JP4565155B2 - Clay composition for porous metal or porous ceramics, and method for producing porous metal or porous ceramics using the same - Google Patents

Clay composition for porous metal or porous ceramics, and method for producing porous metal or porous ceramics using the same Download PDF

Info

Publication number
JP4565155B2
JP4565155B2 JP2005132405A JP2005132405A JP4565155B2 JP 4565155 B2 JP4565155 B2 JP 4565155B2 JP 2005132405 A JP2005132405 A JP 2005132405A JP 2005132405 A JP2005132405 A JP 2005132405A JP 4565155 B2 JP4565155 B2 JP 4565155B2
Authority
JP
Japan
Prior art keywords
alloy
clay
pore
porous
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005132405A
Other languages
Japanese (ja)
Other versions
JP2006307295A (en
Inventor
透 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005132405A priority Critical patent/JP4565155B2/en
Publication of JP2006307295A publication Critical patent/JP2006307295A/en
Application granted granted Critical
Publication of JP4565155B2 publication Critical patent/JP4565155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、多孔質金属又は多孔質セラミックス用粘土組成物、それを用いた多孔質金属又は多孔質セラミックスの製造方法に関するものである。   The present invention relates to a clay composition for porous metal or porous ceramics, and a method for producing porous metal or porous ceramics using the same.

所要形状の金属製品の製造法として、粘土状の素材を所要形状に成型した後、それを乾燥するか、あるいは脱脂後焼結する方法が知られているが(特許文献1ないし3参照)、この方法は得られる金属製品を高密度とするのを課題とするものであって、多孔質とするものではない。
また、多孔質体としては、気孔率を変化させる製法も知られているが(特許文献4ないし7参照)、これらの方法では気孔率を任意に調整・設計して変化させるのは困難である。
また、方向性のある気孔をもつ多孔質材料の製造方法も提案されてはいるが(特許文献8、9参照)、この方法も多孔質材料に高い気孔率をもたせるのは技術的に難しく、また気孔径の制御も困難である。
As a method for producing a metal product of a required shape, a method is known in which a clay-like material is molded into a required shape and then dried or degreased and sintered (see Patent Documents 1 to 3). This method is intended to increase the density of the resulting metal product, and is not porous.
In addition, as a porous body, manufacturing methods for changing the porosity are known (see Patent Documents 4 to 7), but it is difficult to arbitrarily adjust and design the porosity by these methods. .
In addition, although a method for producing a porous material having directional pores has been proposed (see Patent Documents 8 and 9), it is technically difficult for this method to give the porous material a high porosity, It is also difficult to control the pore diameter.

特開平07−070604号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 07-070604 (Claims and others) 特開平08−269503号公報(特許請求の範囲その他)JP 08-269503 A (claims and others) 特許第3435508号公報(特許請求の範囲その他)Japanese Patent No. 3435508 (Claims and others) 特開平07−138084号公報(特許請求の範囲その他)JP 07-138084 A (claims and others) 特開平10−231184号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 10-231184 (Claims and others) 特開2003−128477号公報(特許請求の範囲その他)JP 2003-128477 A (Claims and others) 特開2003−165782号公報(特許請求の範囲その他)JP 2003-165882 A (Claims and others) 米国特許第5,181,549号明細書(特許請求の範囲その他)US Pat. No. 5,181,549 (Claims and others) 特開平2003−200253(特許請求の範囲その他)Japanese Patent Laid-Open No. 2003-200353 (Claims and others)

本発明の課題は、このような事情の下、多孔質金属又は多孔質セラミックス用粘土組成物やそれを用いて容易に多孔質材料、中でも気孔径や気孔率に分布、例えば傾斜性分布等をもたせ、また、気孔に方向性をもたせた多孔質材料を製造する方法を提供することにある。   Under such circumstances, the object of the present invention is to provide a clay composition for a porous metal or a porous ceramics or a porous material, and easily distribute a porous material, particularly a pore diameter and a porosity, such as a gradient distribution. It is another object of the present invention to provide a method for producing a porous material in which pores are oriented.

本発明者は、多孔質金属や多孔質セラミックスを製造するのに適した粘土組成物を開発すべく鋭意研究を重ねた結果、所定気孔形成材を用い、これと所定無機粉と所定バインダーを含むスラリーにゲル化剤を加えることが、課題解決に資することを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies to develop a clay composition suitable for producing porous metals and porous ceramics, the present inventor has used a predetermined pore forming material and includes a predetermined inorganic powder and a predetermined binder. It has been found that adding a gelling agent to the slurry contributes to solving the problem, and the present invention has been made based on this finding.

すなわち、本発明は、以下のとおりのものである。
(1)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と、金属粉又はセラミックス粉と、粒径5〜5000μmの発泡樹脂、中空樹脂及び中実樹脂の中から選ばれた少なくとも1種の樹脂からなる気孔形成材とを含んでなるスラリーに、ゲル化剤を加えて粘土状の粘土組成物とする際に、気孔形成材の含有割合を異にする2種以上の粘土組成物とし、それら2種以上の粘土組成物を組み合わせて成形し、乾燥したのち、焼成するとともに気孔形成材を焼失させることを特徴とする多孔質材料の製造方法。
(2)組み合わせて成形するのを、2種以上の粘土組成物を、気孔形成材の含有割合が積層方向に傾斜分布を呈するように積層することによって行い、厚さ方向に気孔率が傾斜分布を呈する多孔質材料を製造する前記(1)記載の製造方法。
(3)(A)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と、金属粉又はセラミックス粉と、粒径5〜5000μmの発泡樹脂、中空樹脂及び中実樹脂の中から選ばれた少なくとも1種の樹脂からなる気孔形成材とを含んでなるスラリーに、ゲル化剤を加えて粘土状としてなる粘土組成物と、(B)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた金属粉又はセラミックス粉を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物及び(C)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた気孔形成材を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物の一方又は両方とを組み合わせて成形し、乾燥したのち、焼成するとともに気孔形成材を焼失させることを特徴とする多孔質材料の製造方法。
(4)(C)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた気孔形成材を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物を棒状に成形して第一の芯材とし、これを包むように(B)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた金属粉又はセラミックス粉を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物を包着したものを引き伸ばし、これを数等分し、これらをまとめて棒状に成形して第二の芯材とし、これを包むように粘土組成物(B)を包着したものを引き伸ばす操作を繰り返すことにより、引き伸ばし方向に繊維状の気孔形成材が列設された多孔質体前駆体を作成し、該前駆体を乾燥し、これを包むように粘土組成物(B)を包着したのち、乾燥し、さらにこれを包むように(A)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と、金属粉又はセラミックス粉と、粒径5〜5000μmの発泡樹脂、中空樹脂及び中実樹脂の中から選ばれた少なくとも1種の樹脂からなる気孔形成材とを含んでなるスラリーに、ゲル化剤を加えて粘土状としてなる粘土組成物を包着したのち、乾燥し、焼成するとともに気孔形成材を焼失させることを特徴とする多孔質材料の製造方法。
(5)気孔形成材が発泡ポリスチレンからなる前記(1)ないし(4)のいずれかに記載の多孔質材料の製造方法。
(6)ゲル化剤が含ホウ素化合物、コンゴーレッド、又は、フェノールである前記(1)ないし(5)のいずれかに記載の多孔質材料の製造方法。
(7)含ホウ素化合物が硼砂又は硼酸である前記(6)記載の多孔質材料の製造方法。
(8)スラリーがさらに界面活性剤を含むものである前記(1)ないし(7)のいずれかに記載の多孔質材料の製造方法。
(9)金属粉が、貴金属、貴金属合金、銅、ニッケル、チタン、モリブデン、タングステン、アルミニウム系合金、銅系合金、チタン系合金、モリブデン系合金、タングステン系合金、ニッケル系合金、鉄系合金、コバルト系合金、磁性合金、超硬合金、耐食合金、耐熱合金、導電用合金、超電導合金、摺動用合金、軸受用合金、防振合金、水素貯蔵用合金、形状記憶合金、電極用合金、金属間化合物、ステンレス鋼、炭素鋼、合金鋼、磁石鋼、工具鋼及び高速度鋼の中から選ばれた少なくとも1種である前記(1)ないし(8)のいずれかに記載の多孔質材料の製造方法。
(10)セラミックス粉が、シリカ、シリカ‐アルミナ、シリカ‐マグネシア、シリカ‐チタニア、シリカ‐ジルコニア、アルミナ、アルミナ‐マグネシア、アルミナ‐チタニア、アルミナ‐ボリア、アルミナ‐ジルコニア、アルミナ‐ホスファ、チタニア、ジルコニア、ボリア、ケイ石、ケイ砂、カオリン、ベントナイト、マグネサイト、ドロマイト、長石、陶石、ゼオライト、シリコンカーバイド、PZT及び磁性セラミックスの中から選ばれた少なくとも1種である前記(1)ないし(8)のいずれかに記載の多孔質材料の製造方法。
That is, the present invention is as follows.
(1) An aqueous solution of a binder composed of a viscous water-soluble polymer containing polyvinyl alcohol as a main component, a metal powder or a ceramic powder, a foamed resin having a particle size of 5 to 5000 μm, a hollow resin, and a solid resin. Two or more kinds having different content ratios of the pore-forming material when adding a gelling agent to the slurry comprising the pore-forming material composed of at least one kind of resin to obtain a clay-like clay composition the clay composition, and molding a combination of these two or more clay compositions, after drying, a manufacturing method of a porous material, characterized in that burning off the pore-forming material with firing.
(2) Molding in combination is performed by laminating two or more clay compositions so that the content ratio of the pore-forming material exhibits a gradient distribution in the lamination direction, and the porosity has a gradient distribution in the thickness direction. The manufacturing method of said (1) description which manufactures the porous material which exhibits this.
(3) (A) An aqueous solution of a binder comprising a viscous water-soluble polymer containing polyvinyl alcohol as a main component, a metal powder or a ceramic powder, a foamed resin having a particle size of 5 to 5000 μm, a hollow resin, and a solid resin. A clay composition which is made into a clay by adding a gelling agent to a slurry comprising a pore-forming material comprising at least one resin selected from the above; and (B) a viscous composition containing polyvinyl alcohol as a main component . A clay composition obtained by adding a gelling agent to a slurry containing a metal powder or a ceramic powder mixed with an aqueous solution of a binder made of a water-soluble polymer, and a viscosity containing (C) polyvinyl alcohol as a main component. A gelling agent is added to a slurry containing a pore-forming material mixed with an aqueous binder solution composed of a water-soluble polymer to form a clay. Comprising one or a combination of the both molding clay composition, after drying, a manufacturing method of a porous material, characterized in that burning off the pore-forming material with firing.
(4) (C) Clay composition obtained by adding a gelling agent to a slurry containing a pore-forming material mixed with an aqueous solution of a binder made of a viscous water-soluble polymer containing polyvinyl alcohol as a main component to form a clay. A metal powder or ceramic powder mixed with an aqueous solution of a binder made of a viscous water-soluble polymer containing polyvinyl alcohol as a main component so as to wrap the product into a rod shape to be a first core material. A slurry obtained by adding a gelling agent and encapsulating a clay composition in a clay form is stretched, divided into several equal parts, and these are collectively formed into a rod shape to form a second core material. A porous body precursor in which fibrous pore-forming materials are arranged in the stretching direction is prepared by repeating the operation of stretching the clay composition (B) wrapped so as to wrap The precursor is dried, after Tsutsumigi clay composition (B) so as to wrap it, dried, comprising a water-soluble polymer with a viscous comprising as further main components (A) polyvinyl alcohol so as to wrap them A slurry comprising an aqueous solution of a binder, metal powder or ceramic powder, and a pore forming material comprising at least one resin selected from a foamed resin having a particle size of 5 to 5000 μm, a hollow resin and a solid resin. A method for producing a porous material, comprising: encapsulating a clay composition that is made into a clay by adding a gelling agent ; drying and firing; and burning the pore-forming material.
(5) The method for producing a porous material according to any one of (1) to (4), wherein the pore forming material is made of expanded polystyrene.
(6) The method for producing a porous material according to any one of (1) to (5), wherein the gelling agent is a boron-containing compound, Congo red, or phenol.
(7) The method for producing a porous material according to (6), wherein the boron-containing compound is borax or boric acid.
(8) The method for producing a porous material according to any one of (1) to (7), wherein the slurry further contains a surfactant.
(9) Metal powder is noble metal, noble metal alloy, copper, nickel, titanium, molybdenum, tungsten, aluminum alloy, copper alloy, titanium alloy, molybdenum alloy, tungsten alloy, nickel alloy, iron alloy, Cobalt alloys, magnetic alloys, cemented carbides, corrosion resistant alloys, heat resistant alloys, conductive alloys, superconducting alloys, sliding alloys, bearing alloys, anti-vibration alloys, hydrogen storage alloys, shape memory alloys, electrode alloys, metals The porous material according to any one of (1) to (8), which is at least one selected from an intermetallic compound, stainless steel, carbon steel, alloy steel, magnet steel, tool steel, and high-speed steel Production method.
(10) Ceramic powder is silica, silica-alumina, silica-magnesia, silica-titania, silica-zirconia, alumina, alumina-magnesia, alumina-titania, alumina-boria, alumina-zirconia, alumina-phospha, titania, zirconia (1) to (8) which is at least one selected from boria, quartzite, quartz sand, kaolin, bentonite, magnesite, dolomite, feldspar, porcelain stone, zeolite, silicon carbide, PZT and magnetic ceramics. The method for producing a porous material according to any one of the above.

本発明の粘土組成物は、粘性のある水溶性高分子からなるバインダーの水溶液、金属粉又はセラミックス粉(以下、金属・セラミックス粉ともいう)及び気孔形成材を含んでなるスラリー(以下、粉体等含有スラリーともいう)に、ゲル化剤を加えて粘土状としてなるものである。   The clay composition of the present invention comprises a binder aqueous solution composed of a viscous water-soluble polymer, a metal powder or ceramic powder (hereinafter also referred to as metal / ceramic powder) and a slurry comprising a pore-forming material (hereinafter referred to as powder). It is also referred to as an equal-containing slurry) and a gelling agent is added to form a clay.

この金属粉としては、水と接触させても急激に酸化することのないものが好ましく、このようなものの金属種としては、例えば金、銀、白金、パラジウム等の貴金属やその合金、銅、ニッケル、チタン、モリブデン、タングステン、アルミニウム系合金、銅系合金、チタン系合金、モリブデン系合金、タングステン系合金、ニッケル系合金、鉄系合金、コバルト系合金、磁性合金(例えばSm−Co系磁性体、Nd−Fe−B系磁性体等)、超硬合金、耐食合金、耐熱合金、導電用合金、超電導合金、摺動用合金、軸受用合金、防振合金、水素貯蔵用合金、形状記憶合金、電極用合金、金属間化合物、ステンレス鋼、炭素鋼、合金鋼、磁石鋼、工具鋼、高速度鋼等が挙げられる。これらは1種用いてもよいし、また、2種以上を組み合わせて用いてもよい。
また、セラミックス粉としては、例えばシリカ、シリカ‐アルミナ、シリカ‐マグネシア、シリカ‐チタニア、シリカ‐ジルコニア、アルミナ、アルミナ‐マグネシア、アルミナ‐チタニア、アルミナ‐ボリア、アルミナ‐ジルコニア、アルミナ‐ホスファ、チタニア、ジルコニア、ボリア、ケイ石、ケイ砂、カオリン、ベントナイト、マグネサイト、ドロマイト、長石、陶石、ゼオライト、シリコンカーバイド、PZT、磁性セラミックス等が挙げられる。これらは1種用いてもよいし、また、2種以上を組み合わせて用いてもよい。
金属粉やセラミックス粉の粒径については特に制限されないが、通常100μm以下、好ましくは20〜0.1μmの範囲で、目標とする気孔径、気孔率等を考慮しつつ選ばれる。
This metal powder is preferably one that does not oxidize rapidly even when brought into contact with water. Examples of such metal species include noble metals such as gold, silver, platinum, and palladium, and alloys thereof, copper, nickel. , Titanium, molybdenum, tungsten, aluminum alloy, copper alloy, titanium alloy, molybdenum alloy, tungsten alloy, nickel alloy, iron alloy, cobalt alloy, magnetic alloy (for example, Sm-Co magnet, Nd-Fe-B magnetic materials), cemented carbide, corrosion resistant alloy, heat resistant alloy, conductive alloy, superconducting alloy, sliding alloy, bearing alloy, anti-vibration alloy, hydrogen storage alloy, shape memory alloy, electrode Alloy, intermetallic compound, stainless steel, carbon steel, alloy steel, magnet steel, tool steel, high speed steel and the like. These may be used alone or in combination of two or more.
Examples of the ceramic powder include silica, silica-alumina, silica-magnesia, silica-titania, silica-zirconia, alumina, alumina-magnesia, alumina-titania, alumina-boria, alumina-zirconia, alumina-phospha, titania, Examples include zirconia, boria, quartzite, quartz sand, kaolin, bentonite, magnesite, dolomite, feldspar, porcelain stone, zeolite, silicon carbide, PZT, and magnetic ceramics. These may be used alone or in combination of two or more.
The particle size of the metal powder or ceramic powder is not particularly limited, but is usually 100 μm or less, preferably in the range of 20 to 0.1 μm, taking into account the target pore diameter, porosity and the like.

上記バインダーは、水溶液とすると粘性を示す水溶性高分子であればよく、このようなものとしては、例えばポリビニルアルコール、メチルセルロース、エチルセルロース等のアルキルセルロース、ポリエチレングリコール、ポリビニールピロリドン、その他、天然増粘材としてのキサンタンガム、アガロース、マンノース、アルギン酸ナトリウム、デキストラン、グアガム、カラギーナン、ペクチン、ジュランガムなどが取り扱いが容易であり、これらの水溶性高分子は1種用いてもよいし、また、2種以上を組み合わせて用いてもよい。中でもポリビニールアルコールが目的粘土組成物に容易に薄く、あるいは細く引き延ばせるなど優れた成形加工性をもたらし、例えば粘土組成物をそのまま圧延・乾燥・焼成することによって、例えば厚さ0.1〜0.5mm、気孔率80〜95%のシート状の多孔質体等を容易に製造するのを可能にするので、本発明では、ポリビニルアルコールを主成分として含む粘性のある水溶性高分子を用いる。 The binder may be a water-soluble polymer that exhibits viscosity when used as an aqueous solution. Examples of such a binder include alkyl celluloses such as polyvinyl alcohol, methyl cellulose, and ethyl cellulose, polyethylene glycol, polyvinyl pyrrolidone, and other natural thickening agents. Xanthan gum, agarose, mannose, sodium alginate, dextran, guar gum, carrageenan, pectin, duran gum and the like as materials are easy to handle, and these water-soluble polymers may be used alone or in combination of two or more. You may use it in combination. Among them, polyvinyl alcohol brings excellent molding processability such as being easily thinned or thinly stretched to the target clay composition. For example, by rolling, drying and firing the clay composition as it is, for example, a thickness of 0.1 to 0 The sheet-like porous body having a thickness of 0.5 mm and a porosity of 80 to 95% can be easily produced. In the present invention, a viscous water-soluble polymer containing polyvinyl alcohol as a main component is used.

上記気孔形成材は、粒径5〜5000μm、好ましくは20〜1000μmの発泡樹脂、中空樹脂及び中実樹脂の中から選ばれた少なくとも1種の樹脂からなるものであって、樹脂の材質については加熱あるいはその他の手法による分解が可能であれば限定されないが、好ましくは発泡ポリスチレンが用いられる。気孔形成材は、それを含まない粘土をそのまま乾燥させると収縮してしまうのに対し、目的粘土組成物について乾燥による収縮を起こさせないようにするのに有用である。   The pore forming material is composed of at least one resin selected from a foamed resin, a hollow resin and a solid resin having a particle size of 5 to 5000 μm, preferably 20 to 1000 μm. Although it will not be limited if decomposition | disassembly by a heating or another method is possible, Preferably a polystyrene foam is used. The pore-forming material is useful for preventing shrinkage due to drying of the target clay composition, whereas the pore-forming material shrinks when the clay containing it is dried as it is.

粉体等含有スラリーにおいて、金属・セラミックス粉の含有割合は体積基準で5〜70%、好ましくは10〜60%の範囲で、また気孔形成材の含有割合は金属・セラミックス粉と水溶性高分子水溶液の合計体積に対し、嵩体積基準で5〜4000%、好ましくは10〜2000%の範囲で選ばれ、水溶性高分子水溶液は水溶性高分子濃度が該水溶液に対して0.5〜30質量%、好ましくは1〜15質量%の範囲になるように調整されたものがよい。
さらに、気孔形成材は望む気孔率に応じて上記含有割合を変動させるが、高気孔率の場合には粉体等含有スラリーに対し5〜20倍のタップ体積となるようにすることも可能である。また、高気孔率の気孔形成には気孔形成材の形状を真球形、あるいはそれに近い形状とすることが望ましい。
In the slurry containing powder and the like, the content ratio of the metal / ceramic powder is 5 to 70%, preferably 10 to 60% by volume, and the content ratio of the pore forming material is the metal / ceramic powder and the water-soluble polymer. It is selected in the range of 5 to 4000%, preferably 10 to 2000%, based on the bulk volume with respect to the total volume of the aqueous solution. The water-soluble polymer aqueous solution has a water-soluble polymer concentration of 0.5 to 30 with respect to the aqueous solution. What was adjusted so that it might become the range of 1 mass%, preferably 1-15 mass% is good.
Furthermore, the pore forming material varies the content ratio according to the desired porosity, but in the case of a high porosity, the tap volume may be 5 to 20 times that of the slurry containing powder or the like. is there. For the formation of pores with a high porosity, the shape of the pore-forming material is preferably a true sphere or a shape close thereto.

また、粉体等含有スラリーには、必要に応じ、適宜任意成分添加することもできる。
このような添加成分としては、例えば界面活性剤、成形性向上材、可塑剤、溶媒などが挙げられる。
界面活性剤は粉体等含有スラリーにおいてその表面張力を低下させたり、気孔形成材のなじみを向上させたりするのに有用であり、好ましくはアルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、α−オレフィンスルホン酸塩、アルカンスルホン酸塩、アルキルベンゼンスルホン酸塩などのアニオン界面活性剤や、ポリオキシエチルアルキルエーテル等のポリエチレングリコール誘導体、多価アルコール誘導体などのノニオン界面活性剤、市販の汎用中性洗剤が挙げられる。
界面活性剤の添加量は気孔形成材やその粉体等含有スラリーに対する含有割合等に応じて適宜調節される。
また、成形性向上材は、目的粘土組成物について成形性、中でも延性を向上させるのに有用であり、好ましくはでんぷん、多糖類等が挙げられ、さらにでんぷん類としては、小麦粉、コーンスターチ、馬鈴薯でんぷんなどが入手容易で取り扱いやすいので有利である。
また、可塑剤としては、金属粉又はセラミックス粉の分散効果を高めるもの、好ましくはグリセリン、エチレングリコールが挙げられる。
また、溶媒としては、乾燥性を高めるもの、好ましくはエタノールのようなアルコール類が挙げられる。
Moreover, arbitrary components can also be suitably added to slurry containing powder etc. as needed.
Examples of such additive components include surfactants, moldability improvers, plasticizers, solvents, and the like.
The surfactant is useful for reducing the surface tension of the slurry containing powder or the like, or improving the familiarity of the pore-forming material, preferably alkyl sulfate ester salt, alkyl ether sulfate ester salt, α-olefin. Anionic surfactants such as sulfonates, alkane sulfonates, and alkylbenzene sulfonates, nonionic surfactants such as polyethylene glycol derivatives such as polyoxyethyl alkyl ether, polyhydric alcohol derivatives, and commercially available general-purpose neutral detergents Can be mentioned.
The addition amount of the surfactant is appropriately adjusted according to the content ratio of the pore-forming material and its powder-containing slurry.
Further, the moldability improving material is useful for improving the moldability, particularly ductility, of the target clay composition, preferably starch, polysaccharides, etc., and starches include flour, corn starch, potato starch Are easy to obtain and easy to handle.
Examples of the plasticizer include those that enhance the dispersion effect of metal powder or ceramic powder, preferably glycerin and ethylene glycol.
Moreover, as a solvent, what improves drying property, Preferably alcohols like ethanol are mentioned.

本発明において用いられるゲル化剤は、前記諸成分を混合して調製されるスラリーに混合することにより、これを粘土状とするものであればよく、例えば水溶性高分子がポリビニルアルコールの場合、このようなものとしては、含ホウ素化合物、コンゴーレッド、フェノールなどが挙げられ、中でも硼砂、硼酸等の含ホウ素化合物が好ましい。   The gelling agent used in the present invention is not particularly limited as long as it is made into a clay by mixing with the slurry prepared by mixing the various components. For example, when the water-soluble polymer is polyvinyl alcohol, Examples of such compounds include boron-containing compounds, Congo red, and phenol. Among them, boron-containing compounds such as borax and boric acid are preferable.

前記した本発明の粘土組成物を用いて多孔質材料を製造することができる。
その簡単な方法としては、前記粘土組成物を成形し、乾燥したのち、焼成するとともに気孔形成材を焼失させる方法が挙げられる。
また、この方法において、成形を、本発明の粘土組成物として気孔形成材の含有割合を異にする2種以上のものを用い、これを組み合わせて行うこと、例えば2種以上の粘土組成物を、気孔形成材の含有割合が積層方向に傾斜分布を呈するように積層することなども可能である。
また、(A)本発明の粘土組成物と、(B)粘性のある水溶性高分子からなるバインダーの水溶液と混合させた金属粉又はセラミックス粉を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物及び(C)粘性のある水溶性高分子からなるバインダーの水溶液と混合させた気孔形成材を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物の一方又は両方とを組み合わせて成形し、乾燥したのち、焼成するとともに気孔形成材を焼失させる方法も挙げられる。
このような方法により、任意に気孔率の分布を変化させた材料の成形も可能となり、特に、気孔形成材の含有量を変えた粘土組成物を層状に積み上げ圧延することによって、例えば0.5〜2mmの厚さの間で気孔率を80〜95%と変化させた多孔質体の製造も可能である。
さらには、(C)粘性のある水溶性高分子からなるバインダーの水溶液と混合させた気孔形成材を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物を棒状に成形して第一の芯材とし、これを包むように(B)粘性のある水溶性高分子からなるバインダーの水溶液と混合させた金属粉又はセラミックス粉を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物を包着したものを引き伸ばし、これを数等分し、これらをまとめて棒状に成形して第二の芯材とし、これを包むように粘土組成物(B)を包着したものを引き伸ばす操作を繰り返すことにより、引き伸ばし方向に繊維状の気孔形成材が列設された多孔質体前駆体を作成し、該前駆体を乾燥し、これを包むように粘土組成物(B)を包着したのち、乾燥し、さらにこれを包むように(A)本発明の粘土組成物を包着したのち、乾燥し、焼成するとともに気孔形成材を焼失させる方法も挙げられる。
このような方法により、気孔形成材を含まない金属粘土に金属を含まない粘土の芯をとおし、引き延ばしながら畳み込む操作を何度も繰り返すことによって、材料の縦方向に繊維状に通気孔が通る構造の多孔質材料の製造も可能である。この場合、乾燥時の収縮を避けるため、成形した素材を一旦凍結し凍結乾燥法により乾燥することもできる。
さらにまた、このような方法を組み合わせて繊維状に走った多孔質構造や、気孔率の高い構造を組み合わせ複雑な気孔構造を持つ多孔質体を製造することも可能である。
A porous material can be produced using the above-described clay composition of the present invention.
As a simple method thereof, there is a method in which the clay composition is molded and dried, and then fired and the pore forming material is burned off.
Further, in this method, the molding is carried out by using two or more types having different pore-forming material content ratios as the clay composition of the present invention, and combining them, for example, two or more types of clay compositions. It is also possible to laminate the pore forming material so that the content ratio of the pore forming material exhibits a gradient distribution in the lamination direction.
Also, a clay is obtained by adding a gelling agent to a slurry comprising (A) the clay composition of the present invention and (B) a metal powder or ceramic powder mixed with an aqueous solution of a binder comprising a viscous water-soluble polymer. One of the clay composition formed into a clay form by adding a gelling agent to a slurry comprising a pore-forming material mixed with an aqueous solution of a binder composed of a viscous water-soluble polymer and (C) a viscous water composition Alternatively, a method may be mentioned in which both are molded, dried and then fired and the pore-forming material is burned off.
By such a method, it is possible to mold a material with arbitrarily changed porosity distribution, and in particular, by laminating and rolling a clay composition having a changed content of the pore forming material in layers, for example, 0.5 It is also possible to produce a porous body having a porosity of 80 to 95% with a thickness of ˜2 mm.
Further, (C) a clay composition obtained by adding a gelling agent to a slurry containing a pore-forming material mixed with an aqueous solution of a binder made of a viscous water-soluble polymer to form a clay is formed into a rod shape. As a first core material, a gelling agent is added to a slurry containing metal powder or ceramic powder mixed with an aqueous solution of a binder made of a viscous water-soluble polymer so as to wrap it as a clay. A clay composition (B) encased in a clay composition (B) is stretched, divided into several equal parts, and these are collectively formed into a rod shape to form a second core material. The porous body precursor in which fibrous pore forming materials are arranged in the stretching direction is prepared by repeating the operation of stretching the clay, the precursor is dried, and the clay composition (B) is wrapped so as to wrap it. Dry after wearing , After further has Tsutsumigi clay composition as (A) the present invention wrap it, dried, how to burn the pore-forming material can be cited as well as sintering.
By such a method, through a metal clay not containing pore-forming material through a clay core containing no metal, and by repeatedly repeating the operation of stretching, a structure in which ventilation holes pass in the form of fibers in the longitudinal direction of the material It is also possible to produce a porous material. In this case, in order to avoid shrinkage at the time of drying, the formed material can be once frozen and dried by a freeze-drying method.
Furthermore, it is also possible to manufacture a porous body having a complicated pore structure by combining a porous structure running in a fibrous form by combining such methods and a structure having a high porosity.

本発明の多孔質金属又は多孔質セラミックス用粘土組成物は、容易に引き伸ばしたり、圧延したり、薄くしたりするなど成形加工性に優れている。
本発明方法によれば、気孔率、気孔径、気孔の方向等の制御された多孔質金属又は多孔質セラミックスを製造することができ、例えば超硬合金のような難加工性材料から貴金属等までの広範な金属やセラミックスを含む幅広い材料の微細なセル構造をもつ高気孔率の多孔質体等を例えばバルク素材等として製造することが可能となる。
本発明方法により得られる多孔質材料の応用範囲は極めて広く、種々の技術分野、例えば、航空宇宙材料、スポーツ用品素材等の軽量かつ高比強度が要求される分野、断熱特性、耐熱性、吸振性の要求される分野、緩衝材料、梱包材料などの衝撃エネルギーの吸収が要求される分野、軽量化の要求される分野、フィルター材料、触媒担体材料、電極材料など広い表面積が要求される分野、生体適合性の要求される分野における素材として利用することが可能である。
本発明方法は、特に安価に供給される鉄系素材やセラミックスについてその多孔質化を実現した効果が大きく、様々の分野における多孔質材料を供するのに資するものである。
The clay composition for porous metal or porous ceramics of the present invention is excellent in moldability such as being easily stretched, rolled, or thinned.
According to the method of the present invention, it is possible to produce a porous metal or porous ceramic with controlled porosity, pore diameter, pore direction, etc., for example, from difficult-to-work materials such as cemented carbide to precious metals, etc. It is possible to manufacture a porous material having a high porosity having a fine cell structure of a wide range of materials including a wide range of metals and ceramics, for example, as a bulk material.
The application range of the porous material obtained by the method of the present invention is very wide, and various technical fields such as aerospace materials and sports equipment materials that require lightweight and high specific strength, heat insulation properties, heat resistance, vibration absorption, etc. Fields that require safety, fields that require absorption of impact energy such as buffer materials and packaging materials, fields that require weight reduction, fields that require a large surface area such as filter materials, catalyst carrier materials, and electrode materials, It can be used as a material in a field requiring biocompatibility.
The method of the present invention is particularly effective in realizing the porosity of iron-based materials and ceramics supplied at low cost, and contributes to providing porous materials in various fields.

次に、実施例により本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described by way of examples.

<多孔質板>
金属粉として、平均粒径3μmのSUS316Lステンレス鋼粉(アトミックス社製、PF−3)(以下、ステンレス鋼粉PFという)を、また、高分子水溶液として、平均分子量115000、ポリビニルアルコールの6質量%水溶液(日本合成化学工業社製、ゴーセノール)(以下、6%PVA液という)を、また、ゲル化剤として硼砂の8質量%水溶液(以下、8%硼砂液という)を、また、気孔形成材として、平均粒径0.1mmの発泡スチロール球(積水化成品工業社製、膨張率20倍)をそれぞれ用いた。
6%PVA液80容量%(25ml)とステンレス鋼粉PF20容量%(50g)を混合してスラリーを調製し、このスラリーに対し、それぞれ4、6、8及び12gと用量を種々変えて気孔形成用樹脂材を混入し、それぞれにさらに8%硼砂液5mlを加えてゲル化させ粘土状として各金属粘土組成物(それぞれ金属粘土組成物A、金属粘土組成物B、金属粘土組成物C、金属粘土組成物Dという)を得た。
これらの各金属粘土組成物を0.5mm厚の薄板状にローラーで圧延成型し60℃で2時間乾燥したのち、真空雰囲気下1050℃で1時間焼成したところ、厚さ0.4mmの軽量の各種多孔質金属板が得られた。これらの多孔質金属板の各気孔率は、気孔形成用樹脂材の混入量の増える順に、81%、86%、88%、93%と増大した。
このような金属板は、電極、フィルター、触媒担体、軽量構造物外装用など広範囲の用途に利用しうる。
<Porous plate>
As a metal powder, SUS316L stainless steel powder (PF-3, manufactured by Atomix Co., Ltd., hereinafter referred to as stainless steel powder PF) having an average particle diameter of 3 μm, and as an aqueous polymer solution, an average molecular weight of 115000 and 6 masses of polyvinyl alcohol. % Aqueous solution (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Gohsenol) (hereinafter referred to as 6% PVA solution), 8% by weight aqueous solution of borax (hereinafter referred to as 8% borax solution) as a gelling agent, and pore formation As materials, polystyrene foam balls having an average particle diameter of 0.1 mm (manufactured by Sekisui Plastics Co., Ltd., expansion rate 20 times) were used.
A slurry was prepared by mixing 80% by volume (25ml) of 6% PVA liquid and 20% by volume (50g) of stainless steel powder PF, and pores were formed by varying the doses to 4, 6, 8 and 12g, respectively. Each resin clay composition (metal clay composition A, metal clay composition B, metal clay composition C, metal Clay composition D) was obtained.
Each of these metal clay compositions was rolled and formed into a 0.5 mm thick sheet with a roller, dried at 60 ° C. for 2 hours, and then baked at 1050 ° C. for 1 hour in a vacuum atmosphere. Various porous metal plates were obtained. The porosity of these porous metal plates increased to 81%, 86%, 88%, and 93% in order of increasing amount of the pore forming resin material.
Such a metal plate can be used for a wide range of applications such as electrodes, filters, catalyst carriers, and exteriors for lightweight structures.

<傾斜構造多孔質板>
実施例1と同様にして得られた金属粘土組成物A、金属粘土組成物C及び金属粘土組成物Dを使用し、厚さ方向に気孔率が変化する多孔質板を以下のようにして作製した。
すなわち、これらの各金属粘土組成物を0.5mm厚の薄板状にローラーで圧延成型し、重ねあわせ、60℃で2時間乾燥したのち、真空雰囲気下1050℃で1時間焼成したところ、気孔率が厚さ方向へ徐々に変化する厚さ1.2mmの多孔質金属板が得られた。気孔率は高気孔率部分で93%、低気孔率部分で80%であった。
このような金属板は、気化装置、燃焼装置等の気化部材用などの用途に利用しうる。
<Inclined porous plate>
Using the metal clay composition A, the metal clay composition C, and the metal clay composition D obtained in the same manner as in Example 1, a porous plate whose porosity varies in the thickness direction is prepared as follows. did.
That is, each of these metal clay compositions was rolled into a 0.5 mm thick sheet with a roller, overlapped, dried at 60 ° C. for 2 hours, and then fired at 1050 ° C. for 1 hour in a vacuum atmosphere. A porous metal plate having a thickness of 1.2 mm in which the thickness gradually changes in the thickness direction was obtained. The porosity was 93% at the high porosity portion and 80% at the low porosity portion.
Such a metal plate can be used for applications such as a vaporizing device and a vaporizing member such as a combustion device.

<縦貫通気孔を有する材料>
実施例1と同様に、高分子水溶液としての6%PVA液、金属粉としてのステンレス鋼粉PF、ゲル化剤としての8%硼砂液、気孔形成材としての発泡スチロール球を使用した。
気孔形成材を含まない金属粘土及び気孔形成材粘土はそれぞれ以下のようにして作製した。
すなわち、6%PVA液25mlに対しステンレス鋼粉PF150gを混合してスラリーを調製し、このスラリーに8%硼砂液5mlを加えてゲル化させ粘土状として該金属粘土を得た。
また、6%PVA液25mlに対し発泡スチロール球10gを混合してスラリーを調製し、このスラリーに8%硼砂液5mlを加えてゲル化させ粘土状として気孔形成材粘土を得た。
気孔形成材粘土を長尺で直径10mmの丸棒に成型し、その丸棒を包むように厚さ1mmの金属粘土を巻き付けたのち、直径が1/3程度になるまで引き伸ばし、短尺に7等分し、これらをまとめてまた1つの丸棒にするという操作を3回程度繰り返して軸方向に繊維状の気孔形成材が揃った多孔質体前駆体を作製し、この前駆体を60℃で24時間乾燥し、水素雰囲気下で1050℃で1時間焼成して軸方向に気孔が揃った多孔質ステンレス鋼を多孔質金属として作製した。この多孔質金属の気孔率は80%、気孔径は0.4mm程度であった。
このように引き伸ばしてはまとめる操作を繰り返せば、金属粉と気孔形成材の粒径により制約されるものの、気孔径をさらに小さくしていくことが可能である。
<Material with vertical through-holes>
As in Example 1, a 6% PVA liquid as a polymer aqueous solution, stainless steel powder PF as a metal powder, 8% borax liquid as a gelling agent, and a polystyrene foam as a pore forming material were used.
The metal clay not containing pore forming material and the pore forming material clay were prepared as follows.
That is, 150 g of stainless steel powder PF was mixed with 25 ml of 6% PVA liquid to prepare a slurry, and 5 ml of 8% borax liquid was added to the slurry to gel, thereby obtaining the metal clay as a clay.
Further, 10 g of polystyrene foam spheres were mixed with 25 ml of 6% PVA liquid to prepare a slurry, and 5 ml of 8% borax liquid was added to the slurry to gel, thereby obtaining a pore forming material clay as clay.
After forming the pore-forming material clay into a long round bar with a diameter of 10 mm, wrapping the metal clay with a thickness of 1 mm so as to wrap the round bar, stretch it until the diameter becomes about 1/3, and divide it into seven equal parts. Then, the operation of putting these together into one round bar is repeated about three times to produce a porous body precursor in which fibrous pore-forming materials are aligned in the axial direction. Porous stainless steel with pores aligned in the axial direction was produced as a porous metal by drying for a period of time and firing for 1 hour at 1050 ° C. in a hydrogen atmosphere. This porous metal had a porosity of 80% and a pore diameter of about 0.4 mm.
If the operations of stretching and grouping are repeated in this manner, the pore diameter can be further reduced, although it is limited by the particle size of the metal powder and the pore-forming material.

<生体用構造材>
実施例3と同様にして得た多孔質体前駆体を乾燥後、所望の形状に整えたのち、その上に、実施例3と同様にして得た、気孔形成材を含まない金属粘土を薄く引き延ばして貼り付け、乾燥させた。
このようにして得られた成型体の表面にさらに実施例1と同様にして得た金属粘土組成物Cを薄く引きのばしたものを貼り付けて乾燥させて前駆体を作成し、この前駆体を十分な時間をかけて脱脂し焼成することにより、図1に示す構造をもつ製品を作製した。
このようにして得られた製品は、内部が方向性を持つ多孔質状態で、気孔の軸方向に対する強度にすぐれると同時に軽量であり、全体が緻密な層で包まれ、表面が多孔質状態の層でさらに包まれているので、生体との適合性を向上させうる生体用構造材として有用である。
<Biological structural material>
After the porous body precursor obtained in the same manner as in Example 3 was dried and adjusted to a desired shape, a metal clay containing no pore forming material obtained in the same manner as in Example 3 was thinly formed thereon. It was stretched and pasted and dried.
A precursor obtained by applying a thin stretch of the metal clay composition C obtained in the same manner as in Example 1 to the surface of the molded body thus obtained and drying it. The product having the structure shown in FIG. 1 was produced by degreasing and baking the material for a sufficient time.
The product obtained in this way is porous with a directional orientation, is excellent in strength in the axial direction of the pores, and is lightweight at the same time. The whole is wrapped in a dense layer, and the surface is in a porous state. It is useful as a structural material for living body that can improve compatibility with a living body.

実施例4の、生体用構造材として有用な製品の多重気孔構造を示す模式図。The schematic diagram which shows the multi-pore structure of the product useful as a structural material for biological bodies of Example 4. FIG.

Claims (10)

ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と、金属粉又はセラミックス粉と、粒径5〜5000μmの発泡樹脂、中空樹脂及び中実樹脂の中から選ばれた少なくとも1種の樹脂からなる気孔形成材とを含んでなるスラリーに、ゲル化剤を加えて粘土状の粘土組成物とする際に、気孔形成材の含有割合を異にする2種以上の粘土組成物とし、それら2種以上の粘土組成物を組み合わせて成形し、乾燥したのち、焼成するとともに気孔形成材を焼失させることを特徴とする多孔質材料の製造方法。 At least selected from an aqueous solution of a binder composed of a viscous water-soluble polymer containing polyvinyl alcohol as a main component, a metal powder or a ceramic powder, a foamed resin having a particle size of 5 to 5000 μm, a hollow resin, and a solid resin. When adding a gelling agent to a slurry comprising a pore-forming material composed of one kind of resin to obtain a clay-like clay composition, two or more clay compositions having different pore-forming material content ratios A method for producing a porous material, characterized in that a combination of two or more clay compositions is molded, dried, fired and the pore-forming material is burned off. 組み合わせて成形するのを、2種以上の粘土組成物を、気孔形成材の含有割合が積層方向に傾斜分布を呈するように積層することによって行い、厚さ方向に気孔率が傾斜分布を呈する多孔質材料を製造する請求項記載の製造方法。 Molding in combination is performed by laminating two or more clay compositions so that the content ratio of the pore-forming material exhibits a gradient distribution in the lamination direction, and the porosity has a gradient distribution in the thickness direction. the process according to claim 1, wherein for producing a quality material. (A)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と、金属粉又はセラミックス粉と、粒径5〜5000μmの発泡樹脂、中空樹脂及び中実樹脂の中から選ばれた少なくとも1種の樹脂からなる気孔形成材とを含んでなるスラリーに、ゲル化剤を加えて粘土状としてなる粘土組成物と、(B)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた金属粉又はセラミックス粉を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物及び(C)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた気孔形成材を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物の一方又は両方とを組み合わせて成形し、乾燥したのち、焼成するとともに気孔形成材を焼失させることを特徴とする多孔質材料の製造方法。 (A) An aqueous solution of a binder composed of a viscous water-soluble polymer containing polyvinyl alcohol as a main component, a metal powder or a ceramic powder, a foamed resin having a particle size of 5 to 5000 μm, a hollow resin, and a solid resin. A clay composition which is made into a clay form by adding a gelling agent to a slurry comprising a pore-forming material comprising at least one kind of resin , and (B) a viscous water-soluble composition containing polyvinyl alcohol as a main component A clay composition obtained by adding a gelling agent to a slurry containing metal powder or ceramic powder mixed with an aqueous solution of a binder made of a polymer to form a clay, and (C) viscous water containing polyvinyl alcohol as a main component A gelling agent is added to a slurry containing a pore forming material mixed with an aqueous solution of a binder composed of a functional polymer to form a clay. Molded in combination with one or both of the soil composition, after drying, a manufacturing method of a porous material, characterized in that burning off the pore-forming material with firing. (C)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた気孔形成材を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物を棒状に成形して第一の芯材とし、これを包むように(B)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と混合させた金属粉又はセラミックス粉を含んでなるスラリーにゲル化剤を加えて粘土状としてなる粘土組成物を包着したものを引き伸ばし、これを数等分し、これらをまとめて棒状に成形して第二の芯材とし、これを包むように粘土組成物(B)を包着したものを引き伸ばす操作を繰り返すことにより、引き伸ばし方向に繊維状の気孔形成材が列設された多孔質体前駆体を作成し、該前駆体を乾燥し、これを包むように粘土組成物(B)を包着したのち、乾燥し、さらにこれを包むように(A)ポリビニルアルコールを主成分として含む粘性のある水溶性高分子からなるバインダーの水溶液と、金属粉又はセラミックス粉と、粒径5〜5000μmの発泡樹脂、中空樹脂及び中実樹脂の中から選ばれた少なくとも1種の樹脂からなる気孔形成材とを含んでなるスラリーに、ゲル化剤を加えて粘土状としてなる粘土組成物を包着したのち、乾燥し、焼成するとともに気孔形成材を焼失させることを特徴とする多孔質材料の製造方法。 (C) A clay composition obtained by adding a gelling agent to a slurry comprising a pore-forming material mixed with an aqueous solution of a binder composed of a viscous water-soluble polymer containing polyvinyl alcohol as a main component to form clay. (B) Metal powder or ceramic powder mixed with an aqueous solution of a binder composed of a viscous water-soluble polymer containing polyvinyl alcohol as a main component so as to wrap the first core material. Add the gelling agent to the slurry and stretch the clay-encapsulated clay composition, divide it into several equal parts, shape them into a rod shape, and wrap this By repeating the operation of stretching the material enclosing the clay composition (B), a porous body precursor in which fibrous pore forming materials are arranged in the stretching direction is prepared, Body was dried, after Tsutsumigi clay composition (B) so as to wrap it, dried, so as to further wrap which (A) is viscous containing polyvinyl alcohol as a main component of a binder comprising a water-soluble polymer In a slurry comprising an aqueous solution, a metal powder or a ceramic powder, and a pore-forming material comprising at least one resin selected from a foamed resin having a particle size of 5 to 5000 μm, a hollow resin and a solid resin A method for producing a porous material comprising: encapsulating a clay composition in a clay form by adding an agent, followed by drying and firing, and burning out pore-forming materials. 気孔形成材が発泡ポリスチレンからなる請求項1ないし4のいずれかに記載の多孔質材料の製造方法。The method for producing a porous material according to any one of claims 1 to 4, wherein the pore forming material is made of expanded polystyrene. ゲル化剤が含ホウ素化合物、コンゴーレッド、又は、フェノールである請求項1ないし5のいずれかに記載の多孔質材料の製造方法。The method for producing a porous material according to any one of claims 1 to 5, wherein the gelling agent is a boron-containing compound, Congo red, or phenol. 含ホウ素化合物が硼砂又は硼酸である請求項6記載の多孔質材料の製造方法。The method for producing a porous material according to claim 6, wherein the boron-containing compound is borax or boric acid. スラリーがさらに界面活性剤を含むものである請求項1ないし7のいずれかに記載の多孔質材料の製造方法。The method for producing a porous material according to any one of claims 1 to 7, wherein the slurry further contains a surfactant. 金属粉が、貴金属、貴金属合金、銅、ニッケル、チタン、モリブデン、タングステン、アルミニウム系合金、銅系合金、チタン系合金、モリブデン系合金、タングステン系合金、ニッケル系合金、鉄系合金、コバルト系合金、磁性合金、超硬合金、耐食合金、耐熱合金、導電用合金、超電導合金、摺動用合金、軸受用合金、防振合金、水素貯蔵用合金、形状記憶合金、電極用合金、金属間化合物、ステンレス鋼、炭素鋼、合金鋼、磁石鋼、工具鋼及び高速度鋼の中から選ばれた少なくとも1種である請求項1ないし8のいずれかに記載の多孔質材料の製造方法。Metal powder is precious metal, precious metal alloy, copper, nickel, titanium, molybdenum, tungsten, aluminum alloy, copper alloy, titanium alloy, molybdenum alloy, tungsten alloy, nickel alloy, iron alloy, cobalt alloy , Magnetic alloy, cemented carbide alloy, corrosion resistant alloy, heat resistant alloy, conductive alloy, superconducting alloy, sliding alloy, bearing alloy, anti-vibration alloy, hydrogen storage alloy, shape memory alloy, electrode alloy, intermetallic compound, The method for producing a porous material according to any one of claims 1 to 8, which is at least one selected from stainless steel, carbon steel, alloy steel, magnet steel, tool steel, and high-speed steel. セラミックス粉が、シリカ、シリカ‐アルミナ、シリカ‐マグネシア、シリカ‐チタニア、シリカ‐ジルコニア、アルミナ、アルミナ‐マグネシア、アルミナ‐チタニア、アルミナ‐ボリア、アルミナ‐ジルコニア、アルミナ‐ホスファ、チタニア、ジルコニア、ボリア、ケイ石、ケイ砂、カオリン、ベントナイト、マグネサイト、ドロマイト、長石、陶石、ゼオライト、シリコンカーバイド、PZT及び磁性セラミックスの中から選ばれた少なくとも1種である請求項1ないし8のいずれかに記載の多孔質材料の製造方法。Ceramic powder is silica, silica-alumina, silica-magnesia, silica-titania, silica-zirconia, alumina, alumina-magnesia, alumina-titania, alumina-boria, alumina-zirconia, alumina-phospha, titania, zirconia, boria, 9. At least one selected from silica, silica sand, kaolin, bentonite, magnesite, dolomite, feldspar, porcelain stone, zeolite, silicon carbide, PZT, and magnetic ceramics. A method for producing a porous material.
JP2005132405A 2005-04-28 2005-04-28 Clay composition for porous metal or porous ceramics, and method for producing porous metal or porous ceramics using the same Active JP4565155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132405A JP4565155B2 (en) 2005-04-28 2005-04-28 Clay composition for porous metal or porous ceramics, and method for producing porous metal or porous ceramics using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132405A JP4565155B2 (en) 2005-04-28 2005-04-28 Clay composition for porous metal or porous ceramics, and method for producing porous metal or porous ceramics using the same

Publications (2)

Publication Number Publication Date
JP2006307295A JP2006307295A (en) 2006-11-09
JP4565155B2 true JP4565155B2 (en) 2010-10-20

Family

ID=37474508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132405A Active JP4565155B2 (en) 2005-04-28 2005-04-28 Clay composition for porous metal or porous ceramics, and method for producing porous metal or porous ceramics using the same

Country Status (1)

Country Link
JP (1) JP4565155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200054656A (en) * 2018-11-12 2020-05-20 구본주 Method for making porosity ceramic

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2069087A2 (en) * 2006-07-19 2009-06-17 Tower Technology Holdings (Pty) Limited A method of agglomeration
JP2008260655A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Porous ceramic, and filter for sensor using the same
JP5202869B2 (en) * 2007-05-10 2013-06-05 一般財団法人川村理化学研究所 Porous material
JP2009120446A (en) * 2007-11-15 2009-06-04 Shinei Sangyo Kk Heat insulating material
KR101116192B1 (en) 2008-07-04 2012-02-22 비에스월드시스템 주식회사 Method for manufacturing high strength alloy open cell of hollow sphere
EP2489749B1 (en) * 2009-10-14 2019-08-07 Japan Science and Technology Agency Processes for producing precursor for functionally gradient material and producing functionally gradient material, precursor for functionally gradient material, and functionally gradient material
KR101355802B1 (en) 2013-01-08 2014-01-27 한국기계연구원 Composition used for manufacturing porous sodium borate-bonded sic ceramics, method for manufacturing porous sodium borate-bonded sic ceramics using the same, porous sodium borate-bonded sic ceramics manufactured thereby, and catalyst substrate, preform for fabricating composite material and particulate filter containing the same
CN105441708B (en) * 2015-11-16 2017-04-05 华南理工大学 The method that porous C u base marmem is prepared using silica gel pore creating material
JP7010105B2 (en) 2018-03-23 2022-01-26 三菱マテリアル株式会社 Porous metal
CN108380883B (en) * 2018-05-08 2024-04-02 浙江长盛滑动轴承股份有限公司 Bearing material with ultra-low porosity obtained by loose sintering and method for manufacturing same
CN108727006A (en) * 2018-07-07 2018-11-02 河源市极致知管信息科技有限公司 A kind of composite ceramic material and preparation method thereof
CN110734128B (en) * 2019-11-06 2022-01-28 合肥学院 Nano zero-valent metal light porous spherical functional material prepared based on meteorite, and preparation method and application thereof
CN110734129B (en) * 2019-11-06 2022-01-28 合肥学院 Nano zero-valent metal porous functional material prepared based on meteorite, and preparation method and application thereof
CN110734127B (en) * 2019-11-06 2022-01-28 合肥学院 Carbon composite nano zero-valent metal porous functional material, and preparation method and application thereof
CN110734133B (en) * 2019-11-06 2022-04-15 合肥学院 Nano zero-valent iron-nickel composite porous material, preparation method and application thereof
CN113185264B (en) * 2021-05-05 2024-03-01 许昌市森洋电子材料有限公司 Method for manufacturing porcelain plate with conductive sheet firmly connected and refrigerating piece
CN113878114B (en) * 2021-09-28 2023-03-24 广西晨天恒源金属制品有限公司 Tungsten mud and preparation method thereof
CN114000031B (en) * 2021-11-05 2022-08-16 深圳市汉清达科技有限公司 Porous conductive ceramic material for heating and preparation method thereof
KR102386057B1 (en) * 2022-03-07 2022-04-12 주식회사 현대엘앤씨 Binder composition for spraying artificial mineral fiber insulation and finishing material having flame retardancy and heat insulation manufactured using the composition
CN114736031B (en) * 2022-03-18 2023-09-29 河南工程学院 Pyroelectric ceramic with large-size sandwich gradient structure and preparation method thereof
CN114959287B (en) * 2022-06-13 2023-03-24 赣州晨光稀土新材料有限公司 Rare earth metal or rare earth alloy purification material, preparation method thereof and rare earth metal or rare earth alloy purification method
CN117088693B (en) * 2023-10-20 2024-02-02 浙江吉成新材股份有限公司 Preparation method of high-activity submicron boron carbide ceramic powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335806A (en) * 2000-05-23 2001-12-04 Natl Inst Of Advanced Industrial Science & Technology Meti Clay composition and method for producing molding consisting of metal or ceramics using the composition
JP2003129109A (en) * 2001-10-26 2003-05-08 Hitachi Metals Ltd Method for manufacturing porous sintered compact

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335806A (en) * 2000-05-23 2001-12-04 Natl Inst Of Advanced Industrial Science & Technology Meti Clay composition and method for producing molding consisting of metal or ceramics using the composition
JP2003129109A (en) * 2001-10-26 2003-05-08 Hitachi Metals Ltd Method for manufacturing porous sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200054656A (en) * 2018-11-12 2020-05-20 구본주 Method for making porosity ceramic
WO2020101200A1 (en) * 2018-11-12 2020-05-22 구본주 Method for manufacturing porous ceramic article
KR102127713B1 (en) 2018-11-12 2020-06-29 구본주 Method for making porosity ceramic

Also Published As

Publication number Publication date
JP2006307295A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4565155B2 (en) Clay composition for porous metal or porous ceramics, and method for producing porous metal or porous ceramics using the same
JP4178246B2 (en) Method for producing high porosity foam sintered body
Fukushima et al. Macroporous ceramics by gelation–freezing route using gelatin
Plieva et al. Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications
KR100865431B1 (en) Open porous metallic foam body and method for manufacturing
Azarniya et al. Physicomechanical properties of porous materials by spark plasma sintering
PL2118328T3 (en) Method of producing a porous metallic article
RU2456056C2 (en) Ceramic filter with carbon coat, and method of its production
JP4647604B2 (en) Method for producing parts containing nickel-based alloy, and parts produced by the method
Cheng et al. General suspended printing strategy toward programmatically spatial Kevlar aerogels
Pan et al. Aligned macroporous monoliths by ice-templating
CN103667762A (en) Preparation method for low-density porous metal material
Yu et al. Effect of monomer content on physical properties of silicon nitride ceramic green body prepared by gelcasting
Chadha et al. Bioinspired techniques in freeze casting: a survey of processes, current advances, and future directions
CN108405848B (en) A kind of porous nickel framework material and preparation method thereof
Santos et al. Freeze-casting applied to ceramic materials: a short review of the influence of processing parameters
JP2010090416A (en) Method of producing metal porous body
JP2012501288A5 (en)
Moon et al. Novel Ceramic/Camphene‐Based Co‐Extrusion for Highly Aligned Porous Alumina Ceramic Tubes
JP4986259B2 (en) Mixed raw material for the production of porous metal sintered bodies with high foaming speed
JP2005042193A (en) Method for manufacturing metal- or ceramic-containing foamed sintered body
Huang et al. Preparation and properties of alumina foams via thermally induced foaming of molten d-glucose monohydrate
Huh et al. Fabrication of hierarchically porous silicon carbonitride monolith using branched polysilazane and freeze casting method without crosslinking step: Effect of polymer additive to aligned macropore structure
Gao et al. Ambient Pressure Drying of Freeze-Cast Ceramics from Aqueous Suspension
KR20030044733A (en) Manufacture technology of porous ceramics that use surfactant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4565155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250