JP4585923B2 - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4585923B2
JP4585923B2 JP2005175270A JP2005175270A JP4585923B2 JP 4585923 B2 JP4585923 B2 JP 4585923B2 JP 2005175270 A JP2005175270 A JP 2005175270A JP 2005175270 A JP2005175270 A JP 2005175270A JP 4585923 B2 JP4585923 B2 JP 4585923B2
Authority
JP
Japan
Prior art keywords
core
sub
plating layer
conductor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005175270A
Other languages
Japanese (ja)
Other versions
JP2006351782A (en
Inventor
伸治 由利
正樹 村松
誠 折口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005175270A priority Critical patent/JP4585923B2/en
Publication of JP2006351782A publication Critical patent/JP2006351782A/en
Application granted granted Critical
Publication of JP4585923B2 publication Critical patent/JP4585923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、セラミックで構成されたセラミック副コアが収容されたコア基板を備える配線基板及びその製造方法に関する。   The present invention relates to a wiring board including a core substrate in which a ceramic sub-core made of ceramic is accommodated, and a manufacturing method thereof.

従来より、半導体集積回路素子(以下「ICチップ」という)が搭載される配線基板には、オーガニックパッケージ基板が用いられている。オーガニックパッケージ基板は、ガラス繊維にて強化されたエポキシ樹脂などの高分子材料を主体とするコア基板上に、高分子材料からなる誘電体層と金属材料からなる導体層とが交互に積層された配線積層部が形成された構造を有する。しかし、オーガニックパッケージ基板は高分子材料を主体とすることから、半田リフローなどの熱履歴が加わると、シリコンを主体とするICチップとの線膨張係数差によって断線などの不具合につながる惧れがある。そこで、特許文献1では、ICチップと配線基板の線膨張係数差を縮減するために、高分子材料からなるコア本体よりも線膨張係数の小さいセラミックからなる副コアをコア基板内に収容した構造を有する配線基板が提案されている。   Conventionally, an organic package substrate is used as a wiring substrate on which a semiconductor integrated circuit element (hereinafter referred to as “IC chip”) is mounted. The organic package substrate has a dielectric layer made of a polymer material and a conductor layer made of a metal material alternately laminated on a core substrate mainly made of a polymer material such as an epoxy resin reinforced with glass fiber. It has a structure in which a wiring laminated portion is formed. However, organic package substrates are mainly made of polymer materials, so if thermal history such as solder reflow is added, there is a risk of problems such as disconnection due to differences in the linear expansion coefficient with IC chips mainly made of silicon. . Therefore, in Patent Document 1, in order to reduce the difference in linear expansion coefficient between the IC chip and the wiring board, a structure in which a sub-core made of ceramic having a smaller linear expansion coefficient than the core body made of a polymer material is accommodated in the core board. A wiring board having the following has been proposed.

特開2005−39217号公報JP 2005-39217 A

ところで、上記のようなセラミックの副コアは、通常、主面間を貫通する貫通導体を有し、それに接続された導体パッドが主面に形成されている(特許文献1の図3等)。これらの貫通導体や導体パッドは、セラミック粉末を樹脂バインダとともに成形したグリーンシートに金属ペーストを印刷し、同時焼成することによって得られることから、セラミック(アルミナ,窒化珪素,窒化アルミニウム等)の焼成温度でも溶融・流出しない高融点金属(例えばMoやWなど)を導体材料として用いる必要がある。このためセラミック副コアの導体パッドに対して配線積層部の形成に用いられるような粗化技術等が適用できず、セラミック副コアを収容したコア基板上に配線積層部を形成する際に、配線積層部となる誘電体層及びそれに貫通形成されるビア導体とセラミック副コアの導体パッドとの密着性が十分に得られず、製造時や製品において不具合を生じるおそれがある。   By the way, the ceramic sub-core as described above usually has a through conductor penetrating between main surfaces, and a conductor pad connected to the through conductor is formed on the main surface (FIG. 3 of Patent Document 1). Since these through conductors and conductor pads are obtained by printing a metal paste on a green sheet obtained by molding ceramic powder together with a resin binder and firing them simultaneously, the firing temperature of the ceramic (alumina, silicon nitride, aluminum nitride, etc.) However, it is necessary to use a refractory metal that does not melt or flow out (for example, Mo or W) as the conductor material. For this reason, it is not possible to apply a roughening technique or the like used for forming the wiring laminated portion to the conductor pad of the ceramic secondary core, and when forming the wiring laminated portion on the core substrate containing the ceramic secondary core, Adhesiveness between the dielectric layer serving as the laminated portion and the via conductor formed through the dielectric layer and the conductor pad of the ceramic sub-core cannot be sufficiently obtained, and there is a risk of causing problems in manufacturing and products.

本発明は、上記問題を鑑みて為されたものであり、セラミック副コアを収容したコア基板上に配線積層部を形成する際に、配線積層部となる誘電体層及びそれに貫通形成されるビア導体とセラミック副コアの導体パッドとの密着性が十分に得られる配線基板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and when forming a wiring laminated portion on a core substrate containing a ceramic sub-core, a dielectric layer serving as a wiring laminated portion and a via formed therethrough It is an object of the present invention to provide a wiring board and a method for manufacturing the wiring board, in which sufficient adhesion between a conductor and a conductor pad of a ceramic sub-core can be obtained.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するため、本発明の配線基板は、
高分子材料で構成された板状のコア本体に、主面間を貫通する貫通孔あるいは一方の主面に開口する凹部として副コア収容部が形成され、その内部にセラミックで構成された板状のセラミック副コアが収容されたコア基板と、該コア基板の主面上に高分子材料で構成された誘電体層と導体層とが交互に積層して形成された配線積層部とを備え、セラミック副コアが主面間を貫通する貫通導体とそれに接続する主面上の導体パッドとを有する配線基板であって、
導体パッドの表面にはCuメッキ層が形成され、且つ、当該Cuメッキ層の表面が高分子材料との密着性を向上させるための表面化学処理が施された処理面とされ、当該処理面に配線積層部の最下層の誘電体層及びそれに貫通形成されたCuメッキで構成されるビア導体が接触してなり、
処理面が、表面化学処理としてCu粗化処理が施された粗化面であり、
導体パッドとCuメッキ層との間に、Cuメッキ層を導体パッドの表面に直接形成した場合よりも各々との密着性が強固な下地メッキ層が介挿されてなることを特徴とする。
In order to solve the above problems, the wiring board of the present invention is
A plate-shaped core body made of a polymer material is formed with a sub-core housing portion as a through-hole penetrating between the main surfaces or a recess opening in one of the main surfaces, and a plate-like shape made of ceramic inside A core substrate in which the ceramic sub-core is accommodated, and a wiring laminate formed by alternately laminating dielectric layers and conductor layers made of a polymer material on the main surface of the core substrate, A wiring board having a through conductor through which a ceramic sub-core penetrates between main surfaces and a conductor pad on the main surface connected thereto,
A Cu plated layer is formed on the surface of the conductor pad, and the surface of the Cu plated layer is a treated surface that has been subjected to a surface chemical treatment for improving adhesion to a polymer material. Ri Na and via conductor composed lowermost dielectric layer and Cu plating formed through that of the laminated wiring portion is in contact,
The treated surface is a roughened surface subjected to Cu roughening treatment as surface chemical treatment,
It is characterized in that a base plating layer having a stronger adhesion with each other is interposed between the conductor pad and the Cu plating layer than when the Cu plating layer is directly formed on the surface of the conductor pad .

また、当該配線基板を製造するため、本発明の配線基板の製造方法は、
導体パッドの表面にCuメッキ層が形成されたセラミック副コアを副コア収容部内に収容する副コア収容工程と、
セラミック副コアが収容されたコア基板の主面上に誘電体層と導体層とを交互に積層して配線積層部を形成する配線積層工程と、
をこの順に含み、且つ、
副コア収容工程前、または、副コア収容工程と配線積層工程の間に、導体パッドの表面に形成されたCuメッキ層に対し、高分子材料との密着性を向上させるための表面化学処理を施す表面処理工程を含み、
表面処理工程における表面化学処理は、Cuメッキ層の表面を粗化面とするCu粗化処理であり、
配線積層工程では、配線積層部の最下層の誘電体層に、導体パッドの表面に形成されたCuメッキ層の粗化面が露出するようにビアホールを穿設した後に、ビアホールの全面にCuメッキを施すことにより、該ビアホール内を充填してビア導体を形成する工程を含み、
副コア収容工程前に、セラミック副コアが有する導体パッドの表面にCuメッキ層を導体パッドの表面に直接形成した場合よりも各々との密着性が強固な下地メッキ層、及びCuメッキ層をこの順に形成するパッドメッキ工程を含むことを特徴とする。
In addition, in order to manufacture the wiring board, the manufacturing method of the wiring board of the present invention,
A sub core housing step of housing the ceramic sub core having the Cu plating layer formed on the surface of the conductor pad in the sub core housing portion;
A wiring laminating step of alternately laminating dielectric layers and conductor layers on the main surface of the core substrate containing the ceramic sub-core to form a wiring laminating portion;
In this order, and
Surface chemical treatment to improve adhesion to the polymer material on the Cu plating layer formed on the surface of the conductor pad before the sub-core housing process or between the sub-core housing process and the wiring lamination process a surface treatment step of applying seen including,
The surface chemical treatment in the surface treatment step is a Cu roughening treatment in which the surface of the Cu plating layer is a roughened surface,
In the wiring layering process, a via hole is drilled in the lowermost dielectric layer of the wiring layering part so that the roughened surface of the Cu plating layer formed on the surface of the conductor pad is exposed, and then the Cu plating is applied to the entire surface of the via hole. Including the step of filling the via hole to form a via conductor,
Prior to the sub-core housing step, the base plating layer and the Cu plating layer, which have stronger adhesion to each other than the case where the Cu plating layer is directly formed on the surface of the conductor pad of the ceramic sub-core, are formed. It includes a pad plating step that is formed in order .

上記本発明によると、導体パッドの表面にCuメッキ層が形成されることにより、配線積層部の最下層の誘電体層に貫通形成されたビア導体(通常、同じCuメッキにより形成される)との密着性が向上する。それに加えて、Cuメッキ層の表面が高分子材料との密着性を向上させるための表面化学処理が施された処理面とされることにより、配線積層部の最下層の誘電体層との密着性が向上する。このようにして、導体パッドに誘電体層及びビア導体が良好に密着するため、製造時や製品において不具合を生じるおそれを解消することができる。   According to the present invention, by forming a Cu plating layer on the surface of the conductor pad, a via conductor (usually formed by the same Cu plating) formed through the lowermost dielectric layer of the wiring laminated portion. Improved adhesion. In addition, the surface of the Cu plating layer is treated with a surface chemical treatment to improve the adhesion to the polymer material, so that it adheres to the lowermost dielectric layer of the wiring laminate. Improves. In this way, the dielectric layer and the via conductor are in good contact with the conductor pad, so that it is possible to eliminate the possibility of problems in manufacturing and in the product.

表面化学処理には、第1の態様として、Cuメッキ層の表面を粗化面(処理面)とするCu粗化処理を適用できる。Cu粗化処理としては、公知のマイクロエッチング法や黒化処理等の方法を用いることができる。Cuメッキ層の表面が粗化面とされることで、アンカー効果により配線積層部の最下層の誘電体層との密着性が十分なものとなる。   In the surface chemical treatment, as a first aspect, a Cu roughening treatment in which the surface of the Cu plating layer is a roughened surface (treated surface) can be applied. As the Cu roughening treatment, a known method such as microetching or blackening treatment can be used. When the surface of the Cu plating layer is roughened, the adhesion with the lowermost dielectric layer of the wiring laminated portion is sufficient due to the anchor effect.

または、表面化学処理には、第2の態様として、Cuメッキ層の表面を接着層形成面(処理面)とするCuとSnを含む合金からなる接着層の形成処理を適用できる。これによれば、Cuメッキ層の表面を粗化させることなく、配線積層部の最下層の誘電体層との密着性を十分なものとすることができる。具体的には、接着層は、CuとSnに加えて第3の金属(Ag,Zn,Al,Ti,Bi,Cr,Fe,Co,Ni,Pd,Au,Ptから選ばれる少なくとも1種の金属)からなる合金を含むものとすることができる。   Alternatively, in the surface chemical treatment, as a second aspect, an adhesive layer forming process made of an alloy containing Cu and Sn, in which the surface of the Cu plating layer is the adhesive layer forming surface (processed surface), can be applied. According to this, the adhesiveness with the lowermost dielectric layer of the wiring laminated portion can be made sufficient without roughening the surface of the Cu plating layer. Specifically, the adhesive layer includes at least one selected from a third metal (Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au, and Pt in addition to Cu and Sn. An alloy made of (metal).

導体パッドのメッキ構造は、第1の態様として、導体パッドがMoまたはWを主成分とするメタライズパッドであり、その表面にCuメッキ層が直接に形成された構造とすることができる。かかるCuメッキ層は、副コア収容工程前に、セラミック副コアが有する導体パッドの表面にCuメッキ層を直接形成することで得ることができる(パッドメッキ工程)。これにより、誘電体層(表面処理により)及びビア導体を密着させるためのCuメッキ層を導体パッドの表面に良好に形成できる。   The plating structure of the conductor pad can be a structure in which the conductor pad is a metallized pad containing Mo or W as a main component and a Cu plating layer is directly formed on the surface thereof as a first aspect. Such a Cu plating layer can be obtained by directly forming a Cu plating layer on the surface of the conductor pad of the ceramic sub core before the sub core housing step (pad plating step). Thereby, the Cu plating layer for closely adhering the dielectric layer (by surface treatment) and the via conductor can be satisfactorily formed on the surface of the conductor pad.

または、導体パッドのメッキ構造は、第2の態様として、導体パッドとCuメッキ層との間に、Cuメッキ層を導体パッドの表面に直接形成した場合よりも各々との密着性が強固な下地メッキ層が介挿された構造とすることができる。下地メッキ層としては、例えば、Niメッキ,Pdメッキ,半田メッキ等を適用できる。中でもNiメッキは、密着性が良好且つ安価で特に好適である。すなわち、メッキ構造は、導体パッドがMoまたはWを主成分とするメタライズパッドであり、その表面にNiメッキ層及びCuメッキ層がこの順に形成された構造とすることができる。かかるNiメッキ層及びCuメッキ層は、副コア収容工程前に、セラミック副コアが有する導体パッドの表面にNiメッキ層及びCuメッキ層をこの順に形成することで得ることができる(パッドメッキ工程)。これにより、誘電体層(表面処理により)及びビア導体を密着させるためのCuメッキ層を導体パッドの表面に良好に形成できる。   Or, as a second aspect, the plating structure of the conductor pad is a base having a stronger adhesion to each other than when the Cu plating layer is formed directly on the surface of the conductor pad between the conductor pad and the Cu plating layer. It can be set as the structure where the plating layer was inserted. For example, Ni plating, Pd plating, solder plating, or the like can be applied as the base plating layer. Among these, Ni plating is particularly suitable because of good adhesion and low cost. That is, the plating structure can be a metallized pad whose main component is Mo or W, and a structure in which a Ni plating layer and a Cu plating layer are formed in this order on the surface. The Ni plating layer and the Cu plating layer can be obtained by forming the Ni plating layer and the Cu plating layer in this order on the surface of the conductor pad of the ceramic sub core before the sub core housing step (pad plating step). . Thereby, the Cu plating layer for closely adhering the dielectric layer (by surface treatment) and the via conductor can be satisfactorily formed on the surface of the conductor pad.

本発明の配線基板の実施形態を、図面を参照しながら説明する。図1は、配線基板1の断面構造を概略的に表す図である。なお、本実施形態において板状の部材は、図中で上側に表れている面を第1主面MP1とし、下側に表れている面を第2主面MP2とする。配線基板1は、コア基板CBのうち半田バンプ7の下部領域にセラミック副コア3を有しており、半導体集積回路素子(ICチップ)Cとの線膨張係数差を縮減し、熱応力による断線等を生じ難くするものである。以下、詳細な説明を行う。   An embodiment of a wiring board of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional structure of the wiring board 1. In the present embodiment, the plate-like member has a surface appearing on the upper side in the drawing as the first main surface MP1 and a surface appearing on the lower side as the second main surface MP2. The wiring substrate 1 has a ceramic sub-core 3 in the lower region of the solder bump 7 in the core substrate CB, reduces the difference in coefficient of linear expansion from the semiconductor integrated circuit element (IC chip) C, and breaks due to thermal stress. Etc. are less likely to occur. Detailed description will be given below.

図2は、ICチップCと主基板(マザーボード等)GBとの間に配置された配線基板1を表す図である。ICチップCは、信号端子,電源端子,グランド端子を第2主面に有し(図示せず)、配線基板1の第1主面MP1に形成された半田バンプ7(Pb−Sn系,Sn−Ag系,Sn−Sb系,Sn−Zn系の半田等)にフリップチップ接続されている。また、ICチップCと配線基板1の第1主面MP1の間には、半田バンプ7の熱疲労寿命を向上させるために、熱硬化性樹脂からなるアンダーフィル材(図示せず)が充填形成される。他方、主基板(マザーボード等)GBは、セラミック粒子や繊維をフィラーとして強化された高分子材料を主体に構成されており、配線基板1の第2主面MP2に形成された半田ボールBLを介して端子パッド56に接続されている。   FIG. 2 is a diagram showing the wiring board 1 arranged between the IC chip C and the main board (motherboard or the like) GB. The IC chip C has a signal terminal, a power supply terminal, and a ground terminal on the second main surface (not shown), and solder bumps 7 (Pb-Sn series, Sn) formed on the first main surface MP1 of the wiring board 1. -Ag-based, Sn-Sb-based, Sn-Zn-based solder, etc.). Also, an underfill material (not shown) made of a thermosetting resin is filled between the IC chip C and the first main surface MP1 of the wiring board 1 in order to improve the thermal fatigue life of the solder bumps 7. Is done. On the other hand, the main board (motherboard or the like) GB is mainly composed of a polymer material reinforced with ceramic particles and fibers as fillers, and is connected via solder balls BL formed on the second main surface MP2 of the wiring board 1. Are connected to the terminal pads 56.

図3は、配線基板1の第1主面MP1を表す図である。半田バンプ7は、格子状(あるいは千鳥状でもよい)に配列しており、このうち、中央部には電源端子7aとグランド端子7bとが互い違いに配置され、また、これらを取り囲む形で信号端子7sが配置されている。これらは、ICチップCの端子に対応する。   FIG. 3 is a diagram illustrating the first main surface MP1 of the wiring board 1. FIG. The solder bumps 7 are arranged in a grid pattern (or may be a staggered pattern). Among these, the power terminals 7a and the ground terminals 7b are alternately arranged in the center, and the signal terminals surround the signal terminals. 7s is arranged. These correspond to the terminals of the IC chip C.

コア本体2は、耐熱性樹脂板(例えばビスマレイミド−トリアジン樹脂板)や繊維強化樹脂板(例えばガラス繊維強化エポキシ樹脂)等で板状に構成される。そして、半田バンプ7の下部領域を含む位置には、主面MP1,MP2間を貫通する副コア収容部25(貫通孔)が形成され、その内部には板状のセラミック副コア3が収容され、コア基板CBを為している。   The core body 2 is configured in a plate shape with a heat resistant resin plate (for example, bismaleimide-triazine resin plate), a fiber reinforced resin plate (for example, glass fiber reinforced epoxy resin), or the like. A sub-core accommodating portion 25 (through hole) penetrating between the main surfaces MP1 and MP2 is formed at a position including the lower region of the solder bump 7, and a plate-shaped ceramic sub-core 3 is accommodated therein. The core substrate CB is used.

セラミック副コア3は、主面MP1,MP2間を貫通する貫通導体32とそれに接続する主面MP1,MP2上の導体パッド31とを有しており、これらはそれぞれ電源端子7a及びグランド端子7bに対応する。セラミック副コア3内に、電源用及びグランド用の貫通導体32を並列形成することで、電源用及びグランド用の経路の低インダクタンス化ひいては低インピーダンス化を図ることができる。   The ceramic sub-core 3 has a through conductor 32 penetrating between the main surfaces MP1 and MP2 and a conductor pad 31 on the main surfaces MP1 and MP2 connected thereto, which are respectively connected to the power supply terminal 7a and the ground terminal 7b. Correspond. By forming the power supply and ground through conductors 32 in parallel in the ceramic sub-core 3, it is possible to reduce the inductance of the power supply and ground paths and thereby reduce the impedance.

セラミック副コア3は、セラミック材料の粉末を含有したセラミックグリーンシートに、パンチングあるいはレーザー穿孔等によりビアホールを形成し、金属粉末ペーストを充填したものを積層して焼成することにより得ることができる。セラミック副コア3を構成するセラミック材料としては、アルミナ,窒化珪素,窒化アルミニウム等や、ホウケイ酸系ガラス,ホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40重量部以上60重量部以下添加したガラスセラミック等を使用できる。また、導体パッド31及び貫通導体32は、金属粉末ペーストとしてセラミック材料と同時焼成することにより得られるMoまたはWを主成分とするメタライズにより構成されている。   The ceramic sub-core 3 can be obtained by forming a via hole in a ceramic green sheet containing a ceramic material powder by punching or laser drilling, and laminating and filling a metal powder paste. As a ceramic material constituting the ceramic sub-core 3, an inorganic ceramic filler such as alumina is added to 40 parts by weight or more and 60 parts by weight or less to alumina, silicon nitride, aluminum nitride or the like, borosilicate glass or lead borosilicate glass. Glass ceramic or the like can be used. The conductor pads 31 and the through conductors 32 are made of metallization mainly composed of Mo or W obtained by simultaneous firing with a ceramic material as a metal powder paste.

副コア収容部25内でセラミック副コア3とコア本体部2との隙間をなす空間には、高分子材料からなる充填樹脂4が充填形成されている。この充填樹脂4は、シリカフィラーなどの無機フィラーを含むエポキシ系の樹脂からなり、セラミック副コア3をコア本体部2に対して固定するとともに、セラミック副コア3とコア本体部2との面内方向及び厚さ方向の線膨張係数差を自身の弾性変形により吸収する役割を果たす。   A filling resin 4 made of a polymer material is filled in a space that forms a gap between the ceramic sub-core 3 and the core body 2 in the sub-core housing portion 25. The filling resin 4 is made of an epoxy-based resin containing an inorganic filler such as silica filler, and fixes the ceramic sub-core 3 to the core main body 2, and in-plane between the ceramic sub-core 3 and the core main body 2. It plays a role of absorbing the difference in linear expansion coefficient between the direction and the thickness direction by its own elastic deformation.

セラミック副コア3の導体パッド31は、図8〜図11に示すように、その表面にCuメッキ層31cが形成されており、また、Cuメッキ層31の表面は、高分子材料との密着性を向上させるためのCu表面化学処理が施された処理面CZ,FBとされている。この処理面CZ,FBには、配線積層部L1,L2の最下層の誘電体層B11,B21及びそれに貫通形成されたビア導体6が接触しており、誘電体層B11,B21が良好に密着している。また、表面がCuメッキ層31cで構成されることによって、同じくCuメッキで構成されるビア導体6との密着性も良好である。以下、それぞれの態様について説明する。   As shown in FIGS. 8 to 11, the conductor pad 31 of the ceramic sub-core 3 has a Cu plating layer 31 c formed on the surface thereof, and the surface of the Cu plating layer 31 has adhesion to a polymer material. The treated surfaces CZ and FB are subjected to a Cu surface chemical treatment for improving the resistance. The processing layers CZ and FB are in contact with the lowermost dielectric layers B11 and B21 of the wiring laminated portions L1 and L2 and the via conductors 6 formed therethrough so that the dielectric layers B11 and B21 are in good contact with each other. is doing. Further, since the surface is composed of the Cu plating layer 31c, the adhesion to the via conductor 6 also composed of Cu plating is good. Each aspect will be described below.

メッキ構造の第1の態様としては、図10及び図11に示すように、導体パッド31の表面にCuメッキ層31cが直接に形成された構造である。Cuメッキ層31cは、電解Cuメッキ(バレルメッキ)若しくは無電解Cuメッキにより、2μm以上4μm以下程度の厚さで形成されている。なお、図10に示す粗化面CZを得る場合は、Cu粗化処理(後述)によってCuメッキ層31cの表面が多少エッチングされるので、最初に5μm程度の厚さで形成することで、粗化後の厚さを2μm以上4μm以下程度に調整する。   As a first aspect of the plating structure, as shown in FIGS. 10 and 11, a Cu plating layer 31 c is directly formed on the surface of the conductor pad 31. The Cu plating layer 31c is formed by electrolytic Cu plating (barrel plating) or electroless Cu plating with a thickness of about 2 μm to 4 μm. Note that when the roughened surface CZ shown in FIG. 10 is obtained, the surface of the Cu plating layer 31c is slightly etched by the Cu roughening process (described later), so that the roughened surface CZ is first formed with a thickness of about 5 μm. The thickness after the adjustment is adjusted to about 2 μm or more and 4 μm or less.

メッキ構造の第2の態様としては、図8及び図9に示すように、導体パッド31の表面にNiメッキ層31n及びCuメッキ層31cがこの順に形成された構造である。Cuメッキ層31cは、上記と同様である。Niメッキ層31は、導体パッド31とCuメッキ層31cの間に介挿される下地メッキ層であり、各々に良好に密着することで第1の態様の場合よりも導体パッド31に対するCuメッキ層31cの密着性をより向上させている。また、Niメッキ層31nは、無電解Niメッキを2層程度重ねて形成して、シンター処理を施したものであり、ピンホールが生じない程度の厚さとして例えば3.0μm以上3.6μm以下程度に調整されている。また、無電解Niメッキは、Ni−BメッキまたはNi−Pメッキを用いることができる(若しくは、組み合わせて複数層形成してもよい)。   As a second aspect of the plating structure, as shown in FIGS. 8 and 9, a Ni plating layer 31 n and a Cu plating layer 31 c are formed in this order on the surface of the conductor pad 31. The Cu plating layer 31c is the same as described above. The Ni plating layer 31 is a base plating layer that is interposed between the conductor pad 31 and the Cu plating layer 31c, and adheres well to each other so that the Cu plating layer 31c for the conductor pad 31 is better than in the case of the first embodiment. The adhesion is improved. In addition, the Ni plating layer 31n is formed by stacking about two layers of electroless Ni plating and subjected to sintering treatment, and has a thickness that does not cause pinholes, for example, 3.0 μm or more and 3.6 μm or less. It is adjusted to the degree. The electroless Ni plating can be Ni-B plating or Ni-P plating (or a plurality of layers may be formed in combination).

Cu表面化学処理による処理面の第1の態様としては、図8及び図10に示すように、Cuメッキ層31c表面のCu表面化学処理としてCu粗化処理が施された粗化面CZとすることができる。Cu粗化処理としては、公知のマイクロエッチング法や黒化処理等の方法を用いることができる。Cuメッキ層31cの表面が粗化面CZとされることで、アンカー効果により配線積層部L1,L2の最下層の誘電体層B11,B21との密着性が十分なものとなる。この効果を得るには、JIS−B−0601に規定の十点平均粗さ(Rz)において0.3μm以上20μm以下程度となるようにCu粗化処理が施されているとよい。また、0.5μm以上1.0μm以下がより好ましく、0.5μm以上5μm以下が更に好ましい。   As a 1st aspect of the processing surface by Cu surface chemical treatment, as shown in FIG.8 and FIG.10, it is set as the roughening surface CZ by which Cu roughening processing was performed as Cu surface chemical processing of the Cu plating layer 31c surface. be able to. As the Cu roughening treatment, a known method such as microetching or blackening treatment can be used. By making the surface of the Cu plating layer 31c the roughened surface CZ, the adhesion with the lowermost dielectric layers B11 and B21 of the wiring laminated portions L1 and L2 becomes sufficient due to the anchor effect. In order to obtain this effect, Cu roughening treatment is preferably performed so that the ten-point average roughness (Rz) defined in JIS-B-0601 is about 0.3 μm or more and 20 μm or less. Moreover, 0.5 micrometer or more and 1.0 micrometer or less are more preferable, and 0.5 micrometer or more and 5 micrometers or less are still more preferable.

Cu表面化学処理による処理面の第2の態様としては、図9及び図11に示すように、Cuメッキ層31c表面のCu表面化学処理としてCuとSnを含む合金からなる接着層FBの形成処理が施された接着層FB形成面とすることができる。かかる接着層FBの形成処理によれば、Cuメッキ層31cの表面を粗化させることなく、配線積層部L1,L2の最下層の誘電体層B11,B21との密着性が十分なものとすることができる。具体的には、接着層FBは、CuとSnに加えて第3の金属(Ag,Zn,Al,Ti,Bi,Cr,Fe,Co,Ni,Pd,Au,Ptから選ばれる少なくとも1種の金属)からなる合金を含む。また、例えば、Cuを1原子%以上50原子%以下程度、Snを20原子%以上98原子%以下程度、第3の金属を1原子%以上50原子%以下程度含むものである。また、接着層FBの厚さは、十分な密着効果を得るには、0.001μm以上1μm以下とするのがよい。   As a second aspect of the treatment surface by the Cu surface chemical treatment, as shown in FIGS. 9 and 11, the formation process of the adhesive layer FB made of an alloy containing Cu and Sn as the Cu surface chemical treatment on the surface of the Cu plating layer 31c. It can be set as the adhesive layer FB formation surface to which was given. According to the formation process of the adhesive layer FB, the adhesion with the lowermost dielectric layers B11 and B21 of the wiring laminated portions L1 and L2 is sufficient without roughening the surface of the Cu plating layer 31c. be able to. Specifically, the adhesive layer FB includes at least one selected from a third metal (Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au, Pt in addition to Cu and Sn). Alloy). Further, for example, Cu is contained in an amount of about 1 to 50 atomic percent, Sn is contained in an amount of about 20 to 98 atomic percent, and a third metal is contained in an amount of about 1 to 50 atomic percent. The thickness of the adhesive layer FB is preferably 0.001 μm or more and 1 μm or less in order to obtain a sufficient adhesion effect.

コア基板CBの両主面MP1,MP2上に設けられた配線積層部L1,L2は、誘電体層B11〜B14,B21〜B24と導体層M11〜M14,M21〜M24とが交互に積層された構造を有する。導体層M11〜M14,M21〜M24は、Cuメッキからなる配線51,53やパッド55,56などにより構成されている。導体層M11〜M14,M21〜M24間は、ビア導体6によって層間接続がなされており、これによって、パッド55からパッド56への導通経路(信号用,電源用,グランド用)が形成されている。また、パッド55,56は半田バンプ7や半田ボールBLを形成するためのものであり、その表面にはNi−Auメッキが施されている。   In the wiring laminated portions L1 and L2 provided on both main surfaces MP1 and MP2 of the core substrate CB, dielectric layers B11 to B14 and B21 to B24 and conductor layers M11 to M14 and M21 to M24 are alternately laminated. It has a structure. The conductor layers M11 to M14, M21 to M24 are configured by wirings 51 and 53 made of Cu plating, pads 55 and 56, and the like. Between the conductor layers M11 to M14 and M21 to M24, interlayer connection is made by the via conductor 6, thereby forming a conduction path (for signal, power supply, and ground) from the pad 55 to the pad 56. . The pads 55 and 56 are for forming the solder bumps 7 and the solder balls BL, and the surface thereof is Ni-Au plated.

誘電体層B11〜B14,B21〜B24は、エポキシ樹脂等の高分子材料からなり、誘電率や絶縁耐圧を調整するシリカ粉末等の無機フィラーを適宜含んでいる。このうち誘電体層B11〜B13,B21〜B23は、ビルドアップ樹脂絶縁層,ビア層と呼ばれ、導体層M11〜M14,M21〜M24間を絶縁するとともに、層間接続のためのビア導体6が貫通形成されている。他方、誘電体層B14,B24は、ソルダーレジスト層であり、パッド55,56を露出させるための開口が形成されている。   The dielectric layers B11 to B14 and B21 to B24 are made of a polymer material such as an epoxy resin, and appropriately include an inorganic filler such as silica powder that adjusts the dielectric constant and dielectric strength. Among these, the dielectric layers B11 to B13 and B21 to B23 are called buildup resin insulation layers and via layers, and insulate the conductor layers M11 to M14 and M21 to M24, and the via conductors 6 for interlayer connection are provided. It is formed through. On the other hand, the dielectric layers B14 and B24 are solder resist layers, and openings for exposing the pads 55 and 56 are formed.

また、コア基板CBのコア本体部2及び誘電体層B11,B21には、貫通孔が形成され、その内壁には配線積層部L1,L2間の導通を図るスルーホール導体21が形成されている。このスルーホール導体21は、信号端子7sに対応するものである。スルーホール導体21の内側には、シリカフィラーなどの無機フィラーを含むエポキシ系の樹脂からなる樹脂製穴埋め材23が充填形成されており、スルーホール導体21の端部にはCuメッキからなる蓋導体52が形成されている。なお、スルーホール導体21及び蓋導体52が形成された、コア基板を中心とする導体層M12からM22までの領域はコア領域CRと称される。   In addition, a through hole is formed in the core main body 2 and the dielectric layers B11 and B21 of the core substrate CB, and a through-hole conductor 21 is formed on the inner wall of the core substrate CB so as to establish conduction between the wiring laminated portions L1 and L2. . The through-hole conductor 21 corresponds to the signal terminal 7s. Inside the through-hole conductor 21, a resin hole filling material 23 made of an epoxy resin containing an inorganic filler such as a silica filler is filled and formed, and the end portion of the through-hole conductor 21 is a lid conductor made of Cu plating. 52 is formed. In addition, the area | region from the conductor layers M12 to M22 centering on a core board | substrate in which the through-hole conductor 21 and the cover conductor 52 were formed is called core area | region CR.

次に、本発明の配線基板の製造方法の実施形態を、図面を参照しながら説明する。図4〜図7は、配線基板1の製造工程を表す図である。   Next, an embodiment of a method for manufacturing a wiring board according to the present invention will be described with reference to the drawings. 4-7 is a figure showing the manufacturing process of the wiring board 1. FIG.

工程1では、コア本体部2の両主面MP1,MP2に導体パターン54(導体層M11)を形成する。これは、両主面に銅箔を有する耐熱性樹脂板(例えばビスマレイミド−トリアジン樹脂板)または繊維強化樹脂板(例えばガラス繊維強化エポキシ樹脂)に対し、マスク材を用いて銅箔をパターンエッチングすることにより得ることができる。   In step 1, a conductor pattern 54 (conductor layer M11) is formed on both main surfaces MP1 and MP2 of the core body 2. This is a pattern etching of copper foil using a mask material for a heat-resistant resin plate (for example, bismaleimide-triazine resin plate) or fiber reinforced resin plate (for example, glass fiber reinforced epoxy resin) having copper foil on both main surfaces. Can be obtained.

工程2では、主面MP1,MP2間を貫通する貫通孔をドリル加工により形成して、副コア収容部25を設ける。また、副コア収容部25(貫通孔)の側壁に対しては、過マンガン酸カリウム等により粗化処理を施すことにより、後に充填される充填樹脂4との密着性を向上させることができる。更には、有機系化合物(カップリング剤)を塗布しても良い。   In step 2, a through-hole penetrating between the main surfaces MP1 and MP2 is formed by drilling to provide the sub-core housing portion 25. Moreover, the adhesiveness with the filling resin 4 with which it fills later can be improved by performing a roughening process with the potassium permanganate etc. with respect to the side wall of the subcore accommodating part 25 (through-hole). Furthermore, an organic compound (coupling agent) may be applied.

工程3(閉塞工程)では、副コア収容部25(貫通孔)の第2主面MP2側の開口を、表面に粘着剤adを有するシート材Sで、粘着剤adが副コア収容部25の内側に露出するように塞ぐ。シート材Sとしては、粘着材adの粘着力が8.0N/25mm以上であるものが好ましい(180°引きはがし法(JIS
Z 0237)により測定)。なお、単位[N/25mm]は、幅25mmのシート材を試料として測定された力を意味する。シート材Sの材質(基材)は、例えばポリエステルやポリイミド、PET等の樹脂シートを用いることができる。また、シート材Sの表面に付される粘着剤adは、例えばシリコン系の粘着剤、アクリル系の粘着剤、熱可塑性ゴム系の粘着剤などを用いることができる。
In step 3 (blocking step), the opening on the second main surface MP2 side of the sub core housing part 25 (through hole) is made of the sheet material S having the adhesive ad on the surface, and the adhesive ad is in the sub core housing part 25. Close it so that it is exposed inside. The sheet material S preferably has an adhesive strength of the adhesive material ad of 8.0 N / 25 mm or more (180 ° peeling method (JIS
Z 0237)). The unit [N / 25 mm] means a force measured using a sheet material having a width of 25 mm as a sample. As the material (base material) of the sheet material S, for example, a resin sheet such as polyester, polyimide, or PET can be used. As the adhesive ad applied to the surface of the sheet material S, for example, a silicon adhesive, an acrylic adhesive, a thermoplastic rubber adhesive, or the like can be used.

工程4(副コア収容工程)では、副コア収容部25の第1主面MP1側の開口からセラミック副コア3を収容するとともに粘着剤adに固着させる。これは、公知のマウント装置を用いることにより、セラミック副コア3を精度良く収容することができる。ここで、セラミック副コア3の導体パッド31の表面には、Cuメッキ層31cが予め形成されている(パッドメッキ工程)。導体パッド31表面のメッキ構造は、上述したように、導体パッド31の表面にCuメッキ層31cを直接形成したもの(図10及び図11参照:第1の態様)または導体パッド31の表面にNiメッキ層31n及びCuメッキ層31cをこの順に形成したもの(図8及び図9参照:第2の態様)を適用できる。メッキ層31c,31nの形成方法や厚さ等は、上記した通りである。   In step 4 (sub-core accommodating step), the ceramic sub-core 3 is accommodated from the opening on the first main surface MP1 side of the sub-core accommodating portion 25 and is fixed to the adhesive ad. This can accommodate the ceramic sub-core 3 with high accuracy by using a known mounting device. Here, a Cu plating layer 31c is formed in advance on the surface of the conductor pad 31 of the ceramic sub-core 3 (pad plating step). As described above, the plating structure on the surface of the conductor pad 31 is obtained by directly forming the Cu plating layer 31c on the surface of the conductor pad 31 (see FIGS. 10 and 11: first embodiment) or Ni on the surface of the conductor pad 31. What formed the plating layer 31n and the Cu plating layer 31c in this order (refer FIG.8 and FIG.9: 2nd aspect) is applicable. The formation method, thickness, and the like of the plating layers 31c and 31n are as described above.

工程5(充填硬化工程)では、コア本体2とセラミック副コア3の隙間に充填樹脂4を注入して硬化させる。充填樹脂4の注入は、公知のディスペンサーDSを周回させながら行う。充填樹脂4を注入した後は、充填樹脂4から真空脱泡により気泡を抜く。その後、充填樹脂4を加熱及び乾燥させて硬化(いわゆるキュア)させる。また、充填樹脂4の硬化後は、過マンガン酸カリウム等により粗化処理を施すことにより、後に形成される誘電体層B11,B21との密着性を向上させることができる。   In step 5 (filling and curing step), the filling resin 4 is injected into the gap between the core body 2 and the ceramic sub-core 3 and cured. The filling resin 4 is injected while circulating a known dispenser DS. After the filling resin 4 is injected, the bubbles are extracted from the filling resin 4 by vacuum defoaming. Thereafter, the filling resin 4 is heated and dried to be cured (so-called curing). In addition, after the filling resin 4 is cured, the adhesion with the dielectric layers B11 and B21 to be formed later can be improved by performing a roughening treatment with potassium permanganate or the like.

工程6(表面処理工程)では、導体パッド31の表面に形成されたCuメッキ層31cに対し、高分子材料との密着性を向上させるためのCu表面化学処理を施す。また、本処理により、コア本体部2の両主面MP1,MP2に形成されている導体パターン54の表面に対してもCu表面化学処理が施される。図5では、Cuメッキ層31cの表面を粗化面CZとするCu粗化処理(公知のマイクロエッチング法や黒化処理等)を施した図を示している。また、これに限らず、上述したCuとSnを含む合金からなる接着層FBの形成処理であっても良い。なお、本工程は、工程4(副コア収容工程)の前に予め行っておき、導体パッド31にCu表面化学処理が施されたセラミック副コア3を副コア収容部25に収容するようにしても良い。   In step 6 (surface treatment step), a Cu surface chemical treatment is performed on the Cu plating layer 31c formed on the surface of the conductor pad 31 in order to improve adhesion to the polymer material. Further, by this treatment, the Cu surface chemical treatment is also performed on the surface of the conductor pattern 54 formed on both the main surfaces MP1 and MP2 of the core body 2. FIG. 5 shows a diagram in which a Cu roughening process (a known microetching method, a blackening process, etc.) is performed in which the surface of the Cu plating layer 31c is a roughened surface CZ. Further, the present invention is not limited to this, and the formation process of the adhesive layer FB made of the alloy containing Cu and Sn described above may be used. This step is performed in advance before step 4 (sub-core accommodation step), and the ceramic sub-core 3 in which the Cu pad chemical treatment is applied to the conductor pad 31 is accommodated in the sub-core accommodation portion 25. Also good.

工程7以降は、本発明の配線積層工程に相当する。すなわち、セラミック副コア3が収容されたコア基板CBの主面MP1,MP2上に誘電体層B11〜14,B21〜24と導体層M12〜M14,M22〜M24とを交互に積層して配線積層部L1,L2を形成する。これには、公知のビルドアップ工程(セミアディティブ法、フルアディティブ法、サブトラクティブ法、フィルム状樹脂材料のラミネートによる誘電体層の形成、フォトリソグラフィ技術など)を用いることで実現できる。   Step 7 and subsequent steps correspond to the wiring lamination step of the present invention. That is, the dielectric layers B11 to 14, B21 to 24 and the conductor layers M12 to M14 and M22 to M24 are alternately laminated on the main surfaces MP1 and MP2 of the core substrate CB in which the ceramic sub-core 3 is accommodated. Portions L1 and L2 are formed. This can be realized by using a known build-up process (semi-additive method, full additive method, subtractive method, formation of a dielectric layer by laminating a film-like resin material, photolithography technique, etc.).

まず、工程7では、セラミック副コア3が収容されたコア基板CBの主面MP1,MP2上に誘電体層B11,B21をラミネート形成する。この際、セラミック副コア3の導体パッド31の表面には上記のCu表面化学処理が施されているので、密着性が良好である。次に、工程8では、レーザビアプロセスあるいはフォトビアプロセスなどの手法により、誘電体層B11,B21にビアホール6aを穿設する。これにより、ビアホール6aの底には、導体パッド31が露出する。また、ビアホール6aの形成後には、過マンガン酸カリウム等によりデスミア処理(樹脂残渣除去処理)が施されて、導体パッド31の表面が洗浄される。   First, in step 7, dielectric layers B11 and B21 are laminated on the main surfaces MP1 and MP2 of the core substrate CB in which the ceramic sub-core 3 is accommodated. At this time, the surface of the conductor pad 31 of the ceramic sub-core 3 is subjected to the above-described Cu surface chemical treatment, so that the adhesion is good. Next, in step 8, via holes 6a are formed in the dielectric layers B11 and B21 by a technique such as a laser via process or a photo via process. As a result, the conductor pad 31 is exposed at the bottom of the via hole 6a. Further, after the via hole 6a is formed, a desmear process (resin residue removal process) is performed with potassium permanganate or the like, and the surface of the conductor pad 31 is cleaned.

次に、工程9では、コア基板CB及びその主面MP1,MP2に形成された誘電体層B11,B21、導体層M11,M21を板厚方向に貫く形でドリル等により貫通孔THを穿設する。そして、工程10では、Cuメッキ(無電解Cuメッキ後に電解Cuメッキ)を全面に施すことにより、ビア孔6a内を充填してビア導体6を形成するとともに、貫通孔THの内面にスルーホール導体21を形成する。その後、スルーホール導体21の内側に樹脂製穴埋め材23を充填し、更にCuメッキを全面に施すことにより、蓋導体52を形成する。なお、ビア導体6が、導体パッド31表面のCuメッキ層31cと同じCuメッキにより形成されることで、半田リフロー時などに発生し易い熱応力を緩和でき、断線が生じる可能性を低くすることができる。   Next, in step 9, a through hole TH is drilled by a drill or the like so as to penetrate the core substrate CB and the dielectric layers B11 and B21 and the conductor layers M11 and M21 formed on the main surfaces MP1 and MP2 in the thickness direction. To do. In step 10, Cu plating (electrolytic Cu plating after electroless Cu plating) is applied to the entire surface to fill the inside of the via hole 6 a to form the via conductor 6, and the through hole conductor is formed on the inner surface of the through hole TH. 21 is formed. Then, the lid conductor 52 is formed by filling the inside of the through-hole conductor 21 with the resin filling material 23 and further applying Cu plating to the entire surface. In addition, by forming the via conductor 6 by the same Cu plating as the Cu plating layer 31c on the surface of the conductor pad 31, it is possible to relieve thermal stress that is likely to occur during solder reflow and to reduce the possibility of disconnection. Can do.

次に、工程12では、誘電体層B11,B21を覆うCuメッキをパターンエッチングすることにより、配線51等をパターン形成する。以上により、コア領域CRが得られる。そして、同様に、誘電体層B12〜B14、B22〜B24と導体層M13,14、M23,M24とが交互にし、誘電体層B14,B24にはレーザビアプロセスあるいはフォトビアプロセスなどの手法により開口を形成し、パッド55,56を露出させる。また、パッド55,56の表面にNi−Auメッキが施され、パッド55には半田バンプ7が形成される。その後、電気的検査,外観検査等の所定の検査を経て、図1に示す配線基板1が完成する。   Next, in step 12, the wiring 51 and the like are patterned by pattern etching of Cu plating covering the dielectric layers B11 and B21. Thus, the core region CR is obtained. Similarly, the dielectric layers B12 to B14 and B22 to B24 and the conductor layers M13, 14, M23, and M24 are alternately formed, and the dielectric layers B14 and B24 are opened by a technique such as a laser via process or a photo via process. And pads 55 and 56 are exposed. Further, Ni—Au plating is applied to the surfaces of the pads 55 and 56, and solder bumps 7 are formed on the pads 55. Thereafter, the wiring board 1 shown in FIG. 1 is completed through predetermined inspections such as electrical inspection and appearance inspection.

以上、本発明の実施形態について説明したが、本発明はこれらに限定されず、これらに具現された発明と同一性を失わない範囲内において適宜変更し得る。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, In the range which does not lose the identity with the invention embodied in these, it can change suitably.

本発明の配線基板の断面構造を概略的に表す図The figure which represents roughly the cross-section of the wiring board of this invention 半導体集積回路素子(ICチップ)と主基板(マザーボード等)との間に配置された配線基板を表す図The figure showing the wiring board arrange | positioned between a semiconductor integrated circuit element (IC chip) and main boards (motherboard etc.) 配線基板の第1主面を表す図The figure showing the 1st principal surface of a wiring board 本発明の配線基板の製造工程を表す図The figure showing the manufacturing process of the wiring board of this invention 図4に続く図Figure following Figure 4 図5に続く図Figure following Figure 5 図6に続く図Figure following Figure 6 セラミック副コアの導体パッド表面におけるメッキ構造の第1例First example of plating structure on conductor pad surface of ceramic sub-core セラミック副コアの導体パッド表面におけるメッキ構造の第2例Second example of plating structure on conductor pad surface of ceramic sub-core セラミック副コアの導体パッド表面におけるメッキ構造の第3例Third example of plating structure on conductor pad surface of ceramic sub-core セラミック副コアの導体パッド表面におけるメッキ構造の第4例Fourth example of plating structure on conductor pad surface of ceramic sub-core

符号の説明Explanation of symbols

1 配線基板
2 コア本体
25 副コア収容部
3 セラミック副コア
4 充填樹脂
6 ビア導体
7 半田バンプ
CB コア基板
L1,L2 配線積層部
DESCRIPTION OF SYMBOLS 1 Wiring board 2 Core main body 25 Sub core accommodating part 3 Ceramic sub core 4 Filling resin 6 Via conductor 7 Solder bump CB Core board L1, L2 Wiring lamination | stacking part

Claims (6)

高分子材料で構成された板状のコア本体に、主面間を貫通する貫通孔あるいは一方の主面に開口する凹部として副コア収容部が形成され、その内部にセラミックで構成された板状のセラミック副コアが収容されたコア基板と、該コア基板の主面上に高分子材料で構成された誘電体層と導体層とが交互に積層して形成された配線積層部とを備え、前記セラミック副コアが主面間を貫通する貫通導体とそれに接続する主面上の導体パッドとを有する配線基板であって、
前記導体パッドの表面にはCuメッキ層が形成され、且つ、当該Cuメッキ層の表面が高分子材料との密着性を向上させるための表面化学処理が施された処理面とされ、当該処理面に前記配線積層部の最下層の前記誘電体層及びそれに貫通形成されたCuメッキで構成されるビア導体が接触してなり、
前記処理面は、前記表面化学処理としてCu粗化処理が施された粗化面であり、
前記導体パッドと前記Cuメッキ層との間に、前記Cuメッキ層を前記導体パッドの表面に直接形成した場合よりも各々との密着性が強固な下地メッキ層が介挿されてなることを特徴とする配線基板。
A plate-shaped core body made of a polymer material is formed with a sub-core housing portion as a through-hole penetrating between the main surfaces or a recess opening in one of the main surfaces, and a plate-like shape made of ceramic inside A core substrate in which the ceramic sub-core is accommodated, and a wiring laminate formed by alternately laminating dielectric layers and conductor layers made of a polymer material on the main surface of the core substrate, The ceramic sub-core is a wiring board having a through conductor penetrating between main surfaces and a conductor pad on a main surface connected to the through conductor,
A Cu plating layer is formed on the surface of the conductor pad, and the surface of the Cu plating layer is a treated surface subjected to a surface chemical treatment for improving adhesion with a polymer material, and the treated surface. Ri Na and the by via conductor composed of the dielectric layer and the Cu plating formed through the its lowermost wiring laminated portion is in contact with,
The treated surface is a roughened surface subjected to Cu roughening treatment as the surface chemical treatment,
Between the conductor pad and the Cu plating layer, an underlying plating layer having stronger adhesion than each of the case where the Cu plating layer is directly formed on the surface of the conductor pad is interposed. Wiring board.
前記下地メッキ層はNiメッキ層である請求項1に記載の配線基板。 The wiring board according to claim 1 , wherein the base plating layer is a Ni plating layer. 前記導体パッドは、MoまたはWを主成分とするメタライズパッドであり、その表面にNiメッキ層及びCuメッキ層がこの順に形成されてなる請求項1又は2に記載の配線基板。 The wiring board according to claim 1 , wherein the conductor pad is a metallized pad mainly composed of Mo or W, and a Ni plating layer and a Cu plating layer are formed on the surface thereof in this order. 高分子材料で構成された板状のコア本体に、主面間を貫通する貫通孔あるいは一方の主面に開口する凹部として副コア収容部が形成され、その内部にセラミックで構成された板状のセラミック副コアが収容されたコア基板と、該コア基板の主面上に高分子材料で構成された誘電体層と導体層とが交互に積層して形成された配線積層部とを備え、前記セラミック副コアが主面間を貫通する貫通導体とそれに接続する主面上の導体パッドとを有する配線基板の製造方法であって、
前記導体パッドの表面にCuメッキ層が形成された前記セラミック副コアを前記副コア収容部内に収容する副コア収容工程と、
前記セラミック副コアが収容された前記コア基板の主面上に前記誘電体層と前記導体層とを交互に積層して前記配線積層部を形成する配線積層工程と、
をこの順に含み、且つ、
前記副コア収容工程前、または、前記副コア収容工程と前記配線積層工程の間に、前記導体パッドの表面に形成された前記Cuメッキ層に対し、高分子材料との密着性を向上させるための表面化学処理を施す表面処理工程を含み、
前記表面処理工程における前記表面化学処理は、前記Cuメッキ層の表面を粗化面とするCu粗化処理であり、
前記配線積層工程では、前記配線積層部の最下層の誘電体層に、前記導体パッドの表面に形成されたCuメッキ層の粗化面が露出するようにビアホールを穿設した後に、前記ビアホールの全面にCuメッキを施すことにより、該ビアホール内を充填してCuメッキで構成されるビア導体を形成する工程を含み、
前記副コア収容工程前に、前記セラミック副コアが有する前記導体パッドの表面に前記Cuメッキ層を前記導体パッドの表面に直接形成した場合よりも各々との密着性が強固な下地メッキ層、及び前記Cuメッキ層をこの順に形成するパッドメッキ工程を含むことを特徴とする配線基板の製造方法。
A plate-shaped core body made of a polymer material is formed with a sub-core housing portion as a through-hole penetrating between the main surfaces or a recess opening in one of the main surfaces, and a plate-like shape made of ceramic inside A core substrate in which the ceramic sub-core is accommodated, and a wiring laminate formed by alternately laminating dielectric layers and conductor layers made of a polymer material on the main surface of the core substrate, The ceramic sub-core is a method for manufacturing a wiring board having a through conductor penetrating between main surfaces and a conductor pad on the main surface connected to the through conductor,
A sub-core housing step of housing the ceramic sub-core having a Cu plating layer formed on the surface of the conductor pad in the sub-core housing portion;
A wiring laminating step of alternately laminating the dielectric layers and the conductor layers on the main surface of the core substrate in which the ceramic sub-core is accommodated to form the wiring laminating portion;
In this order, and
In order to improve the adhesion with the polymer material to the Cu plating layer formed on the surface of the conductor pad before the sub-core housing step or between the sub-core housing step and the wiring layering step. look including a surface treatment step of subjecting the surface chemical treatment of,
The surface chemical treatment in the surface treatment step is a Cu roughening treatment in which the surface of the Cu plating layer is a roughened surface,
In the wiring laminating step, after forming a via hole in the lowermost dielectric layer of the wiring laminating portion so that a roughened surface of the Cu plating layer formed on the surface of the conductor pad is exposed, Including the step of forming a via conductor constituted by Cu plating by filling the via hole by performing Cu plating on the entire surface,
Prior to the sub-core housing step, a base plating layer having a tighter adhesion with each other than when the Cu plating layer is directly formed on the surface of the conductor pad on the surface of the conductor pad of the ceramic sub-core, and A method of manufacturing a wiring board comprising a pad plating step of forming the Cu plating layer in this order .
前記下地メッキ層は、Niメッキ層である請求項4に記載の配線基板の製造方法。 The method of manufacturing a wiring board according to claim 4 , wherein the base plating layer is a Ni plating layer . 前記副コア収容工程前に、前記コア本体の主面間を貫通する貫通孔として形成された前記副コア収容部の第2主面側の開口を、表面に粘着剤を有するシート材で、該粘着剤が前記副コア収容部の内側に露出するように塞ぐ閉塞工程を含み、
前記副コア収容工程では、前記セラミック副コアを、前記副コア収容部の第1主面側の開口から収容するとともに前記粘着剤に固着させ、
前記副コア収容工程後に、前記コア本体と前記セラミック副コアの隙間に充填樹脂を注入して硬化させる充填硬化工程を含む請求項4又は5に記載の配線基板の製造方法。
Before the sub-core housing step, the opening on the second main surface side of the sub-core housing portion formed as a through-hole penetrating between the main surfaces of the core body is a sheet material having an adhesive on the surface, Including a closing step of closing the adhesive so as to be exposed to the inside of the sub-core housing portion;
In the sub-core housing step, the ceramic sub-core is housed from the opening on the first main surface side of the sub-core housing portion and fixed to the adhesive,
The method for manufacturing a wiring board according to claim 4 , further comprising a filling and curing step of injecting and curing a filling resin into a gap between the core body and the ceramic sub-core after the sub-core housing step.
JP2005175270A 2005-06-15 2005-06-15 Wiring board and manufacturing method thereof Active JP4585923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175270A JP4585923B2 (en) 2005-06-15 2005-06-15 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175270A JP4585923B2 (en) 2005-06-15 2005-06-15 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006351782A JP2006351782A (en) 2006-12-28
JP4585923B2 true JP4585923B2 (en) 2010-11-24

Family

ID=37647315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175270A Active JP4585923B2 (en) 2005-06-15 2005-06-15 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4585923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936567B2 (en) 2007-05-07 2011-05-03 Ngk Spark Plug Co., Ltd. Wiring board with built-in component and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204962A (en) * 1989-12-29 1991-09-06 Ngk Spark Plug Co Ltd Manufacture of ic package
JP2000353874A (en) * 1994-12-01 2000-12-19 Ibiden Co Ltd Multilayer printed wiring board and production thereof
JP2002270991A (en) * 2001-03-13 2002-09-20 Ibiden Co Ltd Printed wiring board and manufacturing method therefor
JP2005039217A (en) * 2003-06-24 2005-02-10 Ngk Spark Plug Co Ltd Intermediate substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204962A (en) * 1989-12-29 1991-09-06 Ngk Spark Plug Co Ltd Manufacture of ic package
JP2000353874A (en) * 1994-12-01 2000-12-19 Ibiden Co Ltd Multilayer printed wiring board and production thereof
JP2002270991A (en) * 2001-03-13 2002-09-20 Ibiden Co Ltd Printed wiring board and manufacturing method therefor
JP2005039217A (en) * 2003-06-24 2005-02-10 Ngk Spark Plug Co Ltd Intermediate substrate

Also Published As

Publication number Publication date
JP2006351782A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP2007027683A (en) Wiring board and method for manufacturing the same
US8891245B2 (en) Printed wiring board
JP4538373B2 (en) Manufacturing method of coreless wiring substrate and manufacturing method of electronic device having the coreless wiring substrate
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
JP4726546B2 (en) Wiring board manufacturing method
JP4880277B2 (en) Wiring board manufacturing method
US9775237B2 (en) Wiring substrate and method for manufacturing the same
JP4542201B2 (en) Manufacturing method of coreless wiring board
KR101044127B1 (en) Heat-dissipating substrate and fabricating method of the same
US9578755B2 (en) Printed wiring board having buildup layers and multilayer core substrate with double-sided board
US20100224397A1 (en) Wiring board and method for manufacturing the same
KR100728754B1 (en) Printed circuit board using bump and method for manufacturing thereof
US8945329B2 (en) Printed wiring board and method for manufacturing printed wiring board
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
KR20080033069A (en) Substrate with built-in electronic component and method for manufacturing the same
EP2178116B1 (en) Ic mounting substrate and method for manufacturing the same
KR102049327B1 (en) Wiring substrate and method of manufacturing the same
JP4497548B2 (en) Wiring board
JP4648230B2 (en) Wiring board manufacturing method
US20130048355A1 (en) Printed wiring board
JP4907216B2 (en) Printed wiring board and printed wiring board manufacturing method
JP4714510B2 (en) Wiring board manufacturing method
JP4585923B2 (en) Wiring board and manufacturing method thereof
KR101109287B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
KR100826345B1 (en) Printed circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250