JP4584484B2 - Insulated power transmission connector and medical device having the power transmission connector - Google Patents

Insulated power transmission connector and medical device having the power transmission connector Download PDF

Info

Publication number
JP4584484B2
JP4584484B2 JP2001108885A JP2001108885A JP4584484B2 JP 4584484 B2 JP4584484 B2 JP 4584484B2 JP 2001108885 A JP2001108885 A JP 2001108885A JP 2001108885 A JP2001108885 A JP 2001108885A JP 4584484 B2 JP4584484 B2 JP 4584484B2
Authority
JP
Japan
Prior art keywords
core
power transmission
medical device
plug
receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108885A
Other languages
Japanese (ja)
Other versions
JP2002305120A (en
Inventor
武寿 森
光俊 八重樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2001108885A priority Critical patent/JP4584484B2/en
Publication of JP2002305120A publication Critical patent/JP2002305120A/en
Application granted granted Critical
Publication of JP4584484B2 publication Critical patent/JP4584484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、埋込型の医療器及び生体の近傍で使用する医療器に対して電力伝送を行なう電力伝送コネクタ及び該電力伝送コネクタを有する医療器に関するものである。
【0002】
【従来の技術】
埋込型の医療器及び生体の近傍で使用する医療器の一例として人工心臓がある。人工心臓は、基本的に、心臓の代替であるポンプと、その駆動を行うコントローラからなっているが、現在の時点ではポンプのみを体内に埋込み、コントローラは体外に携帯する(生体の近傍で使用する)構成が考えられている。
【0003】
将来的にはコントローラも体内に埋込まれ、必要な電力は経皮伝送によって体内に埋込まれた電池を充電し、電力を供給することになると考えられているが、それには技術的な課題がまだ残っている。
【0004】
前述の、コントローラを体外に携帯する構成では、コントローラへの電力供給は、外部電源に接続されているケーブルを、コントローラのコネクタ部にて端子同士を直接接続することによって行われている。したがって、完全な気密性は保たれていず、シャワー時、雨天時等、コントローラが濡れる可能性のある場合には、カバーをするといった処置が行われている。
【0005】
【発明が解決しようとする課題】
コントローラの使いやすさを考えると、気密性、特に防水のレベルを高くすることが望ましい。しかしながら、それは、コネクタの大型化、したがって、コントローラの大型化につながり、使用者のQOL(Quality of Life)の向上には好ましくない。また、気密性の高い接続端子を使用することになると、コネクタの種類は限定され、一般的にはプラスチックの弾性を利用したシールを使用することになる。これはコントローラのコストアップと耐久性(例えば耐衝撃性)の低下につながり好ましくない。
【0006】
本発明は、この問題を解決するために、非接触による電力伝送、特に人工心臓のように高電力の負荷である場合でも実用的な絶縁型の交流用の電力伝送コネクタ及び該電力伝送コネクタを有する医療器を提供するものである。
【0007】
【課題を解決するための手段】
この課題を解決するために、本発明の医療器は、埋込型の医療器及び生体の近傍で使用する医療器において、Iの字形の1次側コアを含むプラグが挿入可能なレセプタに含まれるコの字形の2次側コアであって、前記プラグが前記レセプタに挿入された場合に、絶縁物で形成された前記医療器の枠を介して前記Iの字形の1次側コアと共に概ね閉路と見なせる高透磁率のコアを形成する前記コの字形の2次側コアを備え、前記プラグが前記レセプタに挿入された場合に、前記Iの字形の1次側コアと前記コの字形の2次側コアとを含む電磁誘導型の電力伝送手段を介して前記医療器に電力が供給されることを特徴とする。
【0008】
又、本発明の電力伝送コネクタは、埋込型の医療器及び生体の近傍で使用する医療器の電力伝送コネクタであって、Iの字形の1次側コアを含むプラグと、コの字形の2次側コアを含み前記プラグが挿入可能なレセプタであって、前記プラグが前記レセプタに挿入された場合に、前記Iの字形の1次側コアと前記コの字形の2次側コアとが絶縁物で形成された前記医療器の枠を介して概ね閉路と見なせる高透磁率のコアを形成する、前記医療器が有する前記レセプタとを有し、交流電力の印加により前記プラグから前記レセプタに電磁誘導型の電力伝送を行なうことを特徴とする。ここで、前Iの字形の1次側コアを前記コの字形の2次側コアと所定の位置関係で固定する固定手段とを有する。
【0009】
上記構成により、絶縁型にすることによって、気密性、特に防水のレベルを高くすることが容易になる。また、電気的安全性を高めることにもつながる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、以下図面を参照して詳細に説明する。
【0011】
<現行の電力伝送方式>
現行の人工心臓では10〜30W程度の電力を使用する例がほとんどである。このような高電力を、電磁誘導の原理を用いて非接触に伝送しようとする場合、高効率が要求される。この点が、医療器における非接触電力伝送と現行の一般的な非接触電力伝送との場合で異なる条件である。
【0012】
現行の非接触電力伝送方式の一例として図1の方式があるが、これでは磁力線がコアの中に閉じ込められないので、高効率は望めない。従って、2次側の消費電流が少ない場合にしか使用できない。
【0013】
そこで、電磁誘導の原理を用いた非接触電力伝送を高効率にするには、コアを閉じた形にしたトロイダルコアが一般的に使用されている。しかし、それを医療器に対する非接触電力伝送用コネクタに応用するには、形状的に不利である。
【0014】
<実施の形態1の電力伝送コネクタ>
本実施の形態1では、一例として、図2に示すように角状のコアを用い、コネクタのプラグ(図2ではコア1に相当)とレセプタ(図2ではコア2に相当)にてトランスを構成するようにした。
【0015】
図2で、10は携帯コントローラのケースであり、例えば80mm×100mmの矩形で絶縁物で形成されている。このコントローラ・ケース10内の周囲部分にコの字形の2次側のコア2と、1次側のコア1が配置されて、トランスを形成する。ここで、1次コイル11が巻かれたコア1は、絶縁物からなる枠30内にプラグとして挿入されて、2次コイル12が巻かれたコントローラ側のコア2とでトランスが形成され、電磁誘導による非接触電力伝送が行われる。従って、このような構成で高効率な非接触電力伝送が可能となれば、携帯コントローラの回路等は絶縁物のケース10とプラグ用枠30とによって外部と完全に遮断されているため、気密性が保たれ、シャワーや雨天などを気にする必要が無い。
【0016】
本実施の形態の電力伝送コネクタが実用可能か否かは、図2から明らかなように、コア1とコア2とを遮断したために生じた2箇所のギャップ21,22の影響がどれだけ有るかによる。このギャップ21,22は、図3に図2のA−A’断面を示すように、略コイル11と絶縁枠30とが隔てる長さである。
【0017】
以下、2箇所のギャップ21,22の影響について言及する。
例えば、N:コイルの単位長さ当たりの巻数
L:コアの全長の平均の長さ
J:電流
μ:コアの透磁率
μO:空気中の透磁率(真空中の透磁率で近似が可能)
δ:ギャップ長
とすると、電流回路の作る磁束密度Bは、
ギャップ以外では、
B=μNJ/L (1)
であり、ギャップでは、
B=(μNJ/L)/[1+(μ/μ0)×(δ/L)](2)
である。ここでμ/μ0は比透磁率とみなせ、これが大きいほどトランスの結合係数kが1に近くなり漏洩インダクタンスを小さくできる。kは周波数特性と、挿入損失の最小値を決めるパラメータであるので(図5参照)、トランスの設計ではコア材の比透磁率を1000程度にしk=0.999にすることが推奨されている。入手性がよく、加工も容易な材料として、
a)ケイ素鋼を用いた場合:約500
b)Ni−Znフェライトを用いた場合:10〜1000
があり、本発明の用途としては500以上あればよく、ここでは一例として
μ/μ0=500〜1000 (3)
とする。
【0018】
また、δ/Lは機械的な設計で決まるものであるが、体外で携帯するコントローラの大きさは、
100mmx80mmx30mm(D)
程度になると考えられるので、ここでは一例として、
δ=1mm、L=360mm
とする。したがって、
δ/L=1/360 (4)
である。ゆえに、
(μ/μ0)×(δ/L)=1.4〜2.8 (5)
であるから、(2)式は(1)式の0.42〜0.26倍になり、後述の設計式(6)、(7)の誤差の原因となる。しかしながら、1次側から2次側への電力伝送には実用上支障はない。
【0019】
次に、入出力の電圧、電流の関係から、コイルの巻数及び1次側の電圧・電流について述べる。
【0020】
プラグ、レセプタを各々、1次側、2次側として、巻数,電流,電圧をN1,N2,J1,J2,V1,V2とすると、近似的に、以下の関係が成り立つ。
【0021】
V2=−(N2/N1)V1 (6)
N2・J2=−N1・J1 (7)
2次側のコントローラに必要な電圧V2,電流J2は既知であるので、(6),(7)式にしたがって、N1,N2,V1,J1を決定すれば、必要な電力伝送が可能となる。尚、コイルは各々のコアに均等に巻いた方が磁束をコア内に閉じ込められるので、高効率な電力伝送が可能になる。
【0022】
<実施の形態1の携帯コントローラ例>
図4は、実施の形態1の携帯コントローラの外観図である。
【0023】
図4では、携帯コントローラに電力伝送コネクタ用の層41を設け、上記電力伝送コネクタをここに搭載する。そして、この電力伝送コネクタ層41とコントローラ回路層42とも分離している。
【0024】
例えば、電力伝送コネクタのコア1の断面が5mm×5mmの正方形であれば、電力伝送コネクタ層41は1cm厚ほどあればよい。絶縁枠30の差し込まれたコア1は、ネジ止め13等で固定する必要があるので、指による操作が可能な寸法が決められる。
【0025】
尚、携帯コントローラを薄厚とするためには、コアの内側に電磁気の絶縁枠を設けて、その内部に回路を設けることで可能となる。
【0026】
<実施の形態2の電力伝送コネクタ>
本実施の形態2では、一例として、図6及び図7に示すように円状のコアを用い、コネクタのプラグ(図6では1次コアに相当)とレセプタ(62では2次コアに相当)にてトランスを構成するようにした。
【0027】
図6で、64は携帯コントローラのケースであり、このコントローラ・ケース64の一部に実施の形態1よりかなり小型のコの字形の2次コアと、Iの字形の1次コアが配置されて、トランスを形成する。ここで、1次コイル61が巻かれた1次コアは、絶縁物63により被覆されて、絶縁物からなるコントローラ・ケース64の一部に形成されたコの字型のレセプタにプラグとして挿入されて、2次コイル62が巻かれたコントローラ側の2次コアとでトランスが形成され、電磁誘導による非接触電力伝送が行われる。本実施の形態におけるギャップは、プラグ側の絶縁物63の厚みとケース64の厚みとの和となる。
【0028】
図7は、図6のB−B’及びC−C’の断面図である。
【0029】
このような構成で高効率な非接触電力伝送が行われるので、携帯コントローラの回路等は絶縁物のケース64とプラグの絶縁物63とによって外部と完全に遮断されているため、気密性が保たれ、シャワーや雨天などを気にする必要が無い。その上、実施の形態1と異なり、コアがコンパクトに作成されているので、コネクタが小型となると共に、プラグがレセプタから抜けないような簡単な構造(例えばツメ等)を設けるだけで良いので、コネクタの脱着が容易になる。
【0030】
<実施の形態2の携帯コントローラ例>
図8は、実施の形態2の電力伝送コネクタを有する携帯コントローラの外観図である。本例の携帯コントローラ80は、縦80mm×横120mm×厚30mmの外形を有し、横枠のほぼ中央部にコネクタ部60が設けられている。尚、コネクタ部の設置位置は、本例に限定されるものではない。
【0031】
図9は、図8のD−D’の断面図である。図9から明らかなように、実施の形態2によれば、コネクタ部を、伝送電力に対応するコアの大きさとコイルの巻数とに依存する必要最小限の大きさで実現でき、従来からの電源の接続と同じ感覚のプラグのレセプタへの簡単な挿入操作により接続が可能になる。
【0032】
<本実施の形態の人工心臓例>
図10は、本実施の形態の電力伝送コネクタを搭載した携帯コントローラ(Wearable Controller)を含む人工心臓の構成例を示す図である。
【0033】
図10には、左心補助ポンプ(Pump)の例が示されており、体内の左心補助ポンプと体外の携帯コントローラは経皮ケーブル(Percutaneous Cable)で接続されて、コントロール及び監視されている。図10では、モニタを有する病院のコンソール(Console)で、本実施の形態の電力伝送コネクタを介して、携帯コントローラのバッテリー(Battery)への電力伝送が行われている。
【0034】
尚、本発明はその原理上、電力伝送に限定されるものではなく、交流信号が伝送できることから、情報伝送にも応用可能であることは明らかであり、例えば、図10で携帯コントローラからのデータを病院のコンソールに読み出す、あるいは携帯コントローラのパラメータを更新するためにデータを送ることが出来る。
【0035】
【発明の効果】
本発明によれば、高電力の伝送を行うことのできる絶縁型の交流用の電力伝送コネクタを提供することができる。また、1次側と2次側を1mm程度のオーダーで絶縁できるので気密性(特に防水性)が高く、また、電気的安全性も高めることができる。
【図面の簡単な説明】
【図1】従来の電磁誘導型の電力伝送例を示す図である。
【図2】実施の形態1の電磁誘導型の電力伝送コネクタの構成例を示す図である。
【図3】図2のA−A’の断面図である。
【図4】実施の形態1の携帯コントローラの外観を示す図である。
【図5】トランスの結合係数と周波数特性との関係を示す図である。
【図6】実施の形態2の電磁誘導型の電力伝送コネクタの構成例を示す図である。
【図7】図6のB−B’及びC−C’の断面図である。
【図8】実施の形態1の携帯コントローラの外観を示す図である。
【図9】図8のD−D’の断面図である。
【図10】本実施の形態の電力伝送コネクタを使用した人工心臓の構成例を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an implantable medical device and a power transmission connector that transmits power to a medical device used in the vicinity of a living body, and a medical device having the power transmission connector.
[0002]
[Prior art]
An artificial heart is an example of an implantable medical device and a medical device used in the vicinity of a living body. The artificial heart basically consists of a pump that replaces the heart and a controller that drives it, but at the present time, only the pump is implanted inside the body, and the controller is carried outside the body (used near the living body). Yes) the configuration is considered.
[0003]
In the future, the controller will also be implanted in the body, and it is thought that the necessary power will charge the battery implanted in the body by transcutaneous transmission and supply power, but this is a technical issue Still remains.
[0004]
In the above-described configuration in which the controller is carried outside the body, power is supplied to the controller by directly connecting the terminals connected to each other at the connector portion of the controller with a cable connected to an external power source. Therefore, complete airtightness is not maintained, and when the controller may get wet, such as during showers or rainy weather, a measure is taken such as covering.
[0005]
[Problems to be solved by the invention]
Considering the ease of use of the controller, it is desirable to increase the airtightness, particularly the level of waterproofing. However, this leads to an increase in the size of the connector and therefore an increase in the size of the controller, which is not preferable for improving the quality of life (QOL) of the user. Further, when a highly airtight connection terminal is used, the types of connectors are limited, and generally a seal utilizing the elasticity of plastic is used. This leads to an increase in the cost of the controller and a decrease in durability (for example, impact resistance), which is not preferable.
[0006]
In order to solve this problem, the present invention provides a non-contact power transmission, particularly an insulated AC power transmission connector for practical use even in the case of a high power load such as an artificial heart, and the power transmission connector. The medical device which has is provided.
[0007]
[Means for Solving the Problems]
In order to solve this problem, a medical device of the present invention is included in a receptor in which a plug including an I-shaped primary core can be inserted in an implantable medical device and a medical device used in the vicinity of a living body. When the plug is inserted into the receptor, the U-shaped secondary side core is generally arranged together with the I-shaped primary side core through the medical device frame formed of an insulator. A U-shaped secondary core that forms a high-permeability core that can be regarded as a closed circuit; and when the plug is inserted into the receptor, the I-shaped primary core and the U-shaped core Electric power is supplied to the medical device via electromagnetic induction type power transmission means including a secondary core .
[0008]
The power transmission connector of the present invention is a power transmission connector for an implantable medical device and a medical device used in the vicinity of a living body, and includes a plug including an I-shaped primary core, and a U-shaped plug. A receptor including a secondary core into which the plug can be inserted, and when the plug is inserted into the receptor, the I-shaped primary core and the U-shaped secondary core The receptor of the medical device, which forms a core with a high magnetic permeability that can be regarded as a closed circuit through a frame of the medical device formed of an insulating material, and from the plug to the receptor by application of AC power It is characterized by performing electromagnetic induction type power transmission. Here, and a fixing means for fixing the primary core of the shaped pre Symbol I in the secondary core and the predetermined positional relationship of the U-shaped.
[0009]
With the above structure, it becomes easy to increase the airtightness, in particular, the level of waterproofing by adopting an insulating type. It also leads to an increase in electrical safety.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
<Current power transmission system>
Most current artificial hearts use power of about 10 to 30 W. When trying to transmit such high power in a non-contact manner using the principle of electromagnetic induction, high efficiency is required. This is a different condition between contactless power transmission in a medical device and current general contactless power transmission.
[0012]
As an example of the current non-contact power transmission system, there is a system shown in FIG. 1, but in this case, the magnetic field lines are not confined in the core, so that high efficiency cannot be expected. Therefore, it can be used only when the current consumption on the secondary side is small.
[0013]
Therefore, in order to increase the efficiency of contactless power transmission using the principle of electromagnetic induction, a toroidal core having a closed core is generally used. However, it is disadvantageous in shape to apply it to a contactless power transmission connector for a medical device.
[0014]
<Power transmission connector of Embodiment 1>
In the first embodiment, as an example, a square core is used as shown in FIG. 2, and a transformer is connected by a connector plug (corresponding to core 1 in FIG. 2) and a receptor (corresponding to core 2 in FIG. 2). I made it up.
[0015]
In FIG. 2, reference numeral 10 denotes a case of a portable controller, which is formed of an insulator with a rectangular shape of, for example, 80 mm × 100 mm. A U-shaped secondary core 2 and a primary core 1 are disposed around the controller case 10 to form a transformer. Here, the core 1 around which the primary coil 11 is wound is inserted as a plug into a frame 30 made of an insulator, and a transformer is formed with the core 2 on the controller side around which the secondary coil 12 is wound. Non-contact power transmission by induction is performed. Therefore, if highly efficient contactless power transmission is possible with such a configuration, the portable controller circuit and the like are completely cut off from the outside by the insulator case 10 and the plug frame 30, so that the airtightness , So you don't have to worry about showers or rain.
[0016]
Whether or not the power transmission connector of this embodiment is practical is determined by how much the influence of the two gaps 21 and 22 caused by shutting off the core 1 and the core 2 is apparent from FIG. by. The gaps 21 and 22 have such a length that the coil 11 and the insulating frame 30 are separated from each other as shown in the AA ′ cross section of FIG.
[0017]
Hereinafter, the influence of the two gaps 21 and 22 will be described.
For example, N: number of turns per unit length of the coil L: average length of the entire length of the core J: current μ: magnetic permeability of the core μ O : magnetic permeability in air (approximable by magnetic permeability in vacuum)
δ: Assuming the gap length, the magnetic flux density B created by the current circuit is
Outside the gap,
B = μNJ / L (1)
And in the gap,
B = (μNJ / L) / [1+ (μ / μ 0 ) × (δ / L)] (2)
It is. Here, μ / μ 0 can be regarded as the relative magnetic permeability, and the larger the value is, the closer the transformer coupling coefficient k becomes to 1, and the leakage inductance can be reduced. Since k is a parameter that determines the frequency characteristic and the minimum value of the insertion loss (see FIG. 5), it is recommended that the core design has a relative permeability of about 1000 and k = 0.999 in the transformer design. . As a material that is highly available and easy to process,
a) When silicon steel is used: about 500
b) When Ni—Zn ferrite is used: 10 to 1000
As an application of the present invention, 500 or more is sufficient, and here, as an example, μ / μ 0 = 500 to 1000 (3)
And
[0018]
In addition, δ / L is determined by mechanical design, but the size of the controller carried outside the body is
100mmx80mmx30mm (D)
As an example here,
δ = 1mm, L = 360mm
And Therefore,
δ / L = 1/360 (4)
It is. therefore,
(Μ / μ 0 ) × (δ / L) = 1.4 to 2.8 (5)
Therefore, the expression (2) is 0.42 to 0.26 times as large as the expression (1), which causes an error in the later-described design expressions (6) and (7). However, there is no practical problem in power transmission from the primary side to the secondary side.
[0019]
Next, the number of turns of the coil and the voltage / current on the primary side will be described from the relationship between input / output voltage and current.
[0020]
Assuming that the plug and the receptor are the primary side and the secondary side, respectively, and the number of turns, current, and voltage are N1, N2, J1, J2, V1, and V2, the following relationship is approximately established.
[0021]
V2 =-(N2 / N1) V1 (6)
N2 / J2 = -N1 / J1 (7)
Since the voltage V2 and the current J2 required for the secondary-side controller are known, the necessary power transmission can be performed by determining N1, N2, V1, and J1 according to the equations (6) and (7). . In addition, since the magnetic flux is confined in the core when the coil is evenly wound around each core, highly efficient power transmission becomes possible.
[0022]
<Example of portable controller according to Embodiment 1>
FIG. 4 is an external view of the portable controller according to the first embodiment.
[0023]
In FIG. 4, the portable controller is provided with a layer 41 for a power transmission connector, and the power transmission connector is mounted thereon. The power transmission connector layer 41 and the controller circuit layer 42 are also separated.
[0024]
For example, if the cross section of the core 1 of the power transmission connector is a square of 5 mm × 5 mm, the power transmission connector layer 41 may be about 1 cm thick. Since the core 1 into which the insulating frame 30 is inserted needs to be fixed with screws 13 or the like, a dimension that can be operated with a finger is determined.
[0025]
In order to reduce the thickness of the portable controller, an electromagnetic insulating frame is provided inside the core and a circuit is provided therein.
[0026]
<Power Transmission Connector of Embodiment 2>
In the second embodiment, as an example, a circular core is used as shown in FIGS. 6 and 7, and a connector plug (corresponding to a primary core in FIG. 6) and a receptor (corresponding to a secondary core in 62). The transformer was made up in.
[0027]
In FIG. 6, 64 is a case of a portable controller, and a U-shaped secondary core that is considerably smaller than the first embodiment and an I-shaped primary core are arranged in a part of the controller case 64. Form a transformer. Here, the primary core around which the primary coil 61 is wound is covered with an insulator 63 and inserted as a plug into a U-shaped receptor formed on a part of a controller case 64 made of an insulator. Thus, a transformer is formed by the secondary core on the controller side around which the secondary coil 62 is wound, and non-contact power transmission by electromagnetic induction is performed. The gap in the present embodiment is the sum of the thickness of the insulator 63 on the plug side and the thickness of the case 64.
[0028]
7 is a cross-sectional view taken along the lines BB ′ and CC ′ of FIG.
[0029]
Since highly efficient contactless power transmission is performed with such a configuration, the portable controller circuit and the like are completely cut off from the outside by the insulator case 64 and the plug insulator 63, so that airtightness is maintained. There is no need to worry about showers or rain. In addition, unlike the first embodiment, the core is made compact, so the connector is small, and it is only necessary to provide a simple structure (such as a claw) so that the plug does not come off from the receptor. The connector can be easily attached and detached.
[0030]
<Example of portable controller according to Embodiment 2>
FIG. 8 is an external view of a portable controller having the power transmission connector of the second embodiment. The portable controller 80 of the present example has an external shape of 80 mm long × 120 mm wide × 30 mm thick, and a connector portion 60 is provided at substantially the center of the horizontal frame. In addition, the installation position of a connector part is not limited to this example.
[0031]
9 is a cross-sectional view taken along the line DD ′ of FIG. As is apparent from FIG. 9, according to the second embodiment, the connector portion can be realized with the minimum necessary size depending on the size of the core corresponding to the transmission power and the number of turns of the coil. The connection can be made by a simple insertion operation into the receptor of the plug having the same feeling as that of the connection.
[0032]
<Example of artificial heart of this embodiment>
FIG. 10 is a diagram showing a configuration example of an artificial heart including a portable controller (Wearable Controller) equipped with the power transmission connector of the present embodiment.
[0033]
FIG. 10 shows an example of a left ventricular assist pump (Pump), in which the left ventricular assist pump in the body and the portable controller outside the body are connected by a percutaneous cable (Percutaneous Cable) to be controlled and monitored. . In FIG. 10, power transmission to a battery (Battery) of the portable controller is performed via the power transmission connector of the present embodiment at a hospital console having a monitor.
[0034]
Note that the present invention is not limited to power transmission in principle, and can be applied to information transmission because it can transmit an AC signal. For example, data from a portable controller in FIG. Can be sent to the hospital console or data can be sent to update the parameters of the portable controller.
[0035]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the insulated power transmission connector for alternating currents which can perform transmission of high electric power can be provided. Further, since the primary side and the secondary side can be insulated on the order of about 1 mm, airtightness (particularly waterproof) is high, and electrical safety can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of conventional electromagnetic induction type power transmission.
FIG. 2 is a diagram illustrating a configuration example of an electromagnetic induction power transmission connector according to the first embodiment.
FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG.
FIG. 4 is a diagram illustrating an appearance of a portable controller according to the first embodiment.
FIG. 5 is a diagram illustrating a relationship between a transformer coupling coefficient and frequency characteristics;
6 is a diagram illustrating a configuration example of an electromagnetic induction power transmission connector according to a second embodiment. FIG.
7 is a cross-sectional view taken along the lines BB ′ and CC ′ of FIG. 6;
FIG. 8 is a diagram illustrating an appearance of a portable controller according to the first embodiment.
9 is a cross-sectional view taken along the line DD ′ of FIG.
FIG. 10 is a diagram showing a configuration example of an artificial heart using the power transmission connector of the present embodiment.

Claims (3)

埋込型の医療器及び生体の近傍で使用する医療器において、
Iの字形の1次側コアを含むプラグが挿入可能なレセプタに含まれるコの字形の2次側コアであって、前記プラグが前記レセプタに挿入された場合に、絶縁物で形成された前記医療器の枠を介して前記Iの字形の1次側コアと共に概ね閉路と見なせる高透磁率のコアを形成する前記コの字形の2次側コアを備え、
前記プラグが前記レセプタに挿入された場合に、前記Iの字形の1次側コアと前記コの字形の2次側コアとを含む電磁誘導型の電力伝送手段を介して前記医療器に電力が供給されることを特徴とする医療器。
In an implantable medical device and a medical device used in the vicinity of a living body,
A U-shaped secondary core included in a receptor into which a plug including an I-shaped primary core can be inserted , wherein the plug is inserted into the receptor and formed of an insulator. A U-shaped secondary core that forms a high-permeability core that can be regarded as a closed circuit together with the I-shaped primary core through a medical device frame ;
When the plug is inserted into the receptor , power is supplied to the medical device via electromagnetic induction type power transmission means including the I-shaped primary core and the U-shaped secondary core. A medical device characterized by being supplied.
埋込型の医療器及び生体の近傍で使用する医療器の電力伝送コネクタであって、
Iの字形の1次側コアを含むプラグと、
コの字形の2次側コアを含み前記プラグが挿入可能なレセプタであって、前記プラグが前記レセプタに挿入された場合に、前記Iの字形の1次側コアと前記コの字形の2次側コアとが絶縁物で形成された前記医療器の枠を介して概ね閉路と見なせる高透磁率のコアを形成する、前記医療器が有する前記レセプタとを有し、
交流電力の印加により前記プラグから前記レセプタに電磁誘導型の電力伝送を行なうことを特徴とする電力伝送コネクタ。
A power transmission connector of an implantable medical device and a medical device used in the vicinity of a living body,
A plug including an I-shaped primary core;
A receptor including a U-shaped secondary core into which the plug can be inserted, and when the plug is inserted into the receptor, the I-shaped primary core and the U-shaped secondary core The receptor of the medical device that forms a high-permeability core that can be regarded as a closed circuit through a frame of the medical device formed of an insulator with a side core;
An electric power transmission connector for performing electromagnetic induction type electric power transmission from the plug to the receptor by application of alternating current power.
前記Iの字形の1次側コアを前記コの字形の2次側コアと所定の位置関係で固定する固定手段とを有することを特徴とする請求項記載の電力伝送コネクタ。 3. The power transmission connector according to claim 2, further comprising fixing means for fixing the I-shaped primary core to the U-shaped secondary core in a predetermined positional relationship.
JP2001108885A 2001-04-06 2001-04-06 Insulated power transmission connector and medical device having the power transmission connector Expired - Fee Related JP4584484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108885A JP4584484B2 (en) 2001-04-06 2001-04-06 Insulated power transmission connector and medical device having the power transmission connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108885A JP4584484B2 (en) 2001-04-06 2001-04-06 Insulated power transmission connector and medical device having the power transmission connector

Publications (2)

Publication Number Publication Date
JP2002305120A JP2002305120A (en) 2002-10-18
JP4584484B2 true JP4584484B2 (en) 2010-11-24

Family

ID=18960939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108885A Expired - Fee Related JP4584484B2 (en) 2001-04-06 2001-04-06 Insulated power transmission connector and medical device having the power transmission connector

Country Status (1)

Country Link
JP (1) JP4584484B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101991884B (en) * 2010-11-19 2012-06-06 北京工业大学 Electrical isolation module used in artificial heart system
JP5776638B2 (en) * 2012-06-29 2015-09-09 トヨタ自動車株式会社 Non-contact power transmission coil unit, power receiving device, vehicle, and power transmitting device
WO2014155946A1 (en) * 2013-03-27 2014-10-02 パナソニック株式会社 Non-contact charging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192737U (en) * 1981-05-29 1982-12-07
JPH0731064A (en) * 1993-07-06 1995-01-31 Tdk Corp Non-contact type charger
JPH08317971A (en) * 1995-05-26 1996-12-03 Meteku:Kk Infusion pump
JPH10208804A (en) * 1997-01-28 1998-08-07 Matsushita Electric Works Ltd Power supply connection device
JPH10215530A (en) * 1997-01-28 1998-08-11 Matsushita Electric Works Ltd Non-contact power transmission device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192737U (en) * 1981-05-29 1982-12-07
JPH0731064A (en) * 1993-07-06 1995-01-31 Tdk Corp Non-contact type charger
JPH08317971A (en) * 1995-05-26 1996-12-03 Meteku:Kk Infusion pump
JPH10208804A (en) * 1997-01-28 1998-08-07 Matsushita Electric Works Ltd Power supply connection device
JPH10215530A (en) * 1997-01-28 1998-08-11 Matsushita Electric Works Ltd Non-contact power transmission device

Also Published As

Publication number Publication date
JP2002305120A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
US8923968B2 (en) Power link for implantable devices
Sun et al. Wireless power transfer for medical microsystems
Hui et al. A critical review of recent progress in mid-range wireless power transfer
US6542777B1 (en) Spiral shield for a flexible high-Q implantable inductively coupled device
JP3327927B2 (en) Non-invasive transmission line communication system
US20180263557A1 (en) Battery module for wireless exchange of data and power
US10511349B2 (en) Connector and device for wireless transmission of data and power
ATE426941T1 (en) PLANAR RESONATOR FOR WIRELESS ENERGY TRANSMISSION
WO2017151933A1 (en) Receiver coil arrangements for inductive wireless power transfer for portable devices
TW200746193A (en) Magnetic induction device
WO2001030437A8 (en) Patient-shielding and coil system
JP2008029200A (en) System for radio transmission
EP1745494A2 (en) A wireless powering device, an energizable load, a wireless system and a method for a wireless energy transfer
CN103313178A (en) Hearing aid and detection device
US10623061B2 (en) Stackable connector and device for wireless transmission of power
WO2021082907A1 (en) Wireless charging system, charging cable, electronic device, and wireless charging method therefor
TW200411980A (en) A radio transmitter and receiver of an implantable medical device
JP4584484B2 (en) Insulated power transmission connector and medical device having the power transmission connector
KR101973143B1 (en) System and apparatus for wireless power transfer with improved transfer range and efficiency
JP2005006441A (en) Noncontact charging system and noncontact charger
Ito et al. Construction of a secure wireless power transfer system for robot fish
Zhao et al. Transcutaneous transformers in power supply system for an artificial heart
Okinaga et al. Transcutaneous energy transmission system for a totally implantable artificial heart using a two-wire archimedean spiral coil
WO2023120574A1 (en) Energy harvester and charging device
KR20150011604A (en) Wireless charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100902

R150 Certificate of patent or registration of utility model

Ref document number: 4584484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees