JP4504207B2 - Fluorescers integrated concentration measuring device and fluorescence agent integrated concentration measurement method - Google Patents

Fluorescers integrated concentration measuring device and fluorescence agent integrated concentration measurement method

Info

Publication number
JP4504207B2
JP4504207B2 JP2005004577A JP2005004577A JP4504207B2 JP 4504207 B2 JP4504207 B2 JP 4504207B2 JP 2005004577 A JP2005004577 A JP 2005004577A JP 2005004577 A JP2005004577 A JP 2005004577A JP 4504207 B2 JP4504207 B2 JP 4504207B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005004577A
Other languages
Japanese (ja)
Other versions
JP2006194646A (en )
Inventor
天宇 謝
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Description

本発明は、生体内組織に集積した蛍光剤の集積濃度を測定する蛍光剤集積濃度測定装置及び蛍光剤集積濃度測定方法に関する。 The present invention relates to a fluorescent agent integrated concentration measuring device and fluorescence agent integrated concentration measuring method for measuring the integrated concentration of the fluorescent agent accumulated in vivo tissue.

近年、生体からの自家蛍光や生体へ注入した薬物の蛍光を2次元画像として検出し、その蛍光象から生体組織の変性や癌等の疾患状態(例えば、疾患の種類や浸潤範囲)を診断する技術が米国特許4556057号や米国特許5042494号に示されている。 Recently, detecting fluorescence of a drug injected into the autofluorescence and the living body from the biometric as a two-dimensional image, diagnosing a disease state of degeneration and cancer, etc. of the living tissue from the fluorescent elephant (e.g., the type and invasion range of disease) art is shown in U.S. Patent 4556057 Patent and U.S. Patent No. 5,042,494.

生体組織に光を照射するとその励起光より長い波長の蛍光が発生する。 When irradiating light to the biological tissue fluorescence having a wavelength longer than the excitation light is generated. 生体内の蛍光物質としては、例えばNADH(ニコチンアミドアデニンヌクレオチド)やFMN(フラビンモノヌクレオチド)、ピリジンヌクレオチド等があり、最近では、これらの生体内因物質と疾患との相互関係が明確になりつつある。 The fluorescent substance in the living body, for example, NADH (nicotinamide adenine nucleotide) or FMN (flavin mononucleotide), there are pyridine nucleotides such as, recently, correlation between these biological endogenous substances and disease is becoming clear .

また、HpD(ヘマトポルフィリン),Photofrin,ALA(δーamino levulinic acid)等の蛍光剤は、癌への集積性があり、これら蛍光剤を生体内に注入することによって、蛍光観察を行うことによって疾患部位を診断することができる。 Further, HpD (hematoporphyrin), Photofrin, ALA ([delta] over amino levulinic acid) a fluorescent agent, etc., there is accumulation of cancer, by injecting them fluorescent agent in vivo, by performing fluorescence observation it is possible to diagnose disease site.

上記の様な蛍光から経内視鏡的に病変部を診断する技術として、例えば特開平8ー224208号公報等の蛍光観察内視鏡装置がある。 As a technique for diagnosing through an endoscope to lesion from the fluorescence, such as described above, for example, a fluorescent endoscopic device, such as JP-A-8-1 224 208.
米国特許4556057号 US Patent No. 4556057 米国特許5042494号 US Patent No. 5042494 特開平8ー224208号公報 JP 8-1 224 208 JP

しかしながら、蛍光観察により適切に癌等の異常組織を検出するためには、蛍光剤の生体組織への集積濃度がピークに達した時点が重要となるが、 However, in order to detect properly, such as cancer abnormal tissue by fluorescence observation is when the integration density of the living tissue of the fluorescent agent peaked is important,
生体内に注入する蛍光剤の生体組織への集積濃度は個体差により異なるため、従来は蛍光剤を生体内に注入された患者は、集積濃度がピークになるまで院内にとどまる必要があった。 Since the integration density of the living tissue of the fluorescent agent to be injected into a living body varies due to individual differences, conventionally patients injected with fluorescent agent in vivo, it was necessary to remain in the hospital until the integrated concentration of the peak.

集積濃度がピークに達する時間は、例えば数時間、あるいは数十時間になる場合もあるために、患者は数日間の入院を求められることもある。 Time integrated concentration reaches its peak, for example, several hours, or for some cases be several tens of hours, the patient is also be required to hospitalization for several days. また、集積濃度がピークになる時点を適切に判断できない場合には、蛍光観察内視鏡による蛍光観察を効果的に行うことが難しいといった問題がある。 Further, if the integrated density can not appropriately determine the time when a peak has a problem such that it is difficult to perform the fluorescence observation by the fluorescent endoscopic effectively.

本発明は、上記事情に鑑みてなされたものであり、蛍光剤の生体組織への集積濃度のピークタイミングを適切に算出することのできる蛍光剤集積濃度測定装置及び蛍光剤集積濃度測定方法を提供することを目的としている。 The present invention has been made in view of the above circumstances, provide a fluorescent agent integrated concentration measuring device and fluorescence agent integrated concentration measuring method which can properly calculate the peak timing of the integrated concentration of the living tissue of the fluorescent agent It is intended to be.

本発明の蛍光剤集積濃度測定装置は、 Fluorescers integrated concentration measuring apparatus of the present invention,
蛍光色素を含む薬剤が注入された生体から採取した体液を含むサンプル溶液に、前記蛍光色素に対して蛍光を励起させる励起光を照射する励起光光源と、 A sample solution containing a body fluid collected from a living body to agents including fluorescent dye is injected, a pumping light source for irradiating excitation light for exciting the fluorescence to the fluorescent dye,
前記蛍光を検出する蛍光検出手段と、 And fluorescence detecting means for detecting the fluorescence,
前記蛍光検出手段からの検出信号に基づき、前記生体での前記蛍光色素の濃度を算出する蛍光色素濃度算出手段と を備え Wherein based on a detection signal from the fluorescence detection means, and a fluorescent dye concentration calculation means for calculating the concentration of the fluorescent dye in the living body,
前記蛍光色素濃度算出手段は、前記蛍光色素を含む薬剤の前記生体への注入経過時間と、算出した前記蛍光色素の濃度とに基づき、前記蛍光色素を含む薬剤の前記生体内の組織中における濃度のピーク時間を推定するピーク時間推定手段を有する。 The fluorescent dye concentration calculating means, the concentration of the fluorescent dye and injected elapsed time to the biological agents, including, based on the concentration of the calculated the fluorescent dye, tissue of the in vivo drug containing the fluorescent dye a peak time estimation means for estimating a peak time.
本発明の蛍光剤集積濃度測定方法は、 Fluorescers integrated concentration measuring method of the present invention,
蛍光色素を含む薬剤が注入された生体から採取した体液を含むサンプル溶液に、前記蛍光色素に対して蛍光を励起させる励起光を照射する励起光照射ステップと、 A sample solution containing a body fluid collected from a living body to agents including fluorescent dye is injected, an excitation light irradiation step of irradiating excitation light for exciting the fluorescence to the fluorescent dye,
前記蛍光を検出する蛍光検出ステップと、 A fluorescence detection step of detecting the fluorescence,
前記蛍光検出ステップにおいて検出された検出信号に基づき、前記生体での前記蛍光色素の濃度を算出する蛍光色素濃度算出ステップと Based on a detection signal in the fluorescence detection step, a fluorescent dye concentration calculating step of calculating the concentration of the fluorescent dye in the living body
を備え、 Equipped with a,
前記蛍光色素濃度算出ステップは、前記蛍光色素を含む薬剤の前記生体への注入経過時間と、算出した前記蛍光色素の濃度とに基づき、前記蛍光色素を含む薬剤の前記生体内の組織中における濃度のピーク時間を推定するピーク時間推定ステップを有する。 The fluorescent dye concentration calculating step, the concentration of the fluorescence and dye injection elapsed time to the biological agents, including, based on the concentration of the calculated the fluorescent dye, tissue of the fluorescent within the biological agents, including dyes having a peak time estimation step of estimating a peak time.

本発明によれば、蛍光剤の生体組織への集積濃度のピークタイミングを適切に算出することができるという効果がある。 According to the present invention, there is an effect that it is possible to properly calculate the peak timing of the integrated concentration of the living tissue of the fluorescent agent.

以下、図面を参照しながら本発明の実施例について述べる。 Hereinafter will be described an embodiment of the present invention with reference to the drawings.

図1ないし図11は本発明の実施例1に係わり、図1は蛍光剤集積濃度測定装置の外観を示す外観図、図2は図1の表示部の第1の表示例を示す図、図3は図1の蛍光剤集積濃度測定装置の構成を示すブロック図、図4は図2の試験瓶内のサンプルの光の吸収及び発光特性を示す図、図5は図2のバリアフィルタの透過特性を示す図、図6は図1の蛍光剤集積濃度測定装置の変形例の構成を示すブロック図、図7は図6の励起光フィルタの透過特性を示す図、図8は図2の蛍光剤集積濃度測定装置の作用を説明するフローチャート、図9は図2のパターン格納部に格納されている蛍光剤毎に個体差を反映した複数の解析パターンからなる解析パターン群の一例を示す図、図10は図8の解析パターン群の各解析パターンとの照合処理を説明す 1 to 11 relates to a first embodiment of the present invention, FIG. 1 is an external view showing an appearance of a fluorescent agent integrated concentration measuring apparatus, Figure 2 shows a first display example of the display unit of FIG. 1, FIG. 3 is a block diagram showing the configuration of a fluorescent agent integrated concentration measuring apparatus of FIG. 1, FIG. 4 shows the absorption and emission characteristics of the light of the sample in the test bottle 2, 5 permeation barrier filter of Figure 2 shows characteristics, fluorescence of Figure 6 is a block diagram showing a configuration of a variation of the fluorescent agent integrated concentration measuring apparatus of FIG. 1, FIG. 7 is a diagram showing the transmission characteristic of the excitation light filter in Fig. 6, 8 2 agent flowchart illustrating the operation of the integrated concentration measuring apparatus, FIG. 9 is a diagram showing an example of an analysis pattern group including a plurality of diffraction pattern that reflects the individual difference for each fluorescent agent stored in the pattern storage unit of FIG. 2, Figure 10 describes the matching process between each analysis pattern analysis pattern group of FIG. 8 図、図11は図1の表示部の第2の表示例を示す図である。 Figure 11 is a diagram showing a second display example of the display unit of FIG.

図1に示すように、本実施例の蛍光剤集積濃度測定装置1は、持ち運びができ、患者に貸し出しが可能であって、患者が自宅等で注入された蛍光剤の生体組織への集積濃度を患者自らが測定する装置である。 As shown in FIG. 1, a fluorescent agent integrated concentration measuring apparatus 1 of the present embodiment can carry integrated concentration of a possible loan to the patient, the patient is injected fluorescent agent at home or the like to the living tissue which is a device for measuring their own patients.

蛍光剤集積濃度測定装置1は、患者の唾液、尿液あるいは血液等を含むサンプルを収納した試験瓶2を内部に着脱自在に装填する装填部3を有し、この装填部3の上面には試験瓶2を内部に装填した際に外部光を遮光するための遮光蓋4が設けられている。 Fluorescers integrated concentration measuring apparatus 1 includes a loading section 3 for removably loading a patient's saliva, the test bottle 2 housing a sample containing urine or blood or the like therein, the upper surface of the loading portion 3 shielding cover 4 for blocking the external light is provided when loaded with test bottle 2 therein.

蛍光剤集積濃度測定装置1の前面には、各種データを表示する例えばLCD等からなる表示部11と、各種データを入力する入力スイッチ部12とが設けられている。 The front surface of the fluorescent agent integrated concentration measuring apparatus 1, a display unit 11 composed of a LCD or the like for example, for displaying various data, an input switch unit 12 for inputting various data are provided. 入力スイッチ部12は、例えば日付を指定するために日付設定スイッチ13、患者のIDを指定するための患者ID設定スイッチ14、患者に注入された蛍光剤を指定する蛍光剤設定スイッチ15、測定開始を指示する開始スイッチ16及び数字あるいはアルファベット等の文字列が入力可能なキーボード部18等から構成されている。 Input switch section 12, for example the date setting switch 13 in order to specify a date, patient ID setting switch 14 for designating the ID of a patient, fluorescers setting switch 15 for designating a fluorescent agent injected into the patient, the measurement start character strings such as the start switch 16 and numerals or alphabets to indicate is composed of fillable keyboard unit 18 and the like.

表示部11には、図2に示すように、入力スイッチ部12を用いて入力した日付データ、患者ID、蛍光剤名等の他に、この条件で患者自らが検査した回数及び検査結果が表示されるようになっている。 On the display unit 11, as shown in FIG. 2, the date data entered using the input switch unit 12, the patient ID, in addition to such a fluorescent agent name, number and test results themselves patients were examined in this condition display It is adapted to be.

蛍光剤集積濃度測定装置1は、詳細には、図3に示すように、内部に装填した試験瓶2に励起光を照射する単波長LED(単波長レーザ光源)21と、試験瓶2からの蛍光のみを透過するバリアフィルタ(光学フィルタ)22と、バリアフィルタ22を介した蛍光を受光して電気信号を出力する受光素子23と、受光素子23からの電気信号を信号処理し蛍光強度を検出する検出処理回路24と、検出処理回路24からの検出結果とパターン格納部25に収納されている解析パターン(後述)とを比較し試験瓶2内のサンプルの組織集積濃度ピーク時間を算出する演算回路26と、これら各回路及び表示部11、入力スイッチ部12を制御する制御回路27とを備えて構成される。 Fluorescers integrated concentration measuring device 1, in particular, as shown in FIG. 3, a single wavelength LED (single-wavelength laser light source) 21 for irradiating the excitation light to the test bottle 2, loaded therein from the test bottle 2 detection and barrier filter (optical filter) 22 that transmits only fluorescence, and a light receiving element 23 for outputting an electric signal by receiving the fluorescence through the barrier filter 22, a signal processing fluorescence intensity electrical signals from the light receiving element 23 a detection processing circuit 24 that performs a calculation for calculating the tissue integrated concentration peak time of the sample in comparing the diffraction patterns which are stored in the detection result from the detection processing circuit 24 and a pattern storage unit 25 (described later) test bottle 2 a circuit 26 configured to include each of these circuits and the display unit 11, a control circuit 27 which controls the input switch unit 12.

試験瓶2内のサンプルは、図4に示すように所定の波長λを境に、波長λより短い波長の励起光を吸収し、励起光により励起された波長λより長い波長の蛍光を発生する。 Sample test bottle in 2 the boundary of a predetermined wavelength lambda 4, absorbing the excitation light having a wavelength shorter than the wavelength lambda, emits fluorescence of longer wavelengths than the excitation wavelength lambda by the excitation light .

そこで、波長λより短い単波長の励起光を単波長LED21から試験瓶2内のサンプルに照射し、図5に示すような透過特性を有するバリアフィルタ22を介して受光素子23で受光することで、試験瓶2内のサンプルからの蛍光のみが受光素子23で検出される。 Therefore, by the excitation light of shorter single wavelength than λ irradiated to a sample of test bottle in 2 of single-wavelength LED 21, it is received by the light receiving element 23 through a barrier filter 22 having a transmission characteristic as shown in FIG. 5 , only the fluorescence from the sample in the test bottle 2 is detected by the light receiving element 23.

なお、図6に示すように、単波長LED21の代わりに白色光源としての白色ランプ(例えばキセノンランプ)31を用いることが可能であるが、この場合白色ランプ31と試験瓶2との間には、図7に示すような透過特性を有する励起光フィルタ(透過フィルタ)32を設けることで、波長λより短い波長の光のみを試験瓶2を照射し、バリアフィルタ22を介して受光素子23で蛍光を受光するように構成してもよい。 Incidentally, as shown in FIG. 6, it is possible to use a white light lamp (e.g. xenon lamp) 31 as a white light source instead of a single-wavelength LED 21, during this case the white light lamp 31 and the test bottle 2 , by providing the excitation light filter (transmission filter) 32 having a transmission characteristic as shown in FIG. 7, only light having a wavelength shorter than the wavelength λ of the test bottle 2 irradiated, the light receiving element 23 through a barrier filter 22 it may be configured to receive fluorescence.

このように構成された本実施例の作用について説明する。 The operation of this embodiment having such a configuration will be described.

患者は通院している病院等において蛍光剤が生体内に投与されると、病院等から本実施例の蛍光剤集積濃度測定装置1を貸与され、自宅等にこの蛍光剤集積濃度測定装置1を設置する。 When the patient is a fluorescent agent is administered in vivo in a hospital or the like that visits, loaned a fluorescent agent integrated concentration measuring apparatus 1 of the present embodiment from the hospital or the like, the fluorescent agent integrated concentration measuring apparatus 1 at home or the like It is installed. この際、蛍光剤集積濃度測定装置1と共に試験瓶2と、唾液、尿液あるいは血液等のサンプルに混合するための所定の試薬が患者に対して病院等より支給される。 At this time, the test bottle 2 with a fluorescent agent integrated concentration measuring apparatus 1, saliva, a predetermined reagent for mixing a sample such as urine or blood is paid from the hospitals to the patient.

このようにして自宅等に設置された蛍光剤集積濃度測定装置1を用いて、予め病院等より指示された検査時刻になると、患者は図8に示すように、ステップS1にて唾液、尿液あるいは血液等のサンプルを採取し、ステップS2にてサンプルと支給された所定の試薬とを混合して試験瓶2に収納する。 Thus by using a fluorescent agent integrated concentration measuring apparatus 1 installed at home or the like, at a test time instructed by the pre-hospital or the like, so that the patient is shown in FIG. 8, saliva in step S1, urine or a sample of blood or the like is collected, and mixed with a predetermined reagent that is paid to the sample accommodated in the test bottle 2 at step S2. サンプル内の蛍光剤がPeT(Photo-induced Electron Transfer)機構の蛍光剤である場合、この所定の試薬は、サンプル内の蛍光剤を活性化する薬剤である。 If the fluorescent agent in the sample is a fluorescent agent PeT (Photo-induced Electron Transfer) mechanism, the predetermined reagent is an agent that activates the fluorescent agent in the sample.

そして、ステップS3にて、サンプルを収納した試験瓶2を蛍光剤集積濃度測定装置1の装填部3に装填し遮光蓋4を閉じることで、試験瓶2は外部光から遮光した状態で蛍光剤集積濃度測定装置1内部に設置される。 Then, in step S3, the sample accommodating the test bottle 2 fluorescer integrated concentration measuring apparatus 1 is loaded into the loading portion 3 by closing the shielding cover 4, test bottle 2 is fluorescent agent while shielding from outside light installed inside the integrated concentration measuring apparatus 1.

次に、ステップS4にて入力スイッチ部12(日付設定スイッチ13、患者ID設定スイッチ14、蛍光剤設定スイッチ15及びキーボード部18)を用いて日付データ、患者ID、蛍光剤名等の各種データを入力する。 Next, the input switch unit 12 in In step S4 (date setting switch 13, the patient ID setting switch 14, the fluorescent agent setting switch 15 and a keyboard 18) date data using a patient ID, various data such as a fluorescent agent name input.

なお、図示はしないが、例えば試験瓶2に患者ID、蛍光剤名等が記録されているRF-IDタグ等を設けると共に、蛍光剤集積濃度測定装置1内にRF-ID通信手段を設けることで、RF-IDタグに記録されている患者ID、蛍光剤名を無線にて蛍光剤集積濃度測定装置1に取り込むようにしてもよい。 Although not shown, for example, a patient ID to the test bottle 2, provided with a RF-ID tag such as a fluorescent agent name and the like are recorded, providing the RF-ID communication means fluorescer integrated concentration measuring device 1 in a patient ID recorded in the RF-ID tag, it may be taken a fluorescent agent name wirelessly to fluorescer integrated concentration measuring apparatus 1.

そして、ステップS5にて入力スイッチ部12の開始スイッチ16を押下することで、試験瓶2内のサンプルの蛍光剤集積濃度の検査を開始する。 Then, by pressing the start switch 16 of the input switch unit 12 in Step S5, initiating an examination of the fluorescent agent integrated concentration of the sample in the test bottle two.

検査が開始されると、まず試験瓶2に対して単波長LED21より励起光が照射される。 When the inspection is started, the excitation light is irradiated from the single-wavelength LED21 first to the test bottle 2. そして、励起された試験瓶2内のサンプルから発生した蛍光は、バリアフィルタ22を介して受光素子23で受光される。 Then, fluorescence generated from a sample of the excited test bottle in 2 is received by the light receiving element 23 through the barrier filter 22. そして、受光素子23からの電気信号が検出処理回路24に出力される。 Then, the electrical signal from the light receiving element 23 is outputted to the detection processing circuit 24.

そして、ステップS6にて演算回路26において、励起された試験瓶2内のサンプルからの蛍光の強度及び検査時刻と、パターン格納部25に収納されている解析パターンとが照合される。 Then, the arithmetic circuit 26 at step S6, and the strength and inspection time of the fluorescence from the sample of the excited test bottle 2, the analysis pattern is housed in the pattern storage unit 25 are matched.

蛍光剤の生体内濃度は、図9に示すように、蛍光剤の種類毎に異なるだけでなく、同一の蛍光剤においても個体差により変化するため、パターン格納部25には蛍光剤毎に個体差を反映した複数の解析パターンからなる解析パターン群が格納されており、これらの解析パターン群を用いてサンプルとの照合が行われる。 Vivo concentration of the fluorescent agent, as shown in FIG. 9, not only different for each type of fluorescent agent, the same for also varies due to individual differences in the fluorescence agent, individual for each fluorescent agent in the pattern storage unit 25 a plurality of are stored analysis pattern group consisting of the analysis pattern reflecting the collation with the sample is performed using these analytical pattern group. 一例として、図9は蛍光剤A(実線)と蛍光剤B(破線)における個体差のそれぞれ3つの解析パターンからなる2組の解析パターン群を示している。 As an example, Figure 9 shows two sets of analysis pattern groups each consisting of three diffraction pattern of individual differences in fluorescence agent A (solid line) and fluorescence agent B (dashed line).

このように患者に投与した蛍光剤の種類だけでなく、患者の個体差により蛍光剤の生体内濃度が異なるために、蛍光剤の生体内濃度がピークとなる時刻が異なる。 Thus, not only the type of fluorescent agent that is administered to a patient, for the in vivo concentration of the fluorescent agent varies due to individual differences of the patient, the time that the in vivo concentration of the fluorescent agent becomes a peak different. 図9では蛍光剤A(実線)のピーク点を●で示し、蛍光剤B(破線)のピーク点を▲で示している。 9 the peak point of the fluorescent agent A (solid line) indicated by ●, shows a peak point of the fluorescent agent B (broken line) in ▲.

そこで、ステップS6における解析パターンとの照合では、蛍光剤の種類(蛍光剤名)に基づき照合する解析パターン群を選定し、図10に示すように、検査時刻におけるサンプルからの蛍光の強度(検査結果)と解析パターン群の各解析パターンとを照合する。 Therefore, in the matching and analysis pattern in step S6, the selected analysis pattern group to match based on the type of fluorescent agent (a fluorescent agent name), as shown in FIG. 10, the intensity of the fluorescence from the sample in the test time (test results) collates the respective diffraction patterns of the analysis pattern group.

このような照合を複数回、例えば3回行うことで、蛍光剤の集積濃度のピーク時刻を推定する。 Such matching a plurality of times, by performing for example, three times, to estimate the peak time of the integrated concentration of the fluorescent agent. そこで、ステップS7にて検査回数が所定回数に達したかどうか判定し、達していない場合には、ステップS8にて図11に示すように、表示部11に検査結果として次回検査時刻を表示し処理を終了する。 Therefore, the number of inspections at step S7 determines whether it has reached the predetermined number of times, if not reach, as shown in FIG. 11 at step S8, and displays the next inspection time as the inspection result on the display unit 11 the process is terminated. また検査回数が所定回数に達し、蛍光剤の集積濃度のピーク時刻が推定されると、ステップS9にて図2に示したように検査結果として来院する日時を表示して処理を終了する。 The number inspection reaches a predetermined number of times, the peak time of the integrated concentration of the fluorescent agent is estimated to end the display and processing time to visit as an inspection result, as shown in FIG. 2 in step S9.

ここで、蛍光剤の集積濃度のピーク時刻の推定を詳細に説明する。 Here, explaining the estimation of the peak time of the integrated concentration of the fluorescent agent in detail. 検査時刻は蛍光剤の種類により異なるが、蛍光剤の投与から最初の検査時刻が病院等より指示されている。 Test time may vary depending on the type of fluorescent agent, initial examination time from administration of the fluorescent agent has been instructed by the hospital or the like. また、次回の検査時刻は最初の検査時刻から所定時間間隔をおいた時刻となる。 In addition, the next inspection time is the time that at a predetermined time interval from the beginning of the inspection time.

ある蛍光剤が投与された際に蛍光剤の投与時刻から所定時間間隔で複数回例えば6時間間隔で3回検査を実施することで、照合により複数の検査時刻におけるサンプルからの蛍光の強度(検査結果)がどの解析パターン上にあるかがわかる。 That there fluorescent agent is an inspection three times with multiple example 6 hour intervals at predetermined time intervals from the time of administration of the fluorescent agent when administered, the intensity of fluorescence from the sample at a plurality of inspection times by verification (testing result) is in how the analysis pattern on whether it is seen. そして、この該当する解析パターンのピークがこの蛍光剤の集積濃度のピーク時刻として推定される。 Then, the peak of the diffraction patterns the appropriate is estimated as the peak time of the integrated concentration of the fluorescent agent.

図10は、蛍光剤の投与時刻から例えば6時間間隔で3回蛍光剤の集積濃度のピーク時刻が最終時刻から15時間経過した時刻となると推定された例である。 Figure 10 is an example in which the peak time of the integrated concentration was estimated to be elapsed time 15 hours from the last time of three fluorescent agent administration time for example 6 hour intervals fluorescer.

このように本実施例では、蛍光剤集積濃度測定装置1が持ち運びでき、患者に貸し出しが可能であるので、患者は蛍光剤の生体組織での集積濃度がピークに達するまで病院内にいる必要がなくなる。 In this embodiment thus can carry fluorescer integrated concentration measuring apparatus 1, since it is possible to rent a patient, the patient needs to have in the hospital until the integration density in the living tissue of the fluorescent agent peaks no. この結果、自宅等で所定時間間隔で蛍光剤集積濃度測定装置1により唾液あるいは血液等のサンプル内の蛍光剤濃度を測定するだけで、蛍光剤の生体組織での集積濃度のピーク時刻が推定でき、患者にこのピーク時刻を告知することで来院を促すことが可能となる。 As a result, only measures the fluorescent agent concentration in the sample, such as saliva or blood by fluorescent agents integrated concentration measuring device 1 at predetermined time intervals in the home or the like, can be estimated is peak time of the integrated concentration in a biological tissue fluorescer , it is possible to prompt the visit by announcing this peak time to the patient.

図12は本発明の実施例2に係る蛍光剤集積濃度測定装置の構成を示すブロック図である。 Figure 12 is a block diagram showing the configuration of a fluorescent agent integrated concentration measuring apparatus according to a second embodiment of the present invention.

実施例2は、実施例1とほとんど同じであるので、異なる点のみ説明し、同一の構成には同じ符号をつけ説明は省略する。 Example 2, since almost the same as the first embodiment, only differences described, the description with the same reference numerals are given to the same configuration is omitted.

図12に示すように、本実施例では蛍光剤集積濃度測定装置1内に、広域ネットワークである例えばインターネット100と通信可能な通信I/F101を設け、パターン格納部25をインターネット100に接続された病院内の院内サーバ102に設けて構成する。 As shown in FIG. 12, the fluorescent agent integrated concentration measuring apparatus 1 in the present embodiment, the provided available communication I / F101 and Internet 100 for example, a wide area network, which is connected to the pattern storage unit 25 to the Internet 100 It constituting provided hospital server 102 in a hospital. その他の構成及び作用は実施例1と同じである。 Other configurations and operations are the same as in Example 1.

本実施例の場合、蛍光剤集積濃度測定装置1内にパターン格納部25を設ける必要がなくなるので、より可搬性に優れた構成となる。 In this embodiment, since the need to provide a pattern storage unit 25 in the fluorescent agent integrated concentration measuring apparatus 1 is eliminated, an excellent arrangement more portable. また、院内サーバ102に患者のサンプルからの蛍光の強度(検査結果)情報を蓄積することができるので、蛍光の強度(検査結果)情報に基づいた、より多様な解析パターンを生成しパターン格納部25に格納することが可能となる。 The intensity of the fluorescence of the hospital server 102 from a patient sample (test result) since the information can be the accumulation, the intensity of the fluorescence (test results) based on the information, the generated pattern storage unit more diverse analysis pattern it is possible to store 25. なお、演算回路26の演算機能を院内サーバ102に持たせることで演算回路26を省略することも可能である。 It is also possible to an arithmetic function of the arithmetic circuit 26 to omit the arithmetic circuit 26 by giving the hospital server 102.

本発明は、上述した実施例に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the embodiments described above, within the range not changing the gist of the present invention, various changes and modifications are possible.

本発明の実施例1に係る蛍光剤集積濃度測定装置の外観を示す外観図 External view showing an appearance of a fluorescent agent integrated concentration measuring apparatus according to a first embodiment of the present invention 図1の表示部の第1の表示例を示す図 It shows a first display example of the display unit of FIG. 1 図1の蛍光剤集積濃度測定装置の構成を示すブロック図 Block diagram showing the configuration of a fluorescent agent integrated concentration measuring apparatus of Fig. 1 図2の試験瓶内のサンプルの光の吸収及び発光特性を示す図 Shows the absorption and emission characteristics of the light of the sample in the test bottle 2 図2のバリアフィルタの透過特性を示す図 Graph showing the transmission characteristics of the barrier filter of FIG. 2 図1の蛍光剤集積濃度測定装置の変形例の構成を示すブロック図 Block diagram showing the configuration of a variation of the fluorescent agent integrated concentration measuring apparatus of Fig. 1 図6の励起光フィルタの透過特性を示す図 Graph showing the transmission characteristics of the excitation light filter in Fig. 6 図2の蛍光剤集積濃度測定装置の作用を説明するフローチャート Flowchart illustrating the operation of the fluorescent agent integrated concentration measuring apparatus of Fig 2 図2のパターン格納部に格納されている蛍光剤毎に個体差を反映した複数の解析パターンからなる解析パターン群の一例を示す図 It illustrates an example of an analysis pattern group including a plurality of diffraction pattern that reflects the individual difference for each fluorescent agent stored in the pattern storage unit of FIG. 2 図8の解析パターン群の各解析パターンとの照合処理を説明する図 Diagram for explaining a matching process between each analysis pattern analysis pattern group of FIG. 8 図1の表示部の第2の表示例を示す図 Diagram showing a second display example of the display unit of FIG. 1 本発明の実施例2に係る蛍光剤集積濃度測定装置の構成を示すブロック図 Block diagram showing the configuration of a fluorescent agent integrated concentration measuring apparatus according to a second embodiment of the present invention

符号の説明 DESCRIPTION OF SYMBOLS

1…蛍光剤集積濃度測定装置2…試験瓶3…装填部4…遮光蓋11…表示部12…入力スイッチ部21…単波長LED(単波長レーザ光源) 1 ... fluorescer integrated concentration measuring apparatus 2 ... test bottle 3 ... loading portion 4 ... shielding cover 11 ... display unit 12 ... input switch unit 21 ... single-wavelength LED (single-wavelength laser light source)
22…バリアフィルタ(光学フィルタ) 22 ... barrier filter (optical filter)
23…受光素子24…検出処理回路25…パターン格納部26…演算回路27…制御回路31…白色ランプ(白色光源) 23 ... light-receiving element 24 ... detection processing circuit 25 ... pattern storage unit 26 ... arithmetic circuit 27 ... control circuit 31 ... white lamp (white light source)
32…励起光フィルタ(透過フィルタ) 32 ... excitation light filter (transmission filter)
代理人 弁理士 伊藤 進 Attorney Attorney Ito, Susumu

Claims (14)

  1. 蛍光色素を含む薬剤が注入された生体から採取した体液を含むサンプル溶液に、前記蛍光色素に対して蛍光を励起させる励起光を照射する励起光光源と、 A sample solution containing a body fluid collected from a living body to agents including fluorescent dye is injected, a pumping light source for irradiating excitation light for exciting the fluorescence to the fluorescent dye,
    前記蛍光を検出する蛍光検出手段と、 And fluorescence detecting means for detecting the fluorescence,
    前記蛍光検出手段からの検出信号に基づき、前記生体での前記蛍光色素の濃度を算出する蛍光色素濃度算出手段と を備え Wherein based on a detection signal from the fluorescence detection means, and a fluorescent dye concentration calculation means for calculating the concentration of the fluorescent dye in the living body,
    前記蛍光色素濃度算出手段は、前記蛍光色素を含む薬剤の前記生体への注入経過時間と、算出した前記蛍光色素の濃度とに基づき、前記蛍光色素を含む薬剤の前記生体内の組織中における濃度のピーク時間を推定するピーク時間推定手段を有する The fluorescent dye concentration calculating means, the concentration of the fluorescent dye and injected elapsed time to the biological agents, including, based on the concentration of the calculated the fluorescent dye, tissue of the in vivo drug containing the fluorescent dye a peak time estimation means for estimating a peak time
    ことを特徴とする蛍光剤集積濃度測定装置。 Fluorescers integrated concentration measuring apparatus, characterized in that.
  2. 前記励起光をカットすると共に、前記蛍光を透過する光学フィルタを備え、 While cutting the excitation light, comprising an optical filter that transmits the fluorescence,
    前記蛍光検出手段は前記光学フィルタを介した前記蛍光を検出する ことを特徴とする請求項1に記載の蛍光剤集積濃度測定装置。 The fluorescence detecting means fluorescer integrated concentration measuring apparatus according to claim 1, characterized in that detecting the fluorescence through the optical filter.
  3. 前記体液は唾液、尿液あるいは血液である ことを特徴とする請求項1または2に記載の蛍光剤集積濃度測定装置。 The body fluid fluorescer integrated concentration measuring apparatus according to claim 1 or 2, characterized in that the saliva, urine or blood.
  4. 前記励起光光源は単波長レーザ光源である ことを特徴とする請求項1、2または3に記載の蛍光剤集積濃度測定装置。 The excitation light source is a fluorescent agent integrated concentration measuring apparatus according to claim 1, 2 or 3, characterized in that a single-wavelength laser light source.
  5. 前記励起光光源は、白色光を発光する白色光源と、前記白色光のうち前記励起光の波長帯域のみを透過する透過フィルタとからなる ことを特徴とする請求項1、2または3に記載の蛍光剤集積濃度測定装置。 The pumping light source comprises a white light source for emitting white light, according to claim 1, 2 or 3, characterized in that it consists of a transmission filter for transmitting only the wavelength band of the excitation light of the white light fluorescers integrated concentration measuring apparatus.
  6. 前記サンプル溶液を収納した容器を着脱自在に前記励起光の光路上に配置させる容器装填手段を有する ことを特徴とする請求項1、2または3に記載の蛍光剤集積濃度測定装置。 Fluorescers integrated concentration measuring apparatus according to claim 1, 2 or 3 characterized by having a container mounting means for placement on an optical path of the sample solution detachably the excitation light receiving containers a.
  7. 前記容器装填手段に装填された前記容器に対して外部光を遮光する遮光手段を備えた ことを特徴とする請求項6に記載の蛍光剤集積濃度測定装置。 Fluorescers integrated concentration measuring apparatus according to claim 6, further comprising a light shielding means for shielding the external light to the container loaded in the container mounting means.
  8. 前記ピーク時間推定手段は、異なる複数の時刻と、該複数の時刻で算出した前記蛍光色素濃度に基づき、前記ピーク時間を推定する The peak time estimation means, different from the plurality of times, based on the fluorescent dye concentration calculated in the time of plural, estimating the peak time
    ことを特徴とする請求項1に記載の蛍光剤集積濃度測定装置。 Fluorescers integrated concentration measuring apparatus according to claim 1, characterized in that.
  9. 前記複数の時刻で算出した前記蛍光色素濃度との照合に用いられる濃度−時間曲線データが格納された曲線データ格納手段を有する Having stored the time curve data curve data storage means - the concentration used for collation with the fluorescent dye concentration calculated by the plurality of times
    ことを特徴とする請求項8に記載の蛍光剤集積濃度測定装置。 Fluorescers integrated concentration measuring apparatus according to claim 8, characterized in that.
  10. ネット接続された外部サーバとデータの送受を行う通信手段を有し、 A communication means for transmitting and receiving network connected external server and data,
    少なくとも前記曲線データ格納手段を前記外部サーバに設けた At least the curve data storage means provided in the external server
    ことを特徴とする請求項9に記載の蛍光剤集積濃度測定装置。 Fluorescers integrated concentration measuring apparatus according to claim 9, characterized in that.
  11. 蛍光色素を含む薬剤が注入された生体から採取した体液を含むサンプル溶液に、前記蛍光色素に対して蛍光を励起させる励起光を照射する励起光照射ステップと、 A sample solution containing a body fluid collected from a living body to agents including fluorescent dye is injected, an excitation light irradiation step of irradiating excitation light for exciting the fluorescence to the fluorescent dye,
    前記蛍光を検出する蛍光検出ステップと、 A fluorescence detection step of detecting the fluorescence,
    前記蛍光検出ステップにおいて検出された検出信号に基づき、前記生体での前記蛍光色素の濃度を算出する蛍光色素濃度算出ステップと Based on a detection signal in the fluorescence detection step, a fluorescent dye concentration calculating step of calculating the concentration of the fluorescent dye in the living body
    を備え、 Equipped with a,
    前記蛍光色素濃度算出ステップは、前記蛍光色素を含む薬剤の前記生体への注入経過時間と、算出した前記蛍光色素の濃度とに基づき、前記蛍光色素を含む薬剤の前記生体内の組織中における濃度のピーク時間を推定するピーク時間推定ステップを有する The fluorescent dye concentration calculating step, the concentration of the fluorescence and dye injection elapsed time to the biological agents, including, based on the concentration of the calculated the fluorescent dye, tissue of the fluorescent within the biological agents, including dyes having a peak time estimation step of estimating a peak time
    ことを特徴とする蛍光剤集積濃度測定方法。 Fluorescers integrated concentration measuring wherein the.
  12. 前記ピーク時間推定ステップは、異なる複数の時刻と、該複数の時刻で算出した前記蛍光色素濃度に基づき、前記ピーク時間を推定する The peak time estimation step, different from the plurality of times, based on the fluorescent dye concentration calculated in the time of plural, estimating the peak time
    ことを特徴とする請求項11に記載の蛍光剤集積濃度測定方法。 Fluorescers integrated concentration measuring method according to claim 11, characterized in that.
  13. 前記複数の時刻で算出した前記蛍光色素濃度との照合に用いられる濃度−時間曲線データをデータ格納手段に格納する曲線データ格納ステップを有する Having a curve data storing step of storing time curve data in the data storage means - the concentration used for collation with the fluorescent dye concentration calculated by the plurality of times
    ことを特徴とする請求項12に記載の蛍光剤集積濃度測定方法。 Fluorescers integrated concentration measuring method according to claim 12, characterized in that.
  14. ネット接続された外部サーバとデータの送受を行う通信ステップを有し、 A communication step of transmitting and receiving network connected external server and data,
    少なくとも前記データ格納手段を前記外部サーバに設けた At least the data storage means provided in the external server
    ことを特徴とする請求項13に記載の蛍光剤集積濃度測定方法。 Fluorescers integrated concentration measuring method according to claim 13, characterized in that.
JP2005004577A 2005-01-11 2005-01-11 Fluorescers integrated concentration measuring device and fluorescence agent integrated concentration measurement method Active JP4504207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004577A JP4504207B2 (en) 2005-01-11 2005-01-11 Fluorescers integrated concentration measuring device and fluorescence agent integrated concentration measurement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005004577A JP4504207B2 (en) 2005-01-11 2005-01-11 Fluorescers integrated concentration measuring device and fluorescence agent integrated concentration measurement method
US11327866 US7966051B2 (en) 2005-01-11 2006-01-09 Fluorescent agent concentration measuring apparatus, dose control apparatus, administration system, fluorescent agent concentration measuring method, and dose control method
US13105515 US8395775B2 (en) 2005-01-11 2011-05-11 Fluorescent agent concentration measuring apparatus, dose control apparatus, administration system, fluorescent agent concentration measuring method, and dose control method

Publications (2)

Publication Number Publication Date
JP2006194646A true JP2006194646A (en) 2006-07-27
JP4504207B2 true JP4504207B2 (en) 2010-07-14

Family

ID=36800855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004577A Active JP4504207B2 (en) 2005-01-11 2005-01-11 Fluorescers integrated concentration measuring device and fluorescence agent integrated concentration measurement method

Country Status (1)

Country Link
JP (1) JP4504207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5139602B2 (en) * 2010-12-13 2013-02-06 オリンパスメディカルシステムズ株式会社 Medical devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338045A (en) * 1999-06-01 2000-12-08 Bunshi Biophotonics Kenkyusho:Kk Method for measuring concentration of calcium ion in cell
JP2002055080A (en) * 2000-08-08 2002-02-20 Hitachi Ltd Device for determining nucleic acid base sequence and inspecting system
JP2002525576A (en) * 1998-09-16 2002-08-13 ピーイー コーポレイション (エヌワイ) Spectral calibration of fluorescent polynucleotide separation apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2147561C (en) * 1994-05-10 1997-09-16 Klaus W. Berndt Composite optical blood culture sensor
JPH08224208A (en) * 1995-02-22 1996-09-03 Olympus Optical Co Ltd Fluorescence observing endoscope device
JP3113909B2 (en) * 1997-12-22 2000-12-04 株式会社日本水処理技研 Immediate determination apparatus of fungi
JP3731700B2 (en) * 1997-12-25 2006-01-05 興和株式会社 Fluorescent particles imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525576A (en) * 1998-09-16 2002-08-13 ピーイー コーポレイション (エヌワイ) Spectral calibration of fluorescent polynucleotide separation apparatus
JP2000338045A (en) * 1999-06-01 2000-12-08 Bunshi Biophotonics Kenkyusho:Kk Method for measuring concentration of calcium ion in cell
JP2002055080A (en) * 2000-08-08 2002-02-20 Hitachi Ltd Device for determining nucleic acid base sequence and inspecting system

Also Published As

Publication number Publication date Type
JP2006194646A (en) 2006-07-27 application

Similar Documents

Publication Publication Date Title
Knowles et al. Gastrointestinal neuromuscular pathology: guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group
Kiesslich et al. In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy
US7416700B2 (en) Immunoassay fluorometer
Pfefer et al. Multiple-fiber probe design for fluorescence spectroscopy in tissue
US5062428A (en) Method and device for in vivo diagnosis detecting IR emission by body organ
Betley et al. Parallel, redundant circuit organization for homeostatic control of feeding behavior
Matousek Deep non-invasive Raman spectroscopy of living tissue and powders
US5115137A (en) Diagnosis by means of fluorescent light emission from tissue
US20030162234A1 (en) Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
Schomacker et al. Ultraviolet laser‐induced fluorescence of colonic tissue: basic biology and diagnostic potential
US6826422B1 (en) Spectral volume microprobe arrays
Virkler et al. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification
US6081740A (en) Method and apparatus for imaging and sampling diseased tissue
Choo‐Smith et al. Medical applications of Raman spectroscopy: from proof of principle to clinical implementation
US7330746B2 (en) Non-invasive biochemical analysis
US7139598B2 (en) Determination of a measure of a glycation end-product or disease state using tissue fluorescence
Vishwanath et al. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods
US5678550A (en) Apparatus and method for in situ detection of areas of cardiac electrical activity
US6778269B2 (en) Detecting isotopes and determining isotope ratios using raman spectroscopy
US4930516A (en) Method for detecting cancerous tissue using visible native luminescence
Berger et al. Multicomponent blood analysis by near-infrared Raman spectroscopy
Loschenov et al. Photodynamic therapy and fluorescence diagnostics
Premasiri et al. Urine analysis by laser Raman spectroscopy
Marcu et al. Fluorescence lifetime spectroscopy of glioblastoma multiforme
US20030191397A1 (en) Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350