JP4552013B2 - Magnetostriction distribution measuring method by elastic wave standing wave method and stress inspection method using the method - Google Patents

Magnetostriction distribution measuring method by elastic wave standing wave method and stress inspection method using the method Download PDF

Info

Publication number
JP4552013B2
JP4552013B2 JP2005243511A JP2005243511A JP4552013B2 JP 4552013 B2 JP4552013 B2 JP 4552013B2 JP 2005243511 A JP2005243511 A JP 2005243511A JP 2005243511 A JP2005243511 A JP 2005243511A JP 4552013 B2 JP4552013 B2 JP 4552013B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetostriction
magnetic field
measured
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005243511A
Other languages
Japanese (ja)
Other versions
JP2007057396A (en
Inventor
寛 籏福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2005243511A priority Critical patent/JP4552013B2/en
Publication of JP2007057396A publication Critical patent/JP2007057396A/en
Application granted granted Critical
Publication of JP4552013B2 publication Critical patent/JP4552013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は、弾性体に弾性波を定在波を発生させることにより、磁性体各部における磁気歪みを計測する、弾性波定在波法による磁気歪み分布測定方法、及びこの磁気歪み分布測定法を用いた応力検査方法に関する。
The present invention, by generating a standing wave elastic wave in the elastic body, for measuring the magnetostriction in the magnetic various parts, magnetic strain distribution measuring method according to the elastic wave standing wave method, and the magnetic strain distribution measuring method The present invention relates to a stress inspection method used.

鉄棒に代表される磁性体棒は、機械的強度が大きく、且つ、低コストであることから、例えば、電車の車軸等の極めて機械的負荷が大きい部分に使用されている。しかしながら、良く知られているように、機械的負荷が大きい状態で使用し続けると、金属疲労が進行し、突然の破断等の破壊を招く。このため、磁性体棒の疲労の程度を非破壊で検査する方法が必要である。
従来のこの種の検査方法には、超音波パルス法がある。また、超音波は縦波、すなわち伸縮波であるので、検査対象が鉄鋼のような磁性を持つ構造物であれば、超音波による伸縮箇所には磁気歪みが生じ、この磁気歪みによる逆磁歪効果に基づいて異方性磁界が生じる。この現象に着目し、磁性体の一端に配置した弾性波発生器からの入射弾性波と磁性体の他端からの反射弾性波とで定在波を形成し、該定在波の節に応力が生じることを利用してこの応力の逆磁歪効果で発生する振動する異方性磁界から磁性体の磁気歪みを測定する方法が知られている(特許文献1や非特許文献1)。
また、鋼板の表面にバイアス磁界を印加すると共にこのバイアス磁界と同一平面内で直交し互いに逆行するように誘導磁界を印加させることで磁歪を生じさせ、この磁歪により生じる表面波の二方向への伝播速度の違いから、内部応力を評価することも、知られている(特許文献2)。
Magnetic rods typified by iron bars have high mechanical strength and are low in cost, and are used, for example, in parts with extremely high mechanical loads such as train axles. However, as is well known, if it continues to be used in a state where the mechanical load is large, metal fatigue progresses, leading to destruction such as a sudden fracture. For this reason, a method for inspecting the degree of fatigue of the magnetic rod in a nondestructive manner is necessary.
As a conventional inspection method of this type, there is an ultrasonic pulse method. In addition, since ultrasonic waves are longitudinal waves, that is, stretching waves, if the object to be inspected is a magnetic structure such as steel, magnetostriction occurs at the expansion and contraction points due to the ultrasonic waves, and the inverse magnetostriction effect due to this magnetostriction occurs. An anisotropic magnetic field is generated based on Focusing on this phenomenon, a standing wave is formed by the incident elastic wave from the elastic wave generator arranged at one end of the magnetic material and the reflected elastic wave from the other end of the magnetic material, and stress is applied to the node of the standing wave. There is known a method for measuring the magnetostriction of a magnetic material from an oscillating anisotropic magnetic field generated by the inverse magnetostriction effect of this stress by utilizing the occurrence of this phenomenon (Patent Document 1 and Non-Patent Document 1).
In addition, by applying a bias magnetic field to the surface of the steel sheet and applying an induction magnetic field so as to be orthogonal to and opposite to each other in the same plane, magnetostriction is generated, and surface waves generated by this magnetostriction in two directions. It is also known to evaluate internal stress from the difference in propagation speed (Patent Document 2).

特開2003−287565号公報JP 2003-287565 A 特開平7−286916号公報JP-A-7-286916 籏福 寛、電気学会論文誌A、121巻8号、pp739〜744、2001年Hiroshi Kanofuku, IEEJ Transactions Volume 121, No. 8, pp 739-744, 2001

しかしながら、超音波パルス法は、疲労が進み、ひび割れが生じた場合には有効であるが、ひび割れが生じてから、交換や補修をするのでは、安全が確保できない場合があるので十分な検査方法ではないという課題がある。
また、特許文献2の方法は、ひび割れが生じる直前の状態である内部応力の発生を検査できるが、誘導磁界により表面波を発生させるため、その発生効率が良くない。また、疲労した被測定物の残留応力を測定する場合には、疲労によって被測定物の硬度が高くなり、硬度が高くなると一般に弾性率が大きくなるために表面波の伝搬速度が大きくなり、また、疲労個所は表面全体に亘って一様ではないので、内在する応力のみに基づく表面波の二方向への伝播速度の違いを正確に測定することは困難であり、この測定方法では正確に測定することが困難であるという課題がある。
さらに、特許文献1に開示された方法では、内在する応力の大きさの異なる複数の磁性体を用いて各誘導起電力曲線を測定しておく必要があり、測定に手間がかかる。
However, the ultrasonic pulse method is effective when fatigue has progressed and cracks have occurred, but replacement or repair after cracks have occurred may not ensure safety. There is a problem that is not.
Moreover, although the method of patent document 2 can test | inspect the generation | occurrence | production of the internal stress which is a state just before a crack occurs, since the surface wave is generated with an induced magnetic field, the generation efficiency is not good. Also, when measuring the residual stress of a measured object that has been fatigued, the hardness of the object to be measured increases due to fatigue, and since the elastic modulus generally increases as the hardness increases, the propagation speed of surface waves increases. Because the fatigue point is not uniform over the entire surface, it is difficult to accurately measure the difference in the propagation velocity of the surface wave in two directions based only on the underlying stress. There is a problem that it is difficult to do.
Furthermore, in the method disclosed in Patent Document 1, it is necessary to measure each induced electromotive force curve using a plurality of magnetic bodies having different magnitudes of inherent stresses, which takes time.

このような状況の下、本発明者は、特許文献1および非特許文献1に開示した技術内容に更に改良を加え、磁性体棒の長手方向に沿って各部の磁気歪みを容易に算出できる、弾性波定在波法による磁気歪みを着想するに至った。   Under such circumstances, the present inventor can further improve the technical contents disclosed in Patent Document 1 and Non-Patent Document 1, and can easily calculate the magnetostriction of each part along the longitudinal direction of the magnetic rod, I came up with the idea of magnetostriction by the elastic wave standing wave method.

そこで、本発明は、上記課題に鑑み、磁性体内に生じさせた弾性定在波を利用して、正確、且つ、簡便に磁性体の任意の部位の磁気歪みを求めることができる、弾性波定在波法による磁気歪み分布測定方法、及び、その方法を用いた応力検査方法を提供することを目的とする。
The present invention has been made in view of the above problems, by utilizing the acoustic wave standing waves caused in the magnetic body, accurate, and can determine the magnetostriction of any sites conveniently magnetic, acoustic wave It is an object of the present invention to provide a magnetostriction distribution measurement method by a standing wave method and a stress inspection method using the method.

上記課題を解決するために、本発明の弾性波定在波法による磁気歪み分布測定方法は、被測定磁性体の両端から等距離にある中央の節の位置において印加磁界を変化させながら、誘導起電力の実効磁界依存性を求めるステップと、被測定磁性体の両端から等距離にある中央の節の位置において、印加磁界を変化させながら磁気歪みの実効磁界依存性を求めるステップと、被測定磁性体の長手方向に沿って一定磁界を印加した状態で、磁性体に弾性波を伝播させると共に反射させて被測定磁性体中に定在波を形成して振動磁界を発生させ、弾性波の伝播軸方向にコイルの位置を変化させながら、被測定磁性体の長手方向の各部における誘導起電力を測定するステップと、被測定磁性体の長手方向の各位置における誘導起電力の分布から、定在波の腹の測定値の包絡線を求め、この包絡線から求めた各位置での誘導起電力の値と、誘導起電力の実効磁界依存性と、磁気歪みの実効磁界依存性とから、各位置における磁気歪みを求めて、磁気歪み分布を求めるステップと、を含むことを特徴とする。
In order to solve the above-mentioned problem, the magnetostriction distribution measuring method by the elastic wave standing wave method of the present invention performs induction while changing the applied magnetic field at the position of the central node equidistant from both ends of the magnetic material to be measured. Determining the effective magnetic field dependency of the electromotive force; determining the effective magnetic field dependency of magnetostriction while changing the applied magnetic field at the position of the central node equidistant from both ends of the measured magnetic material; In a state where a constant magnetic field is applied along the longitudinal direction of the magnetic material, an elastic wave is propagated and reflected in the magnetic material to form a standing wave in the magnetic material to be measured to generate an oscillating magnetic field . From the step of measuring the induced electromotive force at each part in the longitudinal direction of the magnetic substance to be measured while changing the position of the coil in the propagation axis direction, and the distribution of the induced electromotive force at each position in the longitudinal direction of the magnetic substance to be measured, Standing wave Obtain the envelope of the measured value of the belly, and determine the value of the induced electromotive force at each position obtained from this envelope, the effective magnetic field dependency of the induced electromotive force, and the effective magnetic field dependency of magnetostriction. Obtaining a magnetostriction and obtaining a magnetostriction distribution .

この方法によれば、磁性体の長手方向に沿って印加した所定のバイアス磁界における、磁性体の任意の位置の磁気歪み量を測定することができる。すなわち、弾性波定在波法により測定される誘導起電力は、被測定磁性体の形状に基づく反磁界効果に影響されないので、誘導起電力と予め測定した誘導起電力と実効磁界の関係とから、被磁性体に形成された定在波の節の位置に実際に印加されている磁界、すなわち、実効磁界を求めることができ、また、磁性体に印加する磁界強度と磁気歪みの関係から、磁性体の節の磁気歪み量がわかる。また、弾性波の周波数を選択することにより、定在波の節の位置を選択できるので、任意の位置の磁気歪み量を測定することができる。   According to this method, it is possible to measure the amount of magnetostriction at an arbitrary position of the magnetic body in a predetermined bias magnetic field applied along the longitudinal direction of the magnetic body. That is, since the induced electromotive force measured by the elastic wave standing wave method is not affected by the demagnetizing field effect based on the shape of the magnetic substance to be measured, the relationship between the induced electromotive force and the previously measured induced electromotive force and effective magnetic field The magnetic field actually applied to the position of the node of the standing wave formed on the magnetic body, that is, the effective magnetic field can be obtained, and from the relationship between the magnetic field strength applied to the magnetic body and magnetostriction, The amount of magnetostriction at the node of the magnetic material is known. Further, since the position of the node of the standing wave can be selected by selecting the frequency of the elastic wave, the amount of magnetostriction at an arbitrary position can be measured.

また、本発明の応力検査方法は、初期状態の磁性体と、機械的ストレスを印加して疲労状態にある該磁性体とについてそれぞれ、上記弾性波定在波法による磁気歪み分布測定方法を用いて、磁性体の長手方向の磁気歪み分布を測定し、初期状態の磁性体の磁気歪み分布と疲労状態の磁性体の磁気歪み分布とを比較して、疲労状態の程度を判定することを特徴とする。 In addition, the stress inspection method of the present invention uses the magnetostriction distribution measurement method based on the elastic wave standing wave method for the magnetic material in the initial state and the magnetic material in a fatigue state by applying mechanical stress. Measuring the longitudinal magnetic strain distribution of the magnetic material, comparing the magnetic strain distribution of the magnetic material in the initial state with the magnetic strain distribution of the magnetic material in the fatigued state, and determining the degree of fatigue state And

この検査方法によれば、正確に磁性体の疲労状態を判定できる。すなわち、磁性体に機械的ストレスを印加すると、磁性体に応力が内在するようになり、応力が一定値を越えると破断等の破壊が生じ易くなるので、磁性体に内在する応力を測定すれば、磁性体の疲労状態を破壊前に知ることができる。磁性体に応力が内在すると、磁気歪み特性が変化するので、磁性体に磁場を印加し、磁性体全体の磁気歪みによる伸縮を測定することによって疲労度を判定できる。しかしながら、磁性体に印加されるストレスの種類によっては、磁性体の部位によって応力の方向が異なり、磁性体全体の伸縮が必ずしも疲労度に比例しない場合がある。
そこで、本発明の検査方法は、磁性体全体の磁気歪みによる伸縮ではなく、磁性体の各部位の磁気歪みによる伸縮、即ち、磁性体の磁気歪みの分布を比較して疲労度を検査するので、内部内在する応力の方向が異なる場合でも、正確に検査できる。
According to this inspection method, the fatigue state of the magnetic material can be accurately determined. That is, when a mechanical stress is applied to the magnetic material, the stress is inherent in the magnetic material, and if the stress exceeds a certain value, breakage such as breakage is likely to occur. The fatigue state of the magnetic material can be known before destruction. When stress is present in the magnetic material, the magnetostriction characteristics change. Therefore, it is possible to determine the degree of fatigue by applying a magnetic field to the magnetic material and measuring the expansion and contraction due to the magnetostriction of the entire magnetic material. However, depending on the type of stress applied to the magnetic material, the direction of the stress varies depending on the part of the magnetic material, and the expansion and contraction of the entire magnetic material may not necessarily be proportional to the degree of fatigue.
Therefore, the inspection method of the present invention is not the expansion and contraction due to the magnetic strain of the entire magnetic body, but the fatigue level is inspected by comparing the expansion and contraction of each part of the magnetic body, that is, the distribution of the magnetic strain of the magnetic body. Even when the direction of the internal stress is different, it can be accurately inspected.

以下、図面を参照して本発明を実施するための最良の形態を説明する。
本発明の方法は、特許文献1に記載された、被測定磁性体の長手方向に沿って一定のバイアス磁界を印加した状態で、磁性体に弾性波を伝播させると共に反射させて磁性体中に定在波を形成して振動磁界を発生させ、上記定在波の節の位置の振動磁界を誘導起電力として測定して実効磁界を計測する方法を用いるものであるので、初めにこの方法を説明する、なお、詳しくは特許文献1を参照していただきたい。
応力σを磁性体に加え、磁性体に機械的歪みεを加えると、εは磁気歪みλに等価な歪みを伴い、その結果、異方性磁界He が生じる。この効果は、磁界を印加して磁性体を機械的に歪ませることの逆であるので、逆磁歪効果という。
次に異方性磁界He の大きさと方向を説明する。応力σの印加により、磁性体の応力場には、磁気弾性エネルギーKe が発生する。この効果は、逆磁歪効果と呼ばれ、等方性磁性体の場合には、(1)式で表される。
e =−(3/2)λσcos2 φ (1)
ここで、λは磁気歪み量、φは応力σと磁化Iとのなす角である。異方性磁界He の大きさは次式によって表される。
e =2Ke /I (2)
異方性磁界He の方向は、(1)式の磁気弾性エネルギーKe が最小となる方向であり、単位体積当たりの磁気モーメント、すなわち磁化(磁気モーメント)Iが、Ke が最小となる方向に回転し、回転した磁化Iの方向が異方性磁界He の方向となる。
The best mode for carrying out the present invention will be described below with reference to the drawings.
According to the method of the present invention, an elastic wave is propagated and reflected in a magnetic material in a state in which a constant bias magnetic field is applied along the longitudinal direction of the magnetic material to be measured as described in Patent Document 1. A method is used in which a standing wave is generated to generate an oscillating magnetic field, and the effective magnetic field is measured by measuring the oscillating magnetic field at the position of the node of the standing wave as an induced electromotive force. For details, please refer to Patent Document 1 for details.
Stressed σ in the magnetic, the addition of mechanical strain epsilon the magnetic, epsilon is accompanied by an equivalent strain in the magnetostrictive lambda, as a result, the anisotropic magnetic field H e occurs. Since this effect is the opposite of mechanically distorting a magnetic material by applying a magnetic field, it is called an inverse magnetostriction effect.
Next will be described the magnitude and direction of the anisotropic magnetic field H e. By applying the stress σ, magnetoelastic energy Ke is generated in the stress field of the magnetic material. This effect is called an inverse magnetostriction effect, and is expressed by equation (1) in the case of an isotropic magnetic material.
K e = − (3/2) λσcos 2 φ (1)
Here, λ is the amount of magnetostriction, and φ is the angle between the stress σ and the magnetization I. The magnitude of the anisotropy field H e is expressed by the following equation.
H e = 2K e / I (2)
Direction of the anisotropic magnetic field H e is (1) a direction magnetoelastic energy K e is the smallest, magnetic moment per unit volume, i.e. the magnetization (magnetic moment) I becomes the K e is minimum rotates in the direction, the direction of the rotated magnetization I becomes the direction of the anisotropic magnetic field H e.

図1は、磁性体にバイアス磁界を印加し、磁性体の一端から弾性波を伝播させたときの現象を説明するため図である。図において、磁性体10の一端11に弾性波発生器12が配置され、磁性体10の他端13には弾性波14を吸収する吸収体15が配置されている。図中の矢印は磁性体10の磁気モーメント16を表しており、概略バイアス磁界HDCの方向を向いている。 FIG. 1 is a diagram for explaining a phenomenon when a bias magnetic field is applied to a magnetic body and an elastic wave is propagated from one end of the magnetic body. In the figure, an elastic wave generator 12 is disposed at one end 11 of the magnetic body 10, and an absorber 15 that absorbs an elastic wave 14 is disposed at the other end 13 of the magnetic body 10. Arrows in the figure represent the magnetic moment 16 of the magnetic body 10 are oriented in the direction of the outline bias field H DC.

弾性波発生器12から弾性波14を発生させると、弾性波14は磁性体中を伝搬する。図において、14aは伝搬する弾性波の張力部分を、14bは圧力部分をそれぞれ示している。
応力σが正の場合(張力が働いて伸びている状態の応力)に磁気歪みが正となる磁性体(逆磁歪効果による磁界が増える磁性体)、すなわち磁気歪み定数が正の磁性体の場合には、上記(1)式より、磁気弾性エネルギーKe が最小となる応力σと磁気モーメント16とのなす角φは、φ=0,またはπであるから、図1の14aに示したように、磁気モーメント16は弾性波の伝搬方向に平行となる。同様に、応力σが負の場合(圧力が働いて縮んでいる状態の応力)に磁気弾性エネルギーKe が最小となる角φは、φ=π/2,または3π/2であるから、図1の14bに示したように、磁気モーメント16は弾性波の伝搬方向に垂直になる。弾性波14は伝搬するから、磁性体10の一点において磁気モーメント16が平行及び垂直方向に時間的に振動することになり、磁性体中に振動磁界を発生させることができる。
また、磁気歪み定数が負の磁性体の場合には、応力σが負の部位の磁気モーメントは平行になり、応力が正の部位の磁気モーメントは垂直になる。
When the elastic wave 14 is generated from the elastic wave generator 12, the elastic wave 14 propagates in the magnetic material. In the figure, 14a indicates the tension portion of the propagating elastic wave, and 14b indicates the pressure portion.
When the stress σ is positive (stress in the state where tension is applied), the magnetic material has a positive magnetostriction (magnetic material that increases the magnetic field due to the inverse magnetostriction effect), that is, the magnetic material has a positive magnetostriction constant. Since the angle φ formed by the stress σ at which the magnetoelastic energy K e is minimum and the magnetic moment 16 is φ = 0 or π from the above equation (1), as shown in 14a of FIG. In addition, the magnetic moment 16 is parallel to the propagation direction of the elastic wave. Similarly, the angle φ at which the magnetoelastic energy Ke is minimum when the stress σ is negative (stress that is contracted by pressure) is φ = π / 2 or 3π / 2. As indicated by 14b of 1, the magnetic moment 16 is perpendicular to the propagation direction of the elastic wave. Since the elastic wave 14 propagates, the magnetic moment 16 oscillates in time in the parallel and vertical directions at one point of the magnetic body 10, and an oscillating magnetic field can be generated in the magnetic body.
In the case of a magnetic material having a negative magnetostriction constant, the magnetic moment of the portion where the stress σ is negative is parallel, and the magnetic moment of the portion where the stress is positive is perpendicular.

図1において、17は磁性体10の一点に固定した、磁性体を取り巻いて形成したコイルであり、弾性波14の伝搬に伴って、逆磁歪効果による振動磁界が発生し、この振動磁束がコイル17に鎖交するので誘導起電力が発生し、磁性体中に発生した振動磁界振幅、すなわち、異方性磁界He を測定することができる。すなわち、誘導起電力は、上記(3)式に示した異方性磁界He と弾性波の周波数に比例するから、測定した誘導起電力と弾性波の周波数とから異方性磁界He を知ることができる。 In FIG. 1, reference numeral 17 denotes a coil formed by surrounding a magnetic body, which is fixed to one point of the magnetic body 10. Along with the propagation of the elastic wave 14, an oscillating magnetic field is generated by the inverse magnetostriction effect, and this oscillating magnetic flux is interlinked since 17 induced electromotive force is generated, oscillating magnetic field amplitude generated in the magnetic body, i.e., it is possible to measure the anisotropy magnetic field H e. That is, induced electromotive force is proportional to the anisotropy field H e and the frequency of the acoustic wave shown in equation (3), the anisotropic magnetic field H e from the frequency of the measured induced electromotive force and the elastic wave I can know.

ところが、第1の問題として、弾性波は伝搬に伴い減衰し、磁性体の各部位に同等の応力を印加することができないことになる。
また、第2の問題として、誘導起電力には、磁束の時間変化に基づく起電力以外に、磁場勾配中を磁界源が動くことに基づく起電力が加算され、磁束の時間変化に基づく起電力のみを測定できない。すなわち、コイル17に誘導される起電力eは、Φをコイル17に鎖交する磁束、tを時間、xを位置座標、vをコイル中を振動磁界が通過する速度とすると、
e=−(∂Φ/∂t)−(∂Φ/∂x)・v (3)
で表される。磁性体10に外部磁界を印加すると、磁性体端面に磁極が発生し、反磁界効果によって磁性体端面近傍では磁束勾配(∂Φ/∂x)が存在し、この磁束勾配(∂Φ/∂x)が未知であるため、起電力eから磁束Φを求めることができず、従って、磁性体端面近傍では正確な実効磁界が求められない。
これらの問題は次のようにすることで解決される。
However, as a first problem, the elastic wave is attenuated as it propagates, and an equivalent stress cannot be applied to each part of the magnetic material.
As a second problem, the electromotive force based on the movement of the magnetic field source in the magnetic field gradient is added to the induced electromotive force in addition to the electromotive force based on the time variation of the magnetic flux. Can not measure only. That is, the electromotive force e induced in the coil 17 is expressed as follows: Φ is a magnetic flux interlinking with the coil 17, t is time, x is a position coordinate, and v is a speed at which the oscillating magnetic field passes through the coil.
e = − (∂Φ / ∂t) − (∂Φ / ∂x) · v (3)
It is represented by When an external magnetic field is applied to the magnetic body 10, a magnetic pole is generated on the end face of the magnetic body, and a magnetic flux gradient (∂Φ / ∂x) exists near the end face of the magnetic body due to the demagnetizing field effect. ) Is unknown, the magnetic flux Φ cannot be obtained from the electromotive force e. Therefore, an accurate effective magnetic field cannot be obtained in the vicinity of the end face of the magnetic material.
These problems can be solved as follows.

図2は、磁性体中に弾性波を共振させて定在波を形成する構成を示す図である。図2(a)は、測定系の構成を示し、磁性体10の一端11には弾性波発生器12が配置され、磁性体10の他端13には先端が針状の機械的固定端30が取り付けられている。図中、符号31は弾性波発生器12によって発生した入射弾性波を表し、符号32は磁性体の他端13で反射した反射弾性波を表している。
この構成によれば、磁性体10の一端11及び他端13は弾性波の自由端として働き、一端11及び他端13が腹となる定在波が形成される。コイル17は磁性体10を取り巻いて構成されており、コイル17を弾性波の進行軸に沿って移動し、磁性体10中に生じた複数の定在波の節に発生する逆磁歪効果による異方性磁界に基づく誘導起電力を測定する。
FIG. 2 is a diagram showing a configuration in which a standing wave is formed by resonating an elastic wave in a magnetic material. FIG. 2A shows the configuration of the measurement system, in which an elastic wave generator 12 is disposed at one end 11 of the magnetic body 10, and a needle-like mechanical fixed end 30 is disposed at the other end 13 of the magnetic body 10. Is attached. In the figure, reference numeral 31 represents an incident elastic wave generated by the elastic wave generator 12, and reference numeral 32 represents a reflected elastic wave reflected by the other end 13 of the magnetic material.
According to this configuration, the one end 11 and the other end 13 of the magnetic body 10 function as free ends of elastic waves, and a standing wave is formed in which the one end 11 and the other end 13 are antinodes. The coil 17 is configured to surround the magnetic body 10. The coil 17 moves along the traveling axis of the elastic wave, and is different due to the inverse magnetostrictive effect generated in the nodes of the standing waves generated in the magnetic body 10. The induced electromotive force based on the isotropic magnetic field is measured.

図2(b)は、図2(a)の構成において形成される定在波を模式的に示したものであり、縦線33は原子面を表し、縦線33の密度が大きい部位は、定在波から圧縮力を受け磁性体10が縮んでいることを表し、縦線33の密度が小さい部位は、定在波から張力を受け磁性体が伸びていることを表す。定在波の腹に位置する原子は、一斉に同一方向に変位するため応力は生じない。図2(b)にC.N.(compression node)及びT.N.(tensile node)で示すように、磁性体が圧縮される節(C.N.)と引っ張られる節(T.N.)が交互に並ぶ。
図2(c)は定在波によって発生する応力σの磁性体10中の分布を示したものであり、正の領域は圧縮応力、負の領域は引張応力を表す。
図に示すように、定在波は入射波31と反射波32が合成されて形成されるから、弾性波の伝搬に伴う磁性体中の減衰によらずに、磁性体中の全ての部位で同等の応力を発生させることができる。よって、上記第1の問題が解決する。
さらに、コイルに誘導される起電力eは、前記式(3)で表されるが、本発明では定在波を用いるので、コイル17中を振動磁界が通過する速度vが零であり、磁束勾配(∂Φ/∂x)に影響されずに、磁束の時間変化(∂Φ/∂t)に基づく起電力のみを測定でき、第2の問題が解決する。
FIG. 2B schematically shows a standing wave formed in the configuration of FIG. 2A. The vertical line 33 represents an atomic plane, and the portion where the density of the vertical line 33 is high is as follows. It represents that the magnetic body 10 is contracted by receiving a compressive force from the standing wave, and a portion where the density of the vertical lines 33 is small indicates that the magnetic body is stretched by receiving tension from the standing wave. The atoms located at the antinodes of the standing wave are displaced in the same direction all at once, so no stress is generated. In FIG. N. (Compression node) and T.W. N. As shown by (tensile node), the node (CN) in which the magnetic material is compressed and the node (TN) in which the magnetic material is pulled are alternately arranged.
FIG. 2C shows the distribution of the stress σ generated by the standing wave in the magnetic body 10, where the positive region represents compressive stress and the negative region represents tensile stress.
As shown in the figure, since the standing wave is formed by combining the incident wave 31 and the reflected wave 32, the standing wave is not affected by the attenuation in the magnetic body due to the propagation of the elastic wave, but at any part in the magnetic body. Equivalent stress can be generated. Therefore, the first problem is solved.
Furthermore, although the electromotive force e induced in the coil is expressed by the above equation (3), since the standing wave is used in the present invention, the velocity v at which the oscillating magnetic field passes through the coil 17 is zero, and the magnetic flux Only the electromotive force based on the temporal change (∂Φ / ∂t) of the magnetic flux can be measured without being affected by the gradient (∂Φ / ∂x), and the second problem is solved.

そこで、上記の弾性波定在波法を用いた、本発明の弾性波定在波法による磁気歪みの測定方法を説明する。本発明の方法は、以下の工程よりなる。
(1)被測定磁性体について、反磁界効果が無視でき、従って印加磁場が実効磁場に等しい、或いは、反磁界係数が既知であり、印加磁場から実効磁場が計算できる条件で、磁気歪みと実効磁場との関係、すなわち、磁気歪み特性を測定する。
(2)被測定磁性体について、反磁界効果が無視でき、従って印加磁場が実効磁場に等しい、或いは、反磁界係数が既知であり、印加磁場から実効磁場が計算できる条件で、誘導起電力と実効磁場との関係を測定する。
(3)被測定磁性体の任意の個所で誘導起電力を測定し、この誘導起電力と(2)で求めた誘導起電力と実効磁場との関係から実効磁場を求め、この実効磁場と(1)で求めた磁気歪み特性とから、磁気歪み量を求める。
すなわち、前記(1)、(2)式からわかるように、異方性磁界He 、すなわち、実効磁界を求めるためには、磁気歪みλと磁化Iを知る必要がある。特許文献2では磁気歪み曲線と磁化曲線を、反磁界効果が無視でき、従って印加磁場が実効磁場に等しい、或いは、反磁界係数が既知であり、印加磁場から実効磁場が計算できる条件で測定して実効磁界を求めているが、磁化曲線を測定するためには、専用の測定装置を必要とし、簡便ではない。そこで本発明の方法では、磁化曲線の代わりに、反磁界効果が無視でき、従って印加磁場が実効磁場に等しい、或いは、反磁界係数が既知であり、印加磁場から実効磁場が計算できる条件で被測定磁性体の一点について、誘導起電力と実効磁界の関係を求めておき、実際の測定に当たっては、測定した誘導起電力とこの関係とから実効磁界を求め、この実効磁界と予め求めた磁気歪み曲線とから、磁気歪み量を求めるものである。
磁気歪み曲線は、一般のストレインゲージを使用して比較的容易に測定できる。
Therefore, a method for measuring magnetostriction by the elastic wave standing wave method of the present invention using the above elastic wave standing wave method will be described. The method of the present invention comprises the following steps.
(1) With respect to the magnetic substance to be measured, the magnetostriction and effective are effective under the condition that the demagnetizing field effect is negligible and the applied magnetic field is equal to the effective magnetic field or the demagnetizing factor is known and the effective magnetic field can be calculated from the applied magnetic field. The relationship with the magnetic field, that is, the magnetostriction characteristic is measured.
(2) With respect to the magnetic substance to be measured, the demagnetizing effect can be ignored, and therefore, the induced electromotive force can be calculated under the condition that the applied magnetic field is equal to the effective magnetic field or the demagnetizing factor is known and the effective magnetic field can be calculated from the applied magnetic field. Measure the relationship with the effective magnetic field.
(3) An induced electromotive force is measured at an arbitrary portion of the magnetic substance to be measured, and an effective magnetic field is obtained from the relationship between the induced electromotive force and the induced electromotive force obtained in (2) and the effective magnetic field. The magnetostriction amount is obtained from the magnetostriction characteristics obtained in 1).
That is, the (1), as can be seen from equation (2), the anisotropic magnetic field H e, i.e., in order to obtain the effective magnetic field, it is necessary to know the magnetostriction λ and the magnetization I. In Patent Document 2, the magnetostriction curve and the magnetization curve are measured under conditions where the demagnetizing field effect can be ignored and the applied magnetic field is equal to the effective magnetic field or the demagnetizing factor is known and the effective magnetic field can be calculated from the applied magnetic field. However, in order to measure the magnetization curve, a dedicated measuring device is required, which is not simple. Therefore, in the method of the present invention, instead of the magnetization curve, the demagnetizing field effect can be ignored, so that the applied magnetic field is equal to the effective magnetic field, or the demagnetizing coefficient is known and the effective magnetic field can be calculated from the applied magnetic field. The relationship between the induced electromotive force and the effective magnetic field is obtained for one point of the measured magnetic body, and in actual measurement, the effective magnetic field is obtained from the measured induced electromotive force and the relationship, and the effective magnetic field and the previously obtained magnetostriction are calculated. The amount of magnetostriction is obtained from the curve.
The magnetostriction curve can be measured relatively easily using a general strain gauge.

次に、実施例を示す。
一辺が5mmの断面正方形で長さ100mの鉄の角棒を熱処理して被測定磁性体とし、図2(a)に示した測定系で測定した。なお、測定位置は角棒の中心位置であり、この位置では、反磁界効果が無視でき、印加した磁界は実効磁界に等しい。弾性波発生器12には、超音波振動子(共振周波数1MHz)を用い、被測定磁性体の一端に密着させた。他端は開放端とした。
Next, an example is shown.
An iron square bar having a square section of 5 mm on a side and a length of 100 m was heat-treated to obtain a magnetic substance to be measured, and measurement was performed with the measurement system shown in FIG. The measurement position is the center position of the square bar. At this position, the demagnetizing field effect can be ignored, and the applied magnetic field is equal to the effective magnetic field. For the acoustic wave generator 12, an ultrasonic transducer (resonance frequency: 1 MHz) was used, which was brought into close contact with one end of the magnetic material to be measured. The other end was an open end.

先ず、被測定磁性体での、磁気歪み曲線と定在波による誘導起電力の実効磁界依存性を求めた。誘導起電力の実効磁界依存性は、図2(a)の測定系において、磁性体の両端から等距離の位置にある中央の節の位置において、印加磁界を変化させながら、コイル17により測定を行って求めた。また、磁気歪み曲線は、図2(a)の測定系において、同じく磁性体の両端から等距離の位置にある中央の節の位置において、印加磁界を変化させながら、磁気歪みをストレンゲージ法で求めた。
図3は、本発明の実施例における、被測定磁性体の磁気歪み曲線と誘導起電力の実効磁界依存性の結果を示す図である。左縦軸は磁気歪みで、右縦軸は誘導起電力[mV]であり、横軸は実効磁界である。
First, the effective magnetic field dependence of the induced electromotive force due to the magnetostriction curve and the standing wave in the magnetic material to be measured was obtained. The effective magnetic field dependence of the induced electromotive force is measured by the coil 17 while changing the applied magnetic field at the position of the central node at the same distance from both ends of the magnetic material in the measurement system of FIG. I went and asked. In addition, the magnetostriction curve is obtained by measuring the magnetostriction by the strain gauge method while changing the applied magnetic field at the position of the central node at the same distance from both ends of the magnetic material in the measurement system of FIG. Asked.
FIG. 3 is a diagram showing a result of the effective magnetic field dependence of the magnetostriction curve and induced electromotive force of the magnetic substance to be measured in the example of the present invention. The left vertical axis is magnetostriction, the right vertical axis is induced electromotive force [mV], and the horizontal axis is effective magnetic field.

次に、図2(a)の測定系において、定在波が形成されている被測定磁性体に一定磁界を印加し、弾性波の伝播軸方向にコイル17の位置を変化させながら、被測定磁性体各部の誘導起電力を測定した。この際、外部印加磁界は13.4kA/mとした。弾性波の周波数は354kHz、波数は6.5m-1としたので、波長は15.4mmで速度は5450mm/sであった。コイル17には、直径7.2mm、厚さ1mm、巻数100回のものを用いた。 Next, in the measurement system of FIG. 2A, a constant magnetic field is applied to the magnetic material to be measured where a standing wave is formed, and the position of the coil 17 is changed in the direction of the propagation axis of the elastic wave. The induced electromotive force of each part of the magnetic material was measured. At this time, the externally applied magnetic field was 13.4 kA / m. Since the frequency of the elastic wave was 354 kHz and the wave number was 6.5 m −1 , the wavelength was 15.4 mm and the velocity was 5450 mm / s. A coil having a diameter of 7.2 mm, a thickness of 1 mm, and a winding number of 100 was used as the coil 17.

図4は、本発明の実施例における、被測定磁性体の長手方向の各位置における誘導起電力の分布を示す図である。図において、横軸は、被測定磁性体の長手方向の一方を正方向にとってその中心をゼロとしたときの被測定磁性体の各部位、即ち、検出用のコイル17の位置[mm]であり、縦軸は誘導起電力[mV]である。また、図中の矢印は、被測定磁性体の長手方向の中央から左右に1.75波長、すなわち、±27mmの箇所であり、定在波の節が腹の誘導起電力の符号が反転している箇所である。   FIG. 4 is a diagram showing the distribution of the induced electromotive force at each position in the longitudinal direction of the magnetic substance to be measured in the example of the present invention. In the figure, the horizontal axis represents each part of the magnetic substance to be measured, that is, the position [mm] of the detection coil 17 when one of the longitudinal directions of the magnetic substance to be measured is positive and the center is zero. The vertical axis represents the induced electromotive force [mV]. Moreover, the arrows in the figure are 1.75 wavelengths from the center in the longitudinal direction of the magnetic substance to be measured, that is, ± 27 mm, and the sign of the standing electromotive force of the node of the standing wave is inverted. It is a place.

図5は、図4の測定データの定在波の腹の測定値の包絡線を求めたものである。横軸は、被測定磁性体の長手方向の一方を正方向にとってその中心をゼロとしたときの磁性体の各位置、即ち検出用のコイル17の位置[mm]であり、縦軸は誘導起電力[mV]である。図5から、磁性体の所望の位置の誘導起電力がわかり、この誘導起電力と図3の誘導起電力と実効磁界との関係から実効磁界がわかり、この実効磁界と図3の磁気歪みと実効磁界との関係から、磁性体の所望の位置の磁気歪み量がわかる。
例えば、誘導起電力0mVは実効磁界約4kA/mに対応し、実効磁界4kA/mは磁気歪み約3×10-6に対応するので、被測定磁性体の中央から27mmの部位における磁気歪みは約3×10-6の伸びと求めることができる。
また、誘導起電力が120mVは実効磁界約20kA/mに対応し、実効磁界20kA/mは磁気歪み約5×10-6と求められるので、被測定磁性体の中央では、磁気歪みは約5×10-6縮みと求めることができる。
このように、節毎に磁気歪みを求めることができる。また、定在波の波長を単位として、各部での引張りや圧縮など各種応力を評価することができる。
FIG. 5 shows the envelope of the measured value of the antinode of the standing wave of the measurement data of FIG. The horizontal axis represents each position of the magnetic body when one of the longitudinal directions of the measured magnetic body is the positive direction and the center is zero, that is, the position [mm] of the detection coil 17, and the vertical axis represents the induction Electric power [mV]. FIG. 5 shows the induced electromotive force at a desired position of the magnetic material, and the effective magnetic field is found from the relationship between the induced electromotive force and the induced electromotive force and the effective magnetic field in FIG. 3, and the effective magnetic field and the magnetostriction in FIG. From the relationship with the effective magnetic field, the amount of magnetostriction at a desired position of the magnetic material can be found.
For example, an induced electromotive force of 0 mV corresponds to an effective magnetic field of about 4 kA / m, and an effective magnetic field of 4 kA / m corresponds to a magnetostriction of about 3 × 10 −6 , so that the magnetostriction at a portion 27 mm from the center of the magnetic substance to be measured is It can be determined that the elongation is about 3 × 10 −6 .
The induced electromotive force of 120 mV corresponds to an effective magnetic field of about 20 kA / m, and the effective magnetic field of 20 kA / m is required to be about 5 × 10 −6. Therefore, at the center of the measured magnetic material, the magnetostriction is about 5 × 10 -6 shrinkage can be obtained.
Thus, the magnetostriction can be obtained for each node. Also, various stresses such as tension and compression at each part can be evaluated with the wavelength of the standing wave as a unit.

次に、上記の弾性波定在波法による磁気歪みの測定方法を用いた、本発明の応力検査方法を説明する。
この測定方法は、初期状態の磁性体と、機械的ストレスを印加して疲労状態にある該磁性体とについてそれぞれ、上記弾性波定在波法による磁気歪み測定方法を用いて、磁性体の長手方向の磁気歪み分布を測定し、初期状態の磁性体の磁気歪み分布と疲労状態の磁性体の磁気歪み分布とを比較して、疲労状態の程度を判定することを特徴とする。
Next, the stress inspection method of the present invention using the magnetostriction measuring method by the elastic wave standing wave method will be described.
This measurement method uses the magnetostriction measurement method based on the elastic wave standing wave method for the magnetic material in the initial state and the magnetic material in a fatigued state by applying mechanical stress. The magnetic strain distribution in the direction is measured, the magnetostriction distribution of the magnetic material in the initial state is compared with the magnetic strain distribution of the magnetic material in the fatigued state, and the degree of the fatigued state is determined.

この検査方法によれば、正確に磁性体の疲労状態を判定できる。すなわち、磁性体に機械的ストレスを印加すると、磁性体に応力が内在するようになり、応力が一定値を越えると破断等の破壊が生じ易くなるので、磁性体に内在する応力を測定すれば、磁性体の疲労状態を破壊前に知ることができる。磁性体に応力が内在すると、磁気歪み特性が変化するので、磁性体に磁場を印加し、磁性体全体の磁気歪みによる伸縮を測定することによっても疲労度を判定できる。しかしながら、磁性体に印加されるストレスの種類によっては、磁性体の部位によって応力の方向が異なり、磁性体全体の伸縮が必ずしも疲労度に比例しない場合がある。
そこで、本発明の検査方法は、磁性体全体の磁気歪みによる伸縮ではなく、磁性体の各部位の磁気歪みによる伸縮、即ち、磁性体の磁気歪みの分布を比較して疲労度を検査するので、内部内在する応力の方向が異なる場合でも、正確に検査できる。
According to this inspection method, the fatigue state of the magnetic material can be accurately determined. That is, when a mechanical stress is applied to the magnetic material, the stress is inherent in the magnetic material, and if the stress exceeds a certain value, breakage such as breakage is likely to occur. The fatigue state of the magnetic material can be known before destruction. When stress is inherent in the magnetic body, the magnetostriction characteristics change. Therefore, the degree of fatigue can also be determined by applying a magnetic field to the magnetic body and measuring the expansion and contraction due to the magnetostriction of the entire magnetic body. However, depending on the type of stress applied to the magnetic material, the direction of the stress varies depending on the part of the magnetic material, and the expansion and contraction of the entire magnetic material may not necessarily be proportional to the degree of fatigue.
Therefore, the inspection method of the present invention is not the expansion and contraction due to the magnetic strain of the entire magnetic body, but the fatigue level is inspected by comparing the expansion and contraction of each part of the magnetic body, that is, the distribution of the magnetic strain of the magnetic body. Even when the direction of the internal stress is different, it can be accurately inspected.

以上の説明から理解されるように、被測定磁性体の実効磁界と磁気歪み及び誘導起電力との関係を求めておき、一定磁界中に置かれた被測定磁性体の長手方向の各部における誘導磁界を検出することで、上記関係に基いて、被測定磁性体の長手方向の各部の磁気歪みを評価することができる。よって、被測定磁性体の全体の伸び縮みの量ではなく、各被測定磁性体の各部における伸び縮みを求めることができる。
従って、各種の磁性体の非破壊検査に用いれば、極めて有用である。
As can be understood from the above description, the relationship between the effective magnetic field of the magnetic substance to be measured, the magnetostriction, and the induced electromotive force is obtained, and the induction in each part in the longitudinal direction of the magnetic substance to be measured placed in a constant magnetic field. By detecting the magnetic field, the magnetostriction of each part in the longitudinal direction of the magnetic substance to be measured can be evaluated based on the above relationship. Therefore, it is possible to obtain the expansion / contraction at each part of each magnetic substance to be measured, not the amount of expansion / contraction of the whole magnetic substance to be measured.
Therefore, it is extremely useful when used for nondestructive inspection of various magnetic materials.

磁性体にバイアス磁界を印加し、磁性体の一端から弾性波を伝播させたときの現象を説明する図である。It is a figure explaining the phenomenon when a bias magnetic field is applied to a magnetic body and an elastic wave is propagated from one end of the magnetic body. 磁性体中に弾性波を共振させて定在波を形成する構成を示す図で、(a)は測定系の構成図、(b)は形成される定在波の模式図、(c)は定在波によって発生する応力の磁性体中の分布図である。It is a figure which shows the structure which resonates an elastic wave in a magnetic body, and forms a standing wave, (a) is a block diagram of a measurement system, (b) is a schematic diagram of the standing wave formed, (c) is It is a distribution map in the magnetic body of the stress generated by standing waves. 本発明の実施例における、磁性体の磁気歪み曲線と、誘導起電力の実効磁界依存性を示す図である。It is a figure which shows the magnetostriction curve of the magnetic body in the Example of this invention, and the effective magnetic field dependence of an induced electromotive force. 本発明の実施例における、被測定磁性体の長手方向の各位置における誘導起電力の分布を示す図である。It is a figure which shows distribution of the induced electromotive force in each position of the longitudinal direction of a to-be-measured magnetic body in the Example of this invention. 図4における、定在波の腹の位置における誘導起電力の包絡線を示す図である。It is a figure which shows the envelope of the induced electromotive force in the position of the antinode of a standing wave in FIG.

符号の説明Explanation of symbols

10 磁性体
11 一端
12 弾性波発生器
13 他端
14 弾性波
14a 弾性波の張力部分
14b 弾性波の圧力部分
15 弾性波吸収体
16 磁気モーメント
17 コイル
30 機械的固定端
31 入射弾性波
32 反射弾性波
33 原子面
C.N.圧縮される節
T.N.引っ張られる節
DC 外部磁界
DESCRIPTION OF SYMBOLS 10 Magnetic body 11 One end 12 Elastic wave generator 13 Other end 14 Elastic wave 14a Elastic wave tension | tensile_strength part 14b Elastic wave pressure part 15 Elastic wave absorber 16 Magnetic moment 17 Coil 30 Mechanical fixed end 31 Incident elastic wave 32 Reflective elasticity Wave 33 Atomic plane C.I. N. Compressed clauses N. Pulled node H DC external magnetic field

Claims (2)

被測定磁性体の両端から等距離にある中央の節の位置において印加磁界を変化させながら、誘導起電力の実効磁界依存性を求めるステップと、
上記被測定磁性体の両端から等距離にある中央の節の位置において、印加磁界を変化させながら磁気歪みの実効磁界依存性を求めるステップと、
上記被測定磁性体の長手方向に沿って一定磁界を印加した状態で、磁性体に弾性波を伝播させると共に反射させて上記被測定磁性体中に定在波を形成して振動磁界を発生させ、弾性波の伝播軸方向にコイルの位置を変化させながら、上記被測定磁性体の長手方向の各部における誘導起電力を測定するステップと、
上記被測定磁性体の長手方向の各位置における誘導起電力の分布から、定在波の腹の測定値の包絡線を求め、この包絡線から求めた各位置での誘導起電力の値と、上記誘導起電力の実効磁界依存性と、上記磁気歪みの実効磁界依存性とから、各位置における磁気歪みを求めて、磁気歪み分布を求めるステップと、
を含む、弾性波定在波法による磁気歪み分布測定方法。
Determining the effective magnetic field dependence of the induced electromotive force while changing the applied magnetic field at the position of the central node equidistant from both ends of the magnetic substance to be measured;
Obtaining the effective magnetic field dependence of magnetostriction while changing the applied magnetic field at the position of the central node equidistant from both ends of the magnetic substance to be measured;
In a state where a constant magnetic field is applied along the longitudinal direction of the magnetic substance to be measured, an elastic wave is propagated and reflected in the magnetic substance to form a standing wave in the magnetic substance to be measured to generate an oscillating magnetic field. Measuring the induced electromotive force in each part in the longitudinal direction of the magnetic substance to be measured while changing the position of the coil in the propagation axis direction of the elastic wave;
From the distribution of the induced electromotive force at each position in the longitudinal direction of the magnetic substance to be measured, the envelope of the measured value of the antinode of the standing wave is obtained, and the value of the induced electromotive force at each position obtained from the envelope, From the effective magnetic field dependence of the induced electromotive force and the effective magnetic field dependence of the magnetostriction, obtaining a magnetostriction at each position to obtain a magnetostriction distribution;
A magnetostriction distribution measuring method by an elastic wave standing wave method.
初期状態の磁性体と、機械的ストレスを印加して疲労状態にある該磁性体とについて、それぞれ、請求項1に記載の弾性波定在波法による磁気歪み分布測定方法を用いて、磁性体の長手方向の磁気歪み分布を測定し、初期状態の磁性体の磁気歪み分布と疲労状態の磁性体の磁気歪み分布とを比較して、疲労状態を判定することを特徴とする、弾性波定在波法による磁気歪み分布測定方法を用いた応力検査方法。
The magnetic body in an initial state and the magnetic body in a fatigued state by applying mechanical stress, respectively, using the magnetostriction distribution measuring method by the elastic wave standing wave method according to claim 1, Measuring the longitudinal magnetostriction distribution and comparing the magnetostriction distribution of the magnetic substance in the initial state with the magnetostriction distribution of the magnetic substance in the fatigued state to determine the fatigued state. Stress inspection method using magnetostriction distribution measurement method by standing wave method.
JP2005243511A 2005-08-24 2005-08-24 Magnetostriction distribution measuring method by elastic wave standing wave method and stress inspection method using the method Active JP4552013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243511A JP4552013B2 (en) 2005-08-24 2005-08-24 Magnetostriction distribution measuring method by elastic wave standing wave method and stress inspection method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005243511A JP4552013B2 (en) 2005-08-24 2005-08-24 Magnetostriction distribution measuring method by elastic wave standing wave method and stress inspection method using the method

Publications (2)

Publication Number Publication Date
JP2007057396A JP2007057396A (en) 2007-03-08
JP4552013B2 true JP4552013B2 (en) 2010-09-29

Family

ID=37921019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243511A Active JP4552013B2 (en) 2005-08-24 2005-08-24 Magnetostriction distribution measuring method by elastic wave standing wave method and stress inspection method using the method

Country Status (1)

Country Link
JP (1) JP4552013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824390B (en) * 2019-10-25 2021-04-27 成都航大新材料有限公司 Ferromagnetic material local stress distribution nondestructive testing device based on MDL

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552909A (en) * 1978-10-16 1980-04-17 Yokogawa Hokushin Electric Corp Dislocation detector
JPH01269049A (en) * 1988-04-20 1989-10-26 Hitachi Ltd Method of inspecting deterioration of metallic material
JP2003287565A (en) * 2002-01-28 2003-10-10 Japan Science & Technology Corp Method for generating vibration magnetic field in magnetic substance, method for measuring distribution of effective magnetic field using the method, method for measuring magnetic body constant, and method for measuring residue strain in magnetic body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552909A (en) * 1978-10-16 1980-04-17 Yokogawa Hokushin Electric Corp Dislocation detector
JPH01269049A (en) * 1988-04-20 1989-10-26 Hitachi Ltd Method of inspecting deterioration of metallic material
JP2003287565A (en) * 2002-01-28 2003-10-10 Japan Science & Technology Corp Method for generating vibration magnetic field in magnetic substance, method for measuring distribution of effective magnetic field using the method, method for measuring magnetic body constant, and method for measuring residue strain in magnetic body

Also Published As

Publication number Publication date
JP2007057396A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
Hirao et al. Electromagnetic acoustic transducers
Li et al. PZT based smart corrosion coupon using electromechanical impedance
Hirao et al. Electromagnetic acoustic resonance and materials characterization
Chen et al. The effect of load on guided wave propagation
Ribichini et al. The impact of magnetostriction on the transduction of normal bias field EMATs
Washer et al. Velocity constants for ultrasonic stress measurement in prestressing tendons
US8327709B2 (en) Method and apparatus for nondestructive evaluation and monitoring of materials and structures
Nakamura et al. Mode conversion and total reflection of torsional waves for pipe inspection
Morales et al. Compressional and torsional wave amplitudes in rods with periodic structures
CN107300432B (en) Method and device for realizing field self-adaptive cable force measurement
Liu et al. Uniaxial stress in-situ measurement using EMAT shear and longitudinal waves: Transducer design and experiments
CN112326786A (en) Metal plate stress detection method based on electromagnetic ultrasonic Lamb wave S1 modal group velocity
Xu et al. Effect of tensile force on magnetostrictive sensors for generating and receiving longitudinal mode guided waves in steel wires
JP2005077298A (en) Electromagnetic ultrasonic probe, damage progression degree evaluation method and damage progression degree evaluation device of conductive material, and axial force measuring method and axial force measuring device of fastening bolt or rivet
Li et al. Method of measuring the stress of ferromagnetic materials based on EMAT and magnetic Barkhausen noise characteristic parameters
JP4552013B2 (en) Magnetostriction distribution measuring method by elastic wave standing wave method and stress inspection method using the method
Zhou et al. 748. Design of a magnetostrictive sensor for structural health monitoring of non-ferromagnetic plates
JP4106595B2 (en) Method for measuring effective magnetic field distribution, method for measuring magnetic constant, and method for measuring residual strain of magnetic substance
Xu et al. Research on the lift-off effect of generating longitudinal guided waves in pipes based on magnetostrictive effect
US20100319454A1 (en) Method and system for determining young's modulus and poisson's ratio for a crystalline material
Hirao et al. On-line measurement of steel sheet r-value using magnetostrictive-type EMAT
Wang et al. Low frequency ultrasonic guided waves excitated by Galfenol Rod Ultrasonic Transducer in plate inspection
Murayama et al. Development of an on-line evaluation system of formability in cold-rolled steel sheets using electromagnetic acoustic transducers (EMATs)
Cai et al. Nonlinear electromagnetic acoustic testing method for tensile damage evaluation
JP4631055B2 (en) Stress evaluation method and apparatus using surface acoustic waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150