JP4590042B2 - Battery and manufacturing method thereof - Google Patents

Battery and manufacturing method thereof Download PDF

Info

Publication number
JP4590042B2
JP4590042B2 JP08825199A JP8825199A JP4590042B2 JP 4590042 B2 JP4590042 B2 JP 4590042B2 JP 08825199 A JP08825199 A JP 08825199A JP 8825199 A JP8825199 A JP 8825199A JP 4590042 B2 JP4590042 B2 JP 4590042B2
Authority
JP
Japan
Prior art keywords
battery
power generation
generation element
electrolyte
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08825199A
Other languages
Japanese (ja)
Other versions
JP2000285907A5 (en
JP2000285907A (en
Inventor
実 水谷
茂生 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP08825199A priority Critical patent/JP4590042B2/en
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to CN99802036A priority patent/CN1288594A/en
Priority to US09/582,868 priority patent/US6797429B1/en
Priority to EP99954368A priority patent/EP1049180A4/en
Priority to CNB2004100978326A priority patent/CN1330019C/en
Priority to PCT/JP1999/006135 priority patent/WO2000028607A1/en
Publication of JP2000285907A publication Critical patent/JP2000285907A/en
Priority to US10/712,530 priority patent/US7267904B2/en
Publication of JP2000285907A5 publication Critical patent/JP2000285907A5/ja
Priority to US11/553,231 priority patent/US7348099B2/en
Application granted granted Critical
Publication of JP4590042B2 publication Critical patent/JP4590042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、電池とその製造方法に属するものである。
【0002】
【従来の技術】
近年、携帯用無線電話、携帯用パソコン、携帯用ビデオカメラ等の電子機器が開発され、各種電子機器が携帯可能な程度に小型化されている。それに伴って、内蔵される電池としても、高エネルギー密度を有し、且つ軽量なものが採用されている。そのような要求を満たす典型的な電池は、特にリチウム金属やリチウム合金等の活物質、又はリチウムイオンをホスト物質(ここでホスト物質とは、リチウムイオンを吸蔵及び放出できる物質をいう。)である炭素に吸蔵させたリチウムインターカレーション化合物を負極材料とし、LiClO4、LiPF6等のリチウム塩を溶解した非プロトン性の有機溶媒を電解液とする非水電解質二次電池である。
【0003】
この非水電解質二次電池は、上記の負極材料をその支持体である負極集電体に保持してなる負極板と、リチウムコバルト複合酸化物のようにリチウムイオンと可逆的に電気化学反応をする正極活物質をその支持体である正極集電体に保持してなる正極板と、電解液を保持するとともに負極板と正極板との間に介在して両極の短絡を防止するセパレータとを備えており、これらは、金属・樹脂ラミネートフィルムからなる電池ケース内に気密性を保つように収納される。
【0004】
この非水電解質二次電池も含めて、密封された電池ケースとこの中に収納される正・負極及び電解液とを備えた電池は、従来より、以下のようにして製造されている。まず、リード端子が接続された正・負極及びその間に介在するセパレータを、電池ケースとなるラミネートフィルムでリード端子のみ露出するように包む。そして、ラミネートフィルムの周縁を接着する。ただし、一部開口部を設けておく。次に、開口部より電解液を正極と負極との間に注入する。続いて、真空ポンプで電池ケース内の空気を開口部より除去した後、開口部を接着することによって密封する。
【0005】
【発明が解決しようとする課題】
しかし、従来の電池の製造方法では、電解液を注入する際に電解液が正・負極に当たって跳ね返り、また電極間の空気を除去する際に電解液中の気泡が破裂する。そのため、電解液の飛沫が電池ケースの内面に付着しやすい。よって、その後で開口部を封じると、接着しようとする部分に電解液が付着したまま封じてしまい、その結果、封じられているとはいうものの、気密性が悪くなる。気密性が悪いと外部より空気が侵入し、また著しく悪い場合には電解液が外部に流出することもある。
【0006】
特に、上述した非水電解質二次電池においては、気密性が悪いと、空気中に含まれている水分によって電気分解反応が電池内で起こり、電池の容量が低下する。また、電解液にLiPF6等のリチウム塩が含まれている場合、これと水とが反応してHF等のガスが発生することがある。このようなガスが発生すると、それに伴って電解液が外部に押し出されることがあり、さらに、金属・樹脂ラミネートフィルムの樹脂を透過し、金属が腐食する。
【0007】
これらの問題を解決するための手段として、電解液の注入及び空気の除去をゆっくりと注意深くすることも考えられる。これにより、電解液の飛沫が電池ケース内面に付着するのを極力抑えることは可能である。しかし、時間がかかるため、生産性が落ちてしまうという欠点がある。
【0008】
それ故、本発明の目的は、気密性の良い電池、並びにそのような電池を効率的に製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、発電要素と、内部に発電要素及び電解液を収納する電池ケースとを備えた電池において、前記発電要素の端部に絶縁性及び液透過性をもつ防泡体が配置されたことを特徴とする。また、前記電池ケースが開口部を有し、前記防泡体が前記電池ケース開口部と前記発電要素との間に配置されたことを特徴とする。また、防泡体が、発電要素の集電リードが引き出された面とは反対側の面に配置されたことを特徴とする。また、前記防泡体が固着手段を用いて前記発電要素に固着されていることを特徴とし、さらに、防泡体がポリオレフィンからなるネット、不織布又はフェルト発泡体であることを特徴とする。
【0010】
また本発明は、電池ケースが袋状でかつ気密構造を有し、長円形巻回型発電要素がその巻回中心軸が袋状単電池ケースの開口面に垂直方向であるように収納されていることを特徴とし、さらに、袋状単電池ケースの材質が金属ラミネート樹脂フィルムであることを特徴とする
【0011】
さらに本発明の製造方法は、開口部を有し内部に発電要素が収納された電池ケースの前記開口部から電解液を注入した後、前記開口部を封じる電池の製造方法において、絶縁性及び液透過性をもつ防泡体を電池ケース内かつ前記開口部と発電要素との間に配置し、前記防泡体を介して電解液を注入することを特徴とし、また、前記防泡体が前記発電要素の集電リードが引き出された面とは反対側の面に配置されたことを特徴とし、また、前記防泡体が固着手段を用いて前記発電要素に固着されていることを特徴とし、さらに前記電池ケースの材質が金属ラミネート樹脂フィルムであることを特徴とする。
【0012】
【発明の実施の形態】
本発明の実施の形態を、長円形巻回型発電要素を使用し、電解液がリチウム塩を含む有機溶媒である非水電解質二次電池に適用した場合について、図面を参照して説明する。
【0013】
図1は、本発明の製造方法により製造された電池を示す平面図である。図1において、1は非水電解質二次電池、2は電池ケース、3はリード端子、4は発電要素、5は防泡体である。この非水電解質二次電池1では、正極板、負極板及びセパレータからなる発電要素4が、電解液とともに金属ラミネート樹脂フィルムを熱溶着してなる電池ケース2に収納されている。発電要素4には、リード端子3が接続されており、また絶縁性及び液透過性をもつ防泡体5が設置されている。
【0014】
電池ケース2のX−X断面を図2に示す。図2に詳細な断面を示したように、表面保護層21と金属バリア層22と熱溶着層23の三層構造の金属ラミネート樹脂フィルムからなっている。また図2に示したように、リード端子3は金属導体31に接着層32を接着し、その外側に電解液バリア層33を設けたものである。
【0015】
本発明になる電池1は、図3に示すような方法で製造される。図3において、記号2〜5は図1と同じものを示し、6は電池ケース2の開口部である。
【0016】
まず、発電要素4をリード端子3が下向きになるように固定し(a)、反対側の上端に端部全体を覆うように防泡体5を設置して接着剤で固定した(b)。次に、これらを電池ケース2となる金属ラミネート樹脂フィルムでリード端子3のみ露出するように包み、金属ラミネート樹脂フィルムの周縁を熱溶着により封じた(c)。ただし、防泡体5側には開口部6を設けておいた。続いて、電解液を開口部6より防泡体5の上に注いだ(d)。すると、電解液は防泡体5に吸収された後、正極板と負極板との間にあるセパレータにしみ込む。そして、真空ポンプにより電池ケース2内の空気を除去した(e)。最後に、開口部6を熱溶着により封じて、電池を得た(f)。
【0017】
本発明に使用する発電要素の形状としては、断面が長円形巻回型に限られるものではなく、断面が円形巻回型や非円形巻回型、あるいは平板型極板をセパレータを介して積層するスタック型や、シート状極板を折りたたんでセパレータを介して積層する型など、あらゆる形状の発電要素を使用することができる。
【0018】
長円形巻回型発電要素の場合には、シート状の正極板と負極板が、セパレータを介して巻回中心軸の周囲に巻回されている。したがって、長円形巻回型発電要素は、巻回中心軸に平行な二つの側壁部分と、巻回中心軸に垂直でリードが取り出されている平面と、巻回中心軸に垂直でリードが取り出されていない平面をもつ。
【0019】
また、発電要素の形状が平板型極板をセパレータを介して積層するスタック型や、シート状極板を折りたたんでセパレータを介して積層する型の場合、発電要素の外形は概略直方体となり、この直方体の一面からリード端子が取り出されている。
【0020】
本発明においては、防泡体が、発電要素の集電リードが引き出された面とは反対側の面に固着されていることを特徴とする。ここで、「発電要素の集電リードが引き出された面とは反対側の面」とは、長円形巻回型発電要素の場合には、巻回中心軸に垂直でリードが取り出されていない平面を意味し、平板型極板をセパレータを介して積層する、外形が概略直方体の発電要素の場合には、リードが取り出されている平面に対向するリードが取り出されていない平面を意味する。
【0021】
また本発明においては、気密構造を有する袋状単電池ケースを使用することができ、袋状単電池ケースの材質としては金属ラミネート樹脂フィルムを使用することが好ましい。
【0022】
本発明において、長円形巻回型発電要素を袋状単電池ケースに収納する場合には、長円形巻回型発電要素はその巻回中心軸が袋状単電池ケースの開口面に垂直方向であることが好ましい。なお、垂直方向とは、完全な垂直のみを意味するのではなく、おおむね垂直な方向も意味する。
【0023】
防泡体としては、例えば、ポリプロピレン、ポリエチレン等のポリオレフィンからなるネット、不織布、フェルト又は発泡体がある。粘着剤としては、従来粘着テープに用いられているものが好ましく、シリコン系、ゴム系、アクリル系の粘着剤がある。電池ケースとしては、例えば、少なくとも一層の金属を用いたラミネートフィルムからなる電池ケースがある。このとき、開口部を封じる手段として、熱溶着がある。
【0024】
本発明になる非水電解質二次電池のに使用する電解液溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、もしくはこれらの混合物を使用してもよい。
【0025】
また、有機溶媒に溶解するリチウム塩としては、LiPF 、LiClO 、LiBF 、LiAsF 、LiCF CO 、LiCF SO 、LiN(SO CF 、LiN(SO CF CF 、LiN(COCF およびLiN(COCF CF などの塩もしくはこれらの混合物でもよい。
【0026】
また、本発明になる非水電解質二次電池の隔離体としては、絶縁性のポリエチレン微多孔膜に電解液を含浸したものや、高分子固体電解質、高分子固体電解質に電解液を含有させたゲル状電解質等も使用できる。また、絶縁性の微多孔膜と高分子固体電解質等を組み合わせて使用してもよい。さらに、高分子固体電解質として有孔性高分子固体電解質膜を使用する場合、高分子中に含有させる電解液と、細孔中に含有させる電解液とが異なっていてもよい。
【0027】
さらに、正極材料たるリチウムを吸蔵放出可能な化合物としては、無機化合物としては、組成式Li MO 、またはLi (ただしMは遷移金属、0≦x≦1、0≦y≦2)で表される、複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物を用いることができる。その具体例としては、LiCoO 、LiNiO 、LiMn 、Li Mn 、MnO 、FeO 、V 、V 13 、TiO 、TiS 等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。
【0028】
さらに、負極材料たる化合物としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe 、WO 、MoO 等の遷移金属酸化物、グラファイト、カーボン等の炭素質材料、Li (Li N)等の窒化リチウム、もしくは金属リチウム箔、又はこれらの混合物を用いてもよい。
【0029】
【実施例】
本発明の実施例を図面とともに説明する。
【0030】
本実施例の製造方法により製造された電池の平面図を図1に示す。
【0031】
正極板は、集電体に活物質としてリチウムコバルト複合酸化物が保持されたものである。集電体は、厚さ20μmのアルミニウム箔である。正極板は、結着剤であるポリフッ化ビニリデン8部と導電剤であるアセチレンブラック5部とを活物質87部とともに混合し、適宜N−メチルピロリドンを加えてペースト状に調製した後、その集電体材料の両面に塗布、乾燥することによって製作された。
【0032】
負極板の集電体は、厚さ14μmの銅箔を用いた。負極板は、その集電体の両面に、ホスト物質としてのグラファイト(黒鉛)92部と結着剤としてのポリフッ化ビニリデン8部とを混合し、適宜N−メチルピロリドンを加えてペースト状に調製したものを塗布、乾燥することによって製作された。
【0033】
セパレータは、ポリエチレン微多孔膜である。また、電解液は、LiPF6を1mol/l含むエチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合液である。
【0034】
それぞれの寸法は正極板が厚さ180μm、幅49mmで、セパレータが厚さ25μm、幅53mmで、負極板が厚さ170μm、幅51mmとなっており、順に重ね合わせてポリエチレンの長方形状の巻芯を中心として、その周囲に長円渦状に巻いて柱状にしたものが発電要素となる。
【0035】
電池ケース2は、図2に断面図として詳細に示すように最外層に表面保護用の12μmのPET層21を有し、その下にバリア層として9μmのアルミニウム箔22をウレタン系接着剤で接着している。さらに、その下に熱溶着層として100μmの酸変性ポリエチレン層23を有するラミネートフィルムからなっている。ここで、熱溶着層である酸変性ポリエチレン層には軟化点が100℃のものを用いた。
【0036】
また、リード端子3は、図2のように50〜100μmの銅、アルミ、ニッケルなどの金属導体31に金属との接着層となる50μmの酸変性PE層32を接着し、その外側に電解液バリア層として70μmのエバール樹脂(クラレ製のエチレンビニルアルコール共重合樹脂)層33を設けたものである。これらを図のように重ねて接着すると良好な気密性が得られる。リード端子3は、電極群4の内部で電極板と接続しており、電極群4の巻軸方向の端部より突出している。なお、正極リード端子材料にアルミニウム、負極リード端子材料にニッケルを用いた。
【0037】
防泡体5は、ポリプロピレンからなる長繊維不織布(旭化成製)であり、その厚みは0.23mmで、引裂強力は縦方向・横方向ともに0.40kgで、目付けは22g/m2である。防泡体5は、電極群4のリード端子3と反対側の端部に当該端部全体を覆うように接着剤で固定されている。防泡体5は電極群4の端部に当てられるだけでも良いが、この電池1のように固定されると、万一電池ケース2が完全に封じられていなかったとしても、電解液が外部に流出するのを防ぐことができる。また、この電池1では、リード端子3と防泡体5とは互いに電極群4を間にして異なる側に設けられているが、同じ側に設けられても良い。
【0038】
この電池1は、図3に示すような方法にて製造された。
【0039】
まず、電極群4をリード端子3が下向きになるように固定し(a)、反対側の上端に端部全体を覆うように防泡体5を設置して接着剤で固定した(b)。次に、これらを電池ケース2となるラミネートフィルムでリード端子3のみ露出するように包み、ラミネートフィルムの周縁を熱溶着により封じた(c)。ただし、防泡体5側には開口部6を設けておいた。続いて、電解液を開口部6より防泡体5の上に注いだ(d)。すると、電解液は防泡体5に吸収された後、正極板と負極板との間にあるセパレータにしみ込む。そして、真空ポンプにより電池ケース2内の空気を除去した(e)。最後に、開口部6を熱溶着により封じて、設計容量500mAhである電池1を得た(f)。
【0040】
本実施例では、電解液を注入する際に防泡体5を介して注入するので、電解液が電極群4に当たって跳ね返ることがなく、そのため電池ケース2内面の開口部6付近に付着することがない。また、空気を除去する際に電解液中で気泡が破裂しても、電極群4の上端が防泡体5で覆われているので、飛沫が電極群4の外に散ることがない。さらに、電解液を注入する前に集電リード側が封止されているので、本実施例によって製造された電池1は気密性に優れている。
【0041】
本実施例の製造方法による電池1を以下の試験に供した。
【0042】
まず、本実施例による電池1を10セル準備し、また比較例として、防泡体5を用いることなく集電リード側から電解液を注入した以外は本実施例と同一条件で製造された電池も10セル準備した。次に、各電池を500mAで定電流充電後、4.10Vで定電圧充電し(合計3時間充電)、500mAの定電流で2.75Vまで放電したときの電池の容量(試験前容量)を測定した。そして、60℃、90%RHの条件下で30日保存した後、再び同じ条件で放電し容量(残存容量)を測定した。さらに、各電池を上記と同じ条件で再充電・再放電した後、容量(回復容量)を測定した。また、ラミネートフィルムのアルミニウムが腐蝕していないかどうか、電解液が外部に流出していないかどうかを観察した。
【0043】
結果を表1に示す。表中、*印はアルミニウムの腐蝕が認められた電池であることを示し、**印はアルミニウムの腐蝕に加えて電解液の流出も認められた電池でることを示す。また、残存容量及び回復容量の値は、試験前容量に対する百分率(%)で表示している。
【0044】
【表1】

Figure 0004590042
【0045】
表1に見られるように、本実施例の電池1よりも比較例の方が残存容量及び回復容量で低い値を示す傾向があった。これは、比較例の電池では外部より侵入した空気中の水分によって電気分解反応が起こったためと思われる。また、比較例では、全ての電池についてアルミニウムの腐蝕が認められ、そのうち8個の電池については集電リード部分から、電解液の流出も認められたが、これらについても外部より侵入した空気に起因していると言える。
【0046】
それに対して、本実施例の電池1では、電解液の流出もアルミニウムの腐蝕も認められなかった。以上より、本実施例によって製造された電池1は、従来の電池より気密性に優れていることが明らかとなった。
【0047】
【発明の効果】
本発明によると、気密性の良い電池を効率的に製造することができる。
【0048】
本発明の製造方法では、絶縁性及び液透過性をもつ防泡体を設置し、これを介して電解液を注入する。そのため、電解液は、防泡体に一度吸収されてから、発電要素の間隙に注入される。よって、電解液が正・負極などの発電要素に直接当たることがないので、跳ね返ることがない。また、空気を除去する際に、電解液中で気泡が破裂して飛沫が生じても、防泡体が蓋として機能し、飛散するのを抑える。さらに、集電リードが引き出された面とは反対側に固着し注液することにより、リードへ電解液が付着することも防止できる。したがって、本発明の製造方法によると、電池ケース内面の接着する部分に電解液の飛沫が付着することがなく、よって気密性の良い電池を得ることができる。
【0049】
また、本発明によって製造された電池では、電解液がリチウム塩を含む非水電解液であっても、電池容量の低下、電解液の流出、及び金属の腐食を招くことはない。さらに、本発明の製造方法では、電解液の注入及び空気の除去の際にゆっくりと注意深くする必要もないので、効率よく製造することができる。また、集電リードが引き出された面とは反対側の発電要素に予め防泡体を固着させることにより、工程でのハンドリングや、電解液注入時のリードへの電解液の付着、空気の除去時の位置ずれを起こさないので、不良率を低減することが可能である。
【図面の簡単な説明】
【図1】本発明により製造された電池の平面図。
【図2】図1のX−X断面図。
【図3】本発明の製造方法を説明する図。
【符号の説明】
1 電池
2 電池ケース
3 リード端子
4 発電要素
5 防泡体
6 開口部
21 表面保護層
22 金属バリア層
23 熱溶着層
31 金属導体
32 接着層
33 バリア層[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a battery and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, electronic devices such as portable radio telephones, portable personal computers, and portable video cameras have been developed, and various electronic devices have been miniaturized to the extent that they can be carried. Accordingly, a battery having a high energy density and a light weight has been adopted as a built-in battery. A typical battery that satisfies such a requirement is an active material such as lithium metal or a lithium alloy, or a lithium ion host material (where the host material refers to a material that can occlude and release lithium ions). This is a nonaqueous electrolyte secondary battery in which a lithium intercalation compound occluded in a certain carbon is used as a negative electrode material, and an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used as an electrolyte.
[0003]
This non-aqueous electrolyte secondary battery has a negative electrode plate in which the above negative electrode material is held by a negative electrode current collector as a support, and reversibly electrochemically reacts with lithium ions like a lithium cobalt composite oxide. A positive electrode plate that holds the positive electrode active material to be supported on a positive electrode current collector, and a separator that holds the electrolyte and is interposed between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes. These are housed in a battery case made of a metal / resin laminate film so as to maintain airtightness.
[0004]
A battery including a sealed battery case, a positive / negative electrode, and an electrolyte contained therein, including the nonaqueous electrolyte secondary battery, has been conventionally manufactured as follows. First, the positive and negative electrodes to which the lead terminals are connected and the separator interposed therebetween are wrapped with a laminate film serving as a battery case so that only the lead terminals are exposed. And the periphery of a laminate film is adhere | attached. However, a partial opening is provided. Next, an electrolytic solution is injected between the positive electrode and the negative electrode from the opening. Subsequently, after the air in the battery case is removed from the opening with a vacuum pump, the opening is bonded to seal it.
[0005]
[Problems to be solved by the invention]
However, in the conventional battery manufacturing method, when the electrolytic solution is injected, the electrolytic solution hits the positive and negative electrodes and rebounds, and when air between the electrodes is removed, bubbles in the electrolytic solution burst. Therefore, the splash of electrolyte solution tends to adhere to the inner surface of the battery case. Therefore, if the opening is sealed after that, the electrolyte is sealed while adhering to the part to be bonded, and as a result, the airtightness is deteriorated although it is sealed. When the airtightness is poor, air enters from the outside, and when it is extremely bad, the electrolyte may flow out to the outside.
[0006]
In particular, in the non-aqueous electrolyte secondary battery described above, if the airtightness is poor, an electrolysis reaction occurs in the battery due to moisture contained in the air, and the capacity of the battery is reduced. Also, if it contains a lithium salt of LiPF 6 or the like in the electrolytic solution, and water which may be a gas such as HF and reactions occur. When such a gas is generated, the electrolytic solution may be pushed out to the outside. Further, the metal permeates the resin of the metal / resin laminate film, and the metal corrodes.
[0007]
As a means for solving these problems, it is conceivable to slowly and carefully inject the electrolyte and remove the air. Thereby, it is possible to suppress the splash of electrolyte solution adhering to the battery case inner surface as much as possible. However, since it takes time, there is a drawback that productivity is lowered.
[0008]
Therefore, an object of the present invention is to provide an airtight battery and a method for efficiently manufacturing such a battery.
[0009]
[Means for Solving the Problems]
According to the present invention, in a battery including a power generation element and a battery case that houses the power generation element and an electrolyte therein , an antifoaming body having insulating properties and liquid permeability is disposed at an end of the power generation element. It is characterized by. Further, the battery case has an opening, and the foam preventer is disposed between the battery case opening and the power generation element. In addition, the antifoaming body is arranged on the surface opposite to the surface from which the current collecting lead of the power generation element is drawn out. In addition, the antifoaming body is fixed to the power generating element using a fixing means, and the antifoaming body is a net, a nonwoven fabric or a felt foam made of polyolefin.
[0010]
In the present invention, the battery case has a bag shape and has an airtight structure, and the oval winding type power generation element is accommodated such that the winding center axis thereof is perpendicular to the opening surface of the bag type single battery case. characterized in that there further characterized in that the material of the bag-like unit cell case is a metal laminated resin film.
[0011]
Furthermore, the manufacturing method of the present invention is a method of manufacturing a battery in which an electrolyte is injected from the opening of a battery case having an opening and a power generation element is housed therein, and then the opening is sealed. A foam-proof body having permeability is disposed in a battery case and between the opening and the power generation element, and an electrolyte is injected through the foam-proof body. It is characterized in that the current collecting lead of the power generating element is arranged on the surface opposite to the surface from which the power collecting lead is drawn out, and the foam preventer is fixed to the power generating element using fixing means. Further, the battery case is made of a metal laminated resin film.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The case where an embodiment of the present invention is applied to a nonaqueous electrolyte secondary battery in which an oval winding type power generation element is used and an electrolytic solution is an organic solvent containing a lithium salt will be described with reference to the drawings.
[0013]
FIG. 1 is a plan view showing a battery manufactured by the manufacturing method of the present invention. In FIG. 1, 1 is a non-aqueous electrolyte secondary battery, 2 is a battery case, 3 is a lead terminal, 4 is a power generation element, and 5 is a foam preventer. In this non-aqueous electrolyte secondary battery 1, a power generation element 4 composed of a positive electrode plate, a negative electrode plate and a separator is housed in a battery case 2 formed by thermally welding a metal laminate resin film together with an electrolytic solution. A lead terminal 3 is connected to the power generation element 4 and a foam preventer 5 having insulating properties and liquid permeability is provided.
[0014]
An XX cross section of the battery case 2 is shown in FIG. As shown in detail in FIG. 2, it is made of a metal laminate resin film having a three-layer structure of a surface protective layer 21, a metal barrier layer 22, and a heat welding layer 23. As shown in FIG. 2, the lead terminal 3 is obtained by bonding an adhesive layer 32 to a metal conductor 31 and providing an electrolyte solution barrier layer 33 on the outside thereof.
[0015]
The battery 1 according to the present invention is manufactured by a method as shown in FIG. In FIG. 3, symbols 2 to 5 are the same as those in FIG. 1, and 6 is an opening of the battery case 2.
[0016]
First, the power generation element 4 was fixed so that the lead terminal 3 faced downward (a), and the foam preventer 5 was installed at the upper end on the opposite side so as to cover the entire end and fixed with an adhesive (b). Next, these were wrapped with a metal laminate resin film to be the battery case 2 so that only the lead terminals 3 were exposed, and the periphery of the metal laminate resin film was sealed by thermal welding (c). However, an opening 6 was provided on the antifoam body 5 side. Subsequently, an electrolytic solution was poured onto the foam preventer 5 from the opening 6 (d). Then, after the electrolytic solution is absorbed by the antifoam body 5, it penetrates into the separator between the positive electrode plate and the negative electrode plate. And the air in the battery case 2 was removed by the vacuum pump (e). Finally, the opening 6 was sealed by heat welding to obtain a battery (f).
[0017]
The shape of the power generating element used in the present invention is not limited to the elliptical winding type in cross section, but the cross section is a circular winding type or non-circular winding type, or a plate type plate is laminated via a separator. A power generation element of any shape can be used, such as a stack mold that folds and a sheet-type electrode plate that is folded and stacked via a separator.
[0018]
In the case of an oval winding type power generation element, a sheet-like positive electrode plate and negative electrode plate are wound around a winding center axis via a separator. Therefore, the oval winding type power generation element has two side wall portions parallel to the winding center axis, a plane from which the lead is taken out perpendicular to the winding center axis, and a lead perpendicular to the winding center axis. Has a flat surface.
[0019]
In addition, when the shape of the power generation element is a stack type in which a flat plate plate is stacked via a separator or a type in which a sheet electrode plate is folded and stacked via a separator, the outer shape of the power generation element is a substantially rectangular parallelepiped. Lead terminals are taken out from one side.
[0020]
In the present invention, the foam preventer is fixed to a surface opposite to the surface from which the current collecting lead of the power generation element is drawn. Here, “the surface opposite to the surface from which the current collecting lead of the power generation element is drawn” means that in the case of an oval wound power generation element, the lead is perpendicular to the winding center axis and the lead is not taken out. In the case of a power generation element having a substantially rectangular parallelepiped outer shape in which flat plate plates are stacked via a separator, it means a plane in which a lead opposite to the plane from which the lead is taken out is not taken out.
[0021]
Further, in the present invention, a bag-shaped unit cell case having an airtight structure can be used, and it is preferable to use a metal laminated resin film as the material of the bag-shaped unit cell case.
[0022]
In the present invention, when the oval winding type power generation element is housed in the bag-shaped cell case, the oval winding type power generation element has its winding center axis perpendicular to the opening surface of the bag-shaped cell case. Preferably there is. Note that the vertical direction does not mean only complete vertical, but also generally means a vertical direction.
[0023]
Examples of the antifoaming body include nets, nonwoven fabrics, felts, and foams made of polyolefin such as polypropylene and polyethylene. As an adhesive, what was conventionally used for the adhesive tape is preferable, and there exist a silicone type, rubber type, and an acrylic adhesive. Examples of the battery case include a battery case made of a laminate film using at least one layer of metal. At this time, as a means for sealing the opening, there is thermal welding.
[0024]
Examples of the electrolyte solvent used in the nonaqueous electrolyte secondary battery according to the present invention include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1 , 2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate and the like, or a mixture thereof may be used.
[0025]
Furthermore, as the lithium salt dissolved in an organic solvent, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiCF 3 CO 2, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 CF 2 CF 3 ) 2 , a salt such as LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or a mixture thereof.
[0026]
In addition, as the separator of the nonaqueous electrolyte secondary battery according to the present invention, an insulating polyethylene microporous membrane impregnated with an electrolyte, a polymer solid electrolyte, or a polymer solid electrolyte containing an electrolyte A gel electrolyte or the like can also be used. Further, an insulating microporous membrane and a polymer solid electrolyte may be used in combination. Furthermore, when a porous polymer solid electrolyte membrane is used as the polymer solid electrolyte, the electrolyte solution contained in the polymer and the electrolyte solution contained in the pores may be different.
[0027]
Furthermore, as a compound capable of occluding and releasing lithium as a positive electrode material, an inorganic compound includes a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y A composite oxide, an oxide having tunnel-like vacancies, or a layered metal chalcogenide represented by ≦ 2) can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , and TiS 2 . Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.
[0028]
Further, as a negative electrode material compound, Al, Si, Pb, Sn, Zn, Cd, etc. and lithium alloys, transition metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , carbon such as graphite, carbon, etc. A material, lithium nitride such as Li 5 (Li 3 N) , or a metal lithium foil, or a mixture thereof may be used.
[0029]
【Example】
Embodiments of the present invention will be described with reference to the drawings.
[0030]
The top view of the battery manufactured by the manufacturing method of a present Example is shown in FIG.
[0031]
The positive electrode plate is obtained by holding a lithium cobalt composite oxide as an active material on a current collector. The current collector is an aluminum foil having a thickness of 20 μm. The positive electrode plate was prepared by mixing 8 parts of polyvinylidene fluoride as a binder and 5 parts of acetylene black as a conductive agent together with 87 parts of an active material, and appropriately adding N-methylpyrrolidone to prepare a paste. It was manufactured by applying and drying on both sides of the electrical material.
[0032]
The current collector for the negative electrode plate was a copper foil having a thickness of 14 μm. The negative electrode plate is prepared in a paste form by mixing 92 parts of graphite (graphite) as a host material and 8 parts of polyvinylidene fluoride as a binder on both sides of the current collector, and adding N-methylpyrrolidone as appropriate. It was manufactured by applying and drying the finished product.
[0033]
The separator is a polyethylene microporous membrane. The electrolytic solution is a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing 1 mol / l of LiPF 6 .
[0034]
The dimensions are as follows: the positive electrode plate is 180 μm thick and the width is 49 mm, the separator is 25 μm thick and the width is 53 mm, the negative electrode plate is 170 μm thick and the width is 51 mm. A power generation element is formed by winding an ellipse around it and making it a column.
[0035]
As shown in detail as a cross-sectional view in FIG. 2, the battery case 2 has a 12 μm PET layer 21 for surface protection as an outermost layer, and a 9 μm aluminum foil 22 is bonded as a barrier layer below with a urethane adhesive. is doing. Furthermore, it consists of a laminate film having a 100 μm acid-modified polyethylene layer 23 underneath as a heat-welded layer. Here, the acid-modified polyethylene layer, which is a heat-welded layer, has a softening point of 100 ° C.
[0036]
Further, as shown in FIG. 2, the lead terminal 3 has a 50 μm acid-modified PE layer 32 to be bonded to a metal adhered to a metal conductor 31 of 50 to 100 μm such as copper, aluminum, nickel, etc. A 70 μm Eval resin (Kuraray ethylene vinyl alcohol copolymer resin) layer 33 is provided as a barrier layer. When these are stacked and adhered as shown in the figure, good airtightness can be obtained. The lead terminal 3 is connected to the electrode plate inside the electrode group 4 and protrudes from the end of the electrode group 4 in the winding axis direction. In addition, aluminum was used for the positive electrode lead terminal material and nickel was used for the negative electrode lead terminal material.
[0037]
The antifoam body 5 is a long-fiber nonwoven fabric made of polypropylene (manufactured by Asahi Kasei). The thickness is 0.23 mm, the tear strength is 0.40 kg in both the longitudinal and lateral directions, and the basis weight is 22 g / m 2 . The foam preventer 5 is fixed to the end of the electrode group 4 opposite to the lead terminal 3 with an adhesive so as to cover the entire end. The foam preventer 5 may be applied only to the end of the electrode group 4, but when fixed like the battery 1, even if the battery case 2 is not completely sealed, the electrolyte solution is externally applied. Can be prevented from leaking. Moreover, in this battery 1, the lead terminal 3 and the foam preventer 5 are provided on different sides with the electrode group 4 therebetween, but may be provided on the same side.
[0038]
The battery 1 was manufactured by a method as shown in FIG.
[0039]
First, the electrode group 4 was fixed so that the lead terminals 3 face downward (a), and a foam preventer 5 was installed at the upper end on the opposite side so as to cover the entire end and fixed with an adhesive (b). Next, these were wrapped with a laminate film to be the battery case 2 so that only the lead terminals 3 were exposed, and the periphery of the laminate film was sealed by thermal welding (c). However, an opening 6 was provided on the antifoam body 5 side. Subsequently, an electrolytic solution was poured onto the foam preventer 5 from the opening 6 (d). Then, after the electrolytic solution is absorbed by the antifoam body 5, it penetrates into the separator between the positive electrode plate and the negative electrode plate. And the air in the battery case 2 was removed by the vacuum pump (e). Finally, the opening 6 was sealed by thermal welding to obtain a battery 1 having a design capacity of 500 mAh (f).
[0040]
In this embodiment, since the electrolyte solution is injected through the antifoam body 5 when injected, the electrolyte solution does not hit the electrode group 4 and rebounds, and therefore adheres to the vicinity of the opening 6 on the inner surface of the battery case 2. Absent. Even if air bubbles are ruptured in the electrolytic solution when air is removed, the upper end of the electrode group 4 is covered with the antifoam body 5, so that splashes are not scattered outside the electrode group 4. Furthermore, since the current collecting lead side is sealed before injecting the electrolytic solution, the battery 1 manufactured according to this example is excellent in airtightness.
[0041]
The battery 1 according to the production method of this example was subjected to the following test.
[0042]
First, 10 cells of the battery 1 according to this example were prepared, and as a comparative example, a battery manufactured under the same conditions as in this example except that the electrolyte solution was injected from the current collecting lead side without using the antifoam body 5. 10 cells were also prepared. Next, after charging each battery at a constant current of 500 mA, charging at a constant voltage of 4.10 V (charging for a total of 3 hours), and discharging the battery to 2.75 V at a constant current of 500 mA (capacity before testing) It was measured. And after storing for 30 days under the conditions of 60 ° C. and 90% RH, the battery was discharged again under the same conditions, and the capacity (remaining capacity) was measured. Furthermore, after each battery was recharged / redischarged under the same conditions as described above, the capacity (recovery capacity) was measured. Moreover, it was observed whether the aluminum of the laminate film was corroded and whether the electrolytic solution was not discharged to the outside.
[0043]
The results are shown in Table 1. In the table, * indicates a battery in which corrosion of aluminum was observed, and ** indicates a battery in which outflow of electrolyte was recognized in addition to corrosion of aluminum. Moreover, the remaining capacity and the recovery capacity are expressed as a percentage (%) with respect to the capacity before the test.
[0044]
[Table 1]
Figure 0004590042
[0045]
As seen in Table 1, the comparative example tended to show lower values for the remaining capacity and the recovery capacity than the battery 1 of this example. This seems to be because in the battery of the comparative example, an electrolysis reaction occurred due to moisture in the air that entered from the outside. Further, in the comparative example, corrosion of aluminum was observed in all the batteries, and out of the eight batteries, outflow of the electrolyte solution was also recognized from the current collecting lead part. I can say that.
[0046]
On the other hand, in the battery 1 of this example, neither the outflow of the electrolytic solution nor the corrosion of aluminum was observed. From the above, it has been clarified that the battery 1 manufactured according to the present example is more airtight than the conventional battery.
[0047]
【The invention's effect】
According to the present invention, a battery with good airtightness can be efficiently manufactured.
[0048]
In the production method of the present invention, an antifoaming body having insulating properties and liquid permeability is installed, and an electrolytic solution is injected through this. Therefore, the electrolytic solution is once absorbed by the antifoam body and then injected into the gap between the power generation elements. Therefore, the electrolytic solution does not directly hit the power generation elements such as the positive electrode and the negative electrode, and therefore does not rebound. Moreover, when air is removed, even if bubbles burst in the electrolytic solution and splashes are generated, the antifoamer functions as a lid and suppresses scattering. Furthermore, by adhering and pouring the current collecting lead on the side opposite to the surface from which the current collecting lead is drawn, it is possible to prevent the electrolyte from adhering to the lead. Therefore, according to the manufacturing method of the present invention, the splash of the electrolytic solution does not adhere to the portion where the inner surface of the battery case adheres, and thus a battery with good airtightness can be obtained.
[0049]
In the battery manufactured according to the present invention, even when the electrolyte is a non-aqueous electrolyte containing a lithium salt, the battery capacity is not reduced, the electrolyte flows out, and the metal is not corroded. Furthermore, in the manufacturing method of the present invention, it is not necessary to be careful carefully when injecting the electrolyte and removing the air, so that the manufacturing can be performed efficiently. In addition, by attaching a foam-proof body to the power generation element on the opposite side of the surface from which the current collector lead is drawn out, handling in the process, adhesion of electrolyte to the lead during electrolyte injection, removal of air It is possible to reduce the defect rate because no positional displacement occurs.
[Brief description of the drawings]
FIG. 1 is a plan view of a battery manufactured according to the present invention.
FIG. 2 is a cross-sectional view taken along line XX in FIG.
FIG. 3 is a view for explaining a production method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 2 Battery case 3 Lead terminal 4 Power generation element 5 Antifoam body 6 Opening part 21 Surface protective layer 22 Metal barrier layer 23 Thermal welding layer 31 Metal conductor 32 Adhesive layer 33 Barrier layer

Claims (9)

発電要素と、内部に発電要素及び電解液を収納する電池ケースとを備えた電池において、
前記発電要素の端部に絶縁性及び液透過性をもつ防泡体が配置されたことを特徴とする電池。
In a battery comprising a power generation element and a battery case that houses the power generation element and an electrolyte therein,
A battery, wherein an antifoaming body having insulating properties and liquid permeability is disposed at an end of the power generating element .
前記電池ケースが開口部を有し、前記防泡体が前記電池ケース開口部と前記発電要素との間に配置されたことを特徴とする請求項1に記載の電池。The battery according to claim 1, wherein the battery case has an opening, and the anti-foaming body is disposed between the battery case opening and the power generation element. 前記防泡体が発電要素の集電リードが引き出された面とは反対側の面に配置されたことを特徴とする請求項1または2に記載の電池。3. The battery according to claim 1, wherein the foam preventer is disposed on a surface opposite to a surface from which a current collecting lead of the power generation element is drawn. 前記防泡体が固着手段を用いて前記発電要素に固着されていることを特徴とする請求項1から3のいずれかに記載の電池。The battery according to any one of claims 1 to 3, wherein the foam preventer is fixed to the power generation element using a fixing means. 前記電池ケースの材質が金属ラミネート樹脂フィルムであることを特徴とする請求項1から4のいずれかに記載の電池。The battery according to any one of claims 1 to 4, wherein a material of the battery case is a metal laminated resin film. 開口部を有し内部に発電要素が収納された電池ケースの前記開口部から電解液を注入した後、前記開口部を封じる電池の製造方法において、
絶縁性及び液透過性をもつ防泡体を電池ケース内かつ前記開口部と発電要素との間に配置し、前記防泡体を介して電解液を注入することを特徴とする電池の製造方法。
In the battery manufacturing method for sealing the opening after injecting an electrolyte from the opening of the battery case having an opening and the power generation element housed therein,
A method for manufacturing a battery, comprising: placing a foam preventive body having insulation and liquid permeability between a battery case and between the opening and the power generation element; and injecting an electrolyte through the foam preventive body. .
前記防泡体が前記発電要素の集電リードが引き出された面とは反対側の面に配置されたことを特徴とする請求項6に記載の電池の製造方法。The method of manufacturing a battery according to claim 6, wherein the foam preventer is disposed on a surface opposite to a surface from which the current collecting lead of the power generation element is drawn. 前記防泡体が固着手段を用いて前記発電要素に固着されていることを特徴とする請求項6または7に記載の電池の製造方法。The method for manufacturing a battery according to claim 6 or 7, wherein the foam preventer is fixed to the power generation element using a fixing means. 前記電池ケースの材質が金属ラミネート樹脂フィルムであることを特徴とする請求項6から8のいずれかに記載の電池の製造方法。The battery manufacturing method according to claim 6, wherein a material of the battery case is a metal laminated resin film.
JP08825199A 1998-11-06 1999-03-30 Battery and manufacturing method thereof Expired - Fee Related JP4590042B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP08825199A JP4590042B2 (en) 1999-03-30 1999-03-30 Battery and manufacturing method thereof
US09/582,868 US6797429B1 (en) 1998-11-06 1999-11-04 Non-aqueous electrolytic secondary cell
EP99954368A EP1049180A4 (en) 1998-11-06 1999-11-04 Non-aqueous electrolytic secondary cell
CNB2004100978326A CN1330019C (en) 1998-11-06 1999-11-04 Nonaqueous secondary electrolytic battery
CN99802036A CN1288594A (en) 1998-11-06 1999-11-04 Non-aqueous electrolytic secondary cell
PCT/JP1999/006135 WO2000028607A1 (en) 1998-11-06 1999-11-04 Non-aqueous electrolytic secondary cell
US10/712,530 US7267904B2 (en) 1998-11-06 2003-11-14 Nonaqueous secondary electrolytic battery
US11/553,231 US7348099B2 (en) 1998-11-06 2006-10-26 Nonaqueous secondary electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08825199A JP4590042B2 (en) 1999-03-30 1999-03-30 Battery and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2000285907A JP2000285907A (en) 2000-10-13
JP2000285907A5 JP2000285907A5 (en) 2006-05-18
JP4590042B2 true JP4590042B2 (en) 2010-12-01

Family

ID=13937656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08825199A Expired - Fee Related JP4590042B2 (en) 1998-11-06 1999-03-30 Battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4590042B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5824988B2 (en) * 2011-09-08 2015-12-02 株式会社豊田自動織機 Method for manufacturing lithium ion battery
CN116766479B (en) * 2023-08-22 2023-11-24 江西行新汽车科技股份有限公司 Double-layer density foaming device for automobile engine hood

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467135B2 (en) * 1995-10-05 2003-11-17 阿波エンジニアリング株式会社 Filling method of electrolyte
JPH117941A (en) * 1997-06-13 1999-01-12 Shin Kobe Electric Mach Co Ltd Battery jar-degassing cap
JP2000133244A (en) * 1998-10-26 2000-05-12 Japan Storage Battery Co Ltd Battery and its manufacture

Also Published As

Publication number Publication date
JP2000285907A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
WO2000028607A1 (en) Non-aqueous electrolytic secondary cell
JP3795713B2 (en) Manufacturing method of sheet type battery
US9412995B2 (en) Electrode and electrochemical device
US20050233218A1 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
JP2003142152A (en) Non-aqueous electrolyte secondary battery
JP2005293950A (en) Lithium ion secondary battery and charging method of lithium ion secondary battery
CN105580194A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
US20120100413A1 (en) Secondary battery and assembled battery
JP3831939B2 (en) battery
JP2003282148A (en) Thin lithium ion secondary battery
JP6359454B2 (en) Nonaqueous electrolyte secondary battery
JP2011216297A (en) Wound electrode group, battery including the same, and method of manufacturing battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP4433506B2 (en) battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP2000277066A5 (en)
JP2008077846A (en) Laminate type nonaqueous secondary battery
JP4751995B2 (en) battery
JP4590042B2 (en) Battery and manufacturing method thereof
JP2000285902A5 (en)
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2000133244A (en) Battery and its manufacture
JP4259121B2 (en) Battery separator and battery
JP2000123858A (en) Manufacture of battery excellent in airtightness
US20050237031A1 (en) Power supply, charging apparatus, and charging system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees