same
DE102006050653A1 (en) 2006-10-24 2008-04-30 Carl Zeiss Smt Ag Method for connecting an optical element with a fitting on at least one connecting site used in semiconductor lithography comprises indirectly or directly positioning the element and the fitting during connection using a support element
KR101180916B1 (en) 2007-11-20 2012-09-07 삼성테크윈 주식회사 Apparatus for bonding camera module, equipment for assembling camera module having the same and method for assembling camera module using the same
JP2010204569A (en) * 2009-03-05 2010-09-16 Olympus Corp Lens unit and manufacturing method thereof
JP2014175605A (en) * 2013-03-12 2014-09-22 Seiko Instruments Inc Light receiving sensor and manufacturing method of the same
US9787345B2 (en) * 2014-03-31 2017-10-10 Apple Inc. Laser welding of transparent and opaque materials
US10200516B2 (en) 2014-08-28 2019-02-05 Apple Inc. Interlocking ceramic and optical members
CN108637473B (en) * 2018-06-05 2023-12-08 昆山宝锦激光拼焊有限公司 One-time positioning welding forming device for skylight plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020867A (en) * 2002-06-14 2004-01-22 Fuji Photo Film Co Ltd Lens-fitted photographic film unit and its manufacturing method
JP2004333946A (en) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd Method for manufacturing optical component unit, optical component fixing device, and optical component unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020867A (en) * 2002-06-14 2004-01-22 Fuji Photo Film Co Ltd Lens-fitted photographic film unit and its manufacturing method
JP2004333946A (en) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd Method for manufacturing optical component unit, optical component fixing device, and optical component unit

Also Published As

Publication number Publication date
JP2005300621A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US7411748B2 (en) Optical component unit, laser joining method and apparatus for joining optical component
US7772522B2 (en) Method for scribing substrate of brittle material and scriber
JP4596808B2 (en) Laser joining method and apparatus for optical component unit
JP4723456B2 (en) Machining head, nozzle changing device and laser machining device
JP2000218698A (en) Method and apparatus for bonding resins by laser
JP2009080472A (en) Protection sleeve, and apparatus and method for producing protection sleeve
JP2942081B2 (en) 3D object modeling equipment
JP2011088431A (en) Resin component welding apparatus and resin component welding method
JP2009076606A (en) Mounting device and mounting method for electronic component
JP4574233B2 (en) Lens fixing method
US11573379B2 (en) Laser welding of optical fibers in perforated elements and associated optical elements
JP5126712B2 (en) Bonding equipment
JP2004333946A (en) Method for manufacturing optical component unit, optical component fixing device, and optical component unit
JP4413059B2 (en) Laser joining apparatus for optical component unit and laser joining method for optical component unit
JP2000155251A (en) Method for coupling members and optical parts formed by using the same
JP4287494B2 (en) Alignment fixing method and alignment fixing device
JP2001054945A (en) Indirect adhesion structure, indirect adhesion method and intermediate holding member
US20090072421A1 (en) Method for cutting semi-finished molding lens
US6409873B1 (en) Process and apparatus for bonding a pair of ducts together in which a removable member is used to help support and maintain alignment between the ducts during bonding
KR20230032867A (en) Connection method using a laser transmission bonding technology, an apparatus for bonding as well as a part made of a laser transmissive bonded first plastic part and a second plastic part
JP4498127B2 (en) Optical member fixing method and optical apparatus
JP2009156958A (en) Light source unit, laser scanner, image forming apparatus, and light source unit assembling method
JP2006039247A (en) Lens fixing apparatus
JP4560391B2 (en) Method for manufacturing liquid discharge head
JP2007320108A (en) Manufacturing method for inkjet recording head and inkjet recording head

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees