JP4562959B2 - Floating body mooring device with non-linear reaction force characteristics - Google Patents

Floating body mooring device with non-linear reaction force characteristics Download PDF

Info

Publication number
JP4562959B2
JP4562959B2 JP2001199212A JP2001199212A JP4562959B2 JP 4562959 B2 JP4562959 B2 JP 4562959B2 JP 2001199212 A JP2001199212 A JP 2001199212A JP 2001199212 A JP2001199212 A JP 2001199212A JP 4562959 B2 JP4562959 B2 JP 4562959B2
Authority
JP
Japan
Prior art keywords
elastic body
reaction force
force
mooring
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001199212A
Other languages
Japanese (ja)
Other versions
JP2003011883A (en
Inventor
寛 大久保
勝彦 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2001199212A priority Critical patent/JP4562959B2/en
Publication of JP2003011883A publication Critical patent/JP2003011883A/en
Application granted granted Critical
Publication of JP4562959B2 publication Critical patent/JP4562959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は海上に浮遊する大規模浮体構造物等の浮体を係留する装置であって、暴風時の係留外力を軽減可能な係留装置に関する。
【0002】
【従来の技術】
浮体人工島等に利用される大規模浮体の係留装置は平常時の波浪、潮流、風荷重などの外力に対してはできるだけ動揺が小さく、暴風時の波浪・風荷重に対してはある程度の動揺を許容することによって係留力を小さくして安全に係留することが求められる。また、浮体とのアクセス等のため船舶接舷に障害とならないような係留方式が望ましい。なお、超大型の大規模浮体では外気温の変化による浮体の膨張収縮が数mにもなるため係留装置はこれを吸収する必要がある。
【0003】
従来から浮体の係留方式には、海底に設置したアンカーやシンカーと浮体をチェーンやワイヤロープ等の係留索で連結する係留索方式と、係留用のドルフィンや岸壁と浮体間にゴムフェンダーを介在させて係留するゴムフェンダー方式が知られている。
【0004】
前者の係留索方式は平常時の波浪、潮流及び風荷重等の定常外力等の比較的小さい外力に対してはカテナリー係留のため水平移動量が大きく、係留設備の占有範囲が大きくなる欠点がある。また、暴風時の外力に対抗するため浮体の周りに大型の係留索を多数設置する必要があり付近の船舶航行に支障がある。
【0005】
一方、後者のゴムフェンダー方式の場合は、ばね係数が大きいため平常時の変位量を小さくでき付近の船舶航行に支障を及ぼすような問題はないが、変形能力(ストローク)が小さいため暴風時に過大な作用外力が生じる。また、外気温の変化による浮体の膨張収縮による浮体の面内変形を吸収可能とする場合は変形能力の増大対策が必要となる。
現在、国内で市販されている最大級のゴムフェンダーはセル型のフェンダー(外径約3m、長さ3m、設計限界歪み(50%)時の変形能力1.5m、最大反力約400t〜600t)である。
【0006】
このゴムフェンダーの変形能力を増大するには複数個直列に接続して使用する手段があり、特開平6−144356等で開示されているものがある。なお、特別に変形能力の大きな長尺フェンダーを製作することが考えられるが、ねじれ座屈の問題があり難しい。
【0007】
【発明が解決しようとする課題】
通常、係留装置の設計係留力は暴風時に生じる最大作用外力に対して安全なように決定される。この暴風時に生じる作用外力は反力体(係留装置)の変位量と相関関係があり、係留装置の変形が制限される場合は作用外力が大きく、大きな変位を許容すればエネルギーを吸収して作用外力を減じることができる。従って、暴風時において作用外力を小さくするには係留装置に大きな変位を生じさせて係留した方が有利となる。
【0008】
前述のゴムフェンダー方式の場合、単独使用では変形能力が小さいため暴風時に過大な外力が生じるため反力容量の大きな多数の大型フェンダーを並列に使用して対抗する必要がある。なお、複数個を直列に接続して変形能力を増大した場合はいくらか外力を低減できるが、大型フェンダーの使用個数が多くなることに変わりはなく、係留設備に高額投資が必要となる課題があった。
【0009】
また、大型ゴムフェンダーを複数個直列接続しても変形能力の増大に制約があり、且つねじれ座屈の対策が必要になるためさらに設備費が増大する。
【0010】
本発明は、平常時の外力に対しては浮体変位量を抑え、且つ暴風時の浮体変位を許容して作用外力を減じることにより経済的な係留装置を提供することを目的としたものである。
【0011】
【課題を解決する手段】
本発明の要旨は以下のとおりである。
【0012】
第1の発明は、海底に設置された基体に浮体を係留する係留装置であって、ストッパーにより変位した状態を維持することで初期反力を導入したばね係数の小さい弾性体Aと、該弾性体Aより大きいばね係数の弾性体Bを用い、浮体の係留力を前記弾性体Bから弾性体Aに伝達させ、係留力が前記弾性体Aの初期反力を超えた際に前記弾性体Aが変位するようにしたことを特徴とする非線形反力特性を備えた浮体係留装置である。
【0013】
第2の発明は、第1の発明において、海底に設置された基体から水平突設された支持体に弾性体Aの一端を固定し、前記支持体にピン結合した弾性体Bを垂下し、前記弾性体Aを伸長または圧縮状態でストッパーにより一方の水平変位を規制して弾性体Bの上端部に連結して弾性体Aに初期反力を導入しておき、前記弾性体Bの下部に浮体から突設した係留材を上下移動可能に当接させ、潮位変化に応じて浮体の一方向の水平変位をばね係数の異なる弾性体Aと弾性体Bによって支持したことを特徴とする。
【0014】
第3の発明は、第2の発明の係留装置を、浮体の片側に設置した基体上に互いに相反する方向の水平変位を支持するように並列して設け、浮体の左右方向の水平変位を支持するようにしたことを特徴とする非線形反力特性を備えた浮体係留装置である。
【0015】
第4の発明は、第1の発明において、海底に設置された基体から水平突設された支持体の両端に弾性体A1と弾性体A2を対向させてそれぞれの一端を固定し、前記支持体にピン結合した弾性体B1と弾性体B2を垂下し、前記弾性体A1、弾性体A2を伸長または圧縮状態でそれぞれのストッパーに相反する各一方向の水平変位を規制して弾性体B1、弾性体B2の上端部に連結して弾性体A1、弾性体A2に相反する方向の初期反力を導入しておき、それぞれの弾性体B1、弾性体B2の下部に浮体から突設した係留材を上下移動可能に当接させ、潮位変化に応じて浮体の左右両方向の水平変位をばね係数の異なる弾性体A1,A2と弾性体B1,B2によって支持したことを特徴とする。
【0016】
第5の発明は、第1の発明において、一端に反力板Aを設け他端に孔明きストッパーを設けた小径円筒の孔明きストッパー側に、一端を開口し他端に反力板を設けた大径円筒をスライド自在に被せ、前記小径円筒内には前記ストッパーで変位を規制して初期圧縮力を導入した弾性体Aを収納し、大径円筒内には反力板に圧縮力のみ伝達するようにした弾性体Bを収納し、小径円筒と大径円筒の両方に渡って前記孔明きストッパーの孔を通して弾性体Aと弾性体Bを連結するロッドが配置しており、浮体の係留力をばね係数の大きい弾性体Bをロッドを介して初期圧縮力を導入したばね係数の小さい弾性体Aに圧縮力として伝達し、この圧縮力がストッパーで規制された初期圧縮力を超えた際に弾性体Aを変位させるようにしたことを特徴とする。
【0017】
第6の発明は、第1の発明において、一端に反力板を設け他端に孔明きストッパーを設けた小径円筒のストッパー側に、一端を開口し他端に反力板を設けた大径円筒をスライド自在に被せ、小径円筒内には反力板に一端を固定した弾性体Aを収納し、大径円筒内には、反力板に一端を固定した弾性体Bと弾性体Aと弾性体Bを連結するロッド付連結具を収納し、
前記弾性体Aと前記ロッド付連結具とが、前記孔明きストッパーの孔を挿通したロッドによって、弾性体Aに初期張力を導入した状態で連結され、弾性体Aと弾性体Bには引張力のみが伝達されるようになっており、浮体の係留力をばね係数の大きい弾性体Bを介して初期引張力を導入したばね係数の小さい弾性体Aに引張力として伝達し、この引張力がストッパーで規制された初期引張力を超えた際に弾性体Aを変位させるようにしたことを特徴とする。
【0018】
第7の発明は、第5の発明および第6の発明の係留装置を、浮体の片側に設置した基体上に並列して設け、浮体の左右方向の水平変位を支持するようにしたことを特徴とする非線形反力特性を備えた浮体係留装置である。
【0019】
第8の発明は、第5から第7の発明のいずれか1つの発明において、小径円筒の反力板および大径円筒の反力板に自在継手を設け、該自在継手を介して海底に設置された基体と、浮体を連結するようにしたことを特徴とする。
【0020】
<作用>
本発明のポイントは、平常時の波浪、潮流、風荷重等の比較的小さな外力に対しては弾性体Aの初期反力内でばね係数の大きな弾性体Bで係留して浮体の動揺を抑え、弾性体の初期反力を超えるような暴風時の大きな外力に対してはばね係数の小さい弾性体Aを可動させ浮体の変位を許容してエネルギーを吸収させるようにした非線形反力特性を備えた係留装置として、暴風時の作用外力を軽減させることにより設計を有利にしたものである。
【0021】
図13は、ばね係数の異なる係留装置の変形と係留装置反力の関係を本発明と比較例を合わせて示したものである。図13において、(a)は、ばね係数の大きな線形もしくは反力漸増形の反力特性の係留装置における変形と反力の関係を示す。(b)は、ばね係数の小さな線形もしくは反力漸増形の反力特性の係留装置における変形と反力の関係を示す。(c)は、本発明の非線形反力特性を備えた係留装置における変形と反力の関係を示す。
【0022】
比較例(a)は係留装置の変形が小さく平常時は小さな変位量(a1)のため問題ないが、暴風時に大きな反力(a2)が生じるため設計外力が過大になる。
比較例(b)は係留装置の変形が大きいため暴風時においてエネルギーを吸収して小さな反力(b2)となり、暴風時の設計外力を小さくできるが、平常時の変位量(b1)が大きくなる。
【0023】
一方、(c)は本発明の係留装置であって、ストッパーで初期反力を導入した小さなばね係数を有する弾性体Aと、係留材からの係留力を伝達する大きなばね係数の弾性体Bを組合わせた非線型反力特性を有するもので、平常時の小外力に対しては弾性体Aに導入した初期反力内で弾性体Bのみが作用して比較的小さな変位量(c1)で係留し、弾性体Aに導入した初期反力を超えるような暴風時の外力に対しては弾性体Aが作動して大きな変位を許容してエネルギーを吸収することにより発生反力(c2)が小さくなるため設計外力を低減できる。なお、図13の反力Riはストッパーで弾性体Aに導入した初期反力値である。
【0024】
【発明の実施形態と実施例】
図1〜図9は本発明に係るレバー方式の係留装置1に関する実施形態を示したものである。
図1は、第1実施形態の例であって、1方向の水平変位を規制する係留装置1を浮体2の左右側に設置した基体3上に設けて浮体2を挟み込むようにして左右方向の水平変位を支持するようにしたものである。
【0025】
係留装置1は海底4に設置されたドルフィン等の基体3から水平突設された支持体5に所定のばね係数kaで伸縮するコイルばね、空圧シリンダー等からなる弾性体Aの一端を固定し、弾性体Aの他端を支持体5にピン結合した垂下弾性体Bの支持部材6上端部に間隔L1をおいて連結している。
前記支持体5には、弾性体Aと反対側の支持部材取付ピン9下側にストッパー7が間隔L2をおいて設けられており、このストッパー7により垂下弾性体Bの支持部材6の一方(右方向)の変位が規制され、前記弾性体Aに導入した初期引張力Riを保持している。
【0026】
浮体2の係留は弾性体Bの下方において、浮体2から突設した係留材2aを当接して行う。ここで、浮体2は潮位差で係留装置1と相対的に上下に動くため、弾性体Bと係留材2aを自由に当接させて潮位変動に追随して上下移動可能としている。
【0027】
前記支持部材6の下方に延在する弾性体Bは、例えば普通鋼を弾性領域で使用する板ばねを用いることができる。なお、この板ばねは上部の支持部材6と一体的にしてもよい。
この弾性体Bは前記弾性体Aより大きいばね係数kbを有し(ka<kb)、暴風時の作用外力に対抗できる耐力を備えたものとする必要がある。また、係留材2aと接触して上下に移動を繰返すため耐摩耗性のよいものを使用する必要がある。
【0028】
図2は、係留装置1が静止時(浮体の係留力が作用しない状態)、平常時の外力を受けた際および暴風時の外力を受けた際の弾性体A、弾性体Bの動きを表したものである。
(a)弾性体Bに浮体2の係留力が作用しない状態(図2a)では、弾性体Aの初期張力Riは全てストッパー7の反力Rsで受け持ち、RiとRsの関係は、Ri×L1=Rs×L2である。
(b)平常時の外力P1に対しては弾性体Bはストッパー7から離脱することなく、kbのばね係数によって生じる小さな変形で応答し、弾性体Aの張力は初期張力Ri、ストッパー7の反力はRs−ΔRs(>0)となる(図2b参照)。
(c)暴風時の外力P2では、弾性体Bに作用した大きな外力P2が初期張力Riを超えると、P2×L3>Ri×L1となり、弾性体Bを支える支持部材6がストッパー7から離脱し、弾性体Aがばね係数kaで伸張して浮体2に大きな変位を生じさせる(図2c参照)。この結果、弾性体Aの弾性変形により浮体2の外力エネルギーが吸収される。
なお、(c)の状態では外力P2と弾性体Aの荷重バランスは、
P2×L3=(Ri+ΔRi2)×L1となる。
【0029】
図3は、第2実施形態を示すもので、係留装置1側から離れる方向の浮体2の移動を規制する係留装置1である。第2実施形態では、弾性体A、ストッパーは第1実施形態とは反対側に設け、浮体2から突設した係留材2aには弾性体Bを引寄せるローラー支承8を用いる。
第2実施形態と第1実施形態の係留装置を交互に配置すれば、浮体の一方の側のみに設置した基体で係留することができる。
【0030】
図4は第3実施形態を示すもので、初期反力導入手段を圧縮力としたものである。圧縮力を初期反力とした場合は、第1実施形態、第2実施形態とストッパー7の位置が異なる。すなわち、第3実施形態では、支持体5上方で、圧縮力を導入した弾性体Aが支持体5と垂下弾性体Bの支持部材6とに連結され、支持体5下方では弾性体A側にストッパー7が設けられており、このストッパー7により垂下弾性体Bの支持部材6の一方(左方向)への変位が規制され、前記弾性体Aに導入した初期圧縮力が保持される。
【0031】
図5は第4実施形態を示すもので、引張力を導入した弾性体Aの配置を基体3の支持体5下方にしたものである。この場合、ストッパー7は、支持体5に設けた支持部材取付けピン9と弾性体Aとの間に配置する。
【0032】
図6は、第5実施形態の係留装置の側面図であり、図7は、図6の平面図である。第5実施形態は、第1実施形態と第2実施形態とを組合わせた実施形態である。
第5実施形態の係留装置1では、海底4に設置された基体3から水平突設された支持体5の両端に弾性体A1と弾性体A2を対向させて配置し、支持体5にそれぞれの一端を固定している。前記支持体5には垂下した弾性体B1と弾性体B2がそれぞれピン結合されている。また、弾性体B1、B2の支持部材6上端部には、それぞれ前記弾性体A1、A2の他端が初期張力を導入した伸長状態で連結されている。
【0033】
前記弾性体A1、A2に導入した初期張力はそれぞれ対応するストッパー7によって保持されている。このような構成によって弾性体B1と弾性体B2は相反する各一方向の水平変位を規制し、各反対方向の変位に対しては弾性体A1、弾性体A2に導入した初期張力(反力)で規制している。
【0034】
弾性体B1、弾性体B2の下部には浮体2から突設した係留材2aがローラー支承8を介して当接され、引寄せ・押当てるようにされており、左右方向の係留力が伝達される。また、この係留材2aのローラー支承8は上下移動可能にされており、潮位変化があってもこれに追随できるようにしている。
このようにして、ストッパー7によって導入した初期反力を保持した小さいばね係数kaの弾性体A1、弾性体A2と大きなばね係数kbの弾性体B1、弾性体B2の異なったばね係数の非線形反力特性を備えた係留装置1によって浮体2の左右両方向の水平変位を支持している。
図8、図9は第5実施形態の係留装置1を用いて浮体2を一方の側に設置した基体3によって係留した場合の側面図と平面図である。
【0035】
図10〜図12は本発明に係る円筒方式の係留装置10の実施形態を示したものである。
【0036】
図10は、第6実施形態であって、浮体2が基体3に対して圧縮力として作用する際の円筒方式の係留装置10aである。
第6実施形態の係留装置10aは、小径円筒11と、内径が小径円筒11よりも大きい大径円筒12とを組合せてなる。
小径円筒11の一端には、基体3または浮体2に固定する反力板11aを設け、他端には孔明きストッパー11bが設けられている。そして、小径円筒の孔明きストッパー11b側に、一端を開口し他端に反力板12aを設けた大径円筒12を被せて、両円筒をスライド自在としている。
【0037】
小径円筒11内には、一端が反力板11aと連結されている弾性体Aが収納され、大径円筒12内には、反力板12aとは連結されないフリーの状態で、弾性体Bが収納される。そして、前記小径円筒11と前記大径円筒12との両方に渡って、弾性体Aと弾性体Bとを連結するロッド13が、前記孔明きストッパー11bの孔を通るように配置されている。
【0038】
前記弾性体Aは所定のばね係数kaを有し、弾性体Aには変位可能なコイルばねや空圧シリンダー等を用いることができる。また、弾性体Bは前記弾性体Aのばね係数kaより大きいばね係数kbを有し(ka<kb)、且つ弾性体Bは、暴風時の外力に耐える強度を備えた大容量のゴムフェンダーやコイルばね、鋼製ベローズなどから選択できる。
【0039】
小径円筒11内に収納されている弾性体Aは、端部の孔明きストッパー11bとロッド13端部のアンカー部材13aで変位が規制されて平常時の係留力P1が範囲内に収まる所定の初期圧縮力Piが導入されている(P1<Pi)。なお、初期圧縮力の導入手段は例えば反力板11aと小径円筒11の端部をねじ接合とし、弾性体Aを小径円筒11に所定圧縮力で押込んだ状態でねじ接合すればよい。
【0040】
前記孔明きストッパー11bを通して配置されているロッド13は浮体2の圧縮係留力を弾性体Bから弾性体Aに伝達するもので、前記弾性体Aの変位可能長さ以上移動でき、且つ暴風時の外力に耐える強度を備える必要がある。
【0041】
前記ロッド13に連結固定している弾性体Bは反力板12aに固定せず離間可能に当接させて圧縮力のみ伝達するようにしている。この理由は係留装置10aに引張力が作用した際にアンカー部材13aと孔明きストッパー11bに過大な反力が生じるのを回避するためである。
【0042】
図10(a)は係留装置10aがフリー状態において引張力が作用した場合、すなわち基体3に対して浮体2が離れる方向に外力が働いた場合の状態を示すものである。この状態では弾性体Bは反力板12aに固定せず離間可能に当接させて圧縮力のみ伝達するようにしているため、係留装置10aはフリーに挙動する。
【0043】
図10(b)は平常時の係留状態を示すもので、浮体2と基体3間に作用する係留時の圧縮力P1は弾性体Aに導入した初期圧縮力Pi内であるため(P1<Pi)、弾性体Aには変位が生じないで弾性体Bのみにより大きなばね係数kbによって小さな変位で係留される。
【0044】
図10(c)は暴風時の係留状態を示すもので、係留時の圧縮外力P2が弾性体Aに導入した初期圧縮力Piを超えるため(Pi<P2)、ロッド13を介して伝達された係留力により弾性体Aはストッパーから離れて変位する。この際、暴風時の外力は弾性体Bのばね係数kbによる変位と弾性体Aのばね係数kaの変位によってエネルギーが吸収されて係留装置の反力を低減することができる。
【0045】
以上の如く構成した係留装置10aによって、浮体2の係留力をばね係数の大きい弾性体Bをロッド13を介して初期圧縮力を導入したばね係数の小さい弾性体Aに圧縮力として伝達し、平常時の係留は弾性体Bによって小さな変位で係留し、弾性体Aの初期圧縮力を超えた際(暴風時のような大きな圧縮外力が作用した場合)にばね係数の小さな弾性体Aを変位させるようにして異なったばね係数の弾性体で係留力に対抗するようにした非線形反力特性を備えた浮体係留装置が実現する。
【0046】
図11は第7実施形態であって、浮体2が基体3に対して引張力として作用する際の円筒方式の係留装置10bである。
【0047】
第7実施形態の円筒方式の係留装置10bが、第6実施形態の円筒方式の係留装置(圧縮力が作用する場合)と異なる点は、弾性体Aに初期張力を導入した状態でロッド付連結具14と連結し、弾性体Bと引張力のみ伝達するように連結している点である。
以下、第7実施形態が第6実施形態と異なる点のみ説明し、第6実施形態と重複する箇所の説明は省略する。
【0048】
第7実施形態の大径円筒12には、大径円筒軸方向に離間可能なロッド付連結具14と、反力板12aに一端を固定され他端が前記ロッド付連結具14と連結した弾性体Bとが収納されている。
【0049】
ここで、ロッド付連結具14は、一端に弾性体Aと連結される第1ロッド15aが設けられ、かつ他端に孔明きストッパー15bを有するシリンダー部材15と、弾性体Bと連結される第2ロッド16とからなる。そして、シリンダー部材15の孔明きストッパー15bに第2ロッド16を挿通配置している。尚、第2ロッド16のシリンダー部材側端部には、引き抜け防止のためにアンカー部材16aが設けられている。
【0050】
また、シリンダー部材の第1ロッド15aは、小径円筒11の孔明きストッパー11bの孔を通って、初期張力を導入された弾性体Aと連結される。
【0051】
すなわち、弾性体Aに初期引張力を導入するため、弾性体Aと弾性体Bを連結するロッド付連結具14を大径円筒12に収納し、小径円筒11の孔明きストッパー11bの孔に第1ロッド15aを通して、ロッド付連結具14と弾性体Aとを連結している。
【0052】
また、係留外力(引張力)のみを伝達する手段として弾性体Bと反力板12aと連結し、シリンダー部材側の第1ロッド15aとは別に、連結具(シリンダー部材15)から引張力のみ伝達する第2ロッド16を設け、弾性体Bと第2ロッド16とを連結している。
これにより、大径円筒軸方向に離間可能にロッド付連結具14が構成され、ロッド付連結具14が浮体2からの圧縮力を負担する一方で、弾性体A、弾性体Bは引張力のみ負担するようになっている。
【0053】
図11(a)は係留装置10bがフリー状態において圧縮力が作用した場合、すなわち基体3に対して浮体2が接近する方向に外力が働いた場合の状態を示すものである。この状態では反力板12aに固定された弾性体Bを、引張力のみ伝達する第2ロッド16で離間可能に連結具と取付けて引張力のみ伝達するようにしているため、係留装置10bはフリーに挙動する。
【0054】
図11(b)は、この実施形態における平常時の係留状態を示すもので、浮体2と基体3間に作用する係留時の引張力P3は弾性体Aに導入した初期引張力Pi内であるため(P3<Pi)、弾性体Aには変位が生じないで弾性体Bのみにより大きなばね係数kbによって小さな変位で係留される。
【0055】
図11(c)は暴風時の係留状態を示すもので、係留時の引張外力P4が弾性体Aに導入した初期引張力Piを超えるため(Pi<P4)、ロッドを介して伝達された係留力により弾性体Aは孔明きストッパー11b側に伸長変位する。この際、暴風時の外力は弾性体Bのばね係数kbによる変位と弾性体Aのばね係数kaの変位によってエネルギーが吸収されて係留装置10bの反力を低減することができる。
【0056】
図12は本発明に係る係留装置10を海底4に設置された基体3と浮体2間を連結する係留装置10両端の反力板11a,12aに、ヒンジ結合部材17を設けピン結合によって連結した側面図である。ピン結合することにより潮位差によって浮体2が上下移動しても係留装置10を自由に追随させることができる。
【0057】
なお、第6、第7実施形態のように、係留装置両端の大径円筒の反力板と小径円筒の反力板に自在継手を設けると、潮位差によって浮体が上下移動する際、係留装置を上下自由に追随させるとともに浮体が係留装置と直交方向にずれる際にも無理な反力が生じることなく自由に追随させることが可能となる。
【0058】
上記第6、第7実施形態の圧縮力係留と引張力係留として作用する円筒方式の係留装置を並べて配置すれば、浮体の片側に設置した基体で係留することができる。
【0059】
【発明の効果】
本発明は、海底に設置された基体に固定した支持体に、ストッパーにより変位した状態を維持することで初期反力を導入したばね係数の小さい弾性体Aの一端を固定し、他端に前記弾性体Aの初期反力を超えた外力で可動するようにしたばね係数の大きい弾性体Bを連結し、該弾性体Bに浮体から突設した係留材を上下移動可能に当接させた非線形反力特性を備えた浮体係留装置としているため、平常時の小さな外力に対してはばね係数の大きな弾性体Bによって浮体変位量を抑えて係留し、ストッパーの反力を超える大きな暴風時外力に対してはばね係数の小さな弾性体Aを作動させて浮体変位を許容してエネルギーを吸収して大きな作用外力を減じることにより設計外力を低減できるため経済的な係留装置を提供する効果を奏する。
また、浮体の係留材は上下移動可能に係留装置に当接させているため浮体の潮位変動に追随して係留できる。
【0060】
さらに、係留装置を円筒方式としたものは係留装置をコンパクトにでき、基体および浮体との取付け部に自在継手を用いれば潮位変動に追随することができるとともに係留直交方向のずれにも対応できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態であって、1方向の水平変位を規制する係留装置を浮体の左右側に設置した基体上に設けた側面図である。
【図2】第1実施形態で係留装置が(a)静止時、(b)平常時の外力を受けた際、(c)暴風時の外力を受けた際、における弾性体A、弾性体Bの動きを表した図である。
【図3】本発明の第2実施形態を示す図である。
【図4】本発明の第3実施形態を示す図である。
【図5】本発明の第4実施形態を示す図である。
【図6】本発明の第5実施形態を示す側面図である。
【図7】図6の平面図である。
【図8】第5実施形態の係留装置を用いて浮体を一方の側に設置した基体によって係留した場合の側面図である。
【図9】図8の平面図である。
【図10】本発明の第6実施形態を示す図であり、円筒方式の圧縮係留装置が、(a)フリー時、(b)平常時の外力を受けた際、(c)暴風時の外力を受けた際、における弾性体A,弾性体Bの動きを表した図である。
【図11】本発明の第7実施形態を示す図であり、円筒方式の引張係留装置が、(a)フリー時、(b)平常時の外力を受けた際、(c)暴風時の外力を受けた際、における弾性体A,弾性体Bの動きを表した図である。
【図12】上記円筒方式の係留装置を基体と浮体間にピン結合により設置した側面図である。
【図13】ばね係数の異なる係留装置の変形と反力の関係を本発明と比較例を合わせて示した図である。
【符号の説明】
1 係留装置
2 浮体
2a 係留材
3 基体
4 海底
4a 海水面
5 支持体
6 支持部材
7 ストッパー
8 ローラー支承
9 支持部材取付ピン
10,10a,10b 係留装置
11 小径円筒
11a 反力板
11b 孔明きストッパー
12 大径円筒
12a 反力板
13 ロッド
13a アンカー部材
14 ロッド付連結具
15 シリンダー部材
15a 第1ロッド
15b 孔明きストッパー
16 第2ロッド
16a アンカー部材
17 ヒンジ結合部材
A,A1,A2 弾性体
B,B1,B2 弾性体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mooring device for mooring a floating body such as a large-scale floating structure floating on the sea, which can reduce mooring external force during a storm.
[0002]
[Prior art]
Mooring devices for large-scale floating bodies used for floating islands are as small as possible for external forces such as normal waves, tidal currents, and wind loads, and to some extent for waves and wind loads during storms. Therefore, it is required to moor safely by reducing the mooring force. Also, a mooring system is desirable so that it does not interfere with the ship's connection due to access to the floating body. In addition, in a very large large-scale floating body, the expansion and contraction of the floating body due to a change in outside air temperature is several meters, so the mooring device needs to absorb this.
[0003]
Conventionally, mooring methods for floating bodies include anchors and sinkers installed on the seabed and mooring lines that connect floating bodies with mooring lines such as chains and wire ropes, and rubber fenders interposed between mooring dolphins and quay walls and floating bodies. A rubber fender method is known.
[0004]
The former mooring line method has the disadvantage that the horizontal movement amount is large due to catenary mooring for relatively small external force such as normal wave, tidal current and wind load, etc. . In addition, it is necessary to install a large number of large mooring lines around the floating body in order to counter external forces during windstorms, which hinders the navigation of nearby ships.
[0005]
On the other hand, the latter rubber fender method has a large spring coefficient, so the amount of displacement in normal times can be reduced, and there is no problem that hinders the navigation of nearby vessels. However, the deformation capacity (stroke) is small, so it is excessive during storms. An external force is generated. Further, when it is possible to absorb the in-plane deformation of the floating body due to the expansion and contraction of the floating body due to a change in the outside air temperature, it is necessary to take measures to increase the deformation capacity.
The largest rubber fender currently on the market in Japan is a cell-type fender (outer diameter 3m, length 3m, deformation capacity 1.5m at design limit strain (50%), maximum reaction force 400t-600t) ).
[0006]
In order to increase the deformability of the rubber fender, there are means for connecting a plurality of them in series, such as those disclosed in JP-A-6-144356. Although it is conceivable to produce a long fender with a particularly large deformation capability, there is a problem of torsional buckling, which is difficult.
[0007]
[Problems to be solved by the invention]
Usually, the mooring force of the mooring device is determined so as to be safe against the maximum external force generated during a storm. The acting external force generated during this storm correlates with the amount of displacement of the reaction body (the mooring device). When the deformation of the mooring device is restricted, the acting external force is large, and if large displacement is allowed, it absorbs energy and acts. External force can be reduced. Therefore, in order to reduce the external force during a storm, it is advantageous to moor the mooring device with a large displacement.
[0008]
In the case of the above-described rubber fender method, since the deformability is small when used alone, an excessive external force is generated during a storm, so it is necessary to counteract by using a large number of large fenders having a large reaction force capacity in parallel. If the deformation capacity is increased by connecting multiple units in series, the external force can be reduced somewhat, but the number of large fenders used remains the same, and there is an issue that requires a large investment in mooring equipment. It was.
[0009]
Further, even if a plurality of large rubber fenders are connected in series, the increase in deformation capacity is limited, and a countermeasure against torsional buckling is required, which further increases the equipment cost.
[0010]
An object of the present invention is to provide an economical mooring device by suppressing the amount of displacement of a floating body with respect to a normal external force and allowing the floating body to be displaced during a storm and reducing the acting external force. .
[0011]
[Means for solving the problems]
The gist of the present invention is as follows.
[0012]
A first invention is a mooring device for mooring a floating body to a base body installed on the seabed, and includes a stopper. By maintaining the displaced state Using the elastic body A having a small spring coefficient introduced with the initial reaction force and the elastic body B having a spring coefficient larger than the elastic body A, the mooring force of the floating body is transmitted from the elastic body B to the elastic body A, and the mooring force is The floating body mooring device having a nonlinear reaction force characteristic, wherein the elastic body A is displaced when the initial reaction force of the elastic body A is exceeded.
[0013]
According to a second invention, in the first invention, one end of the elastic body A is fixed to a support body protruding horizontally from a base installed on the seabed, and the elastic body B pin-coupled to the support body is suspended, In the stretched or compressed state of the elastic body A, one horizontal displacement is regulated by a stopper and connected to the upper end of the elastic body B to introduce an initial reaction force to the elastic body A. The mooring material protruding from the floating body is brought into contact with the movable body so as to be movable up and down, and the horizontal displacement in one direction of the floating body is supported by the elastic body A and the elastic body B having different spring coefficients according to the change in the tide level.
[0014]
According to a third aspect of the present invention, the mooring device according to the second aspect of the present invention is provided in parallel so as to support horizontal displacements in directions opposite to each other on a base installed on one side of the floating body, and supports the horizontal displacement of the floating body in the left-right direction. This is a floating body mooring device having a nonlinear reaction force characteristic.
[0015]
According to a fourth aspect of the present invention, in the first aspect, the elastic body A1 and the elastic body A2 are opposed to both ends of a support body that is horizontally provided from a base body installed on the seabed, and one end thereof is fixed. The elastic body B1 and the elastic body B2 that are pin-coupled to each other are suspended, and the elastic body B1 and the elastic body B1 are elastically controlled by restricting horizontal displacement in one direction opposite to the respective stoppers when the elastic body A1 and the elastic body A2 are extended or compressed. The mooring material connected to the upper end of the body B2 is introduced with an initial reaction force in a direction opposite to the elastic body A1 and the elastic body A2, and the anchoring material projecting from the floating body below each elastic body B1 and elastic body B2. It is abutted so that it can move up and down, and the horizontal displacement of the left and right sides of the floating body is supported by elastic bodies A1 and A2 and elastic bodies B1 and B2 having different spring coefficients according to changes in the tide level.
[0016]
In a fifth aspect of the present invention, in the first aspect, a reaction force plate A is provided at one end and a hole stopper is provided at the other end. A large-diameter cylinder is slidably covered, and the elastic body A into which the initial compression force is introduced by restricting the displacement by the stopper is accommodated in the small-diameter cylinder, and only the compression force is applied to the reaction force plate in the large-diameter cylinder. An elastic body B adapted to transmit is housed, and a rod for connecting the elastic body A and the elastic body B through the hole of the perforated stopper is arranged over both the small diameter cylinder and the large diameter cylinder, and the floating body is moored. When the elastic body B having a large spring coefficient is transmitted as a compressive force to the elastic body A having a small spring coefficient introduced through the rod, and the compressive force exceeds the initial compressive force regulated by the stopper. It is characterized in that the elastic body A is displaced to .
[0017]
A sixth aspect of the invention is the first aspect according to the first aspect, wherein a large-diameter having a reaction force plate provided at one end and a reaction force plate provided at the other end on the stopper side of a small diameter cylinder provided with a reaction force plate at one end and a perforated stopper provided at the other end. A cylinder is slidably covered, and an elastic body A having one end fixed to a reaction force plate is accommodated in the small diameter cylinder, and an elastic body B and an elastic body A each having one end fixed to the reaction force plate are accommodated in the large diameter cylinder. A connecting tool with a rod for connecting the elastic body B is stored,
The elastic body A and the connecting tool with the rod are connected in a state where initial tension is introduced into the elastic body A by a rod inserted through the hole of the perforated stopper, and a tensile force is applied to the elastic body A and the elastic body B. Only the mooring force of the floating body is transmitted as a tensile force to the elastic body A having a small spring coefficient introduced through the elastic body B having a large spring coefficient. The elastic body A is displaced when it exceeds the initial tensile force regulated by the stopper.
[0018]
The seventh invention is characterized in that the mooring device according to the fifth and sixth inventions is provided in parallel on a base body installed on one side of the floating body to support horizontal displacement of the floating body in the left-right direction. It is the floating body mooring device provided with the nonlinear reaction force characteristic.
[0019]
According to an eighth invention, in any one of the fifth to seventh inventions, a universal joint is provided on the reaction plate of the small diameter cylinder and the reaction force plate of the large diameter cylinder, and the universal joint is installed on the seabed via the universal joint. It is characterized in that the substrate and the floating body are connected.
[0020]
<Action>
The point of the present invention is that, for relatively small external forces such as waves, tidal currents, and wind loads during normal times, the elastic body B is moored by the elastic body B having a large spring coefficient within the initial reaction force of the elastic body A to suppress the swinging of the floating body. It has a nonlinear reaction force characteristic that allows the elastic body A with a small spring coefficient to move and allow the displacement of the floating body to absorb the energy against a large external force during a storm that exceeds the initial reaction force of the elastic body. As a mooring device, the design is advantageous by reducing the external action force during a storm.
[0021]
FIG. 13 shows the relationship between the deformation of the mooring device having a different spring coefficient and the mooring device reaction force together with the present invention and a comparative example. In FIG. 13, (a) shows the relationship between deformation and reaction force in a mooring device with a reaction force characteristic of linear or reaction force gradually increasing type with a large spring coefficient. (B) shows the relationship between deformation and reaction force in a mooring device with a linear or small reaction force incremental reaction force characteristic with a small spring coefficient. (C) shows the relationship between deformation and reaction force in the mooring device having the nonlinear reaction force characteristic of the present invention.
[0022]
In Comparative Example (a), there is no problem because the deformation of the mooring device is small and the displacement (a1) is small in normal times, but a large reaction force (a2) is generated during a storm, and the design external force becomes excessive.
In comparative example (b), since the mooring device is largely deformed, it absorbs energy during a storm and produces a small reaction force (b2), which can reduce the design external force during a storm but increases the displacement (b1) during normal times. .
[0023]
On the other hand, (c) is a mooring device of the present invention, comprising an elastic body A having a small spring coefficient with an initial reaction force introduced by a stopper, and an elastic body B having a large spring coefficient for transmitting the mooring force from the mooring material. It has a combined non-linear reaction force characteristic. For a small external force in normal times, only the elastic body B acts within the initial reaction force introduced into the elastic body A, and the displacement (c1) is relatively small. For external forces that are moored and exceed the initial reaction force introduced into the elastic body A, the elastic body A operates to allow a large displacement and absorb the energy to generate a reaction force (c2). The design external force can be reduced because it becomes smaller. The reaction force Ri in FIG. 13 is an initial reaction force value introduced into the elastic body A by the stopper.
[0024]
Embodiments and Examples of the Invention
1 to 9 show an embodiment relating to a lever-type mooring apparatus 1 according to the present invention.
FIG. 1 is an example of the first embodiment, and a mooring device 1 that restricts horizontal displacement in one direction is provided on a base body 3 installed on the left and right sides of a floating body 2 so that the floating body 2 is sandwiched between them. The horizontal displacement is supported.
[0025]
The mooring device 1 fixes one end of an elastic body A composed of a coil spring, a pneumatic cylinder, and the like that expands and contracts with a predetermined spring coefficient ka to a support body 5 that is horizontally projected from a base 3 such as a dolphin installed on the seabed 4. The other end of the elastic body A is connected to the upper end portion of the support member 6 of the drooping elastic body B in which the other end of the elastic body A is connected to the support body 5 with a gap L1.
A stopper 7 is provided on the support 5 below the support member mounting pin 9 on the opposite side of the elastic body A with a gap L2, and one of the support members 6 of the drooping elastic body B (by this stopper 7) Displacement in the right direction) is restricted, and the initial tensile force Ri introduced into the elastic body A is held.
[0026]
The mooring of the floating body 2 is performed by contacting the mooring material 2a protruding from the floating body 2 below the elastic body B. Here, since the floating body 2 moves up and down relatively with the mooring device 1 due to the tide level difference, the elastic body B and the mooring material 2a are freely brought into contact with each other so as to be able to move up and down following the tide level fluctuation.
[0027]
As the elastic body B extending below the support member 6, for example, a leaf spring using ordinary steel in an elastic region can be used. The leaf spring may be integrated with the upper support member 6.
This elastic body B needs to have a spring coefficient kb larger than that of the elastic body A (ka <kb) and to have a proof strength capable of resisting an external force during a storm. Moreover, it is necessary to use a thing with good abrasion resistance in order to contact the mooring material 2a and to repeat a movement up and down.
[0028]
FIG. 2 shows the movements of the elastic bodies A and B when the mooring device 1 is stationary (in the state where the mooring force of the floating body does not act), when receiving external force during normal times, and when receiving external force during storms. It is a thing.
(A) In the state where the mooring force of the floating body 2 does not act on the elastic body B (FIG. 2a), the initial tension Ri of the elastic body A is all handled by the reaction force Rs of the stopper 7, and the relationship between Ri and Rs is Ri × L1 = Rs × L2.
(B) The elastic body B responds to the external force P1 in the normal state with a small deformation caused by the spring coefficient of kb without detaching from the stopper 7, and the tension of the elastic body A is the initial tension Ri and the reaction of the stopper 7 The force is Rs−ΔRs (> 0) (see FIG. 2b).
(C) With the external force P2 during a storm, when the large external force P2 acting on the elastic body B exceeds the initial tension Ri, P2 × L3> Ri × L1, and the support member 6 supporting the elastic body B is released from the stopper 7. The elastic body A expands with a spring coefficient ka to cause a large displacement in the floating body 2 (see FIG. 2c). As a result, the external force energy of the floating body 2 is absorbed by the elastic deformation of the elastic body A.
In the state of (c), the load balance between the external force P2 and the elastic body A is
P2 × L3 = (Ri + ΔRi2) × L1.
[0029]
FIG. 3 shows a second embodiment, which is a mooring device 1 that regulates the movement of the floating body 2 in a direction away from the mooring device 1 side. In the second embodiment, the elastic body A and the stopper are provided on the opposite side of the first embodiment, and the roller support 8 that draws the elastic body B is used for the anchoring material 2a protruding from the floating body 2.
If the mooring devices of the second embodiment and the first embodiment are alternately arranged, the mooring device can be moored by a base installed only on one side of the floating body.
[0030]
FIG. 4 shows a third embodiment in which the initial reaction force introducing means is a compressive force. When the compression force is the initial reaction force, the positions of the stoppers 7 are different from those in the first and second embodiments. That is, in the third embodiment, the elastic body A into which the compressive force is introduced is connected to the support body 5 and the support member 6 of the hanging elastic body B above the support body 5, and on the elastic body A side below the support body 5. A stopper 7 is provided, and this stopper 7 restricts the displacement of the supporting member 6 of the hanging elastic body B in the left direction (the left direction), and the initial compressive force introduced into the elastic body A is held.
[0031]
FIG. 5 shows a fourth embodiment in which the elastic body A into which the tensile force is introduced is arranged below the support body 5 of the base 3. In this case, the stopper 7 is disposed between the support member mounting pin 9 provided on the support 5 and the elastic body A.
[0032]
FIG. 6 is a side view of the mooring device of the fifth embodiment, and FIG. 7 is a plan view of FIG. The fifth embodiment is an embodiment in which the first embodiment and the second embodiment are combined.
In the mooring device 1 according to the fifth embodiment, the elastic bodies A1 and A2 are arranged opposite to each other at both ends of the support body 5 that is horizontally projected from the base body 3 installed on the seabed 4, and each of the support bodies 5 is provided with each of them. One end is fixed. A suspended elastic body B1 and elastic body B2 are pin-coupled to the support body 5, respectively. Further, the other ends of the elastic bodies A1 and A2 are connected to the upper ends of the support members 6 of the elastic bodies B1 and B2 in an extended state where initial tension is introduced.
[0033]
The initial tension introduced into the elastic bodies A1 and A2 is held by the corresponding stopper 7, respectively. With this configuration, the elastic body B1 and the elastic body B2 restrict horizontal displacements in opposite directions, and initial tension (reaction force) introduced into the elastic bodies A1 and A2 with respect to displacements in opposite directions. It is regulated by.
[0034]
The anchoring material 2a protruding from the floating body 2 is brought into contact with the lower part of the elastic body B1 and elastic body B2 via the roller support 8 so as to be drawn and pressed, and the mooring force in the left-right direction is transmitted. The Further, the roller support 8 of the mooring material 2a is movable up and down so that it can follow even if the tide level changes.
In this way, the non-linear reaction force characteristics of the elastic body A1, the elastic body A2 having the small spring coefficient ka, the elastic body B1 having the large spring coefficient kb, and the elastic body B2 having the initial reaction force introduced by the stopper 7 are different. The horizontal displacement of the floating body 2 in both the left and right directions is supported by the mooring device 1 having the above.
8 and 9 are a side view and a plan view when the floating body 2 is moored by the base 3 installed on one side using the mooring device 1 of the fifth embodiment.
[0035]
10 to 12 show an embodiment of a cylindrical mooring device 10 according to the present invention.
[0036]
FIG. 10 shows a sixth embodiment, which is a cylindrical mooring device 10 a when the floating body 2 acts as a compressive force on the base 3.
The mooring device 10 a according to the sixth embodiment is formed by combining a small diameter cylinder 11 and a large diameter cylinder 12 having an inner diameter larger than that of the small diameter cylinder 11.
One end of the small-diameter cylinder 11 is provided with a reaction force plate 11 a that is fixed to the base 3 or the floating body 2, and a perforated stopper 11 b is provided at the other end. The small-diameter cylinder is covered with a large-diameter cylinder 12 having one end opened and a reaction force plate 12a at the other end on the perforated stopper 11b side so that both cylinders can slide.
[0037]
The small-diameter cylinder 11 stores an elastic body A, one end of which is connected to the reaction force plate 11a, and the large-diameter cylinder 12 has an elastic body B in a free state that is not connected to the reaction force plate 12a. Stored. And the rod 13 which connects the elastic body A and the elastic body B over both the small diameter cylinder 11 and the large diameter cylinder 12 is disposed so as to pass through the hole of the perforated stopper 11b.
[0038]
The elastic body A has a predetermined spring coefficient ka, and the elastic body A can be a displaceable coil spring, a pneumatic cylinder, or the like. The elastic body B has a spring coefficient kb larger than the spring coefficient ka of the elastic body A (ka <kb). Can be selected from coil springs, steel bellows, etc.
[0039]
The elastic body A housed in the small-diameter cylinder 11 has a predetermined initial state in which the displacement is regulated by the perforated stopper 11b at the end and the anchor member 13a at the end of the rod 13 so that the normal mooring force P1 is within the range. A compression force Pi is introduced (P1 <Pi). The initial compressive force can be introduced by, for example, connecting the reaction force plate 11a and the end portion of the small diameter cylinder 11 with screws and screwing the elastic body A into the small diameter cylinder 11 with a predetermined compressive force.
[0040]
The rod 13 disposed through the perforated stopper 11b transmits the compressive mooring force of the floating body 2 from the elastic body B to the elastic body A, and can move more than the displaceable length of the elastic body A, and can be used during a storm. It must be strong enough to withstand external forces.
[0041]
The elastic body B connected and fixed to the rod 13 is not fixed to the reaction force plate 12a but abuts so as to be separable so as to transmit only the compression force. The reason for this is to avoid the occurrence of an excessive reaction force on the anchor member 13a and the perforated stopper 11b when a tensile force acts on the anchoring device 10a.
[0042]
FIG. 10A shows a state where a tensile force is applied when the mooring device 10a is in a free state, that is, a case where an external force is applied in a direction in which the floating body 2 is separated from the base 3. In this state, since the elastic body B is not fixed to the reaction force plate 12a but is detachably contacted to transmit only the compression force, the mooring device 10a behaves freely.
[0043]
FIG. 10 (b) shows a normal mooring state, since the compressive force P1 during mooring acting between the floating body 2 and the base 3 is within the initial compressive force Pi introduced into the elastic body A (P1 <Pi). ), The elastic body A is not displaced, and only the elastic body B is moored with a small spring by a large spring coefficient kb.
[0044]
FIG. 10 (c) shows the mooring state during a storm. Since the compressive external force P2 at the time of mooring exceeds the initial compressive force Pi introduced into the elastic body A (Pi <P2), it is transmitted through the rod 13. The elastic body A is displaced away from the stopper by the mooring force. At this time, the external force during the storm is absorbed by the displacement of the elastic body B due to the spring coefficient kb and the displacement of the spring coefficient ka of the elastic body A, so that the reaction force of the mooring device can be reduced.
[0045]
By the mooring device 10a configured as described above, the mooring force of the floating body 2 is transmitted as a compressive force to the elastic body B having a small spring coefficient introduced into the elastic body B having a large spring coefficient through the rod 13, and is normal. The mooring at the time is moored by the elastic body B with a small displacement, and when the initial compressive force of the elastic body A is exceeded (when a large external compression force is applied as in a storm), the elastic body A having a small spring coefficient is displaced. Thus, a floating body mooring device having a nonlinear reaction force characteristic that counteracts the mooring force with elastic bodies having different spring coefficients is realized.
[0046]
FIG. 11 shows a seventh embodiment, which is a cylindrical mooring device 10b when the floating body 2 acts on the base 3 as a tensile force.
[0047]
The cylindrical mooring device 10b of the seventh embodiment is different from the cylindrical mooring device of the sixth embodiment (when compressive force is applied) in that the initial tension is introduced into the elastic body A and connected with a rod. It is connected to the tool 14 and connected to the elastic body B so as to transmit only a tensile force.
Hereinafter, only a point in which the seventh embodiment is different from the sixth embodiment will be described, and description of portions overlapping with the sixth embodiment will be omitted.
[0048]
The large-diameter cylinder 12 of the seventh embodiment includes a connecting tool 14 with a rod that can be separated in the axial direction of the large-diameter cylinder, and an elastic structure in which one end is fixed to the reaction force plate 12a and the other end is connected to the connecting tool 14 with a rod. The body B is stored.
[0049]
Here, the connecting tool 14 with the rod is provided with a first rod 15a connected to the elastic body A at one end, and a cylinder member 15 having a perforated stopper 15b at the other end and a first connecting member connected to the elastic body B. 2 rods 16. The second rod 16 is inserted into the perforated stopper 15 b of the cylinder member 15. An anchor member 16a is provided at the cylinder member side end of the second rod 16 to prevent pull-out.
[0050]
The first rod 15a of the cylinder member is connected to the elastic body A into which the initial tension is introduced through the hole of the perforated stopper 11b of the small diameter cylinder 11.
[0051]
That is, in order to introduce an initial tensile force to the elastic body A, the connecting tool 14 with the rod for connecting the elastic body A and the elastic body B is accommodated in the large diameter cylinder 12 and is inserted into the hole of the perforated stopper 11b of the small diameter cylinder 11. The connecting tool 14 with a rod and the elastic body A are connected through one rod 15a.
[0052]
Further, as a means for transmitting only the mooring external force (tensile force), the elastic body B is connected to the reaction force plate 12a, and only the tensile force is transmitted from the coupling tool (cylinder member 15) separately from the first rod 15a on the cylinder member side. The second rod 16 is provided to connect the elastic body B and the second rod 16.
Thereby, the connecting tool 14 with the rod is configured to be separable in the large-diameter cylindrical axis direction, and the connecting tool 14 with the rod bears the compressive force from the floating body 2, while the elastic body A and the elastic body B are only tensile force. It comes to bear.
[0053]
FIG. 11A shows a state where a compressive force is applied while the mooring device 10b is in a free state, that is, a case where an external force is applied in a direction in which the floating body 2 approaches the base 3. In this state, the elastic body B fixed to the reaction force plate 12a is attached to the connector so as to be separated by the second rod 16 that transmits only the tensile force so as to transmit only the tensile force, so that the mooring device 10b is free. Behaves.
[0054]
FIG. 11 (b) shows a normal mooring state in this embodiment, and the tensile force P 3 during mooring acting between the floating body 2 and the base body 3 is within the initial tensile force Pi introduced into the elastic body A. Therefore (P3 <Pi), the elastic body A is not displaced and is anchored by the elastic body B only with a small spring with a large spring coefficient kb.
[0055]
FIG. 11 (c) shows a mooring state during a storm. Since the tensile external force P4 during mooring exceeds the initial tensile force Pi introduced into the elastic body A (Pi <P4), the mooring transmitted through the rod The elastic body A is extended and displaced toward the perforated stopper 11b by the force. At this time, the external force during the storm is absorbed by the displacement of the elastic body B due to the spring coefficient kb and the displacement of the spring coefficient ka of the elastic body A, and the reaction force of the mooring device 10b can be reduced.
[0056]
FIG. 12 shows a mooring device 10 according to the present invention, in which a hinge coupling member 17 is provided on reaction force plates 11a and 12a at both ends of the mooring device 10 for connecting the base 3 installed on the seabed 4 and the floating body 2 and coupled by pin coupling. It is a side view. The pin connection allows the mooring device 10 to follow freely even if the floating body 2 moves up and down due to the difference in tide level.
[0057]
As in the sixth and seventh embodiments, when a universal joint is provided on the reaction plate of the large-diameter cylinder and the reaction plate of the small-diameter cylinder at both ends of the mooring device, when the floating body moves up and down due to the tide level difference, Can be allowed to follow freely without any excessive reaction force even when the floating body is displaced in a direction orthogonal to the mooring device.
[0058]
If the cylindrical mooring devices acting as the compressive force mooring and the tensile force mooring of the sixth and seventh embodiments are arranged side by side, they can be moored by the base installed on one side of the floating body.
[0059]
【The invention's effect】
The present invention uses a stopper on a support fixed to a base installed on the seabed. By maintaining the displaced state One end of an elastic body A having a small spring coefficient introduced with an initial reaction force is fixed, and an elastic body B having a large spring coefficient is connected to the other end so as to be movable by an external force exceeding the initial reaction force of the elastic body A. Since the floating body anchoring device has a nonlinear reaction force characteristic in which the anchoring material protruding from the floating body is brought into contact with the elastic body B so as to be movable up and down, the elastic body has a large spring coefficient for a small external force in normal times. The body B is moored while suppressing the displacement of the floating body, and for large stormy external forces exceeding the reaction force of the stopper, the elastic body A with a small spring coefficient is operated to allow the floating body displacement and absorb the energy and have a large effect Since the design external force can be reduced by reducing the external force, an economical mooring device is provided.
Further, since the mooring material of the floating body is brought into contact with the mooring device so as to be movable up and down, it can be moored following the tide level fluctuation of the floating body.
[0060]
Further, when the mooring device is of a cylindrical type, the mooring device can be made compact, and if a universal joint is used for the attachment portion between the base body and the floating body, it is possible to follow fluctuations in the tide level and to cope with a deviation in the mooring orthogonal direction.
[Brief description of the drawings]
FIG. 1 is a side view of a first embodiment of the present invention, in which a mooring device for restricting horizontal displacement in one direction is provided on a base body installed on the left and right sides of a floating body.
FIGS. 2A and 2B are elastic bodies A and B when the mooring device according to the first embodiment is (a) when stationary, (b) when receiving an external force during normal times, and (c) when receiving an external force during a storm. FIG.
FIG. 3 is a diagram showing a second embodiment of the present invention.
FIG. 4 is a diagram showing a third embodiment of the present invention.
FIG. 5 is a diagram showing a fourth embodiment of the present invention.
FIG. 6 is a side view showing a fifth embodiment of the present invention.
7 is a plan view of FIG. 6. FIG.
FIG. 8 is a side view when a floating body is moored by a base body installed on one side using the mooring device of the fifth embodiment.
9 is a plan view of FIG. 8. FIG.
FIGS. 10A and 10B are diagrams showing a sixth embodiment of the present invention, in which a cylindrical compression mooring device receives (a) free, (b) normal external force, and (c) storm external force. It is the figure showing the motion of the elastic body A and the elastic body B in receiving.
FIGS. 11A and 11B are diagrams showing a seventh embodiment of the present invention, in which a cylindrical tension mooring device is subjected to (a) free, (b) normal external force, and (c) storm external force. It is the figure showing the motion of the elastic body A and the elastic body B in receiving.
FIG. 12 is a side view in which the cylindrical mooring device is installed by pin coupling between a base and a floating body.
FIG. 13 is a diagram showing the relationship between deformation and reaction force of a mooring device having different spring coefficients, together with the present invention and a comparative example.
[Explanation of symbols]
1 Mooring device
2 Floating body
2a Mooring material
3 Base
4 Seabed
4a Sea level
5 Support
6 Support members
7 Stopper
8 Roller support
9 Supporting member mounting pin
10, 10a, 10b Mooring device
11 Small diameter cylinder
11a Reaction plate
11b Perforated stopper
12 Large diameter cylinder
12a reaction force plate
13 Rod
13a Anchor member
14 Connecting tool with rod
15 Cylinder member
15a First rod
15b Perforated stopper
16 Second rod
16a Anchor member
17 Hinge coupling member
A, A1, A2 elastic body
B, B1, B2 elastic body

Claims (8)

海底に設置された基体に浮体を係留する係留装置であって、ストッパーにより変位した状態を維持することで初期反力を導入したばね係数の小さい弾性体Aと、該弾性体Aより大きいばね係数の弾性体Bを用い、浮体の係留力を前記弾性体Bから弾性体Aに伝達させ、係留力が前記弾性体Aの初期反力を超えた際に前記弾性体Aが変位するようにしたことを特徴とする非線形反力特性を備えた浮体係留装置。A mooring device for mooring a floating body to a base body installed on the seabed, wherein an elastic body A having an initial reaction force introduced by maintaining a displaced state by a stopper and a spring coefficient larger than the elastic body A The elastic body B is used to transmit the mooring force of the floating body from the elastic body B to the elastic body A, and the elastic body A is displaced when the mooring force exceeds the initial reaction force of the elastic body A. A floating body mooring device having a non-linear reaction force characteristic. 海底に設置された基体から水平突設された支持体に弾性体Aの一端を固定し、前記支持体にピン結合した弾性体Bを垂下し、前記弾性体Aを伸長または圧縮状態でストッパーにより一方の水平変位を規制して弾性体Bの上端部に連結して弾性体Aに初期反力を導入しておき、前記弾性体Bの下部に浮体から突設した係留材を上下移動可能に当接させ、潮位変化に応じて浮体の一方向の水平変位をばね係数の異なる弾性体Aと弾性体Bによって支持したことを特徴とする請求項1記載の非線形反力特性を備えた浮体係留装置。  One end of the elastic body A is fixed to a support body protruding horizontally from a base body installed on the seabed, an elastic body B pin-coupled to the support body is suspended, and the elastic body A is stretched or compressed by a stopper. One horizontal displacement is restricted and connected to the upper end of the elastic body B so that an initial reaction force is introduced into the elastic body A, and the anchoring material protruding from the floating body below the elastic body B can be moved up and down. The floating body mooring with nonlinear reaction force characteristics according to claim 1, wherein the horizontal displacement in one direction of the floating body is supported by elastic bodies A and B having different spring coefficients according to a change in tide level. apparatus. 請求項2記載の係留装置を、浮体の片側に設置した基体上に互いに相反する方向の水平変位を支持するように並列して設け、浮体の左右方向の水平変位を支持するようにしたことを特徴とする非線形反力特性を備えた浮体係留装置。  The mooring device according to claim 2 is provided in parallel so as to support horizontal displacements in directions opposite to each other on a base body installed on one side of the floating body so as to support horizontal displacement in the left-right direction of the floating body. Floating body mooring device with characteristic non-linear reaction force characteristics. 海底に設置された基体から水平突設された支持体の両端に弾性体A1と弾性体A2を対向させてそれぞれの一端を固定し、前記支持体にピン結合した弾性体B1と弾性体B2を垂下し、前記弾性体A1、弾性体A2を伸長または圧縮状態でそれぞれのストッパーに相反する各一方向の水平変位を規制して弾性体B1、弾性体B2の上端部に連結して弾性体A1、弾性体A2に相反する方向の初期反力を導入しておき、それぞれの弾性体B1、弾性体B2の下部に浮体から突設した係留材を上下移動可能に当接させ、潮位変化に応じて浮体の左右両方向の水平変位をばね係数の異なる弾性体A1,A2と弾性体B1,B2によって支持したことを特徴とする請求項1記載の非線形反力特性を備えた浮体係留装置。  The elastic body A1 and the elastic body A2 are opposed to both ends of a support body that is horizontally projected from a base body installed on the seabed, and one end thereof is fixed. The elastic body A1 is coupled to the upper ends of the elastic bodies B1 and B2 by restricting horizontal displacement in one direction opposite to the respective stoppers when the elastic bodies A1 and A2 are stretched or compressed in the stretched or compressed state. The initial reaction force in the opposite direction is introduced into the elastic body A2, and the anchoring material protruding from the floating body is brought into contact with the elastic body B1 and the lower part of the elastic body B2 so as to be movable up and down. 2. The floating body anchoring device with nonlinear reaction force characteristics according to claim 1, wherein the horizontal displacement of the floating body is supported by elastic bodies A1 and A2 and elastic bodies B1 and B2 having different spring coefficients. 一端に反力板Aを設け他端に孔明きストッパーを設けた小径円筒の孔明きストッパー側に、一端を開口し他端に反力板を設けた大径円筒をスライド自在に被せ、前記小径円筒内には前記ストッパーで変位を規制して初期圧縮力を導入した弾性体Aを収納し、大径円筒内には反力板に圧縮力のみ伝達するようにした弾性体Bを収納し、小径円筒と大径円筒の両方に渡って前記孔明きストッパーの孔を通して弾性体Aと弾性体Bを連結するロッドが配置しており、浮体の係留力をばね係数の大きい弾性体Bをロッドを介して初期圧縮力を導入したばね係数の小さい弾性体Aに圧縮力として伝達し、この圧縮力がストッパーで規制された初期圧縮力を超えた際に弾性体Aを変位させるようにしたことを特徴とする請求項1記載の非線形反力特性を備えた浮体係留装置。  A small diameter cylinder having a reaction force plate A at one end and a hole stopper at the other end is slidably covered with a large diameter cylinder having one end opened and a reaction plate at the other end. In the cylinder, the elastic body A in which the displacement is regulated by the stopper and the initial compressive force is introduced is stored, and in the large diameter cylinder, the elastic body B that transmits only the compressive force to the reaction force plate is stored. A rod that connects the elastic body A and the elastic body B through the hole of the perforated stopper is arranged over both the small-diameter cylinder and the large-diameter cylinder, and the anchoring force of the floating body is fixed to the elastic body B having a large spring coefficient. The initial compression force is transmitted to the elastic body A having a small spring coefficient as a compression force, and the elastic body A is displaced when the compression force exceeds the initial compression force regulated by the stopper. The non-linear reaction force characteristic according to claim 1 is provided. It was floating mooring equipment. 一端に反力板を設け他端に孔明きストッパーを設けた小径円筒のストッパー側に、一端を開口し他端に反力板を設けた大径円筒をスライド自在に被せ、小径円筒内には反力板に一端を固定した弾性体Aを収納し、大径円筒内には、反力板に一端を固定した弾性体Bと弾性体Aと弾性体Bを連結するロッド付連結具を収納し、
前記弾性体Aと前記ロッド付連結具とが、前記孔明きストッパーの孔を挿通したロッドによって、弾性体Aに初期張力を導入した状態で連結され、弾性体Aと弾性体Bには引張力のみが伝達されるようになっており、浮体の係留力をばね係数の大きい弾性体Bを介して初期引張力を導入したばね係数の小さい弾性体Aに引張力として伝達し、この引張力がストッパーで規制された初期引張力を超えた際に弾性体Aを変位させるようにしたことを特徴とする請求項1記載の非線形反力特性を備えた浮体係留装置。
A small-diameter cylinder with a reaction plate at one end and a perforated stopper at the other end is slidably covered with a large-diameter cylinder with one end open and a reaction plate at the other end. The elastic body A having one end fixed to the reaction force plate is accommodated, and the elastic body B having one end fixed to the reaction force plate and the connector with a rod for connecting the elastic body A and the elastic body B are accommodated in the large-diameter cylinder. And
The elastic body A and the connecting tool with the rod are connected in a state where initial tension is introduced into the elastic body A by a rod inserted through the hole of the perforated stopper, and a tensile force is applied to the elastic body A and the elastic body B. Only the mooring force of the floating body is transmitted as a tensile force to the elastic body A having a small spring coefficient introduced through the elastic body B having a large spring coefficient. 2. The floating body mooring device with a nonlinear reaction force characteristic according to claim 1, wherein the elastic body A is displaced when the initial tensile force regulated by the stopper is exceeded.
請求項5記載の係留装置および請求項6記載の係留装置を、浮体の片側に設置した基体上に並列して設け、浮体の左右方向の水平変位を支持するようにしたことを特徴とする非線形反力特性を備えた浮体係留装置。  A non-linearity characterized in that the mooring device according to claim 5 and the mooring device according to claim 6 are provided in parallel on a base body installed on one side of the floating body to support horizontal displacement of the floating body in the left-right direction. Floating body mooring device with reaction force characteristics. 小径円筒の反力板および大径円筒Bの反力板に自在継手を設け、該自在継手を介して海底に設置された基体と、浮体を連結するようにしたことを特徴とする請求項5から請求項7のいずれか1項に記載の非線形反力特性を備えた浮体係留装置。  6. A universal joint is provided on the reaction force plate of the small diameter cylinder and the reaction force plate of the large diameter cylinder B, and the base body installed on the seabed is connected to the floating body via the universal joint. A floating body mooring device having the nonlinear reaction force characteristic according to claim 7.
JP2001199212A 2001-06-29 2001-06-29 Floating body mooring device with non-linear reaction force characteristics Expired - Fee Related JP4562959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001199212A JP4562959B2 (en) 2001-06-29 2001-06-29 Floating body mooring device with non-linear reaction force characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001199212A JP4562959B2 (en) 2001-06-29 2001-06-29 Floating body mooring device with non-linear reaction force characteristics

Publications (2)

Publication Number Publication Date
JP2003011883A JP2003011883A (en) 2003-01-15
JP4562959B2 true JP4562959B2 (en) 2010-10-13

Family

ID=19036534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001199212A Expired - Fee Related JP4562959B2 (en) 2001-06-29 2001-06-29 Floating body mooring device with non-linear reaction force characteristics

Country Status (1)

Country Link
JP (1) JP4562959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312209B1 (en) 2013-04-22 2013-09-27 기정화 Up and down flow file guide
JP6302776B2 (en) * 2014-07-10 2018-03-28 新日鉄住金エンジニアリング株式会社 Floating body mooring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138983A (en) * 1999-11-16 2001-05-22 Mitsubishi Heavy Ind Ltd Buoyant body mooring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117618A (en) * 1984-06-30 1986-01-25 Yokohama Rubber Co Ltd:The Fender
JPS62129430U (en) * 1986-02-05 1987-08-15
JP2559303B2 (en) * 1991-07-11 1996-12-04 五洋建設株式会社 Docking device
JPH06144356A (en) * 1992-11-13 1994-05-24 Mitsubishi Heavy Ind Ltd Fender device
JP3085826B2 (en) * 1993-06-15 2000-09-11 三菱重工業株式会社 Combined fender for floating mooring
JP2923174B2 (en) * 1993-07-14 1999-07-26 三菱重工業株式会社 Ship mooring and berthing support equipment.
JPH10110761A (en) * 1996-08-10 1998-04-28 Tsukasa Ide Shock absorber for heavy load

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138983A (en) * 1999-11-16 2001-05-22 Mitsubishi Heavy Ind Ltd Buoyant body mooring device

Also Published As

Publication number Publication date
JP2003011883A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
KR101001491B1 (en) Shock mooring tension damper
US6345583B1 (en) Bi-directional dampening device and method therefor
US10507894B2 (en) Self-restoring motion compensating mooring system
JP4562959B2 (en) Floating body mooring device with non-linear reaction force characteristics
AU2021102479A4 (en) Shape memory alloy-based vibration isolation and attenuation support
EP3755616B1 (en) A mooring device and a floating unit comprising at least one mooring device
WO2019158710A1 (en) A mooring device and a floating unit comprising at least one mooring device
CN210827340U (en) String type mooring system
CN213185442U (en) Connecting clamp for preventing submarine cable from swinging and wearing
JP6302776B2 (en) Floating body mooring device
KR101884804B1 (en) Apparatus for test model
CN109764188B (en) Flexible connection regulator
GB2201930A (en) Resilient mooring system
JP2012012867A (en) Cable type bridge fall prevention structure and cable type bridge fall prevention device
CN109562811B (en) Mooring frame for mooring a floating unit and floating unit comprising a mooring frame
JP3989314B2 (en) Mooring system for floating bridge
GB2319010A (en) Mooring device for use between two marine structures
KR20100116446A (en) Apparatus for connecting structures
CN219137381U (en) Triple friction pendulum support for bridge
JP3734911B2 (en) Cable damping device for cable stayed bridge
CN217074739U (en) Connecting piece for floating type photovoltaic platform and floating type photovoltaic platform
CN210490403U (en) Cable vibration-proof device for railway communication
JP2000081094A (en) Mooring rope
JP2022535088A (en) buoyant rotatable marine converter
Yan et al. Extreme and Fatigue Analysis of a Dynamic Subsea Power Umbilical

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees