JP4586385B2 - Method for producing porous material provided with photocatalyst - Google Patents

Method for producing porous material provided with photocatalyst Download PDF

Info

Publication number
JP4586385B2
JP4586385B2 JP2004068455A JP2004068455A JP4586385B2 JP 4586385 B2 JP4586385 B2 JP 4586385B2 JP 2004068455 A JP2004068455 A JP 2004068455A JP 2004068455 A JP2004068455 A JP 2004068455A JP 4586385 B2 JP4586385 B2 JP 4586385B2
Authority
JP
Japan
Prior art keywords
porous material
photocatalyst
titanium oxide
tio
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004068455A
Other languages
Japanese (ja)
Other versions
JP2005254123A (en
Inventor
学 甚野
晴果 小川
章子 奥田
貢 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2004068455A priority Critical patent/JP4586385B2/en
Publication of JP2005254123A publication Critical patent/JP2005254123A/en
Application granted granted Critical
Publication of JP4586385B2 publication Critical patent/JP4586385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、表面上に多数の微細孔を有し、該表面上に光触媒を備えた多孔材及びその製造方法に関し、特に、光触媒が微細孔を塞ぐことなく、表面上に分散した状態で担持されている光触媒を備えた多孔材の製造方法に関する。 The present invention relates to a porous material having a large number of micropores on the surface and a photocatalyst on the surface and a method for producing the same, and in particular, the photocatalyst is supported in a dispersed state on the surface without blocking the micropores. It is related with the manufacturing method of the porous material provided with the used photocatalyst.

従来、表面上に多数の微細孔を有し、該表面上に光触媒を備えた多孔材がある。このような光触媒を備えた多孔材としては、例えば、備長炭、竹炭、椰子殻炭、籾殻炭等の多孔材の表面上に、酸化チタン(TiO)を含有する光触媒を、膜状または層状の状態でコーティングして担持させたものがある(例えば、特許文献1参照)。 Conventionally, there are porous materials having a large number of micropores on the surface and a photocatalyst on the surface. As a porous material provided with such a photocatalyst, for example, a photocatalyst containing titanium oxide (TiO 2 ) on the surface of a porous material such as Bincho charcoal, bamboo charcoal, coconut shell charcoal, rice husk charcoal, or the like There are those coated and supported in this state (for example, see Patent Document 1).

そして、上記光触媒を備えた多孔材によれば、悪臭物質、有機物質等の有害物質は、多孔材の微細孔に吸着されるだけではなく、光触媒による酸化還元反応によって二酸化炭素と水に分解されるため、一般の多孔材と比較すれば、有害物質の除去性能は高くなる。   According to the porous material provided with the photocatalyst, harmful substances such as malodorous substances and organic substances are not only adsorbed in the micropores of the porous material, but also decomposed into carbon dioxide and water by a redox reaction by the photocatalyst. Therefore, compared with a general porous material, the removal performance of harmful substances is enhanced.

さらに、従来、上記光触媒を備えた多孔材の製造方法としては、酸化チタン(TiO)の前駆体を含有するアナターゼ分散液を多孔材の表面上に塗布した後、さらに焼成することで、多孔材の表面に、高密度で密着性に優れた光触媒膜を形成する方法がある(例えば、特許文献2参照)。
特開2003−225562号 特許第2875993号
Furthermore, conventionally, as a method for producing a porous material provided with the photocatalyst, an anatase dispersion containing a precursor of titanium oxide (TiO 2 ) is applied on the surface of the porous material, and then further baked to obtain a porous material. There is a method of forming a photocatalytic film having high density and excellent adhesion on the surface of a material (see, for example, Patent Document 2).
JP 2003-225562 A Japanese Patent No. 2875993

しかしながら、従来の光触媒を備えた多孔材では、多孔材の表面が、光触媒によって高密度に密着した膜状または層状の状態で一様にコーティングされているため、多孔材の表面上に有る多数の微細孔が、酸化チタン(TiO)等によって塞がれた状態にあった。
このため、酸化チタン(TiO)等の光触媒による有害物質の分解性能は維持されるとしても、他方、微細孔による有害物質の吸着性能は低下してしまうため、有害物質の除去性能及び除去効率が低くなってしまうという問題がある。
However, in the porous material provided with the conventional photocatalyst, the surface of the porous material is uniformly coated in a film-like or layered state in close contact with the photocatalyst at a high density. The micropores were in a state of being blocked by titanium oxide (TiO 2 ) or the like.
For this reason, even if the decomposition performance of harmful substances by photocatalysts such as titanium oxide (TiO 2 ) is maintained, on the other hand, the adsorption performance of harmful substances by micropores is reduced, so the removal performance and removal efficiency of harmful substances There is a problem that becomes low.

また、従来の光触媒を備えた多孔材の製造方法では、光触媒である酸化チタン(TiO)等を多孔材の表面に担持させるためには、390〜500℃の高温にする必要があるとされているが、実際には、500℃以上の高温にする必要があった。
このため、焼成に使用し得る炉としては、高温に耐え得るものに限られ、焼成に要するコストが高くなってしまうという問題がある。
Further, in the conventional method for producing a porous material provided with a photocatalyst, it is necessary to increase the temperature to 390 to 500 ° C. in order to carry titanium oxide (TiO 2 ) or the like, which is a photocatalyst, on the surface of the porous material. However, in practice, it was necessary to raise the temperature to 500 ° C. or higher.
For this reason, furnaces that can be used for firing are limited to those that can withstand high temperatures, and there is a problem that the cost required for firing increases.

そこで、本発明は、酸化チタン(TiO)等の光触媒による有害物質の分解性能を維持しつつ、微細孔による有害物質の吸着性能を十分に向上させ、有害物質の除去性能及び除去効率を高くすることができる光触媒を備えた多孔材を提供することを目的とする。 Therefore, the present invention sufficiently improves the adsorption performance of harmful substances by micropores while maintaining the decomposition performance of harmful substances by photocatalysts such as titanium oxide (TiO 2 ), and increases the removal performance and removal efficiency of harmful substances. It aims at providing the porous material provided with the photocatalyst which can do.

さらに、本発明は、低温の焼成温度であっても、多孔材の表面に光触媒である酸化チタン(TiO)等を担持させることができる光触媒を備えた多孔材の製造方法を提供することを目的とする。 Furthermore, the present invention provides a method for producing a porous material provided with a photocatalyst capable of supporting titanium oxide (TiO 2 ) as a photocatalyst on the surface of the porous material even at a low firing temperature. Objective.

上記課題を解決するために、本発明は、
A)光触媒を備えた多孔材の製造方法であって、
B)前記多孔材は、表面上に多数の微細孔を有し、該表面上に光触媒を備え、
C)前記光触媒は、前記微細孔を塞ぐことなく、前記表面上に分散した状態で担持されており、
前記光触媒は、酸化チタン(TiO)を含有し、
前記酸化チタン(TiO)が前記多孔材の表面上に存在する割合は、前記多孔材の表面を、エネルギー分散型X線分析装置(EDX)を用いて元素組成分析した結果、10〜40重量%であり、
D)前記光触媒の前駆体を含有する溶液を、前記多孔材の表面上に接触させた後、一定温度で熱処理する工程を有し、
E)前記工程は、
アナターゼ型酸化チタンと、ペルオキソチタン(IV)酸水和物と、ペルオキソチタン水和物とを含有する溶液を、前記多孔材の表面上に塗布または噴霧した後、200〜300℃で焼成する、
F)ことを特徴とする。
In order to solve the above problems, the present invention provides:
A) A method for producing a porous material provided with a photocatalyst,
B) The porous material has a large number of micropores on the surface, and has a photocatalyst on the surface ,
C) The photocatalyst is supported in a dispersed state on the surface without blocking the micropores,
The photocatalyst contains titanium oxide (TiO 2 ),
The ratio of the titanium oxide (TiO 2 ) present on the surface of the porous material is 10 to 40 weights as a result of elemental composition analysis of the surface of the porous material using an energy dispersive X-ray analyzer (EDX). is the percentage,
D) a step of contacting the solution containing the photocatalyst precursor on the surface of the porous material and then heat-treating the solution at a constant temperature;
E)
A solution containing anatase-type titanium oxide, peroxotitanium (IV) acid hydrate, and peroxotitanium hydrate is applied or sprayed on the surface of the porous material, and then fired at 200 to 300 ° C.
F) It is characterized by the above.

ここで、上記多孔材とは、表面に多数の微細孔を有する基材をいい、例えば、活性炭等の多孔質炭素や、多孔質アルミ等の多孔質金属等があり、その他、セルロース、リグニン、キチン、キトサン、天然ゴム、ポリエステル、ポリ塩化ビニル、ポリオレフィン、ポリウレタン、エポキシ樹脂、フェノール樹脂、ゼオライト、シリカゲル、セピオライト、ミズカナイト、アルミナ、ルテニウム、酸化インジウム等がある。また、これらのうち少なくとも1種以上を組み合わせてもよい。   Here, the porous material refers to a substrate having a large number of fine pores on the surface, for example, porous carbon such as activated carbon, porous metal such as porous aluminum, etc., cellulose, lignin, There are chitin, chitosan, natural rubber, polyester, polyvinyl chloride, polyolefin, polyurethane, epoxy resin, phenol resin, zeolite, silica gel, sepiolite, mizukanite, alumina, ruthenium, indium oxide and the like. Moreover, you may combine at least 1 or more types among these.

このような多孔材としては、多量の光触媒を多孔材の表面に分散した状態で担持させるという観点からすれば、特に、比表面積が高い、珪藻土、漆喰、籾殻炭、椰子殻炭、竹炭及び備長炭等の木炭うち少なくとも1種以上からなることを特徴とすることが好ましい。   As such a porous material, from the viewpoint of carrying a large amount of photocatalyst dispersed in the surface of the porous material, diatomaceous earth, plaster, rice husk charcoal, coconut husk charcoal, bamboo charcoal, and bincho are particularly high in specific surface area. It is preferable to be characterized by comprising at least one of charcoal and other charcoal.

また、上記光触媒とは、光を吸収し、その光エネルギーを他の反応物に与えて各種化学反応(光触媒反応)を誘起し得る物質をいい、例えば、酸化亜鉛(ZnO)、酸化銅(CuO)、酸化ニッケル(NiO)、酸化鉄(Fe)、チタン酸ストロンチウム(SrTiO)、酸化ケイ素(SiO)、酸化タングステン(WO)、酸化スズ(SnO)等の金属酸化物や、硫化カドミウム(CdS)、硫化亜鉛(ZnS)等の金属硫化物等がある。また、これらのうち少なくとも1種以上を組み合わせてもよい。 The photocatalyst refers to a substance that can absorb light and give the light energy to other reactants to induce various chemical reactions (photocatalytic reactions). For example, zinc oxide (ZnO), copper oxide (Cu 2 O), nickel oxide (NiO), iron oxide (Fe 2 O 3 ), strontium titanate (SrTiO 3 ), silicon oxide (SiO 2 ), tungsten oxide (WO 3 ), tin oxide (SnO 2 ) and other metals There are oxides and metal sulfides such as cadmium sulfide (CdS) and zinc sulfide (ZnS). Moreover, you may combine at least 1 or more types among these.

また、酸化チタン(TiO)は、アナターゼ型、ブルッカイト型、ルチル型等のうちいずれのタイプであってもよく、また、これらの混晶タイプのものであってもよい。 Further, titanium oxide (TiO 2), anatase type, brookite type, may be any type of rutile and the like, or may be of mixed crystal thereof types.

さらに、上記光触媒は、酸化チタン(TiO)以外にも、光触媒反応を促進させるため、白金(Pt)、金(Au)、鉛(Pd)、ニッケル(Ni)、鉄(Fe)等の助触媒を含有してもよい。 Furthermore, in addition to titanium oxide (TiO 2 ), the photocatalyst promotes the photocatalytic reaction, so that platinum (Pt), gold (Au), lead (Pd), nickel (Ni), iron (Fe), etc. A catalyst may be contained.

また、本発明における上記酸化チタン(TiO)は、多孔材の表面を、エネルギー分散型X線分析装置(EDX)を用いて元素組成分析した結果、10〜40重量%であるが、好ましくは、10〜32重量%であり、さらに好ましくは、およそ12重量%である。 Further, the titanium oxide in the present invention (TiO 2) is the surface of the porous material, energy dispersive X-ray analyzer (EDX) results of the elemental composition analysis using, but 10 to 40 wt%, preferably 10 to 32% by weight, and more preferably about 12% by weight.

ここで、上記光触媒の前駆体とは、乾燥、焼成等を施すことによって、光触媒に変化し、もしくは、光触媒を生成する物質をいい、例えば、チタンイソプロポキシド、チタンn−ブトキシド、テトラ−n−プロピルオルトチタネート、テトラエチルオルトチタネート、トリエトキシ鉄、テトラエトキシシラン、ジエトキシ亜鉛、タングステンヘキサカルボニル、テトラフェニルスズ、n−オクタン酸銅、ジイソプロポキシ銅等がある。また、これらのうち少なくとも1種以上を組み合わせてもよい。   Here, the precursor of the photocatalyst refers to a substance that changes to a photocatalyst by performing drying, firing, or the like, or generates a photocatalyst. For example, titanium isopropoxide, titanium n-butoxide, tetra-n -Propyl orthotitanate, tetraethyl orthotitanate, triethoxy iron, tetraethoxysilane, diethoxy zinc, tungsten hexacarbonyl, tetraphenyl tin, copper n-octanoate, diisopropoxy copper and the like. Moreover, you may combine at least 1 or more types among these.

さらに、上記光触媒の前駆体を含有する溶液を作製するための溶媒としては、例えば、メタン、エタン、プロパン、ブタン、エチレン、プロピレン等の炭化水素、メタノール、エタノール、プロパノール、ブタノール等のアルコール、アセトン、メチルエチルケトン等のケトン類、二酸化炭素、水アンモニア、塩素、クロロホルム、フレオン類等がある。   Furthermore, examples of the solvent for preparing the solution containing the photocatalyst precursor include hydrocarbons such as methane, ethane, propane, butane, ethylene, and propylene, alcohols such as methanol, ethanol, propanol, and butanol, and acetone. And ketones such as methyl ethyl ketone, carbon dioxide, water ammonia, chlorine, chloroform, and freons.

また、上記接触とは、光触媒の前駆体を多孔材の表面上に接触させることをいい、その方法は問わない。例えば、塗布又は噴霧等の方法があり、スプレー、ディッピング、流動スプレー、刷毛塗り等の方法がある。   Moreover, the said contact means making the precursor of a photocatalyst contact on the surface of a porous material, The method is not ask | required. For example, there are methods such as coating or spraying, and there are methods such as spraying, dipping, fluid spraying, and brushing.

また、上記一定温度とは、本発明の効果が認められるような焼成温度であって、従来の焼成温度よりも低い温度をいい、例えば、200〜300℃である。   Moreover, the said constant temperature is a calcination temperature in which the effect of this invention is recognized, means a temperature lower than the conventional calcination temperature, for example, 200-300 degreeC.

本発明の光触媒を備えた多孔材の製造方法によれば、従来よりも低温での焼成によって、多孔材の表面に光触媒である酸化チタン(TiO)等を担持させることができる。 According to the manufacturing method of a porous material having a photocatalyst of the present invention, depending on firing than the conventional low temperature, the titanium oxide is a photocatalyst on the surface of the porous material (TiO 2) or the like can be loaded.

以下、添付図面を参照しながら、本発明の光触媒を備えた多孔材を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out a porous material provided with the photocatalyst of the present invention will be described in detail with reference to the accompanying drawings.

===酸化チタン(TiO)を担持する備長炭の製造===
まず、本実施の形態においては、多孔材である備長炭の表面上に、スプレーを用いて所定の回数だけコーティング液を塗布し、これを200〜300℃で焼成することで、酸化チタン(TiO)を担持する備長炭を製造した。ここでは、塗布回数を1回、3回、5回、10回としたもの及びブランクとして未塗布のものを製造した。
=== Production of Bincho charcoal carrying titanium oxide (TiO 2 ) ===
First, in the present embodiment, a coating liquid is applied a predetermined number of times on the surface of Bincho charcoal, which is a porous material, using a spray, and this is baked at 200 to 300 ° C., whereby titanium oxide (TiO 2). Bincho charcoal carrying 2 ) was produced. Here, the number of times of coating was set to 1, 3, 5, and 10 and uncoated materials were manufactured as blanks.

なお、上記エコート製コーティング液は、アナターゼ、ペルオキソチタン(IV)酸水和物、ペルオキソチタン水和物を含有するものであり、この溶液は、表1及び表2に示されるペルオキソチタン酸水溶液(P−cat.)及びペルオキソ改質アナターゼゾル(P−cat.PLUS)の混合物(P−cat.MIX)である。
The coating solution made of Ecoat contains anatase, peroxotitanium (IV) acid hydrate, and peroxotitanium hydrate. This solution is a peroxotitanic acid aqueous solution shown in Tables 1 and 2 ( P-cat.) And peroxo modified anatase sol (P-cat.PLUS) (P-cat.MIX).

===酸化チタン(TiO)の担持状態(SEM観察結果)===
次に、このようにして製造された酸化チタン(TiO)を担持する備長炭について、走査型電子顕微鏡(SEM:Scanning Electron Microscope;JSM−5600LV)を用いて、酸化チタン(TiO)の担持状態を観察した。なお、前処理として、金(Au)を200Å蒸着しており、これをSEMの各倍率(35倍、250倍、500倍、550倍、1000倍)で観察した。この際、二次電子像及び反射電子像の各々につき、酸化チタンの分布状態を写真に記録した。その際の写真の一部を図1A(未塗布:ブランク)、図1B(塗布1回)、図1C(塗布3回)、図1D(塗布5回)に示す。
=== Supporting state of titanium oxide (TiO 2 ) (result of SEM observation) ===
Next, charcoal carrying the thus produced in the titanium oxide (TiO 2), a scanning electron microscope (SEM: Scanning Electron Microscope; JSM -5600LV) using a supported titanium oxide (TiO 2) The condition was observed. As a pretreatment, gold (Au) was vapor-deposited in 200 mm, and this was observed at each magnification of SEM (35 times, 250 times, 500 times, 550 times, and 1000 times). At this time, the distribution state of titanium oxide was recorded in a photograph for each of the secondary electron image and the reflected electron image. A part of the photograph at that time is shown in FIG. 1A (uncoated: blank), FIG. 1B (one coating), FIG. 1C (three coatings), and FIG. 1D (five coatings).

図1A(ブランク)に示される未塗布の場合(ブランク)と比較すれば明らかなように、塗布1回の場合(図1B参照)及び塗布3回の場合(図1C参照)には、いずれも、光触媒である酸化チタン(TiO)が備長炭の表面上に担持されており、しかも、備長炭に存在する数ミクロンの微細孔を塞ぐことなく、分散した状態で担持されていることがわかる。 As is clear when compared with the case of no application (blank) shown in FIG. 1A (blank), both in the case of one application (see FIG. 1B) and in the case of three applications (see FIG. 1C) It can be seen that titanium oxide (TiO 2 ), which is a photocatalyst, is supported on the surface of Bincho charcoal, and is supported in a dispersed state without blocking micropores of several microns existing in Bincho charcoal. .

これに対し、図1Dに示される塗布5回の場合には、酸化チタン(TiO)は、備長炭の表面上に膜状または層状の状態で担持されており、備長炭に存在する数ミクロンの微細孔の大部分がコーティング膜で埋められ、塞がった状態にあることがわかる。 On the other hand, in the case of five coatings shown in FIG. 1D, titanium oxide (TiO 2 ) is supported in the form of a film or a layer on the surface of Bincho charcoal, and several microns existing in Bincho charcoal. It can be seen that most of the micropores are filled with the coating film and closed.

なお、図1Eには、塗布の場合と噴霧の場合とを比較するため、上記コーティング液を1回噴霧した場合の写真も掲載した。この写真からも、酸化チタン(TiO)は、微細孔を塞ぐことなく、備長炭の表面上を分散した状態で担持されていることがわかる。この場合には、酸化チタン(TiO)は、微細孔を塞ぐことなく、点在した状態で担持されていることがわかる。 In addition, in FIG. 1E, in order to compare the case of application | coating with the case of spraying, the photograph at the time of spraying the said coating liquid once was also published. Also from this photograph, it can be seen that titanium oxide (TiO 2 ) is supported in a dispersed state on the surface of Bincho charcoal without blocking the fine holes. In this case, it can be seen that titanium oxide (TiO 2 ) is supported in a scattered state without closing the fine holes.

===酸化チタン(TiO)の担持率(EDX分析結果)===
さらに、本実施の形態においては、備長炭の表面上に担持された酸化チタン(TiO)の存在割合(担持率)を、エネルギー分散型X線分析装置(EDX or EDS:Energy Dispersive X-ray Spectrometer;JED−2200)を用いて分析した。
=== Supporting rate of titanium oxide (TiO 2 ) (EDX analysis result) ===
Further, in the present embodiment, the existing ratio (support rate) of titanium oxide (TiO 2 ) supported on the surface of Bincho charcoal is determined by using an energy dispersive X-ray analyzer (EDX or EDS: Energy Dispersive X-ray). Spectrometer; JED-2200).

その分析結果を表3に示す。
The analysis results are shown in Table 3.

表3に示されるように、備長炭の表面上に酸化チタン(TiO)が存在する割合は、コーティング液を1回だけ塗布した場合には約12%であった。また、3回だけ塗布した場合には約31%であり、5回だけ塗布した場合には約40%、10回だけ塗布した場合には約52%であった。 As shown in Table 3, the proportion of titanium oxide (TiO 2 ) on the surface of Bincho charcoal was about 12% when the coating solution was applied only once. In addition, it was about 31% when applied only 3 times, about 40% when applied only 5 times, and about 52% when applied only 10 times.

このことから、コーティング液の塗布回数が増加するにつれて、備長炭の表面上における酸化チタン(TiO)の担持率も増加することがわかる。 From this, it can be seen that the supporting rate of titanium oxide (TiO 2 ) on the surface of Bincho charcoal increases as the number of coating liquid application increases.

===トルエンガスの除去性能及び除去効率===
本実施の形態では、このようにして製造された酸化チタン(TiO)を担持する備長炭について、有害物質であるトルエンガスの除去性能及び除去効率を調べた。ここでは、塗布回数が、1回、3回、5回及びブランクとして未塗布のものを試験体とした。
=== Toluene gas removal performance and removal efficiency ===
In this embodiment, the charcoal carrying the so-produced titanium oxide (TiO 2), was investigated removal performance and removal efficiency of toluene gas is harmful substances. Here, the number of times of application was 1, 3, 5, and a blank that was not applied was used as a test specimen.

その後、各試験体を入れた5Lの各ガスバック中にトルエンガスを充満させ、UVランプを点灯後、経時的にトルエンガスの残存濃度を検知管で測定した。なお、試験開始前に、65〜70ppm程度のトルエンガスで充満させたガスバック中に、各試験体を入れて18時間静置し、これを飽和状態にしておいた。   Thereafter, each gas bag of 5 L containing each test specimen was filled with toluene gas, the UV lamp was turned on, and the residual concentration of toluene gas was measured with a detector tube over time. In addition, before the test start, each test body was put in the gas bag filled with about 65-70 ppm toluene gas, and left still for 18 hours, and this was made into the saturated state.

このような試験をトルエンガスの初期濃度を変えて3回繰り返した。1回目のトルエンガスの初期濃度は160ppmであり、2回目のトルエンガスの初期濃度は130〜140ppm、3回目のトルエンガスの初期濃度は80〜100ppmであった。その測定結果を試験回数ごとに図2に示す。   Such a test was repeated three times while changing the initial concentration of toluene gas. The initial concentration of the first toluene gas was 160 ppm, the initial concentration of the second toluene gas was 130 to 140 ppm, and the initial concentration of the third toluene gas was 80 to 100 ppm. The measurement results are shown in FIG. 2 for each number of tests.

図2のグラフに示されるように、いずれの各試験回数(1回目,2回目,3回目)においても、塗布回数が少ないものほど、同じ経過時点におけるトルエンガスの残存濃度は低下しており、トルエンガスの除去性能が高いことがわかる。   As shown in the graph of FIG. 2, in any test number (first time, second time, third time), the smaller the number of times of application, the lower the residual concentration of toluene gas at the same time point. It can be seen that the removal performance of toluene gas is high.

すなわち、試験回数が1回目の場合には、塗布回数が1回及び3回のものは、トルエンガスの除去性能は高く、また、塗布回数が5回のものについても、トルエンガスの除去性能は比較的高いことがわかる。なお、ブランクの備長炭は、前処理によって既に飽和状態とされ、吸着性能は限界に達しているため、トルエンガスの除去性能はほとんど認められなかった(図2(a)参照)。   That is, when the number of tests is the first time, the performance of removing toluene gas is high when the number of times of coating is 1 and 3, and the performance of removing toluene gas is also when the number of times of coating is 5. It can be seen that it is relatively high. Note that the blank Bincho charcoal was already saturated by the pretreatment, and the adsorption performance reached the limit, so that the toluene gas removal performance was hardly recognized (see FIG. 2A).

さらに、試験回数が2回目の場合には、塗布回数が1回及び3回のものはトルエンガスの除去性能が高いが、他方、塗布回数が5回のものはトルエンガスの除去性能が低下していることがわかる(図2(b)参照)。   Furthermore, when the number of tests is the second time, the performance of removing toluene gas is high when the number of times of coating is 1 and 3 while the performance of removing toluene gas is high when the number of times of coating is 5 times. (See FIG. 2B).

また、試験回数が3回目の場合には、塗布回数が1回及び3回のものはトルエンガスの除去性能が高いが、他方、塗布回数が5回のものはトルエンガスの除去性能が著しく低下していることがわかる(図2(c)参照)。   In addition, when the number of tests is the third time, the performance of removing toluene gas is high when the number of times of coating is 1 and 3, while the performance of removing toluene gas is significantly decreased when the number of times of coating is 5 times. (See FIG. 2C).

さらに、上記測定結果に基づき、各試験開始後、約400分経過した時点における各塗布回数のトルエンガスの除去効率を算出した。その算出結果を図3に示す。   Furthermore, based on the above measurement results, the removal efficiency of toluene gas was calculated for each number of coatings when about 400 minutes had elapsed after the start of each test. The calculation result is shown in FIG.

ここで、トルエンガスの除去効率は、トルエンガスの初期濃度から測定値を控除することでトルエンガスの除去濃度を求め、これをさらにトルエンガスの初期濃度で除することにより算出した。   Here, the removal efficiency of toluene gas was calculated by obtaining the removal concentration of toluene gas by subtracting the measured value from the initial concentration of toluene gas, and further dividing this by the initial concentration of toluene gas.

図3のグラフに示されるように、コーティング液を塗布したものは、ブランクのものと比べてトルエンガスの除去効率は高くなった。また、塗布回数が少ないものほど、トルエンガスの除去効率は高くなり、さらに、試験回数が少ないものほど、トルエンガスの除去効率は高くなった。   As shown in the graph of FIG. 3, the toluene gas removal efficiency was higher when the coating liquid was applied than when the blank was applied. Moreover, the removal efficiency of toluene gas became higher as the number of application was smaller, and the removal efficiency of toluene gas was higher as the number of tests was smaller.

このことから、コーティング液を備長炭の表面に塗布し、光触媒である酸化チタン(TiO)を担持させることで、微細孔による吸着性能と、光触媒による分解性能とを有するため、トルエンガスの除去効率は高くなることがわかる。但し、塗布回数が増加するにつれて、酸化チタン(TiO)が微細孔を塞いでしまうため、微細孔による吸着性能が低下してしまい、逆に、トルエンガスの除去効率は低くなることがわかる。また、このような備長炭におけるトルエンガスの除去効率は、複数回にわたり継続して維持され得ることもわかる。 From this, the coating liquid is applied to the surface of Bincho charcoal, and by supporting titanium oxide (TiO 2 ) which is a photocatalyst, it has adsorption performance by micropores and decomposition performance by photocatalyst, so removal of toluene gas It turns out that efficiency becomes high. However, it can be seen that as the number of times of application increases, titanium oxide (TiO 2 ) blocks the micropores, so that the adsorption performance by the micropores decreases, and conversely, the removal efficiency of toluene gas decreases. Moreover, it turns out that the removal efficiency of toluene gas in such Bincho charcoal can be maintained continuously several times.

以上より、本実施の形態においては、いずれの試験回数においても、塗布回数が1回の場合、すなわち、酸化チタン(TiO)の担持率が約12重量%の場合に、トルエンガスの除去効率が最も高いことがわかる。また、塗布回数が増加するとともに、トルエンガスの除去効率はしだいに減少し、塗布回数が5回の場合まで、すなわち、酸化チタン(TiO)の担持率が約40重量%の場合までは、トルエンガスの除去効率は比較的高く維持されていることがわかる。 As described above, in this embodiment, in any number of tests, the removal efficiency of toluene gas when the number of times of coating is 1, that is, when the loading ratio of titanium oxide (TiO 2 ) is about 12% by weight. Is the highest. Further, as the number of times of application increases, the removal efficiency of toluene gas gradually decreases, and until the number of times of application is 5, that is, when the loading ratio of titanium oxide (TiO 2 ) is about 40% by weight, It can be seen that the removal efficiency of toluene gas is maintained relatively high.

したがって、酸化チタン(TiO)の担持率が、エネルギー分散型X線分析装置(EDX)を用いて元素組成分析した結果、約10〜40重量%であれば、トルエンガス等の有害物質の分解性能を維持しつつ、微細孔による有害物質の吸着性能を十分に向上させることができ、有害物質の除去性能及び除去効率が高くなると考えられる。その理由としては、酸化チタン(TiO)が、備長炭の微細孔を塞ぐことなく、備長炭の表面上に分散した状態で担持されていることが挙げられる。 Accordingly, if the loading ratio of titanium oxide (TiO 2 ) is about 10 to 40% by weight as a result of elemental composition analysis using an energy dispersive X-ray analyzer (EDX), decomposition of harmful substances such as toluene gas While maintaining the performance, the adsorption performance of harmful substances by the fine pores can be sufficiently improved, and it is considered that the removal performance and removal efficiency of the harmful substances are enhanced. The reason for this is that titanium oxide (TiO 2 ) is supported in a dispersed state on the surface of Bincho charcoal without blocking the fine pores of Bincho charcoal.

また、従来の焼成温度(390〜500℃)よりも低温の焼成温度(200〜300℃)で、上記性能を有する備長炭を製造することができることもわかる。   Moreover, it turns out that the Bincho charcoal which has the said performance can be manufactured with the calcination temperature (200-300 degreeC) lower temperature than the conventional calcination temperature (390-500 degreeC).

本発明の一実施形態における未塗布(ブランク)の備長炭について、その表面を走査型電子顕微鏡(SEM)で観察した際の写真である。It is a photograph at the time of observing the surface with a scanning electron microscope (SEM) about uncoated (blank) Bincho charcoal in one embodiment of the present invention. 本発明の一実施形態における塗布1回の備長炭について、その表面を走査型電子顕微鏡(SEM)で観察した際の写真である。It is a photograph at the time of observing the surface with a scanning electron microscope (SEM) about Bincho charcoal of one application in one embodiment of the present invention. 本発明の一実施形態における塗布3回の備長炭について、その表面を走査型電子顕微鏡(SEM)で観察した際の写真である。It is a photograph at the time of observing the surface with a scanning electron microscope (SEM) about the Bincho charcoal of application 3 times in one embodiment of the present invention. 本発明の一実施形態における塗布5回の備長炭について、その表面を走査型電子顕微鏡(SEM)で観察した際の写真である。It is a photograph at the time of observing the surface with a scanning electron microscope (SEM) about Bincho charcoal of application 5 times in one embodiment of the present invention. 本発明の一実施形態における噴霧1回の備長炭について、その表面を走査型電子顕微鏡(SEM)で観察した際の写真である。It is a photograph at the time of observing the surface with a scanning electron microscope (SEM) about the Bincho charcoal of one spray in one embodiment of the present invention. 本発明の一実施形態におけるトルエンガスの残存濃度と経過時間との関係を試験回数ごとに示すグラフである。なお、(a)は試験1回目、(b)は試験2回目、(c)は試験3回目のグラフである。It is a graph which shows the relationship between the residual concentration of toluene gas and elapsed time in one Embodiment of this invention for every test frequency. Here, (a) is a graph for the first test, (b) is a graph for the second test, and (c) is a graph for the third test. 本発明の一実施形態における試験開始後、約400分経過した時点のトルエンガスの除去効率と塗布回数との関係を試験回数ごとに示すグラフである。It is a graph which shows the relationship between the removal efficiency of toluene gas at the time of about 400 minutes after the test start in one Embodiment of this invention, and the frequency | count of application | coating for every test frequency.

Claims (2)

A)光触媒を備えた多孔材の製造方法であって、
B)前記多孔材は、表面上に多数の微細孔を有し、該表面上に光触媒を備え、
C)前記光触媒は、前記微細孔を塞ぐことなく、前記表面上に分散した状態で担持されており、
前記光触媒は、酸化チタン(TiO)を含有し、
前記酸化チタン(TiO)が前記多孔材の表面上に存在する割合は、前記多孔材の表面を、エネルギー分散型X線分析装置(EDX)を用いて元素組成分析した結果、10〜40重量%であり、
D)前記光触媒の前駆体を含有する溶液を、前記多孔材の表面上に接触させた後、一定温度で熱処理する工程を有し、
E)前記工程は、
アナターゼ型酸化チタンと、ペルオキソチタン(IV)酸水和物と、ペルオキソチタン水和物とを含有する溶液を、前記多孔材の表面上に塗布または噴霧した後、200〜300℃で焼成する、
F)ことを特徴とする、光触媒を備えた多孔材の製造方法。
A) A method for producing a porous material provided with a photocatalyst,
B) The porous material has a large number of micropores on the surface, and has a photocatalyst on the surface ,
C) The photocatalyst is supported in a dispersed state on the surface without blocking the micropores,
The photocatalyst contains titanium oxide (TiO 2 ),
The ratio of the titanium oxide (TiO 2 ) present on the surface of the porous material is 10 to 40 weights as a result of elemental composition analysis of the surface of the porous material using an energy dispersive X-ray analyzer (EDX). is the percentage,
D) a step of contacting the solution containing the photocatalyst precursor on the surface of the porous material and then heat-treating the solution at a constant temperature;
E)
A solution containing anatase-type titanium oxide, peroxotitanium (IV) acid hydrate, and peroxotitanium hydrate is applied or sprayed on the surface of the porous material, and then fired at 200 to 300 ° C.
F) A method for producing a porous material provided with a photocatalyst.
前記多孔材は、
珪藻土、漆喰、籾殻炭、椰子殻炭、竹炭及び備長炭等の木炭うち少なくとも1種以上からなることを特徴とする請求項1に記載の光触媒を備えた多孔材の製造方法
The porous material is
The method for producing a porous material having a photocatalyst according to claim 1, comprising at least one of charcoal such as diatomaceous earth, plaster, rice husk charcoal, coconut husk charcoal, bamboo charcoal, and bincho charcoal.
JP2004068455A 2004-03-11 2004-03-11 Method for producing porous material provided with photocatalyst Expired - Lifetime JP4586385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068455A JP4586385B2 (en) 2004-03-11 2004-03-11 Method for producing porous material provided with photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068455A JP4586385B2 (en) 2004-03-11 2004-03-11 Method for producing porous material provided with photocatalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009258978A Division JP5212338B2 (en) 2009-11-12 2009-11-12 Method for evaluating toluene gas removal performance

Publications (2)

Publication Number Publication Date
JP2005254123A JP2005254123A (en) 2005-09-22
JP4586385B2 true JP4586385B2 (en) 2010-11-24

Family

ID=35080383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068455A Expired - Lifetime JP4586385B2 (en) 2004-03-11 2004-03-11 Method for producing porous material provided with photocatalyst

Country Status (1)

Country Link
JP (1) JP4586385B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430386A (en) * 2011-09-15 2012-05-02 浙江大学 Photocatalytic aerogel contained bamboo charcoal-based adsorption and decomposition agent as well as its preparation method
CN105728056A (en) * 2016-02-17 2016-07-06 济南大学 Method for preparing loofah sponge supported nanometer titania photocatalyst

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230862B2 (en) * 2007-09-21 2013-07-10 Nde株式会社 filter
EP2205717B1 (en) 2007-10-03 2017-08-16 3M Innovative Properties Company Microorganism concentration process
CN101981177B (en) 2007-10-03 2013-06-26 3M创新有限公司 Microorganism concentration process
BRPI0817602B1 (en) * 2007-10-03 2018-01-16 3M Innovative Properties Company PROCESS TO CAPTURE OR CONCENTRATE MICRO- ORGANISMS AND DIAGNOSTIC KITS
CN105671124A (en) 2008-12-31 2016-06-15 3M创新有限公司 Coliform detection process and kit for use therein
BRPI0918693A2 (en) 2008-12-31 2016-07-26 3M Innovative Properties Co sampling devices and methods for the concentration of microorganisms
KR101159706B1 (en) 2010-01-12 2012-06-26 한밭대학교 산학협력단 Active carbon and manufacturing method thereof, and filter with the same
JP2013111511A (en) * 2011-11-28 2013-06-10 Nano Summit Kk Ultrafine particle support, ultrafine particle supporting device, method of manufacturing ultrafine particle support and method of manufacturing ultrafine particle supporting device
CN102671663A (en) * 2012-05-17 2012-09-19 西北工业大学 Modified titanium dioxide/bamboo charcoal composite material, preparation method thereof and method for preparing cigarette filter by adopting material
CN115961467B (en) * 2022-12-09 2024-04-30 罗莱生活科技股份有限公司 Porous antibacterial polyester fiber and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033989A (en) * 1996-07-29 1998-02-10 Mitsubishi Chem Corp Production of activated carbon
JPH1147611A (en) * 1997-08-06 1999-02-23 Daiken Kagaku Kogyo Kk Highly functional base material holding photocatalyst supporting hyper-fine metal particles and its preparation
JPH11290655A (en) * 1998-04-13 1999-10-26 Toyota Motor Corp Air purification filter material
JP2000015112A (en) * 1998-07-03 2000-01-18 Toyota Central Res & Dev Lab Inc Production of photocatalyst
JP2002054370A (en) * 2000-08-09 2002-02-20 Kazuo Saito Blind coated with photocatalysis
JP2002224564A (en) * 2001-02-05 2002-08-13 Misawa Homes Co Ltd Method for producing photocatalyst-carrying base material
JP2002273234A (en) * 2001-03-19 2002-09-24 Kawasaki Steel Corp Method for manufacturing photocatalytic body
JP2003225562A (en) * 2002-02-04 2003-08-12 Shinto Fine Co Ltd Adsorbent and manufacturing method therefor
JP2003290327A (en) * 2002-03-29 2003-10-14 Ohbayashi Corp Bincho-charcoal and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033989A (en) * 1996-07-29 1998-02-10 Mitsubishi Chem Corp Production of activated carbon
JPH1147611A (en) * 1997-08-06 1999-02-23 Daiken Kagaku Kogyo Kk Highly functional base material holding photocatalyst supporting hyper-fine metal particles and its preparation
JPH11290655A (en) * 1998-04-13 1999-10-26 Toyota Motor Corp Air purification filter material
JP2000015112A (en) * 1998-07-03 2000-01-18 Toyota Central Res & Dev Lab Inc Production of photocatalyst
JP2002054370A (en) * 2000-08-09 2002-02-20 Kazuo Saito Blind coated with photocatalysis
JP2002224564A (en) * 2001-02-05 2002-08-13 Misawa Homes Co Ltd Method for producing photocatalyst-carrying base material
JP2002273234A (en) * 2001-03-19 2002-09-24 Kawasaki Steel Corp Method for manufacturing photocatalytic body
JP2003225562A (en) * 2002-02-04 2003-08-12 Shinto Fine Co Ltd Adsorbent and manufacturing method therefor
JP2003290327A (en) * 2002-03-29 2003-10-14 Ohbayashi Corp Bincho-charcoal and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430386A (en) * 2011-09-15 2012-05-02 浙江大学 Photocatalytic aerogel contained bamboo charcoal-based adsorption and decomposition agent as well as its preparation method
CN102430386B (en) * 2011-09-15 2013-06-05 浙江大学 Photocatalytic aerogel contained bamboo charcoal-based adsorption and decomposition agent as well as its preparation method
CN105728056A (en) * 2016-02-17 2016-07-06 济南大学 Method for preparing loofah sponge supported nanometer titania photocatalyst

Also Published As

Publication number Publication date
JP2005254123A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4586385B2 (en) Method for producing porous material provided with photocatalyst
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
EP2893977B1 (en) Co-selective methanation catalyst
Jeong et al. Gas selectivity control in Co3O4 sensor via concurrent tuning of gas reforming and gas filtering using nanoscale hetero-overlayer of catalytic oxides
CN110404534B (en) High-efficiency chlorine poisoning resistant volatile organic compound catalytic oxidation catalyst and preparation method thereof
KR102129422B1 (en) Beads for air purification, method for preparing the same, and filter using the same
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
Ye et al. Flexible Mg–Al layered double hydroxide supported Pt on Al foil for use in room-temperature catalytic decomposition of formaldehyde
US10507454B2 (en) Photocatalyst material and method for producing same
KR101930709B1 (en) Photo catalyst functional filter
WO1998058736A1 (en) Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
US10512879B2 (en) Photocatalytic filtration system and method of reducing hazardous gases
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
EP3870359B1 (en) Nanofunctionalised polymeric support with photocatalytic nanoparticles based on nitrogen-doped titanium dioxide and its use as photocatalysts
CN106794450B (en) Photocatalytic coating and preparation method thereof
CN113181765A (en) Photocatalytic filter for degrading mixed gas and manufacturing method thereof
JP5212338B2 (en) Method for evaluating toluene gas removal performance
KR101677842B1 (en) Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof
WO2023079766A1 (en) Photocatalyst antibacterial deodorizing material, method for producing same, antibacterial deodorizing material, and antibacterial deodorizing filter
JP2000015112A (en) Production of photocatalyst
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
CN105457635A (en) Photocatalytic filter for degrading mixed gas and manufacturing method thereof
JP5230862B2 (en) filter
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4586385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 4

EXPY Cancellation because of completion of term