JP4581453B2 - Mems devices, optical mems element, diffractive optical mems device, and a laser display - Google Patents

Mems devices, optical mems element, diffractive optical mems device, and a laser display Download PDF

Info

Publication number
JP4581453B2
JP4581453B2 JP2004095872A JP2004095872A JP4581453B2 JP 4581453 B2 JP4581453 B2 JP 4581453B2 JP 2004095872 A JP2004095872 A JP 2004095872A JP 2004095872 A JP2004095872 A JP 2004095872A JP 4581453 B2 JP4581453 B2 JP 4581453B2
Authority
JP
Japan
Prior art keywords
layer
film
formed
beam
mems device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004095872A
Other languages
Japanese (ja)
Other versions
JP2005279831A (en
Inventor
隆 木下
弘人 河西
訓彦 猿田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2004095872A priority Critical patent/JP4581453B2/en
Publication of JP2005279831A publication Critical patent/JP2005279831A/en
Application granted granted Critical
Publication of JP4581453B2 publication Critical patent/JP4581453B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Description

静電駆動型のMEMS素子、光学MEMS素子、回折型光学MEMS素子、並びにこのMEMS素子による光変調素子を用いたレーザディスプレイに関する。 Electrostatic drive type MEMS device, optical MEMS device, the diffractive optical MEMS device, and a laser display using a light modulation device according to the MEMS element.

微細技術の進展に伴い、いわゆるマイクロマシン(MEMS:Micro Electro Mechanical Systems、超小型電気的・機械的複合体)素子、及びMEMS素子を組み込んだ小型機器が、注目されている。 With the development of fine art, a so-called micromachine (MEMS: Micro Electro Mechanical Systems, ultra-miniature electric, mechanical complex) element, and small equipment incorporating MEMS devices, has attracted attention. MEMS素子は、シリコン基板、絶縁性基板などの基板上に微細構造体として形成され、機械的駆動力を出力する駆動体と、駆動体を制御する半導体集積回路等とを電気的、機械的に結合させた素子である。 MEMS device, the silicon substrate is formed as a microstructure on a substrate such as an insulating substrate, a driving body outputting mechanical driving force, electrical and semiconductor integrated circuit for controlling the driver, mechanically is a combined element was. MEMS素子の特徴は、駆動体の駆動を電極間の静電力、すなわちクーロン引力等を応用して電気的におこなわれる。 Features of the MEMS device, the electrostatic force between the driving of the driver electrodes, i.e. electrically conducted by applying the Coulomb attraction and the like.

従来、光の反射や回折を利用し光スイッチ、光変調素子等に適用される光学MEMS素子が開発されている。 Conventionally, an optical switch utilizing the reflection or diffraction of light, the optical MEMS device is applied to the light modulation element or the like have been developed. 図11A,Bは、一般的な光学MEMS素子の代表的な一例である。 Figure 11A, B is a typical example of a general optical MEMS device. この光学MEMS素子1は、基板2上に形成した基板側電極(いわゆる下部電極層)3と、この基板側電極3に対向して平行に配置したベース層となる絶縁薄膜4とその上の駆動電極層(いわゆる上部電極層)5からなる2層膜構造のビーム6と、このビーム6の一端を支持する支持部7とを有して構成される。 This optical MEMS device 1 includes a substrate-side electrode (the so-called lower electrode layer) 3 formed on the substrate 2, the driving of a base layer disposed in parallel to face the substrate side electrode 3 as an insulating thin film 4 thereon a beam 6 of two-layer structure consisting of the electrode layer (the so-called upper electrode layer) 5, and a support portion 7 for supporting one end of the beam 6. ビーム6の駆動電極層5が光を反射させる反射膜を兼ねている。 Also serves as a reflection film driving electrode layer 5 of the beam 6 is to reflect light. ビーム6と基板側電極3とは、その間の空隙8によって電気的に絶縁されている。 Beam 6 and the substrate-side electrode 3 are electrically insulated by intervening air gap 8.
基板2は、例えば、シリコン(Si)やガリウム砒素(GaAs)などの半導体基板上に絶縁膜を形成した基板、石英基板やガラス基板のような絶縁性基板などが用いられる。 Substrate 2, for example, silicon (Si) and gallium arsenide (GaAs) substrate forming an insulating film on a semiconductor substrate such as an insulating substrate such as a quartz substrate or a glass substrate is used. 基板側電極3は、不純物をドーピングした多結晶シリコン膜、金属膜(例えばW,Cr蒸着膜)等で形成される。 Substrate side electrode 3, a polycrystalline silicon film doped with an impurity, a metal film (e.g. W, Cr deposited film) is formed in such. ビーム6は、例えばシリコン窒化膜(SiN膜)等の絶縁薄膜4と、その上面に形成された膜厚100nm程度の金属薄膜、例えばAl膜からなる反射膜を兼ねる駆動電極層5とから構成される。 Beam 6, for example, a silicon nitride film (SiN film) an insulating film 4 such as is constituted from the thin metal film having a thickness of about 100nm, which is formed on the upper surface, for example, the driving electrode layer also serving as a reflective film made of Al film 5 which that. このビーム6は、いわゆる2層膜構造であり、一端が支持された片持ち梁式構造となっている。 The beam 6 is a so-called two-layer structure, and has a cantilevered structure in which one end is supported.
この光学MEMS素子1では、基板側電極3と駆動電極層5に与える電位に応じて、ビーム6が基板側電極3との間の静電引力又は静電反発により変位し、例えば図11Bで示すように、基板側電極3に対して平行状態(実線)から傾斜状態(破線)に変位する。 In the optical MEMS device 1, depending on the potential applied to the substrate side electrode 3 to the drive electrode layer 5, the beam 6 is displaced by an electrostatic attracting force or an electrostatic repulsion between the substrate side electrode 3, shown in Figure 11B for example as displaced in inclined state (dashed lines) from the parallel state (solid line) with respect to the substrate side electrode 3.

図12A,Bは、一般的な光学MEMS素子の代表的な他の例である。 Figure 12A, B are representative of other examples of a general optical MEMS device. この光学MEMS素子11は、基板2上に形成した基板側電極3をブリッジ状に跨ぐように、両端を支持部13〔13A,13B〕で支持したビーム12を配置して構成される。 This optical MEMS device 11, so as to straddle the substrate side electrode 3 formed on the substrate 2 like a bridge, formed by arranging the beam 12 supporting the both ends with supporting portions 13 [13A, 13B]. ビーム12は上例と同様に絶縁薄膜4と駆動電極層5とから形成され、基板側電極3に対してその間の空隙8によって電気的に絶縁されている。 Beam 12 is formed from the above example as well as the thin insulating film 4 and the driving electrode layer 5 which are electrically insulated by intervening air gap 8 with respect to the substrate side electrode 3. ビーム12は、両端を支持したブリッジ式に形成され、いわゆる両持ち梁式構造となっている。 Beam 12 is formed in a bridge-type supporting the both ends, a so-called doubly supported beam type structure. 基板2、基板側電極3、絶縁薄膜4及び駆動電極層5からなるビーム12、支持部13等は図11と同様の材料を用いた構成となっている。 Substrate 2, the substrate side electrode 3, the beam 12 made of an insulating thin film 4 and the drive electrode layer 5, such as the support portion 13 has a configuration using a material similar to that of the FIG. 11.
この光学MEMS素子11では、基板側電極3と駆動電極層5に与える電位に応じて、ビーム12と基板側電極3との間の静電引力又は静電反発により変位し、例えば図12Bの実線と破線で示すように、基板側電極3に対して平行状態と凹み状態に変位する。 In the optical MEMS device 11 in accordance with the potential applied to the substrate side electrode 3 to the drive electrode layer 5, displaced by an electrostatic attracting force or an electrostatic repulsion between the beam 12 and the substrate side electrode 3, for example, a solid line in FIG. 12B and as shown by the broken line, displaced state dent in the parallel state to the substrate side electrode 3.

図13は、光学MEMS素子のさらに他の例である。 Figure 13 is yet another example of the optical MEMS device. この光学MEMS素子は、四端にビームを有し、中央の反射面が広く形成した型の光学MEMS素子である。 This optical MEMS device has a beam four-pin, a type optical MEMS device which widely formed a central reflecting surface. この光学MEMS素子13は、基板2上に形成した四分割の基板側電極3〔3A,3B,3C,3D〕と、この基板側電極3〔3A,3B,3C,3D〕に対向して平行に配置した表面を反射面とした面積の広い四角形状の反射部14と、この反射部14の四端から一体に延長した4本のビーム15〔15A,15B,15C,15D〕と、各ビーム15A〜15Dの反射部14と反対側の端部を支持する支持部16〔16A,16B,16C,16D〕とを有して構成される。 This optical MEMS device 13, quadrant of the substrate side electrode 3 formed on the substrate 2 [3A, 3B, 3C, 3D] a, the substrate electrode 3 [3A, 3B, 3C, 3D] opposed parallel a broad square shape of the reflective portion 14 surface located in area that is a reflecting surface, four beams 15 extending integrally from the four ends of the reflection section 14 [15A, 15B, 15C, 15D] and, each beam supporting portion 16 for supporting the end opposite to the reflecting portion 14 of 15A~15D [16A, 16B, 16C, 16D] and configured to have a. 各ビーム15は、反射部14に対して細く形成されている。 Each beam 15 is formed thin relative to the reflecting section 14. 反射部14及びビーム15は、ベース層となる絶縁薄膜4とその上の駆動電極層5からなる2層膜構造で形成され、基板側電極3に対してその間の空隙8によって電気的に絶縁されている。 Reflecting portion 14 and the beam 15 has a two-layer film structure and the insulating thin film 4 serving as a base layer made of the driving electrode layer 5 thereon, electrically insulated by intervening air gap 8 with respect to the substrate side electrode 3 ing. 基板2、基板側電極3、絶縁薄膜4及び駆動電極層5からなるビーム15、反射部14、支持部16等は図11と同様の材料を用いた構成となっている。 Substrate 2, the substrate side electrode 3, the insulating thin film 4 and the drive electrode layer 5 made of the beam 15, the reflecting unit 14, such as the support portion 16 has a configuration using a material similar to that of the FIG. 11.
この光学MEMS素子13では、図11、図12と同様に、基板側電極3と駆動電極層5とに与えられる電位差に応じてビーム15及び反射部14が平行状態と、凹み状態あるいは傾斜状態とに変位する。 In the optical MEMS device 13, FIG. 11, similarly to FIG. 12, the beam 15 and the reflective portion 14 is parallel state according to the potential difference applied to the substrate side electrode 3 and the driving electrode layer 5, a dent state or inclined state and displaced. 4つの基板側電極3A〜3Dに同時に同じ電位が与えられたときには、図11と同様の凹み状態に変位し、4つの基板側電極3A〜3Dのうちの任意の基板側電極3を選択して電位を与えたときには、その選択された基板側電極3に応じて所要の2次元的な傾斜状態に変位する。 At the same time when the same potential is applied to the four board-side electrode 3A-3D, displaced in the same dent state as FIG. 11, select any substrate side electrode 3 of the four substrate-side electrode 3A-3D when given the potential is displaced to the required two-dimensional inclined state according to the substrate side electrode 3 which is the selected.

上述の光学MEMS素子1、11、13は、いずれも光反射膜を兼ねる基板側電極の表面に光が照射され、ビームの駆動位置に応じて、その光の反射方向が異なるのを利用して、一方向の反射光を検出してスイッチ機能を持たせた、光スイッチとして適用できる。 Optical MEMS devices 1, 11, 13 described above are all light is irradiated onto the surface of the substrate side electrode serving as a light reflecting film, in accordance with the driving position of the beam, by using a reflection direction of the light is different from , gave a switch function by detecting the direction of the reflected light, it can be applied as an optical switch. また、複数のビーム6または12を並列配置して、光の回折を利用し光変調素子としても適用できる。 Further, arranged in parallel a plurality of beams 6 or 12, it can be applied as a light modulation device utilizing the diffraction of light.

例えば特許文献1には、片持ち梁式、両持ち梁式の光学MEMS素子を利用した光走査装置が記載されている。 For example, Patent Document 1, cantilevered, doubly supported beam type optical scanning device using an optical MEMS device is described.
また、特許文献2には、後述の課題で取り上げる、薄膜の内部応力を緩和するための処理方法、すなわち、薄膜構造体を駆動する半導体デバイスにおいて、その薄膜自体の内部応力を緩和するためにアニール処理を施す方法が記載されている。 Further, Patent Document 2, addressed the subject of later processing method for reducing the internal stress of the thin film, i.e., in a semiconductor device for driving a thin film structure, annealed to relieve internal stress of the film itself method of applying a treatment is described.
特開2000−199870号公報 JP 2000-199870 JP 特開2002−26007号公報 JP 2002-26007 JP

光の反射や回折を利用した光学デバイスにおいて、光の照射面の形状は、スイッチング特性となる光の回折効率やオン・オフ特性を左右する極めて重要なパラメータである。 In the optical device utilizing the reflection or diffraction of light, the shape of the light irradiation surface is a critical parameter affecting the diffraction efficiency and on-off characteristics of the light as a switching characteristic. 光の照射面を駆動するような構造を有する光学デバイスを、上述した薄膜ビーム構造を有する光学MEMS素子で実現しようとする場合、大きな問題点となるのが、照射面のたわみである。 An optical device having a structure as to drive the light irradiation surface, when trying to realize an optical MEMS device having the above-described thin beam structures, become a major problem is the deflection of the irradiation surface. 光の反射を行う光学MEMS素子において、照射面のたわみが存在している場合、光の反射方向は意図する方向に対してずれが生じてしまう。 In the optical MEMS device that performs reflection of light, if the deflection of the irradiation surface is present, the reflection direction of light deviation occurs with respect to the intended direction. それによってオン時の効率、例えば光ファイバーに反射光を入射させる場合の光の入射効率が減少し、オフレベルの上昇といった悪影響が及ぼされる。 Whereby efficiency when on, reduces the incidence efficiency of light case of incident light reflected, for example, an optical fiber, exerted adverse effects such elevated off level.

このたわみの原因となるのが、ビームを構成する積層薄膜間に内部応力差である。 The cause of this deflection, the internal stress difference between the stacked thin film constituting the beam. 照射面はベースとなる層の上に反射率の高い金属膜を積層するのが通常である。 Irradiated surface is to laminate a metal film having a high reflectance on the layer serving as a base is usually. 従って、照射面を含む層は、最低でも2層膜以上の積層構図になっている。 Accordingly, the layer containing the irradiation surface has a two-layer film or a laminate composition at a minimum. しかしながら、各層はそれぞれ内部応力(引っ張りまたは圧縮)をもつため、この応力の釣り合いが取れていない場合は、ビームが引っ張り応力が強い方向へたわみが発生してしまう。 However, each layer because of their internal stress (tensile or compressive), respectively, if the balance of the stress is not taken, the beam tensile bending stress to the strong direction occurs.

従来、半導体プロセスにおいては、内部応力による問題の解決策として、アニールなどによる膜自体の応力緩和が主に行われてきた。 Conventionally, in a semiconductor process, as a solution to problems due to the internal stress, the stress relaxation of the film itself due to the annealing has been carried out mainly. 例えば、上記特許文献2などはその一例である。 For example, such the Patent Document 2 is one example. しかし、薄膜ビーム構造を有する光学MEMS素子の場合は、薄膜自体の引っ張り応力によってビームの支持部間の張力を保ち、機械的特性を得ているケースが多い。 However, in the case of an optical MEMS device having a thin beam structure, maintaining the tension between the support portions of the beams by the tensile stress of the film itself, in many cases to obtain the mechanical properties. このように薄膜自体の内部応力を利用することの多い光学MEMS素子ではこのアニール手法による解決は望めない。 This is often an optical MEMS device of utilizing the internal stress of the thin film itself, as can not be expected resolve by this annealing technique.

従って、光学MEMS素子の性能をより向上させるためには、光の照射面を構成するビーム自体の内部応力を保ったまま、ビームの積層膜間の応力バランス調整を適切に行うことで、照射面のたわみを減少させねばならない。 Therefore, in order to further improve the performance of the optical MEMS device, while maintaining the internal stress of the beam itself which constitutes the light irradiation surface, the stress balance between the laminated film of the beam by appropriately performed, the irradiation surface It must be reduced deflection of. このとき、機械的特性その他の性能を損ねることは極力避けねばならない。 In this case, it must be avoided as much as possible to impair the mechanical properties and other performance. さらに、製造プロセスなどに起因する物性値のばらつきに対してある程度変動が少ないことも求められる。 Furthermore, also required to some extent less variation with respect to variation in physical properties due to the manufacturing process.

これらの制約が特に厳しいのが、複数のビームを並列配置した回折型MEMS素子であるGLV(Grating Light Valve)のうちの、ビームを予め傾斜させたブレーズド構造のGLV(Blazed GLV)素子である。 That these constraints are particularly severe is a diffractive MEMS elements arranged in parallel a plurality of beams GLV of (Grating Light Valve), a GLV (Blazed GLV) element blazed structure with pre-tilt of the beam. このGLV素子では、図14に示す一つのビーム12を例にとると、傾き量tを有するビーム構造として幅wが略4μmに対して内部応力に起因するたわみdを20nm以下に制御することが求められている。 This GLV device, taking the one beam 12 shown in FIG. 14 as an example, to control the deflection d is the width w as a beam structure due to internal stress to substantially 4μm below 20nm with a tilt amount t It has been demanded. なおかつ引っ張り応力によってビーム12の照射面を100nm以上(=t)傾けなければならず(図14参照)、ビーム全体としてはある程度、強い応力が必要である。 Must the irradiated surface of the beam 12 inclined above 100 nm (= t) by yet tensile stress (see Fig. 14), to some extent as a whole beam, it is necessary to strong stress.
しかしながら、現状の構造においてこれらのスペックを達成することは困難であると言わざるを得ない。 However, to say that it is difficult to achieve these specifications in the structure of current. なお、図14のGLV素子は、ビーム12に傾きを生み出すために、ビーム12の両端側の一部に段差部18を設けて構成されている。 Incidentally, GLV device of FIG. 14, in order to produce a gradient in the beam 12 is configured by a stepped portion 18 provided on a portion of both ends of the beam 12. 図14において、図12に対応する部分は同一符号で示す。 14, portions corresponding to FIG. 12 are denoted by the same reference numerals.

ビームのたわみに関しては、上述の光学MEMS素子に限らず、静電駆動方式のMEMS素子全般、即ち静電駆動方式のMEMS素子を用いた例えば高周波フィルタ、高周波スイッチ、あるいはインクジェットプリンタヘッドなどの微小流体駆動装置においても、ビームのたわみ、反りは極力避けねばならない。 Regard deflection of the beam is not limited to optical MEMS devices described above, an electrostatic MEMS device in general driving method, i.e. an electrostatic drive method example, a high-frequency filter using a MEMS device, the high-frequency switch or microfluidic such as an inkjet printer head, in the driving device also, beam deflection of the warp must be avoided as much as possible. 例えば高周波フィルタでは、ビームのたわみが共振周波数に影響を与える。 For example, in the high-frequency filter, a beam deflection of affect the resonant frequency. また液体や気体等の微小流体の駆動装置では、ビームのたわみが流量、吐出スピード等に影響を与える。 In the driver device of the microfluidic such as a liquid or gas, the beam deflection of providing flow, the influence on the discharge speed and the like.

本発明は、上述の点に鑑み、積層膜の内部応力に起因したビームのたわみを極力低減せしめた静電駆動型のMEMS素子、光学MEMS素子、回折型光学MEMS素子を提供するものである。 The present invention is to provide view of the above, the electrostatic drive type MEMS device as much as possible allowed reducing the deflection of the beam due to the internal stress of the multilayer film, the optical MEMS device, the diffractive optical MEMS device.
また本発明は、光強度変調素子として、かかる回折型光学MEMS素子を備えたレーザディスプレイを提供するものである。 The present invention, as the light intensity modulation device, there is provided a laser display having such diffractive optical MEMS device.

本発明に係るMEMS素子は、基板側電極と、基板側電極に対向して配置されたビームとを有する。 MEMS device according to the present invention includes a substrate side electrode, and a beam that is disposed to face the substrate side electrode. ビームは、絶縁薄膜によるベース層と、ベース層の上面に形成された駆動電極層と、ベース層の下面に形成されて駆動電極層と同じ材料で且つ同じ膜厚の応力バランス調整層との積層膜で形成された構成とする。 Beam, lamination of the base layer, a drive electrode layer formed on the upper surface of the base layer, and and have the same thickness the stress balancing layer of the same material as the drive electrode layer formed on the lower surface of the base layer by an insulating film It shall be the structure formed by the film.

本発明に係る光学MEMS素子は、基板側電極と、基板側電極に対向して配置されたビームとを有する。 Optical MEMS device according to the present invention includes a substrate side electrode, and a beam that is disposed to face the substrate side electrode. ビームは、絶縁薄膜によるベース層と、ベース層の上面に形成された反射膜兼駆動電極層と、ベース層の下面に形成されて反射膜兼駆動電極層と同じ材料で且つ同じ膜厚の応力バランス調整層との積層膜で形成された構成とする。 Beam includes a base layer of an insulating thin film, a base layer reflective film and the driving electrode layer formed on the upper surface of the and have the same thickness of the same material as the reflective film cum driving electrode layer formed on the lower surface of the base layer stress It to has been formed comprises a laminated film of a balancing layer.
発明に係る光学MEMS素子は、 基板側電極と、基板側電極に対向して配置されたビームとを有する。 Optical MEMS device according to the present invention includes a substrate side electrode, and a beam that is disposed to face the substrate side electrode. ビームは、絶縁薄膜によるベース層と、ベース層の上面に形成された駆動電極層と、駆動電極層の上面に形成された反射膜と、ベース層の下面に形成されて駆動電極層と同じ材料でかつ同じ膜厚の第1膜及び第1膜の下面に形成されて反射膜と同じ材料でかつ同じ膜厚の第2膜からなる応力バランス調整層との積層膜で形成された構成とする。 Beam includes a base layer of an insulating thin film, a drive electrode layer formed on the upper surface of the base layer, and a reflective film formed on the upper surface of the drive electrode layer, the same material as the drive electrode layer formed on the lower surface of the base layer to in the configuration and is formed of a layered film of the first layer and the stress balancing layer made of the second layer of the same material a and the same thickness as the lower surface formed by the reflective film of the first film of the same thickness .

本発明に係る回折型光学MEMS素子は、共通の基板側電極と、基板側電極に対向して配列された複数のビームとを有する。 Diffractive optical MEMS device according to the present invention has a common substrate side electrode, and a plurality of beams arranged to oppose the substrate side electrode. ビームは、絶縁薄膜によるベース層と、ベース層の上面に形成された反射膜兼駆動電極層と、ベース層の下面に形成されて反射膜兼駆動電極層と同じ材料で且つ同じ膜厚の応力バランス調整層との積層膜で形成された構成とする。 Beam includes a base layer of an insulating thin film, a base layer reflective film and the driving electrode layer formed on the upper surface of the and have the same thickness of the same material as the reflective film cum driving electrode layer formed on the lower surface of the base layer stress It to has been formed comprises a laminated film of a balancing layer.
発明に係る回折型光学MEMS素子は、共通の基板側電極と、基板側電極に対向して配列された複数のビームとを有する。 Diffractive optical MEMS device according to the present invention has a common substrate side electrode, and a plurality of beams arranged to oppose the substrate side electrode. ビームは、絶縁薄膜によるベース層と、ベース層の上面に形成された駆動電極層と、駆動電極層の上面に形成された反射膜と、ベース層の下面に形成されて駆動電極層と同じ材料でかつ同じ膜厚の第1膜及び第1膜の下面に形成されて反射膜と同じ材料でかつ同じ膜厚の第2膜からなる応力バランス調整層との積層膜で形成された構成とする。 Beam includes a base layer of an insulating thin film, a drive electrode layer formed on the upper surface of the base layer, and a reflective film formed on the upper surface of the drive electrode layer, the same material as the drive electrode layer formed on the lower surface of the base layer to in the configuration and is formed of a layered film of the first layer and the stress balancing layer made of the second layer of the same material a and the same thickness as the lower surface formed by the reflective film of the first film of the same thickness .

本発明に係るレーザディスプレイは、レーザ光源と、レーザ光源から出射サレタレーザ光の光軸上に配置され、レーザ光の光強度を変調する回折型光学MEMS素子とを有する。 Laser display according to the present invention comprises a laser light source, is disposed on the optical axis of the emitted Saretareza light from the laser light source and a diffractive optical MEMS device for modulating the light intensity of the laser beam. 回折型光学MEMS素子が、上述のいずれかの回折型光学MEMS素子で構成される。 Diffractive optical MEMS device is comprised of one of the diffractive optical MEMS device described above.

本発明に係るMEMS素子によれば、ビームが、絶縁膜によるベース層の上下面に同じ材料でかつ同じ膜厚の駆動電極層及び応力バランス調整層を形成した積層膜で形成されるので、ビームのたわみが低減する。 According to the MEMS device according to the present invention, since the beam is formed a laminated film obtained by forming the drive electrode layer and the stress balancing layer of the same material a and the same thickness on the upper and lower surfaces of the base layer by the insulating film, the beam deflection is reduced. すなわち、ベース層と駆動電極層間の応力と、ベース層と応力バランス調整層間の応力が釣り合い、ビームの機械的な特性を変えずに、ビームのたわみ、反りを無くすことができる。 That, and the stress of the base layer and the driving electrode layers, the stress of the base layer and the stress balancing layers are balanced, without changing the mechanical properties of the beam, the beam deflection, it is possible to eliminate the warpage. これによりMEMS素子を用いた、例えば、高周波フィルタ、高周波スイッチ、微小流体駆動装置、さらには光学MEMS素子などの高信頼性化を図ることができる。 Thus using a MEMS device, for example, a high frequency filter, a high-frequency switch, a microfluidic driving device, further it is possible to achieve higher reliability, such as an optical MEMS device.
例えば高周波フィルタでは共振周波数が精度良く得られ、微小流体駆動装置では流量、吐出量が精度良く得られる。 For example, in the high frequency filter resonant frequency is obtained accurately, the microfluidic drive flow, the discharge amount is obtained accurately. また光学MEMS素子では光効率を向上する。 Further to improve the light efficiency in the optical MEMS device.

本発明に係る光学MEMS素子によれば、ビームが、絶縁膜によるベース層の上下面に同じ材料でかつ同じ膜厚の反射膜兼駆動電極層及び応力バランス調整層を形成した積層膜で形成されるので、ビームのたわみが低減する。 According to the optical MEMS device according to the present invention, the beam is formed of a laminated film formed a reflective film cum driving electrode layer and the stress balancing layer of the same material on the upper and lower surfaces a and the same thickness of the base layer by an insulating film Runode, beam deflection is reduced. このため、ビームの反射面で反射した光の光路にずれが発生せず、光効率を向上することができる。 Therefore, the deviation in the optical path of the light reflected by the reflecting surface of the beam does not occur, it is possible to improve the light efficiency. 例えば、3次元ミラー型光スイッチに適用した場合、ビームのたわみが抑制されることで、挿入損失を低減することができる。 For example, when applied to the three-dimensional mirror type optical switch, that the beam deflection of the is suppressed, it is possible to reduce the insertion loss. 例えばファイバーに反射光を入射する際の光入射効率を高めることができる。 For example it is possible to increase the light incidence efficiency of the incident reflected light into the fiber.

本発明に係る光学MEMS素子によれば、ビームが、絶縁膜によるベース層の上下面に同じ材料でかつ同じ膜厚の駆動電極層及び第1膜による応力バランス調整層を形成し、駆動電極層の上面及び第1膜の下面に同じ材料でかつ同じ膜厚の反射膜及び第2膜による応力バランス調整層を形成した積層膜で形成されるので、ビームのたわみが低減する。 According to the optical MEMS device according to the present invention, the beam, the stress balancing layer according to the driving electrode layer and the first layer of the same material a and the same thickness on the upper and lower surfaces of the base layer is formed by an insulating film, the driving electrode layer since it formed in the upper surface and the laminated film forming the stress balancing layer due to reflection film and the second film of the same material on the lower surface and the same thickness of the first layer, the beam deflection of the is reduced. このため、ビームの反射面で反射した光の光路にずれが発生せず、光効率を向上することができる。 Therefore, the deviation in the optical path of the light reflected by the reflecting surface of the beam does not occur, it is possible to improve the light efficiency.

本発明に係る回折型光学MEMS素子によれば、ビームが、絶縁膜によるベース層の上下面に同じ材料でかつ同じ膜厚の反射膜兼駆動電極層及び応力バランス調整層を形成した積層膜で形成されるので、ビームのたわみが低減する。 According to diffractive optical MEMS device according to the present invention, the beam is, the same material on the upper and lower surfaces of the base layer by an insulating film and a laminated film formed a reflective film cum driving electrode layer and the stress balancing layer of the same thickness since formed, the beam deflection of the is reduced. このため、回折効率を向上することができる。 Therefore, it is possible to improve the diffraction efficiency.

本発明に係る回折型光学MEMS素子によれば、ビームが、絶縁膜によるベース層の上下面に同じ材料でかつ同じ膜厚の駆動電極層及び第1膜による応力バランス調整層を形成し、駆動電極層の上面及び第1膜の下面に同じ材料でかつ同じ膜厚の反射膜及び第2膜による応力バランス調整層を形成した積層膜で形成されるので、ビームのたわみが低減する。 According to diffractive optical MEMS device according to the present invention, the beam forms a stress balancing layer according to the driving electrode layer and the first layer of the same material a and the same thickness on the upper and lower surfaces of the base layer by an insulating film, driving because it is formed by the electrode layer top surface and laminated film formed stress balancing layer due to reflection film and the second film of the same material on the lower surface and the same thickness of the first film, the beam deflection of the is reduced. このため、回折効率を向上することができる。 Therefore, it is possible to improve the diffraction efficiency.

本発明に係るレーザディスプレイによれば、上記回折型光学MEMS素子を光強度変調素子として用いることにより、回折効率が向上し、高輝度の投影画像が可能になる。 According to the laser display according to the present invention, by using the above diffractive optical MEMS device as a light intensity modulation element, the diffraction efficiency is improved, allowing the projected image with high brightness.

以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, with reference to the drawings illustrating the embodiments of the present invention.

図1に、本発明に係る静電駆動型のMEMS素子を代表的な光学MEMS素子に適用した第1実施形態を示す。 Figure 1 shows a first embodiment applying the MEMS elements of the electrostatic drive type according to the present invention in a typical optical MEMS device. 本例では両持ち梁式構造の光学MEMS素子適用した場合である。 In this example a case where the optical MEMS device application of a doubly supported beam type structure. なお、本発明で対象とするMEMS素子は、マイクロ・ナノスケールの素子である。 Incidentally, MEMS device that is an object of the invention is an element of the micro and nano-scale.
本実施の形態に係る光学MEMS素子31は、基板32上に基板側電極(いわゆる下部電極)33を形成し、この基板側電極33をブリッジ状に跨ぐように、両端を支持部37〔37A,37B〕で支持したビーム36を配置して構成される。 Optical MEMS device 31 according to the present embodiment, to form a substrate side electrode (so-called lower electrode) 33 on the substrate 32, so as to cross the substrate side electrode 33 in a bridge shape, both end support portions 37 [37A, constructed by arranging the beams 36 supported by 37B]. ビーム36と基板側電極33とは、その間の空隙38によって電気的に絶縁される。 The beam 36 and the substrate side electrode 33 is electrically insulated by intervening air gap 38.

そして、本実施の形態においては、特に、ビーム37を複数層の薄膜で形成し、その複数層の薄膜の中にビーム36のたわみを抑制するための応力バランス調整層41を形成して構成される。 Then, in the present embodiment, in particular, to form a beam 37 with a thin film of multiple layers, it is constructed by forming a stress balancing layer 41 for suppressing the deflection of the beam 36 in a thin film of the plurality of layers that. すなわち、本実施の形態のビーム36は、ベース層となる絶縁薄膜34と、その上面に形成した光の反射膜を兼ねる駆動電極層(上部電極)35と、絶縁薄膜34の下面に応力バランス調整層41を形成して構成される。 That is, the beam 36 of the present embodiment includes an insulating film 34 as a base layer, a drive electrode layer (upper electrode) 35 serving as a reflecting film of light formed on the upper surface thereof, the stress balance in the lower surface of the insulating film 34 configured to form a layer 41. 応力バランス調整層41は、反射膜兼駆動電極層35と同じ材料でかつ同じ膜厚など同じ条件で形成される。 Stress balancing layer 41 is formed under the same conditions such as the same material at and same thickness as the reflective film cum driving electrode layer 35. これにより、断面形状が上下対称である3層膜構造のビーム36が形成される。 Thus, the beam 36 of the three-layered film structure cross-sectional shape that is vertically symmetric is formed. すなわち、反射膜兼駆動電極層35と応力バランス調整層41は、ベース層である絶縁薄膜34を中心に上下対称的な断面構造を有して形成される。 That is, the reflective film cum driving electrode layer 35 and the stress balancing layer 41 is formed having a vertically symmetrical cross-sectional structure around the insulating film 34 is the base layer. この絶縁薄膜34下側の層41は、ビーム36を構成する多層膜の内部応力をバランス調整させ、ビーム36のたわみを抑制するためにのみ形成される。 The insulating film 34 below the layer 41, the internal stress of the multilayer film constituting the beam 36 is balancing is formed only to suppress deflection of the beam 36.

支持部37〔37A,37B〕は、ビーム36と同じ膜構造でかつビーム36と一体に形成される。 Support 37 [37A, 37B] is integrally formed with the same film structure as beam 36 and beam 36.
前述したと同様に、基板32は、例えばシリコン(Si)やガリウム砒素(GaAs)などの半導体基板上に絶縁膜を形成した基板、石英基板やガラス基板のような絶縁性基板等が用いられる。 Similar to the previously described, substrate 32, for example, silicon (Si) and gallium arsenide (GaAs) substrate forming an insulating film on a semiconductor substrate such as an insulating substrate such as a quartz substrate or a glass substrate is used. 基板側電極33は、不純物をドーピングした多結晶シリコン膜、金属膜(多結晶W,Crの蒸着膜)等で形成される。 Substrate side electrode 33, a polycrystalline silicon film doped with an impurity, a metal film is formed by such (polycrystalline W, deposited film of Cr). ビーム36を構成する絶縁薄膜34としては、例えばシリコン窒化膜(SiN膜)、シリコン酸化膜(SiO2 膜)、本例では強度、弾性定数などの物性値がビーム36の機械的駆動に対して適切なシリコン窒化膜が用いられる。 As the insulating film 34 constituting the beam 36, for example, a silicon nitride film (SiN film), a silicon oxide film (SiO2 film), the strength in the present example, suitable physical properties such as elastic constant relative to the mechanical drive of the beam 36 silicon nitride film is used such. 反射膜兼駆動電極層35及び応力バランス調整層41とし 例えばAl単体膜、Al合金膜(これらを総称してAl膜という)、その他の光反射効率のよい金属膜で形成される。 Reflective film and the driving electrode layer 35 and the stress balancing layer 41 such as Al single film, Al alloy film (called Al film these are collectively), are formed in good metal film having other light reflection efficiency.

応力バランス調整層41及び反射膜兼駆動電極層35は、共に蒸着法、スパッタ法等により成膜され、例えば基本的に全層全面蒸着、全層全面スパッタで形成することができる。 Stress balancing layer 41 and the reflective film and the driving electrode layer 35 is deposited both evaporation, by sputtering or the like, for example, essentially full-thickness entirely deposited, can be formed in all layers the whole surface sputtering. 但しこの蒸着、スパッタは、物性値に影響を与えない程度に蒸着条件、スパッタ条件を揃えられるのであれば、この限りではない。 However this deposition, sputtering, deposition conditions to an extent not affecting the physical properties, if aligned with sputtering conditions, this does not apply. 下側の応力バランス調整層41によってビーム36全体の応力が変化し、機械的特性が劣化する場合には、膜厚による調整を行う。 The stress of the whole beam 36 varies with the stress balancing layer 41 of the lower, when the mechanical properties are degraded adjusts by thickness. この際、ビーム断面の上下に対する対称性は保持しなくてはならない。 In this case, symmetry with respect to the upper and lower beam cross-section must be retained. すなわち、応力バランス調整層41と反射膜兼駆動電極層35の膜厚は同じにする。 That is, the thickness of the stress balancing layer 41 reflective film and the driving electrode layer 35 are the same.

応力バランス調整層41に関しては、内部応力、ヤング率、熱膨張係数が極めて近いものであれば、反射膜兼駆動電極層35とは別の物質を使用しても構わない。 With respect to the stress balancing layer 41, internal stress, Young's modulus, as long as the thermal expansion coefficient is very close, it is also possible to use a different material from the reflective film and the driving electrode layer 35. 応力バランス調整層41に関しては、内部応力、ヤング率、熱膨張係数が反射膜兼駆動電極層35と異なる場合においても、その膜厚を適当な値にすることにより、応力調整層として使用することができる。 With respect to the stress balancing layer 41, internal stress, Young's modulus, even when the thermal expansion coefficient is different from the reflective film and the driving electrode layer 35, by the thickness to an appropriate value, to be used as a stress controlling layer can. 例えば、応力バランス調整層41が反射膜兼駆動電極層35と比べて内部応力及びヤング率が高い場合には、その膜厚を反射膜兼駆動電極層35より薄くすればよい。 For example, if the stress balancing layer 41 has a higher internal stress and Young's modulus as compared with the reflective film and the driving electrode layer 35, its thickness may be thinner than the reflection film and the driving electrode layer 35.

次に、図2〜図3を用いて、図1の本実施の形態に係る光学MEMS素子31の製造方法の一例を説明する。 Next, with reference to FIGS. 2-3, an example of a manufacturing method of an optical MEMS device 31 according to the embodiment of FIG.
先ず、図2Aに示すように、基板、例えばシリコン基板の上面にSiO2 、SiN等の絶縁膜を形成した基板32上に、所要の導電膜、本例では多結晶シリコン膜による基板側電極33を形成し、基板側電極33を被覆するように絶縁膜43、例えばシリコン酸化膜(SiO2 膜)を形成する。 First, as shown in FIG. 2A, the substrate, for example, on the substrate 32 formed with an insulating film such as SiO2, SiN on the upper surface of the silicon substrate, the required conductive film, the substrate side electrode 33 by a polycrystalline silicon film in this example formed, the insulating film 43 so as to cover the substrate side electrode 33 is formed, for example, a silicon oxide film (SiO2 film).

次に、図2Bに示すように、絶縁膜43上の基板側電極33に対応した位置に選択的に犠牲層44、本例では非晶質シリコン膜を堆積する。 Next, as shown in FIG. 2B, selectively sacrificial layer 44 at a position corresponding to the substrate side electrode 33 on the insulating film 43, in this example to deposit an amorphous silicon film.
次に、図2Cに示すように、犠牲層44の表面を含む絶縁膜43上に応力バランス調整層41、本例では後で形成する反射膜兼駆動電極層35と同じ膜厚のAl膜を蒸着法で形成する。 Next, as shown in Figure 2C, the stress balancing layer 41 on the insulating film 43 including the surface of the sacrificial layer 44, the Al film of the same thickness as the reflective film cum driving electrode layer 35 formed later in this example It is formed by a vapor deposition method.

次に、図3Dに示すように、応力バランス調整層41上にベース層となる絶縁薄膜34、本例ではシリコン窒化膜を堆積する。 Next, as shown in FIG. 3D, the insulating film 34 serving as a base layer on the stress balancing layer 41, in this example to deposit a silicon nitride film.
次に、図3Eに示すように、絶縁薄膜34上に反射膜兼駆動電極層35、本例ではAl膜を蒸着法で形成する。 Next, as shown in FIG. 3E, the insulating film 34 reflective film and the driving electrode layer 35 on, formed by vapor deposition of Al film in this example.
各膜41、34、35に対するエッチングによるビーム形状にパターニングする。 Patterning the beam shape by etching for each layer 41,34,35. このパターニングは、各膜41、34、35を形成する度に行ってもよく、あるいは3層の膜41、34、35を係止した後に行ってもよく、どの順序で行ってもよい。 This patterning may be performed every time for forming each layer 41,34,35, or may be performed three layers of film 41,34,35 after locked, may be performed in any order. このパターニングにより、3層膜構造による両支持部37〔37A,37B〕及びビーム36を一体に形成する。 This is patterned to form both supporting portions 37 [37A, 37B] by 3-layer film structure and the beam 36 together.

次に、図3Fに示すように、犠牲層44を選択的にエッチング除去し、目的の両持ち梁式の光学MEMS素子31を得る。 Next, as shown in FIG. 3F, and selectively etching away the sacrificial layer 44, obtaining the optical MEMS device 31 of the doubly supported beam type object.

本実施の形態に係る光学MEMS素子31によれば、断面形状が上下対称のビーム36を実現できるので、内部応力による反射面のたわみ、反りを大幅に低減することができる。 According to the optical MEMS device 31 according to this embodiment, since the cross-sectional shape can be realized vertically symmetrical beam 36, the deflection of the reflecting surface due to internal stress, it is possible to greatly reduce warpage. すなわち、絶縁薄膜34及び反射膜兼駆動電極層35で構成される本来のビームに対して、さらに絶縁薄膜34の下側に反射膜兼駆動電極層35と対称的な断面構造を有する応力バランス調整層41を形成することにより、絶縁薄膜34と反射膜兼駆動電極層35間の内部応力と、絶縁薄膜34と応力バランス調整層41間の内部応力が釣り合う形になり、ビーム36のたわみ、反りを大幅に低減することができる。 That is, the original beam to further stress balance having a symmetrical cross section and reflective film cum driving electrode layer 35 on the lower side of the insulating film 34 made of an insulating thin film 34 and the reflective film and the driving electrode layer 35 by forming the layer 41, the insulating film 34 and the internal stress between the reflective film and the driving electrode layer 35 takes the form of internal stresses are balanced between the insulating film 34 and the stress balancing layer 41, the deflection of the beam 36, warp it can be greatly reduced. この場合、Al膜はシリコン窒化膜に対して引っ張り応力が強く、絶縁薄膜34を挟んで上下に生じるAl膜による引っ張り応力が相殺され、結果として、たわみ、反りが抑制される。 In this case, the Al film is strong tensile stress for silicon nitride film, tensile stress of Al film produced vertically sandwiching the insulating film 34 is canceled, as a result, deflection, warpage is suppressed.
従って、光学MEMS素子31の動作時の光効率が向上する。 Thus, light efficiency in the operation of the optical MEMS device 31 is improved. 例えば、回折型光学MEMS素子に適用した場合には、回折効率が向上する。 For example, when applied to diffractive optical MEMS device is improved diffraction efficiency. また、光スイッチに適用した場合には、光反射方向が変位せず、例えば光ファイバーへ反射光を入射させるときの光挿入損失を低減することができる。 Also, when applied to an optical switch, not the light reflection direction is displaced, it is possible to reduce the optical insertion loss of example, when to be incident reflected light to the optical fiber.

ビーム断面が対称的構造となっているので、プロセス条件に対して非常に変動のばらつきが少ない。 Because the beam cross-section has a symmetrical structure, small variations in the highly variable with respect to the process conditions. また、応力バランス調整層41は、反射膜兼駆動電極層35と同じプロセスで作成されるので、どんな物質を用いた光学MEMS素子に関しても容易に使用できる。 Further, the stress balancing layer 41 are created at the same process as the reflective film cum driving electrode layer 35 can be readily used with respect to an optical MEMS device using any material.

図4に、本発明に係る静電駆動型のMEMS素子を光学MEMS素子に適用した第2実施形態を示す。 Figure 4 shows a second embodiment according to the MEMS elements of the electrostatic drive type according to the present invention to an optical MEMS device. 本例も両持ち梁式構造に適用した場合である。 This embodiment also is applied to a doubly supported beam type structure.
本実施の形態に係る光学MEMS素子51は、基板32上に基板側電極(いわゆる下部電極)33を形成し、この基板側電極33をブリッジ状に跨ぐように、両端を支持部37〔37A,37B〕で支持したビーム52を配置して構成される。 Optical MEMS device 51 in accordance with the present embodiment, to form a substrate side electrode (so-called lower electrode) 33 on the substrate 32, so as to cross the substrate side electrode 33 in a bridge shape, both end support portions 37 [37A, constructed by arranging the beams 52 supporting at 37B]. ビーム52と基板側電極33とは、その空隙38によって電気的に絶縁される。 The beam 52 and substrate side electrode 33 are electrically insulated by the air gap 38.

そして、本実施の形態においては、特に、表面が光の反射面(照射面)としたビーム52を、中間に応力バランス調整層を有した5層膜構造で形成する。 Then, in the present embodiment, in particular, the surface of the beam 52 and the reflection surface of the light (irradiation surface) is formed by a 5-layer film structure having a stress balancing layer in between. すなわち、本実施の形態のビーム52は、ベース層となる絶縁薄膜54の上側に駆動電極層(いわゆる上部電極)55及び光の反射膜56が積層され、絶縁薄膜54の下側に駆動電極層55、反射膜56と対称的な断面構造を有する2層の膜57及び58からなる応力バランス調整層59が積層されてなる。 That is, the beam 52 of the present embodiment, the upper the driving electrode layer insulating film 54 as a base layer reflecting film 56 (the so-called upper electrode) 55 and light is laminated, drive electrode layer on the lower side of the insulating film 54 55, the stress balancing layer 59 composed of two layers of film 57 and 58 are laminated with a reflection film 56 and the symmetrical cross section. 応力バランス調整層59となる膜57は、駆動電極層55と全く同じ材料、膜厚、条件で形成され、また膜58は、反射膜56と全く同じ材料、膜厚、条件で形成される。 Film 57 serving as a stress balancing layer 59 is exactly the same material as the drive electrode layer 55, the film thickness, are formed in the condition, also film 58 is exactly the same material as the reflective film 56, the film thickness, are formed in the condition. 図示の例ではビーム52及び支持部37〔37A,37B〕が絶縁薄膜54と駆動電極層55と膜57の3層で形成され、反射膜56及び膜58がビーム部分にのみ形成された構成となっている。 Beam 52 and the support portion 37 [37A, 37B] in the example shown is formed by three layers of the driving electrode layer 55 and the film 57 and the insulating film 54, constituting a reflection film 56 and the film 58 is formed only on the beam portion going on. 絶縁薄膜54の下側の2層の膜57、58は、ビーム52を構成する多層膜の内部応力をバランス調整させ、ビーム52のたわみを抑制するためにのみ形成される。 Film 57, 58 of the lower two layers of the insulating film 54, the internal stress of the multilayer film constituting the beam 52 is balancing is formed only to suppress deflection of the beam 52.

ここで、駆動電極層55は導電性に優れた金属膜、例えばAl膜で形成し、反射膜56は反射率の高い金属膜、例えばAg膜等で形成することができる。 Here, the driving electrode layer 55 is electrically conductive to the metal film excellent, for example, is formed in the Al film, reflective film 56 may be formed of a highly reflective metal film, for example, Ag film, or the like. したがって、応力バランス調整層59を構成する膜57は駆動電極層55と同じ金属膜、例えばAl膜で形成し、膜58は反射膜56と同じ金属膜、例えばAg膜で形成することができる。 Thus, film 57 constituting the stress balancing layer 59 are the same metal film as the driving electrode layer 55, for example, is formed by Al film, film 58 may be formed by the reflective film 56 and the same metal film, for example, Ag film.

前述と同様に、応力バランス調整層52の2層の膜57、58及び駆動電極層55、反射膜56は、共に蒸着法、スパッタ法等により成膜され、例えば基本的に全層全面蒸着、全層全面スパッタで形成することができる。 As before, films 57, 58 and the driving electrode layer 55 of the two layers of the stress balancing layer 52, the reflective film 56 is deposited both evaporation, by sputtering or the like, for example, essentially full-thickness entirely deposited, it can be formed in all layers the whole surface sputtering. 但しこの蒸着、スパッタは、物性値に影響を与えない程度に蒸着条件、スパッタ条件を揃えられるのであれば、この限りではない。 However this deposition, sputtering, deposition conditions to an extent not affecting the physical properties, if aligned with sputtering conditions, this does not apply. 下側の応力バランス調整層59によってビーム52全体の応力が変化し、機械的特性が劣化する場合には、膜厚による調整を行う。 The stress of the whole beam 52 changes by the lower stress balancing layer 59, when the mechanical properties are degraded adjusts by thickness. この際、ビーム断面の上下に対する対称性は保持しなくてはならない。 In this case, symmetry with respect to the upper and lower beam cross-section must be retained. すなわち、膜57と駆動電極層55の膜厚を同じにし、膜58と反射膜56の膜厚を同じにする。 That is, the same west the thickness of the film 57 and the driving electrode layer 55, a film 58 of film thickness of the reflective film 56 in the same.

また、応力バランス調整層59の2層の膜57、58に関しても、前述と同様に、内部応力、ヤング率、熱膨張係数が極めて近いものであれば、それぞれの駆動電極層55、反射膜56とは別の物質を使用しても構わない。 Also, for two layers of film 57 and 58 of the stress balancing layer 59 in the same manner as described above, internal stress, Young's modulus, as long as the thermal expansion coefficient very close, each of the driving electrode layer 55, the reflective film 56 it is also possible to use a different material from the. さらに、応力バランス調整層59の膜57、58に関しては、それぞれ内部応力、ヤング率、熱膨張係数が駆動電極層55、反射膜56と異なる場合においても、その膜厚を適当な値にすることにより、応力調整層として使用することができる。 Further, with respect to the film 57, 58 of the stress balancing layer 59, the internal stress, respectively, the Young's modulus, thermal expansion coefficient of the driving electrode layer 55, even if different from the reflective film 56, to the film thickness to an appropriate value the can be used as a stress adjusting layer. 例えば、膜57、58がそれぞれの駆動電極層55、反射膜56と比べて内部応力及びヤング率が高い場合には、膜57、58の膜厚をそれぞれの駆動電極層55、反射膜56より薄くすればよい。 For example, films 57 and 58 respectively drive electrode layer 55, when the internal stress and Young's modulus is higher than the reflection film 56, each of the drive electrode layer 55 a thickness of films 57 and 58, the reflecting film 56 It should be thin.

本実施の形態の光学MEMS素子51の製造方法は、プロセスの順序に関して第1実施形態と同様である。 The method for manufacturing an optical MEMS device 51 of this embodiment is the same as the first embodiment with respect to the order of the processes.

本実施の形態においても、最も肝要な部分はビーム断面の上下に対する対称性の保持である。 Also in this embodiment, the most important part is the retention of the symmetry with respect to the upper and lower beam section. 理論的には何層であっても対称構造とすることにより、たわみを無くすことができるが、実際には多くてベース層となる絶縁薄膜を挟んで上下3層までである。 With symmetric structure even number of layers in theory, can be eliminated deflection is actually up to three vertical layers sandwiching the insulating film to be a base layer many.

本実施の形態に係る光学MEMS素子51によれば、断面形状が上下対称のビーム52を実現できるので、内部応力による反射面のたわみ、素子を大幅に低減することができる。 According to the optical MEMS device 51 according to this embodiment, since the cross-sectional shape can be realized beam 52 vertically symmetrical, the deflection of the reflecting surface due to internal stress, it is possible to greatly reduce the element. すなわち、絶縁薄膜54、駆動電極層55及び反射膜56で構成される本来のビームに対して、さらに絶縁薄膜34の下側に駆動電極層55、反射膜56と同じ条件の2層の膜57、58による応力バランス調整層59を形成することにより、絶縁薄膜34、駆動電極層55及び反射膜56の相互間で生じる内部応力と、絶縁薄膜34及び2層の膜57、58による応力バランス調整層59の相互間で生じる内部応力が釣り合う形になり、ビーム52のたわみ、反りを大幅に低減することができる。 That is, the insulating film 54, the driving electrode layer 55 and the reflective film 56 original to the beam, further driving electrode layer 55 on the lower side of the insulating film 34, the two layers of the same conditions as the reflective film 56 film 57 composed of by forming the stress balancing layer 59 by 58, the insulating film 34, and an internal stress generated between each other of the driving electrode layer 55 and the reflective film 56, the stress balance adjustment by the insulating film 34 and the two layers of film 57 and 58 takes the form of internal stresses are balanced resulting in mutual layer 59, the deflection of the beam 52, can be greatly reduced warpage.
従って、光学MEMS素子51の動作時の光効率が向上する。 Thus, light efficiency in the operation of the optical MEMS device 51 is improved. 例えば、回折型光学MEMS素子に適用した場合には、回折効率が向上する。 For example, when applied to diffractive optical MEMS device is improved diffraction efficiency. また、光スイッチに適用した場合には、光反射方向が変位せず、例えば光ファイバーへ反射光を入射させるときの光挿入損失を低減することができる。 Also, when applied to an optical switch, not the light reflection direction is displaced, it is possible to reduce the optical insertion loss of example, when to be incident reflected light to the optical fiber.

ビーム断面が対称的構造となっているので、プロセス条件に対して非常に変動のばらつきが少ない。 Because the beam cross-section has a symmetrical structure, small variations in the highly variable with respect to the process conditions. また、応力バランス調整層59は、駆動電極層55、反射膜56と同じプロセスで作成されるので、どんな物質を用いた光学MEMS素子に関しても容易に使用できる。 Further, the stress balancing layer 59, the driving electrode layer 55, because it is created in the same process as the reflective film 56 can be readily used with respect to an optical MEMS device using any material.

図5に、 参考例に係る静電駆動型のMEMS素子を光学MEMS素子に適用した構成を示す。 5 shows the applied constituting the MEMS element of the electrostatic drive type according to the reference example in optical MEMS device. 本例も両持ち梁式構造に適用した場合である。 This embodiment also is applied to a doubly supported beam type structure.
参考例に係る光学MEMS素子61は、基板32上の基板側電極(いわゆる下部電極)33を形成し、この基板側電極33をブリッジ状に跨ぐように、両端を支持部37〔37A,37B〕で支持したビーム62を配置して構成される。 Optical MEMS device 61 according to the reference example is to form a substrate side electrode (so-called lower electrode) 33 on the substrate 32, so as to cross the substrate side electrode 33 like a bridge, the both end support portions 37 [37A, 37B] in configured to support beams 62 are arranged. ビーム62と基板側電極33とは、その空隙38によって電気的に絶縁される。 The beam 62 and substrate side electrode 33 are electrically insulated by the air gap 38.

そして、 参考例においては、特に、表面が光の反射面(照射面)としたビーム62を、中間に応力バランス調整層を有した3層膜構造で形成する。 Then, in the reference example, in particular, the surface of the beam 62 and the reflection surface of the light (irradiation surface) is formed by a three-layer film structure having a stress balancing layer in between. すなわち、本実施の形態のビーム62は、ベース層となる絶縁薄膜34と、反射膜兼駆動電極層35と、その間に配置した絶縁膜34と反射膜兼駆動電極層35とは逆応力の応力バランス調整層66とから構成される。 That is, the beam 62 of the present embodiment includes an insulating film 34 as a base layer, a reflective film cum driving electrode layer 35, a reverse stress and an insulating film 34 disposed therebetween and the reflective film cum driving electrode layer 35 stress It consists balancing layer 66.. 例えば、絶縁薄膜34をシリコン窒化膜で形成し、反射膜兼駆動電極層35をAl膜で形成し、応力バランス調整層66をシリコン酸化膜で形成することができる。 For example, it is possible to thin insulating film 34 formed of a silicon nitride film, a reflective film cum driving electrode layer 35 formed of Al film to form a stress balancing layer 66 in the silicon oxide film. この場合、シリコン窒化膜とAl膜は引っ張り応力を有しており、シリコン酸化膜は圧縮応力を有している。 In this case, the silicon nitride film and the Al film has a tensile stress, the silicon oxide film has a compressive stress.

基板32、基板側電極33、絶縁薄膜34、反射膜兼駆動電極層35は、前述の第1実施形態と同様に構成することができるので、詳細説明は省略する。 Substrate 32, the substrate side electrode 33, the insulating film 34, the reflective film cum driving electrode layer 35, it is possible to configure the same manner as the first embodiment described above, detailed description will be omitted.

参考例に係る光学MEMS素子61によれば、絶縁薄膜34と反射膜兼駆動電極層35との間に、これら絶縁薄膜34及び反射膜兼駆動電極層35の応力とは逆の応力を呈する応力バランス調整層66を介挿してビーム62を形成することにより、ビーム61のたわみ、反りが大幅に低減し、上例と同様に光学MEMS素子61の動作時の光効率を向上することができる。 According to the optical MEMS device 61 according to the reference example, between the reflective film and the driving electrode layer 35 and the insulating film 34, exhibit the opposite stress and stress of the insulating film 34 and the reflective film and the driving electrode layer 35 stress by forming the beam 62 by inserting a balancing layer 66, the deflection of the beam 61, the warp is greatly reduced, it is possible to improve the light efficiency during operation of the above example as well as the optical MEMS device 61.

図6は、この3層膜構造のビーム62を有した光学MEMS素子61のシミュレーション結果を示す。 Figure 6 shows the simulation results of the optical MEMS device 61 having a beam 62 of the three-layer film structure. 図6Aは従来例の応力バランス調整層のないビームのたわみ状態を示し、図6Bは参考例の応力バランス調整層を有したビームのたわみ状態を示す。 Figure 6A shows the beam deflection state without conventional stress balancing layer, FIG. 6B shows a deflected state of a beam having a stress balancing layer of Reference Example. 図6から明らかなように、 参考例のビームのたわみ、反りが大幅に低減していることが認められる。 As apparent from FIG. 6, the deflection of the beam of the reference example, it is recognized that warp is greatly reduced.

本発明は、図示せざるも、前述の図11で示した片持ち梁式構造の光学MEMS素子、あるいは図13で示した四端固定式の光学MEMS素子にも適用できることは勿論である。 The present invention also unshown, is a matter of course can be applied to an optical MEMS device of four-point stationary shown in cantilevered optical MEMS device structure or FIG. 13, as shown in FIG. 11 described above. これらの場合には、ビーム構造として、図1のビーム36、図4のビーム52のいずれかを用いるものである。 In these cases, as a beam structure, the beam 36 of FIG. 1, is to use one of the beams 52 in FIG.

次に、図7に本発明に係る静電駆動型のMEMS素子を、回折光を利用する回折型光学MEMS素子であるGLV素子に適用される、GLV素子の概略構成を示す。 Next, a MEMS device of an electrostatic drive type according to the present invention in FIG. 7, is applied to the GLV device is a diffraction type optical MEMS elements using diffracted light, showing a schematic structure of a GLV device. このGLV素子は、光強度変調素子の1つとして適用される。 The GLV device is applied as one of the light intensity modulation element.
LV素子71は、基板72上に共通の基板側電極73が形成され、この基板側電極73に交差してブリッジ状に跨ぐ複数、本例では5本のビーム77〔771、772、773、774、775〕が並列配置されて成る。 G LV element 71, a common substrate side electrode 73 is formed on a substrate 72, a plurality of straddle like a bridge crossing on the substrate side electrode 73, in this example five beams 77 [771,772,773, 774,775], which are arranged in parallel. このビーム77のうち、一方の一つ置きのビーム、例えばビーム771、73、775が固定ビームとして作用し、他方の一つ置きのビーム772、774が可動ビームとして作用する。 Among the beam 77, one every other beam, for example beam 771,73,775 acts as a fixed beam, the other every other beam 772, 774 acts as a movable beam.

ビーム77は、例えば上述した図5で示したと同様に、ビーム面が基板側電極73と平行するように、応力バランス調整層78を挟んで下面にブリッジ部材(ベース層)となる絶縁薄膜74を形成し、上面に反射膜兼駆動電極層75を形成した3層構造に構成される。 Beam 77, like shown in Figure 5 for example described above, so that the beam surface is parallel to the substrate side electrode 73, an insulating film 74 serving as a bridge member to the lower surface sandwiching the stress balancing layer 78 (base layer) formed, and a three-layer structure in which a reflective film cum driving electrode layer 75 on the top surface. 絶縁薄膜74としては、例えば減圧CVD法で成膜したシリコン窒化膜を用い、反射膜兼駆動電極層75としては、例えばスパッタ法で成膜した所要の膜厚の金属膜、例えば数10nm程度のAl膜を用いることができる。 As the insulating film 74, for example, a silicon nitride film formed by low pressure CVD, as the reflective film cum driving electrode layer 75, for example, the required thickness of the metal film formed by sputtering, for example, about several 10nm Al film can be used. 応力バランス調整層78は、例えばシリコン酸化膜で形成される。 Stress balancing layer 78 is formed, for example, a silicon oxide film. このビーム77はリボンと称せられている部分である。 The beam 77 is a part that is called a ribbon.

このGLV素子71では、基板側電極73と反射膜兼駆動電極層75との間に微小電圧を印加すると、前述した静電現象によって一つ置きの可動ビーム772、774が基板側電極73に向って近接し、また電圧の印加を停止すると離間して元の状態に戻る。 This GLV device 71, by applying a minute voltage between the substrate side electrode 73 and the reflective film cum driving electrode layer 75, towards the movable beam 772, 774 is the substrate side electrode 73 of every other by electrostatic phenomena described above close Te, also returns to the original state such that it is spaced apart from the stop application of the voltage. この可動ビーム5772、774の基板側電極73に対する近接・離間の動作により、反射膜兼駆動電極層75の高さを交互に変化させ、光の回折によって反射膜兼駆動電極層75で反射する光の強度(回折強度)を変調する。 The nearer to and away from the operation for the substrate side electrode 73 of the movable beam 5772,774, the height of the reflective film and the driving electrode layer 75 is changed alternately reflected by the reflective film cum driving electrode layer 75 by a diffraction of light light modulating the intensity (diffraction intensity).

LV素子71では、ビーム構造をビームに傾斜を持たせた所謂ブレーズド型のGLV素子に適用することができる。 In G LV element 71 can be applied to a GLV device of the so-called blazed which gave tilt the beam structure to the beam. この場合、信頼性の高いブレーズド型のGLV素子を提供することができる。 In this case, it is possible to provide the GLV device of high reliability blazed.

LV素子71によれば、ビーム77をベース層74と反射膜兼駆動電極層75との間に適当な応力バランス調整層78が形成された構成とすることにより、ビーム77のたわみ、反りを低減し、回折効率を改善することができる。 According to G LV element 71 has the structure in which the appropriate stress balancing layer 78 formed between the beam 77 and the base layer 74 and the reflective film cum driving electrode layer 75, the deflection of the beam 77, the warp reduced, it is possible to improve the diffraction efficiency. 図9に、 上記のブレーズド型 GLV素子71におけるビームのたわみ低減の効果を従来例と比較してシミュレーションにより検証した結果を示す。 Figure 9 shows the result of verification by the simulation in comparison with the prior art the effect of beam deflection reduction in GLV device 71 of the above blazed. 図9Aは従来例の応力バランス調整層のないビームのたわみ状態を示し、図9Bは上記の応力バランス調整層を有するビームのたわみ状態を示す。 Figure 9A shows a beam deflection absence of conventional stress balancing layer, FIG. 9B shows a deflected state of a beam having a stress balancing layer above. なお、図8に比較のための従来例のGLV素子を示す。 Incidentally, showing a conventional example GLV element for comparison in Figure 8. このGLV素子110は、ビーム111〔1111 〜1115 〕において、絶縁薄膜74の上面にAl膜の反射膜兼駆動電極層75を有し、絶縁薄膜74と反射膜兼駆動電極層75との間に応力バランス調整層78がない以外は図7と同様の構成である。 The GLV device 110 is in the beam 111 [1111 to 1115], have a reflective film cum driving electrode layer 75 of Al film on the upper surface of the insulating film 74, between the reflective film and the driving electrode layer 75 and the insulating film 74 but without the stress balancing layer 78 has the same configuration as FIG. 図8の従来例においておおよそ45nm程度あったビームのたわみ量d(図9A参照)が、図7のGLV素子ではほぼ完全に解消されている(図9B参照)。 Deflection of the beam was approximately about 45nm in the conventional example of FIG. 8 d (see FIG. 9A) it has been almost completely eliminated in the GLV device in FIG. 7 (see FIG. 9B).

本発明に係る回折型光学MEMS素子であるGLV素子は、前述したように、図1または図4に示す光学MEMS素子を適用するものであり、図7のビーム77を図1または図4に示すビーム36または52に置き換えて構成される。 GLV device is a diffractive optical MEMS device according to the present invention, as described above, it is intended to apply the optical MEMS device shown in FIG. 1 or FIG. 4, shown in FIG. 1 or FIG. 4 the beam 77 in FIG. 7 constructed by replacing the beam 36 or 52.

図10は、本発明の光学MEMS素子適用した光強度変調素子としてのGLV素子を用いた光学装置の一実施の形態を示す。 Figure 10 shows an embodiment of an optical apparatus using the GLV device as a light intensity modulation element in which the optical MEMS device application of the present invention. 本例ではレーザディスプレイに適用した場合である。 In this embodiment it is applied to a laser display. 本実施の形態に係るレーザディスプレイは、例えば、大型スクリーン用プロジェクタ、特にデジタル画像のプロジェクタとして、またコンピュータ画像投影装置として用いられる。 Laser display according to the present embodiment, for example, large screen projector, particularly a projector for digital images, also used as a computer image projection apparatus.

レーザディスプレイ81は、図10に示すように、赤(R)、緑(G)、青(B)の各色のレーザ光源82R,82G,82Bと、各レーザ光源に対して、それぞれ光軸上に順次設けられたミラー84R,84G,84B、各色照明光学系(レンズ群)86R,86G,86B、及び光変調素子として機能するGLV素子、すなわち図7のビーム構造を有する本発明のGLV素子88R,88G,88Bとを備えている。 Laser display 81, as shown in FIG. 10, the red (R), green (G), and blue (B) of each color of laser light sources 82R, 82G, and 82B, with respect to the laser light sources, on each optical axis sequentially mirror provided 84R, 84G, 84B, each color illumination optical system (lens unit) 86R, 86G, 86B, and GLV element functioning as a light modulation element, that GLV device 88R of the present invention having a beam structure of Figure 7, 88G, and a 88B.
レーザ光源82R,82G,82Bは、それぞれ例えば、R(波長642nm、光出力約3W)、G(波長532nm、光出力2W)B(波長457nm、光出力1.5W)のレーザを出射する。 Laser light sources 82R, 82G, 82B are respectively, for example, R (wavelength 642 nm, the light output of about 3W), G (wavelength 532 nm, the light output 2W) B (wavelength 457 nm, the light output 1.5 W) for emitting a laser.

更に、レーザディスプレイ81は、GLV素子88R,88G,88Bによりそれぞれ光強度が変調された赤色(R)レーザ光、緑色(G)レーザ光及び青色(B)レーザ光を合成する色合成フィルタ90、空間フィルタ92、ディフューザ94、ミラー96、ガルバノスキャナ98、投影光学系(レンズ群)100、及びスクリーン102を備えている。 Furthermore, the laser display 81, GLV devices 88R, 88G, color synthesis filter 90 to synthesize each red light intensity is modulated (R) laser beam, a green (G) laser beam and the blue (B) laser beam by 88B, spatial filter 92, a diffuser 94, a mirror 96, the galvanometer scanner 98, and includes a projection optical system (lens) 100, and a screen 102. 色合成フィルタ90は、例えばダイクロイックミラーで構成される。 Color synthesizing filter 90, for example, a dichroic mirror.

本実施の形態のレーザディスプレイ81では、レーザ光源82R,82G,82Bから出射されたRGB各レーザ光が、それぞれミラー84R,74G,74Bを経て各色照明光学系86R,86G,86Bから各GLV素子88R,88G,88Bに同期入力されるようになっている。 In the laser display 81 of this embodiment, the laser light source 82R, 82G, RGB laser beams emitted from 82B is mirror respectively 84R, 74G, through 74B each color illumination optical system 86R, 86G, each GLV devices from 86B 88R , 88G, is adapted to be clocked into 88B.
更に、各レーザ光は、GLV素子88R,88G,88Bによって回折されることにより空間変調され、これら3色の回折光が色合成フィルタ90により合成され、続いて空間フィルタ92によって信号成分のみが取り出される。 In addition, each laser beam, GLV devices 88R, 88G, spatially modulated by being diffracted by 88B, these three color diffracted beams are synthesized by the color synthesizing filter 90, followed by only the signal components extracted by the spatial filter 92 It is.
次で、このRGBの画像信号は、ディフューザ94によってレーザスペックルが低減され、ミラー96を経て、画像信号と同期するガルバノスキャナ98により空間に展開され、投影光学系100によってスクリーン102上にフルカラー画像として投影される。 In the next, the image signal of the RGB is reduced laser speckle by the diffuser 94, through the mirror 96, it is expanded to the space by the galvanometer scanner 98 to be synchronized with the image signal, a full-color image onto the screen 102 by the projection optical system 100 It is projected as.
本実施の形態のレーザディスプレイ81によれば、88R,88G,88Bを用いることにより、GLV素子88R,88G,88Bのビームのたわみ、反りを減少させることができ、回折効率を向上させることができる。 According to the laser display 81 of this embodiment, 88R, 88G, by using 88B, GLV devices 88R, 88G, deflection of the beam 88B, it is possible to reduce the warp, it is possible to improve the diffraction efficiency .

上例においては、本発明のビーム構造を光学MEMS素子に適用したが、その他、 静電駆動方式のMEMS素子の全般に適用することができる。 In the above example, the beam structure of the present invention is applied to an optical MEMS device, other can be applied to a general MEMS device of an electrostatic drive method. すなわち、本発明は、静電駆動方式のMEMS素子を用いた例えば高周波フィルタ、高周波スイッチ、また加速度センサ、圧力センサ、温度センサなどの振動子、あるいはインクジェットプリンタヘッド、マイクロモータ、スピーカなどの微小流体駆動装置に適用することができる。 That is, the present invention is an electrostatic drive method MEMS device example, a high-frequency filter using a high-frequency switch also acceleration sensors, pressure sensors, transducers, such as a temperature sensor or an ink jet printer head, micromotor, microfluidic such as speakers it can be applied to the driving device. 例えば高周波フィルタに適用した場合には、ビームのたわみ、反りが低減するので、共振周波数が精度良く得られる。 For example when applied to a high-frequency filter, a beam deflection of, the warp is reduced, the resonance frequency is obtained accurately. 微小流体駆動装置に適用した場合には、その流量、吐出量、音声振動などが精度良く得られる。 When applied to the microfluidic drive, its flow rate, discharge rate, can be obtained accurately and voice vibrations.

本発明に係るMEMS素子を光学MEMS素子に適用した第1実施形態を示す構成図である。 The MEMS device according to the present invention is a configuration diagram showing a first embodiment applied to an optical MEMS device. A〜Cは、本発明の第1実施形態に係る光学MEMS素子の製造方法の一実施の形態を示す製造工程図(その1である)。 A~C is (a part 1) manufacturing process diagram showing an embodiment of a method for manufacturing an optical MEMS device according to a first embodiment of the present invention. D〜Fは、本発明の第1実施形態に係る光学MEMS素子の製造方法の一実施の形態を示す製造工程図(その2である)。 D~F the first manufacturing process diagrams illustrating one embodiment of a method for manufacturing an optical MEMS device according to the embodiment (a part 2) of the present invention. 本発明に係るMEMS素子を光学MEMS素子に適用した第2実施形態を示す構成図である。 The MEMS device according to the present invention is a configuration diagram showing a second embodiment applied to an optical MEMS device. 参考例に係るMEMS素子を光学MEMS素子に適用した第3実施形態を示す構成図である。 It is a block diagram showing a third embodiment applying the MEMS device according to the reference example in optical MEMS device. Aは、従来例に係る光学MEMS素子でのシミュレーションにより検証したビームのたわみ状態を示すグラフである。 A is a graph showing the deflection state of the verification beam by simulation of an optical MEMS device according to a conventional example. Bは、図5 の光学MEMS素子でのシミュレーションにより検証したビームのたわみ状態を示すグラフである。 B is a graph showing the deflection state of the beams was verified by simulation in the optical studies MEMS device of FIG. 本発明に係るMEMS素子を回折型光学MEMS素子としてのGLV素子に適用される、GLV素子の概略構成を示す構成図である。 The MEMS device according to the present invention is applied to a GLV device as diffractive optical MEMS device is a configuration diagram showing a schematic configuration of a GLV device. 比較のための従来のGLV素子の構成図である。 It is a block diagram of a conventional GLV device for comparison. Aは、従来例に係るGLV素子でのシミュレーションにより検証したビームのたわみ状態を示すグラフである。 A is a graph showing the deflection state of the verification beams by simulation with GLV device according to the related art. Bは、図7 のG LV素子でのシミュレーションにより検証したビームのたわみ状態を示すグラフである。 B is a graph showing the deflection state of the verification beam by simulation in G LV element of FIG. 本発明に係るGLV素子を光強度変調素子として用いたレーザディスプレイの構成図である。 It is a configuration diagram of a laser display using GLV device according to the present invention as a light intensity modulation element. Aは、従来の片持ち梁式の光学MEMS素子の例を示す斜視図である。 A is a perspective view showing an example of a conventional cantilevered optical MEMS device. Bは、その断面図である。 B is a cross-sectional view thereof. Aは、従来の両持ち梁式の光学MEMS素子の例を示す斜視図である。 A is a perspective view showing an example of a conventional doubly supported beam type optical MEMS device. Bは、その断面図である。 B is a cross-sectional view thereof. Aは、従来の四端固定式の光学MEMS素子の例を示す斜視図である。 A is a perspective view showing an example of a conventional four-pin fixed optical MEMS device. Bは、その断面図である。 B is a cross-sectional view thereof. Aは、従来のブレーズドGLVのビーム構造を示す、一つのビームについての断面図である。 A shows the beam structure of a conventional blazed GLV, a cross-sectional view of one beam. Bは、その斜視図である。 B is a perspective view thereof.

31、51、・・光学MEMS素子、32・・基板、33・・基板側電極、34、54・・絶縁薄膜、35・・反射膜兼駆動電極層、36・・ビーム、37〔37A,37B〕・・支持部、38・・空隙、41、59・・応力バランス調整層、55・・駆動電極層、56・・反射膜、57、58・・膜、71・・GLV素子、72・・基板、73・・基板側電極、74・・絶縁薄膜、75・・駆動電極層、77〔771〜775〕・・ビーム、78・・応力バランス調整層、81・・レーザディスプレイ、82R,82G,82B・・レーザ光源、84R,84G,84B・・ミラー、86R,86G,86B・・各色照明光学系、88R,88G,88B・・GLV素子、90・・色合成フィルタ、92・・空間フィルタ、94・・ディフ 31 and 51, ... optical MEMS device, 32 ... substrate, 33 ... substrate side electrode, 34, 54 ... insulating film, 35 ... reflective film and the driving electrode layer, 36 ... beam 37 [37A, 37B ] ... support portion, 38 ... gap, 41,59 ... stress balancing layer, 55 ... driving electrode layer, 56 ... reflecting film 57, 58 ... film, 71 ... GLV device, 72 ... substrate, 73 ... substrate side electrode, 74 ... insulating film, 75 ... driving electrode layer, 77 [771-775] ... beam 78 ... stress balancing layer, 81 ... laser display, 82R, 82G, 82B ... laser light source, 84R, 84G, 84B ... mirror, 86R, 86G, 86B ... each color illumination optical system, 88R, 88G, 88B ... GLV device, 90 ... color synthesis filter 92 ... spatial filter, 94 ... Diff ーザ、94・・ミラー、100・・投影光学系、102・・スクリーン Over The, 94 ... mirror, 100 ... projection optical system, 102 ... screen

Claims (6)

  1. 基板側電極と、 And the substrate-side electrode,
    前記基板側電極に対向して配置されたビームと を有し、 Has a beam and which is disposed opposite to the substrate side electrode,
    前記ビームは、絶縁薄膜によるベース層と、前記ベース層の上面に形成された駆動電極層と、前記ベース層の下面に形成されて前記駆動電極層と同じ材料で且つ同じ膜厚の応力バランス調整層との積層膜で形成される MEMS素子。 The beam comprises a base layer of an insulating thin film, a drive electrode layer formed on the upper surface of the base layer, and have the same thickness stress balancing formed on the lower surface of the base layer of the same material as the drive electrode layer MEMS devices formed by the laminated film of the layer.
  2. 基板側電極と、 And the substrate-side electrode,
    前記基板側電極に対向して配置されたビームと を有し、 Has a beam and which is disposed opposite to the substrate side electrode,
    前記ビームは、絶縁薄膜によるベース層と、前記ベース層の上面に形成された反射膜兼駆動電極層と、前記ベース層の下面に形成されて前記反射膜兼駆動電極層と同じ材料で且つ同じ膜厚の応力バランス調整層との積層膜で形成される 光学MEMS素子。 The beam comprises a base layer of an insulating thin film, and the base layer reflective film cum driving electrode layer formed on the upper surface of, and the same of the same material as the reflective film cum driving electrode layer formed on the lower surface of the base layer optical MEMS device formed by the laminated film of the stress balancing layer thickness.
  3. 基板側電極と、 And the substrate-side electrode,
    前記基板側電極に対向して配置されたビームと を有し、 Has a beam and which is disposed opposite to the substrate side electrode,
    前記ビームは、絶縁薄膜によるベース層と、前記ベース層の上面に形成された駆動電極層と、前記駆動電極層の上面に形成された反射膜と、前記ベース層の下面に形成されて前記駆動電極層と同じ材料でかつ同じ膜厚の第1膜及び前記第1膜の下面に形成されて前記反射膜と同じ材料でかつ同じ膜厚の第2膜からなる応力バランス調整層との積層膜で形成される 光学MEMS素子。 The beam comprises a base layer of an insulating thin film, a drive electrode layer formed on the upper surface of the base layer, and a reflective film formed on the upper surface of the driving electrode layer, the driving is formed on the lower surface of the base layer laminated film of the stress balancing layer is formed on the lower surface of the first layer and the first layer of the same material a and the same thickness as the electrode layer and a second layer of the same material a and the same thickness as the reflective layer in optical MEMS device is formed.
  4. 共通の基板側電極と、 A common substrate side electrode,
    前記基板側電極に対向して配列された複数のビームと を有し、 And a plurality of beams arranged so as to face the substrate side electrode,
    前記ビームは、絶縁薄膜によるベース層と、前記ベース層の上面に形成された反射膜兼駆動電極層と、前記ベース層の下面に形成されて前記反射膜兼駆動電極層と同じ材料で且つ同じ膜厚の応力バランス調整層との積層膜で形成される 回折型光学MEMS素子。 The beam comprises a base layer of an insulating thin film, and the base layer reflective film cum driving electrode layer formed on the upper surface of, and the same of the same material as the reflective film cum driving electrode layer formed on the lower surface of the base layer diffractive optical MEMS device is formed by a laminated film of the stress balancing layer thickness.
  5. 共通の基板側電極と、 A common substrate side electrode,
    前記基板側電極に対向して配列された複数のビームと を有し、 And a plurality of beams arranged so as to face the substrate side electrode,
    前記ビームは、絶縁薄膜によるベース層と、前記ベース層の上面に形成された駆動電極層と、前記駆動電極層の上面に形成された反射膜と、前記ベース層の下面に形成されて前記駆動電極層と同じ材料でかつ同じ膜厚の第1膜及び前記第1膜の下面に形成されて前記反射膜と同じ材料でかつ同じ膜厚の第2膜からなる応力バランス調整層との積層膜で形成される 回折型光学MEMS素子。 The beam comprises a base layer of an insulating thin film, a drive electrode layer formed on the upper surface of the base layer, and a reflective film formed on the upper surface of the driving electrode layer, the driving is formed on the lower surface of the base layer laminated film of the stress balancing layer is formed on the lower surface of the first layer and the first layer of the same material a and the same thickness as the electrode layer and a second layer of the same material a and the same thickness as the reflective layer diffractive optical MEMS devices in the form.
  6. レーザ光源と、 And a laser light source,
    前記レーザ光源から出射されたレーザ光の光軸上に配置され、レーザ光の光強度を変調する回折型光学MEMS素子と を有し、 Is disposed on the optical axis of the laser beam emitted from the laser light source, and a diffractive optical MEMS device for modulating the light intensity of the laser beam,
    前記回折型光学MEMS素子が、請求項4又は5に記載の回折型光学MEMS素子で構成される レーザディスプレイ。 The diffractive optical MEMS device is a laser display composed of diffractive optical MEMS device according to claim 4 or 5.
JP2004095872A 2004-03-29 2004-03-29 Mems devices, optical mems element, diffractive optical mems device, and a laser display Expired - Fee Related JP4581453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095872A JP4581453B2 (en) 2004-03-29 2004-03-29 Mems devices, optical mems element, diffractive optical mems device, and a laser display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095872A JP4581453B2 (en) 2004-03-29 2004-03-29 Mems devices, optical mems element, diffractive optical mems device, and a laser display

Publications (2)

Publication Number Publication Date
JP2005279831A JP2005279831A (en) 2005-10-13
JP4581453B2 true JP4581453B2 (en) 2010-11-17

Family

ID=35178754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095872A Expired - Fee Related JP4581453B2 (en) 2004-03-29 2004-03-29 Mems devices, optical mems element, diffractive optical mems device, and a laser display

Country Status (1)

Country Link
JP (1) JP4581453B2 (en)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7302157B2 (en) 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7385744B2 (en) * 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
JP5099121B2 (en) * 2007-02-19 2012-12-12 富士通株式会社 Mems device and optical switch
US7742220B2 (en) 2007-03-28 2010-06-22 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing conducting layers separated by stops
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7715085B2 (en) 2007-05-09 2010-05-11 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane and a mirror
US7782517B2 (en) 2007-06-21 2010-08-24 Qualcomm Mems Technologies, Inc. Infrared and dual mode displays
US7630121B2 (en) 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
KR20100066452A (en) 2007-07-31 2010-06-17 퀄컴 엠이엠스 테크놀로지스, 인크. Devices for enhancing colour shift of interferometric modulators
US8072402B2 (en) 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics
US7773286B2 (en) 2007-09-14 2010-08-10 Qualcomm Mems Technologies, Inc. Periodic dimple array
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
JP5302322B2 (en) 2007-10-19 2013-10-02 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Display with an integrated photovoltaic
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US7715079B2 (en) 2007-12-07 2010-05-11 Qualcomm Mems Technologies, Inc. MEMS devices requiring no mechanical support
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US7746539B2 (en) 2008-06-25 2010-06-29 Qualcomm Mems Technologies, Inc. Method for packing a display device and the device obtained thereof
US7768690B2 (en) 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US7859740B2 (en) 2008-07-11 2010-12-28 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
US7855826B2 (en) 2008-08-12 2010-12-21 Qualcomm Mems Technologies, Inc. Method and apparatus to reduce or eliminate stiction and image retention in interferometric modulator devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
WO2010061363A2 (en) 2008-11-26 2010-06-03 Freescale Semiconductor, Inc. Electromechanical transducer device and method of forming a electromechanical transducer device
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
EP2435868A1 (en) 2009-05-29 2012-04-04 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
JP2011173185A (en) * 2010-02-23 2011-09-08 Fujitsu Ltd Mems device
CN102834761A (en) 2010-04-09 2012-12-19 高通Mems科技公司 Mechanical layer and methods of forming the same
CN103109315A (en) 2010-08-17 2013-05-15 高通Mems科技公司 Actuation and calibration of a charge neutral electrode in an interferometric display device
JP5779852B2 (en) 2010-08-25 2015-09-16 セイコーエプソン株式会社 Variable wavelength interference filter, an optical module, and an optical analyzer
JP5707780B2 (en) 2010-08-25 2015-04-30 セイコーエプソン株式会社 Variable wavelength interference filter, an optical module, and an optical analyzer
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
JP2013211650A (en) * 2012-03-30 2013-10-10 Seiko Epson Corp Mems vibrator and manufacturing method of mems vibrator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325274A (en) * 1992-05-15 1993-12-10 Canon Inc Piezoelectric displacement element, microprobe and their production as well as scanning type tunnel microscope and information processor constituted by using these members
JPH06241781A (en) * 1993-02-17 1994-09-02 Canon Inc Cantilever, cantilever type probe using this, scanning tunneling microscope using cantilever type probe, information processing device
JPH1172724A (en) * 1997-06-30 1999-03-16 Daewoo Electron Co Ltd Thin film type optical path adjusting device and its production
JP2002113866A (en) * 2000-08-04 2002-04-16 Ricoh Co Ltd Electrostatic actuator, method of manufacturing the electrostatic actuator, electrostatic micro pump with the electrostatic actuator, ink jet recording head with the electrostatic actuator and ink jet recorder with the ink jet recording head
JP2002237245A (en) * 2001-02-08 2002-08-23 Sony Corp Switching element and its manufacturing method
JP2002267996A (en) * 2001-03-13 2002-09-18 Ricoh Co Ltd Optical scanner and its manufacturing method
JP2003021798A (en) * 2001-07-06 2003-01-24 Sony Corp Mems element, glv device and laser display
JP2003513411A (en) * 1999-10-28 2003-04-08 エイチアールエル ラボラトリーズ,エルエルシー Light control mem switch
JP2003311692A (en) * 2002-04-24 2003-11-05 Oki Sensor Device Corp Mechanism device and magnetic driving type mechanism device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325274A (en) * 1992-05-15 1993-12-10 Canon Inc Piezoelectric displacement element, microprobe and their production as well as scanning type tunnel microscope and information processor constituted by using these members
JPH06241781A (en) * 1993-02-17 1994-09-02 Canon Inc Cantilever, cantilever type probe using this, scanning tunneling microscope using cantilever type probe, information processing device
JPH1172724A (en) * 1997-06-30 1999-03-16 Daewoo Electron Co Ltd Thin film type optical path adjusting device and its production
JP2003513411A (en) * 1999-10-28 2003-04-08 エイチアールエル ラボラトリーズ,エルエルシー Light control mem switch
JP2002113866A (en) * 2000-08-04 2002-04-16 Ricoh Co Ltd Electrostatic actuator, method of manufacturing the electrostatic actuator, electrostatic micro pump with the electrostatic actuator, ink jet recording head with the electrostatic actuator and ink jet recorder with the ink jet recording head
JP2002237245A (en) * 2001-02-08 2002-08-23 Sony Corp Switching element and its manufacturing method
JP2002267996A (en) * 2001-03-13 2002-09-18 Ricoh Co Ltd Optical scanner and its manufacturing method
JP2003021798A (en) * 2001-07-06 2003-01-24 Sony Corp Mems element, glv device and laser display
JP2003311692A (en) * 2002-04-24 2003-11-05 Oki Sensor Device Corp Mechanism device and magnetic driving type mechanism device

Also Published As

Publication number Publication date
JP2005279831A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US6813059B2 (en) Reduced formation of asperities in contact micro-structures
US7053519B2 (en) Electrostatic bimorph actuator
US8456727B2 (en) Actuator device for optical deflector
US7151627B2 (en) Microelectrical mechanical structure (MEMS) optical modulator and optical display system
CN1153081C (en) Method for forming and mfg light modulator and the light modulator
US20040125347A1 (en) Micromirrors and off-diagonal hinge structures for micromirror arrays in projection displays
US20030164814A1 (en) Reflective microelectrical mechanical structure (MEMS) optical modulator and optical display system
US6974713B2 (en) Micromirrors with mechanisms for enhancing coupling of the micromirrors with electrostatic fields
US6215579B1 (en) Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US7071520B2 (en) MEMS with flexible portions made of novel materials
CN100580508C (en) Digital micro-mirror device having improved contrast and method for the same
US6704475B2 (en) Mirror for use with a micro-electro-mechanical system (MEMS) optical device and a method of manufacture therefor
US6639724B2 (en) Device having a barrier layer located therein and a method of manufacture therefor
US6618184B2 (en) Device for use with a micro-electro-mechanical system (MEMS) optical device and a method of manufacture therefor
CN1266509C (en) Optical multilayer structure and its production method, optical switching device, and image display
CN101999091B (en) Mechanical light modulator with stress beam
EP1486815B1 (en) Mems device and its manufacturing method, optical modulator, glv device and its manufacturing method, and laser display
US20020126387A1 (en) Optical multilayer structure material and process for producing the same, light switching device, and image display apparatus
US6760146B2 (en) Light modulation element, GLV device, and laser display
CA2137063A1 (en) Micromechanical modulator
JP3165444B2 (en) M × n number of thin film actuated mirror array and manufacturing method thereof
CN1853130A (en) Separable modulator
KR100958441B1 (en) Electrostatic drive MEMS element, manufacturing method thereof, optical MEMS element, optical modulation element, GLV device, and laser display
US7271958B2 (en) Diffractive light modulator
US5690839A (en) Method for forming an array of thin film actuated mirrors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees