JP4565236B2 - Cytochalasin derivative and method for producing the same - Google Patents

Cytochalasin derivative and method for producing the same Download PDF

Info

Publication number
JP4565236B2
JP4565236B2 JP2004342570A JP2004342570A JP4565236B2 JP 4565236 B2 JP4565236 B2 JP 4565236B2 JP 2004342570 A JP2004342570 A JP 2004342570A JP 2004342570 A JP2004342570 A JP 2004342570A JP 4565236 B2 JP4565236 B2 JP 4565236B2
Authority
JP
Japan
Prior art keywords
cytochalasin
reaction
acid
mmol
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004342570A
Other languages
Japanese (ja)
Other versions
JP2006151846A (en
Inventor
政基 鳥村
博明 田尾
敏之 首藤
誠司 本田
知子 永田
修 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Chemix Corp
National Institute of Advanced Industrial Science and Technology AIST
Nippon Steel Kankyo Engineering Co Ltd
Original Assignee
Daito Chemix Corp
National Institute of Advanced Industrial Science and Technology AIST
Nippon Steel Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Chemix Corp, National Institute of Advanced Industrial Science and Technology AIST, Nippon Steel Kankyo Engineering Co Ltd filed Critical Daito Chemix Corp
Priority to JP2004342570A priority Critical patent/JP4565236B2/en
Publication of JP2006151846A publication Critical patent/JP2006151846A/en
Application granted granted Critical
Publication of JP4565236B2 publication Critical patent/JP4565236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、サイトカラシン誘導体およびその製造方法に関する。   The present invention relates to a cytochalasin derivative and a method for producing the same.

植物の根に寄生して自ら分泌する毒素により植物を衰弱・枯死させる土壌微生物が存在する。その中でも近年白紋羽菌(Rosellinia necatrix Prillieux)が果樹木に感染して被害をもたらす場合が多く見受けられ、これによる経済的被害は年々深刻化している。農園などで一本の樹木が感染した場合、土壌を介して他の樹木へと感染が拡大する可能性が高く、そうした事態に陥らないよう早期に感染を発見し対策を施すことが必要となる。白紋羽感染木は外観調査で異常が認められた場合には、すでに感染がかなり進行しており手遅れであるとされている。   There are soil microorganisms that weaken and die plants due to toxins that secrete themselves in the roots of plants. In recent years, there are many cases in which Rosellinia necatrix Prillieux infects fruit trees and causes damage in recent years, and the economic damage caused by this has become more serious every year. When one tree is infected in a farm, etc., there is a high possibility that the infection will spread to other trees through the soil, and it is necessary to detect the infection early and take measures to prevent such a situation from occurring. . If the appearance of white-white feather-infected trees is found abnormal, the infection has already progressed considerably and is considered too late.

従って感染の早期発見のためには、この白紋羽菌が産生し樹木内に吸収された毒素(Cytochalasin E)を感染初期の段階で検出する手法の確立が強く望まれる。
免疫学的測定(immunoassay)は感度、特異性が高く、その特異抗体が得られれば迅速かつ低コストに多検体を検査することができる。しかしながら、通常、Cytochalasin Eのような低分子化合物を免疫してもその特異抗体を得ることはできない。このため低分子化合物(ハプテン)をキャリアタンパク分子へ共有結合させることで複合体を合成し、この複合体を用いて免疫として特異抗原を得る必要がある。そこで本発明の課題は、Cytochalasin Eの迅速・簡便な検出技術の開発を目的とし、Cytochalasin Eと種々のキャリアタンパクとの複合体を合成し得るサイトカラシン誘導体を提供することである。
Ed Harlow et al,Antibodies-A LABORATORY MANUAL,Cold-Harbor-Laboratory,pp75-85(l988). Satoko Kanematsu et al,Ann Phytopathol.Soc.Jpn.,63,425-431(1997).
Therefore, for early detection of infection, it is strongly desired to establish a method for detecting the toxin (Cytochalasin E) produced by the white fungus and absorbed in trees at an early stage of infection.
Immunoassay has high sensitivity and specificity, and if a specific antibody is obtained, multiple specimens can be examined quickly and at low cost. However, the specific antibody cannot usually be obtained by immunizing a low molecular weight compound such as Cytochalasin E. For this reason, it is necessary to synthesize a complex by covalently binding a low molecular compound (hapten) to a carrier protein molecule, and using this complex to obtain a specific antigen as an immunity. Accordingly, an object of the present invention is to provide a cytochalasin derivative capable of synthesizing complexes of Cytochalasin E and various carrier proteins for the purpose of developing a rapid and simple detection technique for Cytochalasin E.
Ed Harlow et al, Antibodies-A LABORATORY MANUAL, Cold-Harbor-Laboratory, pp 75-85 (l988). Satoko Kanematsu et al, Ann Phytopathol. Soc. Jpn., 63, 425-431 (1997).

上記課題は以下の本発明によって達成される。
1.下記一般式(1)または(2)で表わされることを特徴とするサイトカラシン誘導体。

Figure 0004565236
(上記式中のR1は、水素原子、炭化水素基またはスクシノイル基を表わし、R2は水素原子またはメトキシ基を表わす。) The above-mentioned subject is achieved by the following present invention.
1. A cytochalasin derivative represented by the following general formula (1) or (2):
Figure 0004565236
(R 1 in the above formula represents a hydrogen atom, a hydrocarbon group or a succinoyl group, and R 2 represents a hydrogen atom or a methoxy group.)

2.下記一般式(3)で表わされるサイトカラシンに、そのラクタムと反応する化合物を反応させることを特徴とする前記1に記載の一般式(1)または(2)で表わされるサイトカラシン誘導体の製造方法。

Figure 0004565236
(上記式中のR2は水素原子またはメトキシ基を表わす。) 2. 2. A method for producing a cytochalasin derivative represented by the general formula (1) or (2), wherein the cytochalasin represented by the following general formula (3) is reacted with a compound that reacts with the lactam. .
Figure 0004565236
(R 2 in the above formula represents a hydrogen atom or a methoxy group.)

本発明のサイトカラシン誘導体は種々のキャリアタンパクと複合体を形成し得るので、この複合体を用いてモノクローナルおよびポリクローナル抗体を作製することができ、抗体活性評価に必要な酵素免疫測定が可能になる。   Since the cytochalasin derivative of the present invention can form complexes with various carrier proteins, monoclonal and polyclonal antibodies can be prepared using this complex, and enzyme immunoassay necessary for antibody activity evaluation can be performed. .

次に発明を実施するための最良の形態を挙げて本発明をさらに詳細に説明する。
前記一般式(3)で表わされるCytochalasin EおよびPhenochalasin Bはそれ自体は公知の物質であり、試薬として入手可能であり、本発明の誘導体の開発は試薬を用いて行なった。Cytochalasin EおよびPhenochalasin Bは光安定性が低い化合物であるため随時遮光して使用することが好ましい。前記一般式(1)または(2)で表わされる化合物は、以下の製造方法で製造することができる。
[製造方法1]

Figure 0004565236
Next, the present invention will be described in more detail with reference to the best mode for carrying out the invention.
Cytochalasin E and Phenochalasin B represented by the general formula (3) are known substances per se and are available as reagents, and the derivatives of the present invention were developed using the reagents. Cytochalasin E and Phenochalasin B are compounds with low photostability, so it is preferable to use them while being shielded from time to time. The compound represented by the general formula (1) or (2) can be produced by the following production method.
[Production Method 1]
Figure 0004565236

上記反応で使用する酸無水物としては、無水マロン酸、無水コハク酸、無水グルタル酸、無水アジピン酸などが挙げられ、特に好ましい酸無水物は無水コハク酸である。反応に際して使用する酸無水物はCytochalasin Eの1モル当たり、約0.3〜5モルの使用量が好ましい。上記反応で使用する塩基としては、有機塩基としてn−BuLi(ノルマルブチルリチウム)、LDA(リチウムジイソプロピルアミド)、Et3N(トリエチルアミン)、ピリジン、DBU(1,8−ジアザビシクロ〔5.4.0〕ウンデカ−7−エン)などが挙げられ、無機塩基としてはカリウムt−ブトキシド、水素化ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
反応に使用する溶媒としては、THF(テトラヒドロフラン)、ジオキサン、Et2O(ジエチルエーテル)、IPE(イソプロピルエーテル)、DME(1,2−ジメトキシエタン)などエーテル系溶媒、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタンなどのハロゲン系溶媒、ベンゼン、トルエン、キシレン、クロロベンゼンなどのベンゼン系溶媒、ペンタン、ヘキサン、ヘプタンなどの炭化水素系溶媒が挙げられる。反応温度は、−78〜100℃であり、反応時間は0.5〜24時間である。
Examples of the acid anhydride used in the above reaction include malonic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, and the like, and a particularly preferred acid anhydride is succinic anhydride. The acid anhydride used in the reaction is preferably used in an amount of about 0.3 to 5 mol per mol of Cytochalasin E. Examples of the base used in the above reaction include n-BuLi (normal butyllithium), LDA (lithium diisopropylamide), Et 3 N (triethylamine), pyridine, DBU (1,8-diazabicyclo [5.4.0]. And inorganic bases include potassium t-butoxide, sodium hydride, potassium carbonate, potassium bicarbonate, sodium carbonate, sodium bicarbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide. Etc.
Solvents used for the reaction include ether solvents such as THF (tetrahydrofuran), dioxane, Et 2 O (diethyl ether), IPE (isopropyl ether), DME (1,2-dimethoxyethane), dichloromethane, chloroform, carbon tetrachloride. And halogen solvents such as dichloroethane, benzene solvents such as benzene, toluene, xylene and chlorobenzene, and hydrocarbon solvents such as pentane, hexane and heptane. The reaction temperature is -78 to 100 ° C, and the reaction time is 0.5 to 24 hours.

[製造方法2]

Figure 0004565236
[Production Method 2]
Figure 0004565236

上記反応で使用するジカルボン酸ハロゲン化物としては、例えば、シュウ酸ジクロリド、マロン酸ジクロリド、コハク酸ジクロリド、グルタル酸ジクロリド、アジピン酸ジクロリド、シュウ酸ジブロミド、マロン酸ジブロミド、コハク酸ジブロミド、グルタル酸ジブロミド、アジピン酸ジブロミドなどが挙げられ、特に好ましいジカルボン酸ハロゲン化物は、コハク酸ジクロリドである。
反応に際して使用するジカルボン酸ハロゲン化物はCytochalasin Eの1モル当たり、約0.3〜5モルの使用量が好ましい。上記反応で使用する塩基、溶媒、反応温度および反応時間は前記製造方法1と同様である。反応後の加水分解(ハロゲンの脱離)は、極めて容易であり、水、酸またはアルカリ水の存在下で容易に生じる。
Examples of the dicarboxylic acid halide used in the above reaction include oxalic acid dichloride, malonic acid dichloride, succinic acid dichloride, glutaric acid dichloride, adipic acid dichloride, oxalic acid dibromide, malonic acid dibromide, succinic acid dibromide, glutaric acid dibromide, Adipic acid dibromide and the like can be mentioned, and a particularly preferred dicarboxylic acid halide is succinic acid dichloride.
The dicarboxylic acid halide used in the reaction is preferably used in an amount of about 0.3 to 5 mol per mol of Cytochalasin E. The base, solvent, reaction temperature and reaction time used in the above reaction are the same as in Production Method 1. Hydrolysis (removal of halogen) after the reaction is extremely easy and occurs easily in the presence of water, acid or alkaline water.

[製造方法3]

Figure 0004565236
[Production Method 3]
Figure 0004565236

上記反応で使用するハロゲン化脂肪酸エステルとしては、例えば、クロロ酢酸エチルエステル、クロロプロピオン酸エチルエステル、クロロ酪酸エチルエステル、ブロモ酢酸エチルエステル、ブロモプロピオン酸エチルエステル、ブロモ酪酸エチルエステル、クロロ酢酸メチルエステル、クロロプロピオン酸メチルエステル、クロロ酪酸メチルエステルなどが挙げられ、特に好ましいハロゲン化脂肪酸エステルは、ブロモ酢酸エチルエステルである。反応に際して使用するハロゲン化脂肪酸エステルはCytochalasin Eの1モル当たり、約0.3〜5モルの使用量が好ましい。上記反応で使用する塩基、溶媒、反応温度および反応時間は前記製造方法1と同様である。反応後のエステル結合の加水分解は、チオラートによる加水分解、ヨードトリメチルシランなどによる加水分解が好ましい。   Examples of the halogenated fatty acid ester used in the above reaction include chloroacetic acid ethyl ester, chloropropionic acid ethyl ester, chlorobutyric acid ethyl ester, bromoacetic acid ethyl ester, bromopropionic acid ethyl ester, bromobutyric acid ethyl ester, chloroacetic acid methyl ester. Chloropropionic acid methyl ester, chlorobutyric acid methyl ester, and the like, and particularly preferred halogenated fatty acid ester is bromoacetic acid ethyl ester. The halogenated fatty acid ester used in the reaction is preferably used in an amount of about 0.3 to 5 mol per mol of Cytochalasin E. The base, solvent, reaction temperature and reaction time used in the above reaction are the same as in Production Method 1. The hydrolysis of the ester bond after the reaction is preferably hydrolysis with thiolate or hydrolysis with iodotrimethylsilane.

[製造方法4]

Figure 0004565236
[Production Method 4]
Figure 0004565236

上記反応で使用するN−ヒドロキシスクシンイミドは一般式(1)の化合物(R1=H)の1モル当たり、約0.3〜5モルの使用量が好ましい。上記反応で使用する脱水剤としては、例えば、DCC(ジシクロヘキシルカルボジイミド)、DIPC(ジイソプロピルカルボジイミド)、EDC(N−エチル−N’−3−ジメチルアミノプロピルカルボジイミド)およびその塩酸塩、BOP(ベンゾトリアゾール−1−イル−トリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン化物塩)、DPPA(ジフェニルホスホリルアジド)などが挙げられ、特に好ましい脱水剤はEDC(N−エチル−N’−3−ジメチルアミノプロピルカルボジイミド)塩酸塩である。反応に際して使用する脱水剤はCytochalasin Eの1モル当たり、約0.3〜5モルの使用量が好ましい。上記反応で使用する溶媒としては、DMF(ジメチルホルムアミド)、DMSO(ジメチルスルホキサイド)、DMAC(ジメチルアセトアミド)、AcOEt(酢酸エチル)、CH3CN(アセトニトリル)、THF(テトラヒドロフラン)、ジオキサン、Et2O(ジエチルエーテル)、IPE(イソプロピルエーテル)、DME(1,2−ジメトキシエタン)などのエーテル溶媒、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタンなどのハロゲン溶媒、ベンゼン、トルエン、キシレン、クロロベンゼンなどのベンゼン系溶媒、ペンタン、ヘキサン、ヘプタンなどの炭化水素系溶媒が挙げられる。反応温度は、−20〜50℃であり、反応時間は0.5〜24時間である。 The N-hydroxysuccinimide used in the above reaction is preferably used in an amount of about 0.3 to 5 mol per 1 mol of the compound of the general formula (1) (R 1 = H). Examples of the dehydrating agent used in the above reaction include DCC (dicyclohexylcarbodiimide), DIPC (diisopropylcarbodiimide), EDC (N-ethyl-N′-3-dimethylaminopropylcarbodiimide) and its hydrochloride, BOP (benzotriazole- 1-yl-tris (dimethylamino) phosphonium hexafluorophosphide salt), DPPA (diphenylphosphoryl azide) and the like, and particularly preferred dehydrating agent is EDC (N-ethyl-N′-3-dimethylaminopropylcarbodiimide) hydrochloric acid. Salt. The dehydrating agent used in the reaction is preferably used in an amount of about 0.3 to 5 mol per mol of Cytochalasin E. As the solvent used in the above reaction, DMF (dimethylformamide), DMSO (dimethylsulfoxide), DMAC (dimethylacetamide), AcOEt (ethyl acetate), CH 3 CN (acetonitrile), THF (tetrahydrofuran), dioxane, Et 2 O (diethyl ether), IPE (isopropyl ether), ether solvents such as DME (1,2-dimethoxyethane), halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, benzene, toluene, xylene, chlorobenzene, etc. Examples thereof include hydrocarbon solvents such as benzene solvent, pentane, hexane and heptane. The reaction temperature is −20 to 50 ° C., and the reaction time is 0.5 to 24 hours.

以下に実施例を挙げて本発明を詳しく説明するが、本発明はこれらに限定されるものではない。NMRはJNM−AL300(日本電子データム(株)製)を用いて測定した。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. NMR was measured using JNM-AL300 (manufactured by JEOL Datum).

[実施例1](4-(6,7-epoxy-10-phenyl-5,6,16,18-tetramethyl-21,23-dioxa-[13]cytochalas-13,19-diene-17,22-dione-2-yl)-4-oxo-butyric acidの合成)

Figure 0004565236
[Example 1] (4- (6,7-epoxy-10-phenyl-5,6,16,18-tetramethyl-21,23-dioxa- [13] cytochalas-13,19-diene-17,22- synthesis of dione-2-yl) -4-oxo-butyric acid)
Figure 0004565236

窒素雰囲気下、水素化ナトリウム(7mg、0.3mmol:脱水ヘキサンにて洗浄処理を施したものを使用)を脱水テトラヒドロフラン(3ml)に懸濁させ約−78℃以下まで冷却した。この反応溶液に脱水テトラヒドロフラン(3ml)に溶解させたCytochalasin E(65.6mg、0.13mmol)を滴下し、−78℃以下で約20分間、0〜5℃下で約15分反応を行った。再度、−78℃以下まで冷却した後、この反応溶液に脱水テトラヒドロフラン(3ml)に溶解させた無水こはく酸(25mg、0.24mmol)を滴下し、徐々に室温まで昇温した。この反応溶液に飽和塩化アンモニウム溶液(2ml)、水(2ml)を加えて酢酸エチル(3ml×5回)にて抽出をし、次いで無水硫酸ナトリウム上で乾燥後、ろ別し減圧下濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン:アセトン=2:1)にて精製し、表題化合物(10.1mg)を白色結晶として収率15%で得た。得られた化合物について同定を行なった結果を下記に示す。   Under a nitrogen atmosphere, sodium hydride (7 mg, 0.3 mmol: used after washing with dehydrated hexane) was suspended in dehydrated tetrahydrofuran (3 ml) and cooled to about −78 ° C. or lower. Cytochalasin E (65.6 mg, 0.13 mmol) dissolved in dehydrated tetrahydrofuran (3 ml) was added dropwise to the reaction solution, and the reaction was performed at −78 ° C. or lower for about 20 minutes and at 0 to 5 ° C. for about 15 minutes. . After cooling again to −78 ° C. or lower, succinic anhydride (25 mg, 0.24 mmol) dissolved in dehydrated tetrahydrofuran (3 ml) was added dropwise to the reaction solution, and the temperature was gradually raised to room temperature. To this reaction solution were added a saturated ammonium chloride solution (2 ml) and water (2 ml), and the mixture was extracted with ethyl acetate (3 ml × 5 times), then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The obtained oil was purified by silica gel column chromatography (hexane: acetone = 2: 1) to give the title compound (10.1 mg) as white crystals in a yield of 15%. The results of identification of the obtained compound are shown below.

1H−NMRスペクトル(300MHz,CDCl3)δ ppm:7.30〜7.00(5H,m)、6.26(1H,d,J=11.6Hz)、5.70〜5.60(1H,m)、5.58(1H,d,J=11.6Hz)、5.20(1H,ddd,J=14.9,11.3,3.8Hz)、4.53(1H,m)、4.38(1H,bs)、3.23(2H,t,J=6.0Hz)、3.04(1H,dd,J=5.2,1.9Hz)、3.00〜2.80(4H,m)、2.75〜2.55(3H,m)、2.50(1H,d,J=5.1Hz)、2.10〜2.00(2H,m)、1.49(3H,s)、1.16(3H,d,J=6.8Hz)、1.11(3H,s)、0.90(3H,d,J=7.0Hz) 1 H-NMR spectrum (300 MHz, CDCl 3 ) δ ppm: 7.30 to 7.00 (5H, m), 6.26 (1H, d, J = 11.6 Hz), 5.70 to 5.60 ( 1H, m), 5.58 (1H, d, J = 11.6 Hz), 5.20 (1H, ddd, J = 14.9, 11.3, 3.8 Hz), 4.53 (1H, m ), 4.38 (1H, bs), 3.23 (2H, t, J = 6.0 Hz), 3.04 (1H, dd, J = 5.2, 1.9 Hz), 3.00-2 .80 (4H, m), 2.75 to 2.55 (3H, m), 2.50 (1H, d, J = 5.1 Hz), 2.10 to 2.00 (2H, m), 1 .49 (3H, s), 1.16 (3H, d, J = 6.8 Hz), 1.11 (3H, s), 0.90 (3H, d, J = 7.0 Hz)

13C−NMRスペクトル(75.5MHz,CDCl3)δ ppm:211.6、172.3×2、168.9、148.8、141.9、135.0、132.1、130.4×2、128.7×2、127.9、127.2、120.7、86.0、76.7、60.2、57.3、55.6、45.7、42.6、40.8、40.7、39.2、35.8、32.3、27.6、24.4、20.0、18.8、12.6 13 C-NMR spectrum (75.5 MHz, CDCl 3 ) δ ppm: 211.6, 172.3 × 2, 168.9, 148.8, 141.9, 135.0, 132.1, 130.4 × 2, 128.7 × 2, 127.9, 127.2, 120.7, 86.0, 76.7, 60.2, 57.3, 55.6, 45.7, 42.6, 40. 8, 40.7, 39.2, 35.8, 32.3, 27.6, 24.4, 20.0, 18.8, 12.6

[実施例2](6,7-epoxy-10-phenyl-5,6,16,18-tetramethyl-21,23-dioxa-[13]cytochalas-13,19-diene-17,22-dione-2-yl)-acetic acid ethyl esterの合成)

Figure 0004565236
[Example 2] (6,7-epoxy-10-phenyl-5,6,16,18-tetramethyl-21,23-dioxa- [13] cytochalas-13,19-diene-17,22-dione-2 -yl) -acetic acid ethyl ester)
Figure 0004565236

窒素雰囲気下、水素化ナトリウム(0.6mg、0.02mmol:脱水ヘキサンにて洗浄処理を施したものを使用)を脱水テトラヒドロフラン(0.5ml)に懸濁させ約−78℃以下まで冷却した。この反応溶液に脱水テトラヒドロフラン(0.5ml)に溶解させたCytochalasin E(10mg、0.02mmol)を滴下し、−78℃以下で約20分間、0〜5℃下で約15分反応を行った。再度、−78℃以下まで冷却した後、この反応溶液にブロモ酢酸エチル(3μl、0.02mmol)を滴下し、徐々に室温まで昇温した。この反応溶液に飽和塩化アンモニウム溶液(1ml)、水(1ml)を加えて酢酸エチル(3ml×5回)にて抽出をし、次いで無水硫酸ナトリウム上で乾燥後、ろ別し減圧下濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)にて精製し表題化合物(5.2mg)を白色結晶として収率45%で得た。得られた化合物について同定を行なった結果を下記に示す。   Under a nitrogen atmosphere, sodium hydride (0.6 mg, 0.02 mmol: used after washing with dehydrated hexane) was suspended in dehydrated tetrahydrofuran (0.5 ml) and cooled to about −78 ° C. or lower. Cytochalasin E (10 mg, 0.02 mmol) dissolved in dehydrated tetrahydrofuran (0.5 ml) was added dropwise to the reaction solution, and the reaction was performed at −78 ° C. or lower for about 20 minutes and at 0 to 5 ° C. for about 15 minutes. . After cooling again to −78 ° C. or lower, ethyl bromoacetate (3 μl, 0.02 mmol) was added dropwise to the reaction solution, and the temperature was gradually raised to room temperature. Saturated ammonium chloride solution (1 ml) and water (1 ml) were added to the reaction solution, and the mixture was extracted with ethyl acetate (3 ml × 5 times), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The obtained oil was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to give the title compound (5.2 mg) as white crystals in a yield of 45%. The results of identification of the obtained compound are shown below.

1H−NMRスペクトル(300MHz,CDCl3)δ ppm:7.30〜7.00(5H,m)、6.29(1H,d,J=11.7Hz)、5.88(1H,dd,J=14.9,10.5Hz)、5.54(1H,d,J=11.7Hz)、5.16(1H,ddd,J=14.9,10.5,3.7Hz)、4.63(1H,d,J=17.5Hz)、4.41(1H,bs)、4.18(2H,q,J=7.2Hz)、4.01(1H,m)、3.69(1H,d,J=17.5Hz)、3.02(1H,m)、2.91(2H,m)、2.70〜2.50(4H,m)、2.28(1H,m)、2.13(1H,m)、1.47(3H,s)、1.33(3H,s)、1.28(3H,t,J=7.2Hz)、1.15(3H,d,J=6.6Hz)、1.02(3H,d,J=7.3Hz)、また4.01ppmと3.69pmにNOEを観測 1 H-NMR spectrum (300 MHz, CDCl 3 ) δ ppm: 7.30 to 7.00 (5H, m), 6.29 (1H, d, J = 11.7 Hz), 5.88 (1H, dd, J = 14.9, 10.5 Hz), 5.54 (1H, d, J = 11.7 Hz), 5.16 (1H, ddd, J = 14.9, 10.5, 3.7 Hz), 4 .63 (1H, d, J = 17.5 Hz), 4.41 (1H, bs), 4.18 (2H, q, J = 7.2 Hz), 4.01 (1H, m), 3.69 (1H, d, J = 17.5 Hz), 3.02 (1H, m), 2.91 (2H, m), 2.70-2.50 (4H, m), 2.28 (1H, m ), 2.13 (1H, m), 1.47 (3H, s), 1.33 (3H, s), 1.28 (3H, t, J = 7.2 Hz), 1.15 (3H) d, J = 6.6Hz), 1.02 (3H, d, J = 7.3Hz), also observed NOE to 4.01ppm and 3.69pm

13C−NMRスペクトル(75.5MHz,CDCl3)δ ppm:211.5、168.4、167.6、149.0、141.9、134.9、131.1、130.0×2、128.8、128.7×2、127.3、120.3、86.8、77.3、61.6、60.7、57.8、57.2、46.1、44.7、42.8、40.8、40.1、39.1、35.7、24.4、20.0、19.4、14.2、13.2 13 C-NMR spectrum (75.5 MHz, CDCl 3 ) δ ppm: 211.5, 168.4, 167.6, 149.0, 141.9, 134.9, 131.1, 130.0 × 2, 128.8, 128.7 × 2, 127.3, 120.3, 86.8, 77.3, 61.6, 60.7, 57.8, 57.2, 46.1, 44.7, 42.8, 40.8, 40.1, 39.1, 35.7, 24.4, 20.0, 19.4, 14.2, 13.2

[実施例3](4-[6,7-epoxy-10-(4-methoxyphenyl)-5,6,16,18-tetramethyl-21,23-dioxa-[13]cytochalas-13,19-diene-17,22-dione-2-yl]-4-oxo-butyric acidの合成)

Figure 0004565236
[Example 3] (4- [6,7-epoxy-10- (4-methoxyphenyl) -5,6,16,18-tetramethyl-21,23-dioxa- [13] cytochalas-13,19-diene- Synthesis of 17,22-dione-2-yl] -4-oxo-butyric acid)
Figure 0004565236

窒素雰囲気下、水素化ナトリウム(2.4mg、0.1mmol:脱水ヘキサンにて洗浄処理を施したものを使用)を脱水テトラヒドロフラン(3ml)に懸濁させ約−78℃以下まで冷却した。この反応溶液に脱水テトラヒドロフラン(3ml)に溶解させたPhenochalasin B(20.0mg、0.04mmol)を滴下し、−78℃以下で約20分間、0〜5℃下で約15分反応を行った。再度、−78℃以下まで冷却した後、この反応溶液に脱水テトラヒドロフラン(3ml)に溶解させた無水こはく酸(10mg、0.1mmol)を滴下し、徐々に室温まで昇温した。この反応溶液に飽和塩化アンモニウム溶液(2ml)、水(2ml)を加えて酢酸エチル(3ml×5回)にて抽出をし、次いで無水硫酸ナトリウム上で乾燥後、ろ別し減圧下濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン:アセトン=2:1)にて精製し表題化合物(4.5mg)を白色結晶として収率19%で得た。得られた化合物について同定を行なった結果を下記に示す。   Under a nitrogen atmosphere, sodium hydride (2.4 mg, 0.1 mmol: used after washing with dehydrated hexane) was suspended in dehydrated tetrahydrofuran (3 ml) and cooled to about −78 ° C. or lower. Phenochalasin B (20.0 mg, 0.04 mmol) dissolved in dehydrated tetrahydrofuran (3 ml) was added dropwise to this reaction solution, and the reaction was performed at −78 ° C. or less for about 20 minutes and at 0 to 5 ° C. for about 15 minutes. . After cooling again to −78 ° C. or lower, succinic anhydride (10 mg, 0.1 mmol) dissolved in dehydrated tetrahydrofuran (3 ml) was added dropwise to the reaction solution, and the temperature was gradually raised to room temperature. To this reaction solution were added a saturated ammonium chloride solution (2 ml) and water (2 ml), and the mixture was extracted with ethyl acetate (3 ml × 5 times), then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The obtained oil was purified by silica gel column chromatography (hexane: acetone = 2: 1) to give the title compound (4.5 mg) as white crystals in a yield of 19%. The results of identification of the obtained compound are shown below.

1H−NMRスペクトル(300MHz,CDCl3)δ ppm:7.10〜7.00(2H,m)、6.70〜6.60(2H,m)、6.25(1H,d,J=11.6Hz)、5.70〜5.60(1H,m)、5.57(1H,d,J=11.6Hz)、5.19(1H,ddd,J=14.9,11.3,3.8Hz)、4.52(1H,m)、4.37(1H,bs)、3.73(3H,s)、3.22(2H,t,J=6.0Hz)、3.05(1H,dd,J=5.2,1.9Hz)、3.00〜2.80(4H,m)、2.75〜2.55(3H,m)、2.49(1H,d,J=5.1Hz)、2.10〜2.00(2H,m)、1.49(3H,s)、1.16(3H,d,J=6.8Hz)、1.09(3H,s)、0.91(3H,d,J=7.0Hz) 1 H-NMR spectrum (300 MHz, CDCl 3 ) δ ppm: 7.10 to 7.00 (2H, m), 6.70 to 6.60 (2H, m), 6.25 (1H, d, J = 11.6 Hz), 5.70-5.60 (1 H, m), 5.57 (1 H, d, J = 11.6 Hz), 5.19 (1 H, ddd, J = 14.9, 11.3) , 3.8 Hz), 4.52 (1 H, m), 4.37 (1 H, bs), 3.73 (3 H, s), 3.22 (2 H, t, J = 6.0 Hz), 05 (1H, dd, J = 5.2, 1.9 Hz), 3.00 to 2.80 (4H, m), 2.75 to 2.55 (3H, m), 2.49 (1H, d , J = 5.1 Hz), 2.10 to 2.00 (2H, m), 1.49 (3H, s), 1.16 (3H, d, J = 6.8 Hz), 1.09 (3H) , S) 0.91 (3H, d, J = 7.0Hz)

13C−NMRスペクトル(75.5MHz,CDCl3)δ ppm:211.1、172.3×2、168.9、159.2、148.8、141.9、132.1、131.7、129.3×2、128.9、120.7、113.9×2、86.2、77.7、60.1、57.3、56.0、55.5、45.7、42.5、40.8、40.7、39.1、35.8、32.3、27.7、24.4、20.1、18.8、12.5 13 C-NMR spectrum (75.5 MHz, CDCl 3 ) δ ppm: 211.1, 172.3 × 2, 168.9, 159.2, 148.8, 141.9, 132.1, 131.7, 129.3 × 2, 128.9, 120.7, 113.9 × 2, 86.2, 77.7, 60.1, 57.3, 56.0, 55.5, 45.7, 42. 5, 40.8, 40.7, 39.1, 35.8, 32.3, 27.7, 24.4, 20.1, 18.8, 12.5

[実施例4]([6,7-epoxy-10-(4-methoxyphenyl)-5,6,16,18-tetramethyl-21,23-dioxa-[13]cytochalas-13,19-diene-17,22-dione-2-yl]-acetic acid ethyl esterの合成)

Figure 0004565236
[Example 4] ([6,7-epoxy-10- (4-methoxyphenyl) -5,6,16,18-tetramethyl-21,23-dioxa- [13] cytochalas-13,19-diene-17, Synthesis of 22-dione-2-yl] -acetic acid ethyl ester
Figure 0004565236

窒素雰囲気下、水素化ナトリウム(0.6mg、0.02mmol:脱水ヘキサンにて洗浄処理を施したものを使用)を脱水テトラヒドロフラン(0.5ml)に懸濁させ約−78℃以下まで冷却した。この反応溶液に脱水テトラヒドロフラン(0.5ml)に溶解させたPhenochalasin B(10mg、0.02mmol)を滴下し、−78℃以下で約20分間、0〜5℃下で約15分反応を行った。再度、−78℃以下まで冷却した後、この反応溶液にブロモ酢酸エチル(3μl、0.02mmol)を滴下し、徐々に室温まで昇温した。この反応溶液に飽和塩化アンモニウム溶液(1ml)、水(1ml)を加えて酢酸エチル(3ml×5回)にて抽出をし、次いで無水硫酸ナトリウム上で乾燥後、ろ別し減圧下濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)にて精製し表題化合物(4.5mg)を白色結晶として収率39%で得た。得られた化合物について同定を行なった結果を下記に示す。   Under a nitrogen atmosphere, sodium hydride (0.6 mg, 0.02 mmol: used after washing with dehydrated hexane) was suspended in dehydrated tetrahydrofuran (0.5 ml) and cooled to about −78 ° C. or lower. Phenochalasin B (10 mg, 0.02 mmol) dissolved in dehydrated tetrahydrofuran (0.5 ml) was added dropwise to the reaction solution, and the reaction was performed at −78 ° C. or less for about 20 minutes and at 0 to 5 ° C. for about 15 minutes. . After cooling again to −78 ° C. or lower, ethyl bromoacetate (3 μl, 0.02 mmol) was added dropwise to the reaction solution, and the temperature was gradually raised to room temperature. Saturated ammonium chloride solution (1 ml) and water (1 ml) were added to the reaction solution, and the mixture was extracted with ethyl acetate (3 ml × 5 times), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The obtained oil was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to give the title compound (4.5 mg) as white crystals in a yield of 39%. The results of identification of the obtained compound are shown below.

1H−NMRスペクトル(300MHz,CDCl3)δ ppm:7.10〜7.00(2H,m)、6.80〜6.70(2H,m)、6.30(1H,d,J=11.7Hz)、5.89(1H,dd,J=14.9,10.5Hz)、5.55(1H,d,J=11.7Hz)、5.18(1H,ddd,J=14.9,10.5,3.7Hz)、4.66(1H,d,J=17.5Hz)、4.39(1H,bs)、4.17(2H,q,J=7.2Hz)、4.01(1H,m)、3.73(3H,s)、3.69(1H,d,J=17.5Hz)、3.00(1H,m)、2.91(2H,m)、2.70〜2.50(4H,m)、2.25(1H,m)、2.13(1H,m)、1.46(3H,s)、1.31(3H,s)、1.28(3H,t,J=7.2Hz)、1.15(3H,d,J=6.6Hz)、1.02(3H,d,J=7.3Hz)、また4.01ppmと3.69pmにNOEを観測 1 H-NMR spectrum (300 MHz, CDCl 3 ) δ ppm: 7.10 to 7.00 (2H, m), 6.80 to 6.70 (2H, m), 6.30 (1H, d, J = 11.7 Hz), 5.89 (1 H, dd, J = 14.9, 10.5 Hz), 5.55 (1 H, d, J = 11.7 Hz), 5.18 (1 H, ddd, J = 14) .9, 10.5, 3.7 Hz), 4.66 (1 H, d, J = 17.5 Hz), 4.39 (1 H, bs), 4.17 (2 H, q, J = 7.2 Hz) 4.01 (1H, m), 3.73 (3H, s), 3.69 (1H, d, J = 17.5 Hz), 3.00 (1H, m), 2.91 (2H, m) ) 2.70-2.50 (4H, m), 2.25 (1H, m), 2.13 (1H, m), 1.46 (3H, s), 1.31 (3H, s) 1.28 (3H, t, J = 7.2 Hz), 1.15 (3H, d, J = 6.6 Hz), 1.02 (3H, d, J = 7.3 Hz), and 4.01 ppm NOE observed at 3.69 pm

13C−NMRスペクトル(75.5MHz,CDCl3)δ ppm:211.3、168.4、167.6、159.2、149.1、141.9、131.7、131.1、129.3×2、127.3、120.3、113.9×2、86.8、77.7、61.7、60.7、57.8、57.2、56.0、46.1、44.7、42.5、40.8、40.5、39.3、35.7、24.4、20.1、19.4、14.2、13.5 13 C-NMR spectrum (75.5 MHz, CDCl 3 ) δ ppm: 211.3, 168.4, 167.6, 159.2, 149.1, 141.9, 131.7, 131.1, 129. 3 × 2, 127.3, 120.3, 113.9 × 2, 86.8, 77.7, 61.7, 60.7, 57.8, 57.2, 56.0, 46.1, 44.7, 42.5, 40.8, 40.5, 39.3, 35.7, 24.4, 20.1, 19.4, 14.2, 13.5

本発明のサイトカラシン誘導体は種々のキャリアタンパクと複合体を形成し得るので、この複合体を用いてモノクローナルおよびポリクローナル抗体を作製することができ、抗体活性評価に必要な酵素免疫測定法が可能になる。また、サイトカラシン誘導体には細胞増殖抑制作用、細胞死誘導作用など、種々の薬理活性が知られているところである。本発明のサイトカラシン誘導体も同様に医薬用途試験検査薬としても有用である。   Since the cytochalasin derivative of the present invention can form complexes with various carrier proteins, it is possible to produce monoclonal and polyclonal antibodies using this complex, enabling the enzyme immunoassay necessary for antibody activity evaluation. Become. Cytochalasin derivatives are known to have various pharmacological activities such as cell growth inhibitory action and cell death inducing action. The cytochalasin derivative of the present invention is also useful as a test drug for pharmaceutical use.

Claims (2)

下記一般式(1)または(2)で表わされることを特徴とするサイトカラシン誘導体。
Figure 0004565236
(上記式中のR1は、水素原子、炭化水素基またはスクシノイル基を表わし、R2は水素原子またはメトキシ基を表わす。)
A cytochalasin derivative represented by the following general formula (1) or (2):
Figure 0004565236
(R 1 in the above formula represents a hydrogen atom, a hydrocarbon group or a succinoyl group, and R 2 represents a hydrogen atom or a methoxy group.)
下記一般式(3)で表わされるサイトカラシンに、そのラクタムと反応する化合物を反応させることを特徴とする請求項1に記載の一般式(1)または(2)で表わされるサイトカラシン誘導体の製造方法。
Figure 0004565236
(上記式中のR2は水素原子またはメトキシ基を表わす。)
2. The production of a cytochalasin derivative represented by the general formula (1) or (2) according to claim 1, wherein a compound that reacts with the lactam is reacted with the cytochalasin represented by the following general formula (3). Method.
Figure 0004565236
(R 2 in the above formula represents a hydrogen atom or a methoxy group.)
JP2004342570A 2004-11-26 2004-11-26 Cytochalasin derivative and method for producing the same Expired - Fee Related JP4565236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342570A JP4565236B2 (en) 2004-11-26 2004-11-26 Cytochalasin derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342570A JP4565236B2 (en) 2004-11-26 2004-11-26 Cytochalasin derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006151846A JP2006151846A (en) 2006-06-15
JP4565236B2 true JP4565236B2 (en) 2010-10-20

Family

ID=36630562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342570A Expired - Fee Related JP4565236B2 (en) 2004-11-26 2004-11-26 Cytochalasin derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4565236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004762A (en) * 2008-06-24 2010-01-14 Kobe Univ Cytochalasin derivative and method for producing the same

Also Published As

Publication number Publication date
JP2006151846A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
EP2539335B1 (en) Process for the preparation of isoxazoline derivatives
NO334115B1 (en) Ethyl 3 - [(2 - {[4- (hexyloxycarbonylamino-imino-methyl) -phenylamino] -methyl} -1-methyl-1H-benzimidazole-5-carbonyl) -pyridin-2-yl-amino] -propionate methanesulfonate in crystalline form, process for manufacture as well as pharmaceutical preparation containing the same
JPH0762003B2 (en) Process for producing 5-oxo-imidazolinylbenzoic acids, nicotinic acids and quinolinecarboxylic acids
JP4565236B2 (en) Cytochalasin derivative and method for producing the same
EA002633B1 (en) Method for the synthesis of quinoline derivatives
TWI714702B (en) Preparation method of pyridine derivates compounds, and intermidiates and structures thereof
JPWO2002024707A1 (en) Cephem compound and ESBL detection reagent containing the same
Okawara et al. Convenient syntheses of cyclic carboxamides from α, β, γ, δ and ε-halocarboxamides under phase transfer conditions
CN107778224B (en) Preparation method of betrixaban intermediate
KR20190049883A (en) Method for producing phenylalanine compound
CN100532358C (en) Method for splitting amlodipine
JP4680607B2 (en) Monoclonal antibody that recognizes ciguatoxins, and ciguatoxins detection kit using the same
CN109232552B (en) Piperidine thiazole derivative containing bisamide structure and preparation method and application thereof
EA008883B1 (en) A process for the preparation of chirally pure n-(trans-4-isopropyl-cyclohexylcarbonyl)-d-phenylalanine and crystalline modifications thereof
SU576046A3 (en) Method of preparing penicillin derivatives or salts thereof
JPH06340622A (en) Production of benzylsuccinic acid derivative and intermediate for its synthesis
JP3252484B2 (en) Method for producing 4,5-dihydro [1,2,4] triazolo [4,3-a] quinoxaline derivative
JP3573364B2 (en) Novel N- (2-cinnamylaminoethyl) naphthalenesulfonamide derivative
WO2017111042A1 (en) Process and intermediates for preparation of thiazine derivatives
KR20160032914A (en) Benzenesulfonamide compounds
RU2130929C1 (en) Derivatives of substituted quinolines and method of synthesis of 3-methoxymethyl-7- or 8-hydroxyquinoline
JP3875315B2 (en) Process for producing optically active acylsulfonamides
KR0173036B1 (en) 2-sulfonylthiazolcarboxamide derivatives and process for their preparation
SU1657496A1 (en) Method for obtaining amide of 4-hydroxychinolone-2-carboxylic-3-acid
EP0117412A1 (en) Propene derivatives and their use as plant growth inhibitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees