JP4516673B2 - Planar type galvanomirror manufacturing method - Google Patents

Planar type galvanomirror manufacturing method Download PDF

Info

Publication number
JP4516673B2
JP4516673B2 JP2000228300A JP2000228300A JP4516673B2 JP 4516673 B2 JP4516673 B2 JP 4516673B2 JP 2000228300 A JP2000228300 A JP 2000228300A JP 2000228300 A JP2000228300 A JP 2000228300A JP 4516673 B2 JP4516673 B2 JP 4516673B2
Authority
JP
Japan
Prior art keywords
resonance frequency
galvanometer mirror
mass
frequency
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000228300A
Other languages
Japanese (ja)
Other versions
JP2002040355A (en
Inventor
浩 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Finetech Miyota Co Ltd
Original Assignee
Citizen Finetech Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Finetech Miyota Co Ltd filed Critical Citizen Finetech Miyota Co Ltd
Priority to JP2000228300A priority Critical patent/JP4516673B2/en
Publication of JP2002040355A publication Critical patent/JP2002040355A/en
Application granted granted Critical
Publication of JP4516673B2 publication Critical patent/JP4516673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばプリンターのレーザー光のスキャニングシステム等に利用するプレーナ型ガルバノミラーの製造方法に関する。
【0002】
【従来の技術】
プレーナ型ガルバノミラーは、レーザー光を偏向走査するレーザースキャナ等に利用されるもので、その原理は磁界中に配置した可動コイルに電流を流すことにより電流と磁束に応じた電磁力が発生すると共に電流に比例した回転力を生じる。この回転力と可動コイル保持部材のバネ力とが平衡する角度まで可動コイルが回転し、この可動コイルを介して指針を振らせて電流の有無もしくは大小を検出するというガルバノメーターを利用したもので、可動コイルと一体に回転する軸(可動コイル保持部材)に、前記指針の代わりにミラーを設けて構成されるものである。小型のガルバノミラーとしては半導体材料を使用したものも提案されている。プレーナ型ガルバノミラーは共振周波数での駆動が最も効率が良いため一般的には前記共振周波数に合わせた周波数で駆動する。前記共振周波数は、ミラー及びトーションバーの材質さらに形状の加工精度により決定されてしまうため歩留まりを考慮すると個々の周波数に合わせた駆動周波数にする必要がある。また同一の駆動周波数で個々を駆動しようとすると選別してある範囲内のものだけを使用するという歩留まりの悪い手段を取らざるを得ない。
【0003】
図1は従来のプレーナ型ガルバノミラーを示す図で、(a)は上面図、(b)は正面断面図、(c)は側面断面図である。
シリコン基板1に一体形成された可動板2の上面の中央部には、ミラー3が形成されており、周縁部には平面コイル4が形成されている。可動板2はシリコン基板1に中抜き状態で形成され、シリコン基板1より一体に形成されたトーションバー5、6により保持されている。共振周波数は、トーションバーとミラー形状により決定される。トーションバーの特性は断面の縦横比・断面積・長さ・材質で決まる。特に断面の縦横比・断面積は重要である。にもかかわらず最も加工条件に左右されやすいため精度が出にくい部位である。ミラー形状はトーションバーより影響度は低いが精度的にはトーションバーと同等で加工される。これらはラップ研磨を用いる機械的周波数調整方法で精度を上げようとすると割れや欠けを生じる可能性が非常に高く信頼性が著しく低下する。シリコン基板1は、ベース基板7の上面に固定された台座8の上面に固定されている。上面図(a)において、シリコン基板上下には永久磁石9・10が配置され、ベース基板7の周縁部にはヨーク11が載置されている。ヨーク11は中抜きにされ角状に形成されたものを複数枚積み重ねる事によって構成している。
【0004】
可動板2に形成された平面コイル4に通電すると、可動板2はトーションバー5・6を回転中心として回転する。この可動板2は上下に約20度回転可能である。ベース基板7上にはパターン7aが形成されており、該パターン7aとシリコン基板1に形成されたパターン1aとをワイヤー13により接続している。ワイヤー13は断線不良等を考慮し、予め複数本接続されている。パターン7aにはスルーホール7bが設けられており、スルーホール7bを介して外部との接続を行う構造である。スルーホール7bはベース基板7の下面に設けられた配線用パターン(不図示)を介してサイドスルーホール7cと接続されている。尚、ヨーク11上にはカバー部材が設けられる。
【0005】
図2は従来のプレーナー型ガルバノミラーの斜視図である。図3は図2のA−A断面図である。ヨーク11上には、半導体基板1の保護を目的に樹脂等で形成された平板状のカバー部材12が設けられる。カバー部材12は接着剤でヨーク11上に固定され、プレーナー型ガルバノミラーが構成されている。12aは開口部であり、図3中に示す矢印はレーザー光の動きを示すものである。外部より照射されるレーザー光は、開口部12a部を通過しミラー面で偏向され、開口部12aを通過して矢印方向へ進むものである。
【0006】
【発明が解決しようとする課題】
プレーナ型ガルバノミラーは、前記ミラー固有の共振周波数で動作させる事が最も効率的な事が一般的に知られている。しかし前記ミラーの共振周波数は主にトーションバーの断面の縦横比・断面積・長さ・材質とミラー形状により決定されるが、該共振周波数は設計公差や製造上の組立公差等により本来得られるはずの狙い値からばらつきを見込んでもある率は規格外になってしまう。この規格外品は不良扱いになり歩留まりが低下してしまう。また工程管理上も加工条件が厳しくなり工数がかかってしまう。本発明は前記問題点に鑑み、前工程でミラー及びトーションバー切り出し形状が寸法公差外になり、共振周波数が狙い値よりはずれても後工程で良品化が可能なプレーナ型ガルバノミラーの製造方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
質量負荷部の形成されたプレーナ型ガルバノミラーを動作させる工程と、該プレーナ型ガルバノミラーの初期共振周波数と予め設定されたねらいの共振周波数の差を読みとり、予め入力されている共振周波数の変化量とレーザー照射回数との関係と、前記差に基づき、照射するレーザーパルス数を計算する工程と、前記計算された数のレーザーパルスを質量負荷部に照射して質量を除去して周波数を調整する工程とを有するプレーナ型ガルバノミラーの製造方法とする。
【0009】
質量負荷部の形成されたプレーナ型ガルバノミラーを動作させる工程と、該プレーナ型ガルバノミラーの初期共振周波数と予め設定されたねらいの共振周波数の差を読みとり、予め入力されている共振周波数の変化量と樹脂付加量との関係と、前記差に基づき、付加する樹脂量を計算する工程と、前記計算された樹脂量を質量負荷部に付加し、質量を増加して周波数を調整する工程とを有するプレーナ型ガルバノミラーの製造方法とする。
【0010】
【発明の実施の形態】
図4は本発明の製造方法に適用するプレーナ型ガルバノミラーの斜視図であり、図5は図4のA−A断面図である。従来例と同じ部分については同じ符号を用いている。図6は質量負荷部レーザー加工装置ブロック図である。14は金属材料を蒸着した質量負荷部であり、ミラーの両端にあるトーションバー5・6を結んだ線対称位置に質量負荷部14と同様の質量負荷部15が設けられている。前記質量負荷部はミラー形成時の蒸着により同時に形成される。図6においては、19はレーザー発振器、16は発振されたレーザーを伝送するレーザービーム光伝送系、17は、伝送されてきたレーザービームをミラーの質量負荷部上に結像させる結像光学系である。20は、プレーナ型ガルバノミラー18の周波数を測定する周波数測定系である。周波数測定系20は、プレーナ型ガルバノミラー18の初期共振周波数と、予め設定された狙いの共振周波数との差から、照射すべきレーザーパルス数を計算する機能を有している。周波数測定系20には照射すべきパルス数を計算するために必要な、レーザー照射回数と共振周波数の変化量との関係が予め入力されている事は当然である。以上のような装置を用いプレーナ型ガルバノミラー18を個々に動作させ共振周波数をモニターしつつ図4に示す質量負荷部14・15の金属を徐々に飛ばしながら共振周波数を下げて行き、所定の周波数に追い込むようにする。場合によっては金属を飛ばしすぎてしまったり作製時から高い共振周波数でできてしまったもの等もある。高い共振周波数のものは、質量負荷部の質量を増やす事が必要になる。
【0011】
図7は質量付加装置の簡単なブロック図であり22は、ミラーの質量負荷部上に樹脂を付加する機能を有する質量付加装置である。21の周波数測定系は、プレーナ型ガルバノミラー18の初期共振周波数と、予め設定された狙いの共振周波数との差から、照射すべき樹脂量を計算する機能を有している。周波数測定系21には付加すべき樹脂量計算するために必要な、樹脂付加量と共振周波数の変化量との関係が予め入力されている事は当然である。共振周波数をモニターしながら樹脂を図4に示す質量負荷部14・15に付加する。徐々に周波数が下がって行くので所定の周波数で付加をやめる。上記本発明の製造方法によりプレーナ型ガルバノミラーが完成する。尚、樹脂を用いるのは常温での作業が行え、作業性が良くなること、また、樹脂は物質密度が低いため質量付加において微調整が利くためである。
【0012】
【発明の効果】
共振周波数が狙い値よりも低い場合、質量負荷部の金属を飛ばすことにより共振周波数の調整ができ、狙い値を個々に合わせ込む事が可能なため歩留まりの飛躍的向上が可能となる。
【0013】
共振周波数が狙い値よりも高い場合、質量負荷部に樹脂を付加することにより共振周波数の調整ができ、狙い値を個々に合わせ込む事が可能なため歩留まりの飛躍的向上が可能となる。
【0014】
樹脂を用いることにより、常温での作業が行え、作業性が良くなる。また、樹脂は物質密度が低いため質量付加において微調整が利く。
【0015】
工程管理上も外形加工条件が比較的ラフな設定で良いため標準的設備がそのまま流用できる。
【0016】
トーションバーの加工形状の修正による共振周波数調整が不要なためマイクロクラックの発生がなく高信頼性のものが供給可能になった。
【0017】
質量負荷部はミラー蒸着時に同時に形成するためマスク変更のみで実現可能なため工程を増やす必要無く低価格に部品供給可能である。
【図面の簡単な説明】
【図1】従来のプレーナ型ガルバノミラーを示す図で、(a)は上面図、(b)は正面断面図、(c)は側面断面図
【図2】従来のプレーナ型ガルバノミラーの斜視図
【図3】図2のA−A断面図
【図4】本発明の製造方法に適用するプレーナ型ガルバノミラーの斜視図
【図5】図4のA−A断面図
【図6】質量負荷部レーザー加工装置ブロック図
【図7】質量付加装置ブロック図
【符号の説明】
1 シリコン基板
1a パターン
2 可動板
3 ミラー
4 平面コイル
5 トーションバー
6 トーションバー
7 ベース基板
7a パターン
7b スルーホール
7c サイドスルーホール
8 台座
9 永久磁石
10 永久磁石
11 ヨーク
12 カバー部材
12a 開口部
13 ワイヤー
14 質量負荷部
15 質量負荷部
16 レーザービーム光伝送系
17 結像光学系
18 プレーナ型ガルバノミラー
19 レーザー発振器
20 周波数測定系
21 周波数測定系
22 質量付加装置系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of the planar galvanometer mirror, which utilizes the Printer scanning system such as a laser beam.
[0002]
[Prior art]
Planar type galvanometer mirrors are used for laser scanners that deflect and scan laser light. The principle is that current flows through a moving coil placed in a magnetic field, and electromagnetic force corresponding to current and magnetic flux is generated. A rotational force proportional to the current is generated. The galvanometer uses a galvanometer in which the movable coil rotates to an angle at which the rotational force and the spring force of the movable coil holding member are balanced, and the presence or absence or magnitude of the current is detected by swinging the pointer through the movable coil. Instead of the pointer, a mirror is provided on a shaft (movable coil holding member) that rotates integrally with the movable coil. As a small galvanometer mirror, one using a semiconductor material has been proposed. Since the planar galvanometer mirror is most efficient when driven at a resonance frequency, it is generally driven at a frequency that matches the resonance frequency. Since the resonance frequency is determined by the material of the mirror and the torsion bar and the processing accuracy of the shape, it is necessary to set the driving frequency in accordance with the individual frequency in consideration of the yield. In addition, when trying to drive each individual with the same drive frequency, it is unavoidable to use a means with a low yield, that is, use only those within a selected range.
[0003]
FIG. 1 is a view showing a conventional planar galvanometer mirror, in which (a) is a top view, (b) is a front sectional view, and (c) is a side sectional view.
A mirror 3 is formed at the center of the upper surface of the movable plate 2 formed integrally with the silicon substrate 1, and a planar coil 4 is formed at the periphery. The movable plate 2 is formed in a hollow state on the silicon substrate 1 and is held by torsion bars 5 and 6 formed integrally with the silicon substrate 1. The resonance frequency is determined by the torsion bar and the mirror shape. The characteristics of the torsion bar are determined by the cross-sectional aspect ratio, cross-sectional area, length, and material. In particular, the aspect ratio and cross-sectional area of the cross section are important. Nonetheless, it is a part that is most susceptible to processing conditions, so it is difficult to achieve accuracy. The mirror shape is less affected than the torsion bar, but it is processed with the same precision as the torsion bar. These are very likely to cause cracking and chipping when the accuracy is increased by a mechanical frequency adjusting method using lapping, and the reliability is remarkably lowered. The silicon substrate 1 is fixed to the upper surface of a base 8 fixed to the upper surface of the base substrate 7. In the top view (a), permanent magnets 9 and 10 are arranged above and below the silicon substrate, and a yoke 11 is placed on the periphery of the base substrate 7. The yoke 11 is constituted by stacking a plurality of hollowed and square-shaped ones.
[0004]
When the planar coil 4 formed on the movable plate 2 is energized, the movable plate 2 rotates around the torsion bars 5 and 6 as rotation centers. The movable plate 2 can rotate about 20 degrees up and down. A pattern 7 a is formed on the base substrate 7, and the pattern 7 a and the pattern 1 a formed on the silicon substrate 1 are connected by a wire 13. A plurality of wires 13 are connected in advance in consideration of disconnection failure and the like. The pattern 7a is provided with a through hole 7b and is connected to the outside through the through hole 7b. The through hole 7 b is connected to the side through hole 7 c through a wiring pattern (not shown) provided on the lower surface of the base substrate 7. A cover member is provided on the yoke 11.
[0005]
FIG. 2 is a perspective view of a conventional planar galvanometer mirror. 3 is a cross-sectional view taken along the line AA in FIG. A flat cover member 12 made of resin or the like is provided on the yoke 11 for the purpose of protecting the semiconductor substrate 1. The cover member 12 is fixed on the yoke 11 with an adhesive to constitute a planar type galvanometer mirror. 12a is an opening, and the arrow shown in FIG. 3 indicates the movement of the laser beam. Laser light emitted from the outside passes through the opening 12a, is deflected by the mirror surface, passes through the opening 12a, and proceeds in the direction of the arrow.
[0006]
[Problems to be solved by the invention]
It is generally known that a planar galvanometer mirror is most efficient when operated at a resonance frequency unique to the mirror. However, the resonance frequency of the mirror is mainly determined by the aspect ratio, cross-sectional area, length, material, and mirror shape of the torsion bar cross section, and the resonance frequency is originally obtained by design tolerance, manufacturing assembly tolerance, etc. The rate that is expected to vary from the expected target value will be out of specification. This non-standard product is treated as a defective product and the yield decreases. Also, the process conditions are severe in terms of process management, and man-hours are required. In view of the above problems, a mirror and torsion bar cut shape in the previous step is out of dimensional tolerance, the manufacturing method of the non-defective can play Na type galvanometer mirror over a post also the resonance frequency is deviated from the target value step Is to provide.
[0008]
[Means for Solving the Problems]
The step of operating the planar galvanometer mirror in which the mass load portion is formed, and the difference between the initial resonance frequency of the planar galvanometer mirror and the preset target resonance frequency is read, and the amount of change in the resonance frequency input in advance adjustment to the relationship between the laser irradiation frequency, based on the difference, and calculating the number of laser pulses irradiating the frequency to remove the mass by irradiating the calculated number of laser pulses to the mass load portions and A method of manufacturing a planar galvanometer mirror.
[0009]
The step of operating the planar galvanometer mirror in which the mass load portion is formed, and the difference between the initial resonance frequency of the planar galvanometer mirror and the preset target resonance frequency is read, and the amount of change in the resonance frequency input in advance and the relationship between the resin addition amount, based on the difference, and calculating the amount of resin to be added, adding the calculated amount of resin in the mass loading unit, and adjusting the frequency to increase the mass A planar type galvanomirror manufacturing method is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 is a perspective view of a planar galvanometer mirror applied to the manufacturing method of the present invention, and FIG. 5 is a cross-sectional view taken along line AA of FIG. The same reference numerals are used for the same parts as in the conventional example. FIG. 6 is a block diagram of the mass load unit laser processing apparatus. Reference numeral 14 denotes a mass load portion on which a metal material is vapor-deposited, and a mass load portion 15 similar to the mass load portion 14 is provided at a line symmetrical position connecting the torsion bars 5 and 6 at both ends of the mirror. The mass load portion is simultaneously formed by vapor deposition during mirror formation. In FIG. 6, 19 is a laser oscillator, 16 is a laser beam transmission system for transmitting the oscillated laser, and 17 is an imaging optical system for imaging the transmitted laser beam on the mass load portion of the mirror. is there. Reference numeral 20 denotes a frequency measurement system that measures the frequency of the planar galvanometer mirror 18. The frequency measurement system 20 has a function of calculating the number of laser pulses to be irradiated from the difference between the initial resonance frequency of the planar galvanometer mirror 18 and a preset target resonance frequency. Naturally, the frequency measurement system 20 is preliminarily input with the relationship between the number of laser irradiations and the amount of change in the resonance frequency, which is necessary for calculating the number of pulses to be irradiated. The planar galvanometer mirror 18 is individually operated using the apparatus as described above, and while monitoring the resonance frequency, the resonance frequency is lowered while gradually moving the metal of the mass load portions 14 and 15 shown in FIG. To drive into. In some cases, too much metal is blown off, or it has been made at a high resonance frequency from the time of fabrication. For those having a high resonance frequency, it is necessary to increase the mass of the mass load section.
[0011]
FIG. 7 is a simple block diagram of the mass adding device, and 22 is a mass adding device having a function of adding resin onto the mass load portion of the mirror. The frequency measurement system 21 has a function of calculating the amount of resin to be irradiated from the difference between the initial resonance frequency of the planar galvanometer mirror 18 and a preset target resonance frequency. It is natural that the frequency measurement system 21 is preliminarily input with the relationship between the resin addition amount and the change amount of the resonance frequency necessary for calculating the resin amount to be added. Resin is added to the mass load portions 14 and 15 shown in FIG. 4 while monitoring the resonance frequency. Since the frequency gradually decreases, addition is stopped at a predetermined frequency. Descriptor Lena galvanometer mirror by the manufacturing method of the present invention is completed. The reason why the resin is used is that the work can be performed at room temperature and the workability is improved, and because the resin has a low material density, fine adjustment in mass addition is effective.
[0012]
【The invention's effect】
When the resonance frequency is lower than the target value, the resonance frequency can be adjusted by skipping the metal of the mass load portion, and the target value can be adjusted individually, so that the yield can be dramatically improved.
[0013]
When the resonance frequency is higher than the target value, the resonance frequency can be adjusted by adding resin to the mass load portion, and the target value can be adjusted individually, so that the yield can be dramatically improved.
[0014]
By using a resin, work at room temperature can be performed and workability is improved. In addition, since the resin has a low material density, fine adjustment in mass addition is advantageous.
[0015]
The standard equipment can be used as it is because the external processing conditions can be set to be relatively rough for process management.
[0016]
Since there is no need to adjust the resonance frequency by modifying the processing shape of the torsion bar, there is no generation of microcracks, and a highly reliable one can be supplied.
[0017]
Since the mass load part is formed at the same time as the mirror deposition, it can be realized only by changing the mask.
[Brief description of the drawings]
1A is a top view, FIG. 1B is a front sectional view, and FIG. 1C is a side sectional view. FIG. 2 is a perspective view of a conventional planar galvanometer mirror. 3 is a cross-sectional view taken along the line AA in FIG. 2. FIG. 4 is a perspective view of a planar galvanometer mirror applied to the manufacturing method of the present invention. FIG. 5 is a cross-sectional view taken along the line AA in FIG. Laser processing equipment block diagram [Fig. 7] Mass adding device block diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Silicon substrate 1a Pattern 2 Movable plate 3 Mirror 4 Plane coil 5 Torsion bar 6 Torsion bar 7 Base substrate 7a Pattern 7b Through hole 7c Side through hole 8 Base 9 Permanent magnet 10 Permanent magnet 11 Yoke 12 Cover member 12a Opening 13 Wire 14 Mass load section 15 Mass load section 16 Laser beam light transmission system 17 Imaging optical system 18 Planar type galvano mirror 19 Laser oscillator 20 Frequency measurement system 21 Frequency measurement system 22 Mass addition device system

Claims (2)

質量負荷部の形成されたプレーナ型ガルバノミラーを動作させる工程と、該プレーナ型ガルバノミラーの初期共振周波数と予め設定されたねらいの共振周波数との差を読みとり、予め入力されている共振周波数の変化量とレーザー照射回数との関係と、前記差に基づき、照射するレーザーパルス数を計算する工程と、前記計算された数のレーザーパルスを質量負荷部に照射して質量を除去して周波数を調整する工程とを有するプレーナ型ガルバノミラーの製造方法。Read the difference between the step of operating the planar galvanometer mirror formed with the mass load part and the initial resonance frequency of the planar galvanometer mirror and the preset target resonance frequency, and change the resonance frequency input in advance the amount and the relationship between the laser irradiation frequency, based on the difference, and calculating the number of laser pulses irradiating the frequency to remove the mass by irradiating the calculated number of laser pulses to the mass load portions A method of manufacturing a planar galvanometer mirror. 質量負荷部の形成されたプレーナ型ガルバノミラーを動作させる工程と、該プレーナ型ガルバノミラーの初期共振周波数と予め設定されたねらいの共振周波数の差を読みとり、予め入力されている共振周波数の変化量と樹脂付加量との関係と、前記差に基づき、付加する樹脂量を計算する工程と、前記計算された樹脂量を質量負荷部に付加し、質量を増加して周波数を調整する工程とを有するプレーナ型ガルバノミラーの製造方法。The step of operating the planar galvanometer mirror in which the mass load portion is formed, and the difference between the initial resonance frequency of the planar galvanometer mirror and the preset target resonance frequency, and the amount of change in the resonance frequency input in advance and the relationship between the resin addition amount, based on the difference, and calculating the amount of resin to be added, adding the calculated amount of resin in the mass loading unit, and adjusting the frequency to increase the mass A method for manufacturing a planar galvanometer mirror.
JP2000228300A 2000-07-28 2000-07-28 Planar type galvanomirror manufacturing method Expired - Fee Related JP4516673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000228300A JP4516673B2 (en) 2000-07-28 2000-07-28 Planar type galvanomirror manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228300A JP4516673B2 (en) 2000-07-28 2000-07-28 Planar type galvanomirror manufacturing method

Publications (2)

Publication Number Publication Date
JP2002040355A JP2002040355A (en) 2002-02-06
JP4516673B2 true JP4516673B2 (en) 2010-08-04

Family

ID=18721613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228300A Expired - Fee Related JP4516673B2 (en) 2000-07-28 2000-07-28 Planar type galvanomirror manufacturing method

Country Status (1)

Country Link
JP (1) JP4516673B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031040B2 (en) 2003-05-16 2006-04-18 Ricoh Company, Ltd. Optical scanning apparatus, optical writing apparatus, image forming apparatus, and method of driving vibration mirror
US7468824B2 (en) 2004-01-19 2008-12-23 Ricoh Company, Ltd. Imaging apparatus including optical scanning device with deflecting mirror module, and method of deflecting with the mirror module
JP4376679B2 (en) * 2004-03-31 2009-12-02 シチズンファインテックミヨタ株式会社 Planar actuator manufacturing method
JP2006178408A (en) 2004-11-25 2006-07-06 Ricoh Co Ltd Scanner element, optical scanner and image forming apparatus
JP4970865B2 (en) * 2005-07-28 2012-07-11 株式会社リコー Deflection device, optical scanning device, and image forming apparatus
JP4986479B2 (en) * 2006-03-03 2012-07-25 株式会社リコー Optical scanning apparatus and image forming apparatus
JP4881073B2 (en) 2006-05-30 2012-02-22 キヤノン株式会社 Optical deflector and optical instrument using the same
US7557972B2 (en) 2006-06-07 2009-07-07 Canon Kabushiki Kaisha Oscillator device, optical deflector and optical instrument using the same
JP5121301B2 (en) * 2006-06-07 2013-01-16 キヤノン株式会社 Oscillator device, optical deflector, and optical apparatus using the same
US7760227B2 (en) 2006-07-27 2010-07-20 Ricoh Company, Ltd. Deflector, optical scanning unit, and image forming apparatus
JP4793284B2 (en) * 2007-02-23 2011-10-12 セイコーエプソン株式会社 Resonance frequency adjusting device and resonance frequency adjusting method
JP2009134243A (en) 2007-10-30 2009-06-18 Canon Inc Manufacturing method of rocking body device, light deflection device composed of rocking body device manufactured by the above manufacturing method, and optical equipment
JP2009122383A (en) 2007-11-14 2009-06-04 Canon Inc Method for manufacturing oscillator device, and optical deflector and optical device comprising oscillator device manufactured by this method
JP2012032678A (en) * 2010-08-02 2012-02-16 Funai Electric Co Ltd Oscillation mirror element, and method of manufacturing oscillation mirror element
DE102014204523A1 (en) * 2014-03-12 2015-09-17 Carl Zeiss Smt Gmbh Vibration-compensated optical system, lithographic apparatus and method
JP6479354B2 (en) 2014-06-30 2019-03-06 浜松ホトニクス株式会社 Mirror drive device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102418A (en) * 1987-10-15 1989-04-20 Konica Corp Image forming device
JPH11231252A (en) * 1997-12-09 1999-08-27 Olympus Optical Co Ltd Light deflector and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102418A (en) * 1987-10-15 1989-04-20 Konica Corp Image forming device
JPH11231252A (en) * 1997-12-09 1999-08-27 Olympus Optical Co Ltd Light deflector and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002040355A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP4516673B2 (en) Planar type galvanomirror manufacturing method
US6094289A (en) Method and apparatus for optical code reading using a MEM optical resonator having an integral photodetector
US6188504B1 (en) Optical scanner
CN103064182B (en) Image forming apparatus
EP0962796B1 (en) Optical switching apparatus
US6232861B1 (en) Electromagnetic actuator
EP0219357B1 (en) Wavelength selection device and method
US6774445B2 (en) Actuator
US7256926B2 (en) Optical deflector
JPH10323059A (en) Microminature electromechanical apparatus containing rotary plate and relevant method
EP3276391B1 (en) Oscillating structure with piezoelectric actuation, system and manufacturing method
JP3842117B2 (en) Micro opto-electromechanical laser scanner
KR20090042902A (en) Improved mirror mounting structures and methods employing shape memory materials for limited rotation motors and scanners
JP4514075B2 (en) Galvano device manufacturing method and galvano device
KR100821115B1 (en) On-the-fly beam path error correction for memory link processing
JP2000258721A (en) Planar type galvanomirror
EP3425440B1 (en) Light deflection device
US7262535B2 (en) Rotor shaft for limited rotation motors and method of manufacture thereof
JP2004274085A (en) Laser diode array
JP2001305472A (en) Light deflector
JP4301688B2 (en) Planar type galvanometer mirror and manufacturing method thereof
JP3999045B2 (en) Object detection device
KR0181797B1 (en) Light source variation apparatus
JPH01195417A (en) Optical beam deflector
JP2005292321A (en) Method of manufacturing planar actuator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees