JP4502676B2 - POLYMER MANUFACTURING METHOD AND POLYMER MATERIAL - Google Patents

POLYMER MANUFACTURING METHOD AND POLYMER MATERIAL Download PDF

Info

Publication number
JP4502676B2
JP4502676B2 JP2004085991A JP2004085991A JP4502676B2 JP 4502676 B2 JP4502676 B2 JP 4502676B2 JP 2004085991 A JP2004085991 A JP 2004085991A JP 2004085991 A JP2004085991 A JP 2004085991A JP 4502676 B2 JP4502676 B2 JP 4502676B2
Authority
JP
Japan
Prior art keywords
polymer
producing
megasonic
produced
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004085991A
Other languages
Japanese (ja)
Other versions
JP2005272552A (en
Inventor
忠弘 大見
直樹 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundation for Advancement of International Science
Original Assignee
Foundation for Advancement of International Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foundation for Advancement of International Science filed Critical Foundation for Advancement of International Science
Priority to JP2004085991A priority Critical patent/JP4502676B2/en
Priority to TW094131458A priority patent/TW200712067A/en
Publication of JP2005272552A publication Critical patent/JP2005272552A/en
Application granted granted Critical
Publication of JP4502676B2 publication Critical patent/JP4502676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、残留未反応モノマー成分が極めて少ない重合体の製造方法および重合体を用いた材料および部材に関するものである。   The present invention relates to a method for producing a polymer with extremely little residual unreacted monomer component, and a material and member using the polymer.

プラスチックやゴムのような重合体を用いた部材は、軽量かつ安価で、取り扱いも容易なため、日常生活やあらゆる産業において大量に使用されている。   A member using a polymer such as plastic or rubber is light and inexpensive and easy to handle. Therefore, it is used in a large amount in daily life and every industry.

しかし、昨今これら重合体から揮発されるガスが問題化している。日常生活において、建材や自動車等から揮発するガスは、現代病といわれるアトピー性皮膚炎等のアレルギー性疾患の原因といわれている。   However, the gas volatilized from these polymers has recently become a problem. Gases evaporating from building materials and automobiles in daily life are said to be the cause of allergic diseases such as atopic dermatitis, which is said to be a modern disease.

また、半導体装置やフラットパネル表示装置等の製造工程においても、使用される重合体からの揮発分の存在がデバイス性能に大きく左右し、生産性や信頼性の低下を引き起こしている。   In addition, in the manufacturing process of semiconductor devices, flat panel display devices, etc., the presence of volatile components from the polymer used greatly affects device performance, causing a reduction in productivity and reliability.

そのような重合体から揮発するガスは、添加剤や残留溶剤等、種々あるが、その中でも重合体の残留低分子量体、特に残留未反応モノマー成分が揮発ガスの主成分であり、悪影響を及ぼす主要因である。これらの残留未反応モノマー成分をなくすためには、重合反応後、何らかの方法でこれを除去するか、重合反応時に反応を完結させることでなくすことが考えられる。   There are various gases that volatilize from such polymers, such as additives and residual solvents. Among them, the residual low molecular weight polymer, particularly residual unreacted monomer components, is the main component of the volatile gas and has an adverse effect. The main factor. In order to eliminate these residual unreacted monomer components, it is conceivable to remove them by some method after the polymerization reaction or to eliminate the reaction by completing the reaction during the polymerization reaction.

重合反応後に残留未反応モノマー成分を除去する方法は、種々報告されている。   Various methods for removing residual unreacted monomer components after the polymerization reaction have been reported.

まず、古くから行われている高温ベーキングや減圧処理でもある程度の効果がある。しかしながら、この方法では完全にはとりきれず、また、大きな部材に対しては、巨大な装置を準備する必要があるため、経済的ではない。   First, high-temperature baking and decompression treatment that have been performed for a long time have some effects. However, this method cannot be completely removed, and it is not economical because a large device needs to be prepared for a large member.

また、例えば、特許文献1や特許文献2によれば、重合体を温水槽内で分散器または超音波照射により発生する微細な不活性ガスの気泡と接触させ、重合体中の揮発性物質の除去を行う方法や、成型された重合体に含有される揮発性物質を除去する方法において、当該重合体を洗浄液と直接接触させながら超音波を重合体に照射(印加)し、揮発性物質を除去する方法が記載されている。   Further, for example, according to Patent Document 1 and Patent Document 2, the polymer is brought into contact with fine inert gas bubbles generated by a disperser or ultrasonic irradiation in a hot water tank, and the volatile substance in the polymer is removed. In the method of removing and the method of removing the volatile substance contained in the molded polymer, the polymer is irradiated (applied) with ultrasonic waves while directly contacting the polymer with the cleaning liquid, and the volatile substance is removed. A method of removal is described.

この方法を用いることで、揮発性物質の低減が可能であるが、揮発するためのエネルギーを多く必要とすることが多いモノマー成分は、完全に除去することが出来ない。   By using this method, it is possible to reduce volatile substances, but it is impossible to completely remove monomer components that often require a large amount of energy for volatilization.

特開平7−258331号公報JP 7-258331 A 特開平7−216115号公報Japanese Patent Laid-Open No. 7-216115

本発明は上記事情に着目してなされたものであって、その技術的課題は、従来除去が困難であった、残留未反応モノマー成分が極めて少ない重合体の製造方法および重合体を用いた材料および部材を提供することにある。   The present invention has been made by paying attention to the above circumstances, and the technical problem thereof is a method for producing a polymer with very little residual unreacted monomer component, which has been difficult to remove, and a material using the polymer. And providing a member.

上記課題を解決した本発明に係る重合体製造方法とは、重合体中の残留未反応モノマーを極めて少なくすることを要旨とするものである。   The gist of the polymer production method according to the present invention that solves the above-mentioned problems is that the residual unreacted monomer in the polymer is extremely reduced.

即ち、本発明によれば、モノマーに熱や光等のエネルギーを加えて前記モノマーを重合反応させる工程とを含む重合体の製造方法において、前記反応の間または前記反応の後に反応中のモノマーもしくは重合体または反応生成した重合体にメガソニックを直接印加することを特徴とする重合体の製造方法が得られる。モノマー中の気体成分を脱気するのが好ましい。   That is, according to the present invention, in a method for producing a polymer comprising a step of polymerizing the monomer by applying energy such as heat or light to the monomer, the monomer under reaction during the reaction or after the reaction, A method for producing a polymer is obtained, wherein megasonic is directly applied to the polymer or the polymer produced by the reaction. It is preferred to degas the gaseous component in the monomer.

また、本発明によれば、塊状重合法で得た重合体にメガソニックを直接印加することを特徴とする重合体の製造方法が得られる。   Moreover, according to this invention, the manufacturing method of the polymer characterized by applying megasonic directly to the polymer obtained by the block polymerization method is obtained.

また、本発明によれば、溶剤に溶解させた重合体を塗布等で成形する工程と前記成形した重合体を加熱して前記溶剤を除去する工程とを含む重合体の製造方法において、前記溶剤の少なくとも一部を除去中または前記溶媒を除去後に前記重合体にメガソニックを直接印加することを特徴とする重合体の製造方法が得られる。   According to the present invention, in the method for producing a polymer, comprising a step of molding a polymer dissolved in a solvent by coating or the like, and a step of heating the molded polymer to remove the solvent. A method for producing a polymer is obtained, wherein megasonic is directly applied to the polymer while at least a part of the polymer is removed or after the solvent is removed.

また、本発明によれば、前記いずれか一つの重合体の製造方法において、前記重合体を得るための重合反応を減圧下または、水分濃度および酸素濃度がそれぞれ1ppm以下の不活性ガス雰囲気下で行うこと、または前記メガソニックの印加を減圧下または、水分濃度および酸素濃度がそれぞれ1ppm以下の不活性ガス雰囲気下で行うことを特徴とする重合体の製造方法が得られる。   Further, according to the present invention, in any one of the methods for producing a polymer, the polymerization reaction for obtaining the polymer is performed under reduced pressure or in an inert gas atmosphere having a water concentration and an oxygen concentration of 1 ppm or less, respectively. Or the application of the megasonic is performed under reduced pressure or in an inert gas atmosphere having a water concentration and an oxygen concentration of 1 ppm or less, respectively.

また、本発明によれば、前記いずれか一つの重合体の製造方法において、使用されるメガソニックの周波数が0.1MHz〜100MHzであることを特徴とする重合体の製造方法が得られる。   Moreover, according to this invention, in the manufacturing method of any one said polymer, the frequency of the megasonic used is 0.1 MHz-100 MHz, The manufacturing method of the polymer characterized by the above-mentioned is obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする半導体封止材が得られる。   Moreover, according to this invention, the semiconductor sealing material characterized by consisting essentially of the polymer manufactured using the said any one manufacturing method of a polymer is obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体を基板および層間絶縁膜のうちの少なくとも一方の少なくとも一部に用いたことを特徴とするプリント配線基板が得られる。   Further, according to the present invention, the polymer produced by using any one of the polymer production methods is used for at least a part of at least one of the substrate and the interlayer insulating film. A wiring board is obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体を層間絶縁膜の少なくとも一部に用いて配線層を形成した半導体装置、フラットパネル表示装置、コンピュータ、携帯電話端末等の電子装置が得られる。   Further, according to the present invention, a semiconductor device, a flat panel display device, in which a wiring layer is formed using at least a part of the interlayer insulating film using the polymer produced by any one of the polymer producing methods, Electronic devices such as computers and mobile phone terminals can be obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする透明感光性材料が得られる。   Moreover, according to this invention, the transparent photosensitive material characterized by consisting essentially of the polymer manufactured using the said any one manufacturing method of a polymer is obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする光ファイバーが得られる。   In addition, according to the present invention, there is obtained an optical fiber characterized in that it consists essentially of a polymer produced by using any one of the aforementioned polymer production methods.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体を光導波路の少なくとも一部に用いた光学装置が得られる。   In addition, according to the present invention, an optical device using a polymer produced by using any one of the polymer production methods described above as at least a part of an optical waveguide can be obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする電線・配線ケーブル被覆用重合体材料が得られる。   In addition, according to the present invention, there is obtained a polymer material for covering an electric wire / wiring cable, which is substantially composed of a polymer produced by using any one of the aforementioned polymer production methods.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする建築用重合体材料が得られる。   Moreover, according to this invention, the polymeric material for construction characterized by consisting essentially of the polymer manufactured using the manufacturing method of any one said polymer is obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする医療用重合体材料が得られる。   Moreover, according to this invention, the medical polymer material characterized by consisting essentially of the polymer manufactured using the said any one manufacturing method of a polymer is obtained.

また、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする食品用重合体材料が得られる。   Moreover, according to this invention, the polymer material for foodstuffs characterized by consisting essentially of the polymer manufactured using the said any one manufacturing method of a polymer is obtained.

さらに、本発明によれば、前記いずれか一つの重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする自動車、船舶、飛行機、ロケットまたは宇宙飛行体用重合体部材が得られる。   Furthermore, according to the present invention, the polymer for automobiles, ships, airplanes, rockets, or space vehicles, characterized in that it substantially comprises a polymer produced by using any one of the above-mentioned polymer production methods. A member is obtained.

本発明によれば、残留未反応モノマーを含有する重合体にメガソニックを直接照射(印加)することで、残留未反応モノマー成分が極めて少ない重合体を製造することができる。これを酸素・水分のない雰囲気下で行うとさらに効果が著しい。   According to the present invention, a polymer containing very little residual unreacted monomer component can be produced by directly irradiating (applying) megasonic to a polymer containing residual unreacted monomer. If this is carried out in an atmosphere free of oxygen and moisture, the effect is further remarkable.

本発明について更に詳しく説明する。   The present invention will be described in more detail.

本発明においては、重合体を重合させる時、あるいは、ある程度重合させた重合体に、直接メガソニックを照射することにより、低分子量である残留未反応モノマーを活性化させる。このメガソニックにより活性化された残留未反応モノマーは、その衝突頻度が高くなり、より反応しやすい状態になる。   In the present invention, the residual unreacted monomer having a low molecular weight is activated when the polymer is polymerized or by directly irradiating the polymer polymerized to some extent with megasonic. The residual unreacted monomer activated by the megasonic has a high collision frequency and becomes more reactive.

残留未反応モノマーが局在化されていても、メガソニックは指向的にモノマーを活性化させるため、重合体を劣化させず、反応を進行させることが可能である。   Even if the residual unreacted monomer is localized, since the megasonic activates the monomer in a directional manner, the reaction can proceed without deteriorating the polymer.

また、未反応モノマーが多い時、つまり液状の時は、系内に溶け込んでいる気体成分がメガソニックの効果を減衰させるため、反応前に脱気させることが好ましい。   Further, when there are a lot of unreacted monomers, that is, in a liquid state, the gas component dissolved in the system attenuates the effect of megasonic, so it is preferable to degas before the reaction.

反応させる雰囲気中に、水分や酸素等の反応性の高い雰囲気が存在すると、重合体が分解する等の副反応を起こしたり、モノマーが反応して不活性化されたりするため、不活性ガス雰囲気下で行うことが好ましい。   In the atmosphere to be reacted, if there is a highly reactive atmosphere such as moisture or oxygen, side reactions such as decomposition of the polymer will occur, or the monomer will react and become inactive. It is preferable to carry out below.

本発明者らは、揮発成分となる残留未反応モノマーが、メガソニックによって活性化されることを見出し、固体中に局在化されている状態においても反応することを突き止め、本発明に想到したものである。   The present inventors have found that the residual unreacted monomer that becomes a volatile component is activated by megasonics, find out that it reacts even in a localized state in the solid, and have arrived at the present invention. Is.

本発明において、メガソニックは、超音波の内で、周波数の高いものを呼び、このメガソニックは反応系に直接照射される。このメガソニックの周波数は、0.1〜100MHzが好ましく、0.5〜10MHzがより好ましく、0.8〜5MHzがさらに好ましい。 Te present invention smell, the main Gasonikku, among ultrasound, referred to as high frequency, the megasonic is irradiated directly to the reaction system. The megasonic frequency is preferably 0.1 to 100 MHz, more preferably 0.5 to 10 MHz, and still more preferably 0.8 to 5 MHz.

また、メガソニックの照射方法は、例えば、容器に入れた重合体直下にメガソニック発振装置を設置することが好ましい。   Moreover, as for the megasonic irradiation method, for example, it is preferable to install a megasonic oscillation device directly under a polymer placed in a container.

反応系は、メガソニック発振装置になるべく近い方がよく、その重合体の形は、平板状であることが好ましい。   The reaction system should be as close as possible to the megasonic oscillation device, and the shape of the polymer is preferably flat.

重合体が発泡体であったり、中空であると、メガソニックの効果が弱くなるため好ましくない。   If the polymer is a foam or hollow, the megasonic effect is weakened, which is not preferable.

モノマーを重合反応させる際に、脱気させるとメガソニックの効果が増大する。   When the monomer is polymerized, degassing increases the megasonic effect.

脱気方法としては、反応系全体を減圧にする方法が好ましく、多少加熱する事で、反応系の粘度が下がるため、より脱気しやすくなる。   As a degassing method, a method of reducing the pressure of the entire reaction system is preferable. By slightly heating, the viscosity of the reaction system is lowered, so that the degassing becomes easier.

溶剤に溶解させた重合体を塗布等で成型する場合、加熱する事で溶剤をある程度まで除去した後、メガソニックを直接照射することが好ましい。   When a polymer dissolved in a solvent is molded by coating or the like, it is preferable to directly irradiate megasonic after removing the solvent to some extent by heating.

反応系に、水分や酸素が存在する場合、メガソニックの効果が弱くなるため、反応雰囲気は、真空もしくは不活性ガス下であることが好ましい。   When water or oxygen is present in the reaction system, the megasonic effect is weakened, so the reaction atmosphere is preferably in a vacuum or under an inert gas.

反応雰囲気の水分および酸素濃度は、それぞれ1ppm以下であることが好ましく、100ppb以下であることがより好ましく、10ppb以下であることがさらに好ましい。   The water and oxygen concentrations in the reaction atmosphere are each preferably 1 ppm or less, more preferably 100 ppb or less, and even more preferably 10 ppb or less.

以下、本発明の具体例について説明するが、本発明はこれらの例に制限されるものではない。   Specific examples of the present invention will be described below, but the present invention is not limited to these examples.

(例1)
ビスフェノールA型エポキシ樹脂と硬化剤としてヘキサメチレンジアミンをよく混合し、石英板の上に厚さ1ミクロンになるように塗布し、メガソニック発振器に乗せ、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、周波数1MHzのメガソニックを照射しながら100℃で5時間加熱ベークした。
(Example 1)
Mix well with bisphenol A type epoxy resin and hexamethylene diamine as a curing agent, apply it on a quartz plate to a thickness of 1 micron, place it on a megasonic oscillator, put it in a sealed container and depressurize the system, After degassing, an inert gas was introduced, purge was performed under reduced pressure, the water and oxygen in the system were reduced to 1 ppm or less, and then heat-baked at 100 ° C. for 5 hours while irradiating megasonic with a frequency of 1 MHz.

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1ppb以下であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream with a moisture and oxygen concentration of 1 ppb or less, and examined with an atmospheric pressure ionization plasma mass spectrometer. It was the following.

(例2)
ビスフェノールA型エポキシ樹脂と硬化剤としてヘキサメチレンジアミンをよく混合し、石英板の上に厚さ1ミクロンになるように塗布し、メガソニック発振器に乗せ、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、100℃で5時間加熱ベークし、その後、100℃で30分間1MHzのメガソニック照射を行った。
(Example 2)
Mix well with bisphenol A type epoxy resin and hexamethylene diamine as a curing agent, apply it on a quartz plate to a thickness of 1 micron, place it on a megasonic oscillator, put it in a sealed container and depressurize the system, After deaeration, an inert gas is introduced, purge is performed under reduced pressure, the moisture and oxygen in the system is reduced to 1 ppm or less, and then heated and baked at 100 ° C. for 5 hours, and then at 100 ° C. for 30 minutes at 1 MHz. Megasonic irradiation was performed.

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1ppb以下であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream with a moisture and oxygen concentration of 1 ppb or less, and examined with an atmospheric pressure ionization plasma mass spectrometer. It was the following.

(例3)
残留モノマー揮発成分が重合体重量に対し1%以上である厚さ1mmのポリカーボネート板を、周波数1MHzのメガソニック発振器の上に置き、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、100℃で30分間照射した。
(Example 3)
After placing a polycarbonate plate having a thickness of 1 mm with a residual monomer volatile component of 1% or more based on the weight of the polymer on a megasonic oscillator with a frequency of 1 MHz, placing it in a sealed container, depressurizing the system, and degassing, An inert gas was introduced, purged under reduced pressure, the water and oxygen in the system were reduced to 1 ppm or less, and irradiation was performed at 100 ° C. for 30 minutes.

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し10ppmであった。   After the treatment, the monomer component volatilized from the polymer was volatilized at 100 ° C. in a high-purity argon stream having a moisture and oxygen concentration of 1 ppb or less, and examined with an atmospheric pressure ionization plasma mass spectrometer. Met.

(例4)
溶剤に溶解したポリイミドプレポリマー(ポリアミック酸)を石英板の上に厚さ1ミクロンになるように塗布し、メガソニック発振器に乗せ、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、周波数1MHzのメガソニックを照射しながら300℃で5時間加熱ベークした。
(Example 4)
After applying a polyimide prepolymer (polyamic acid) dissolved in a solvent on a quartz plate to a thickness of 1 micron, placing it on a megasonic oscillator, putting it in a sealed container, depressurizing the system, and degassing, Inert gas was introduced, purge was performed under reduced pressure, the water and oxygen in the system were reduced to 1 ppm or less, and then heat-baked at 300 ° C. for 5 hours while irradiating megasonic with a frequency of 1 MHz.

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1ppb以下であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream with a moisture and oxygen concentration of 1 ppb or less, and examined with an atmospheric pressure ionization plasma mass spectrometer. It was the following.

(例5)
溶剤に溶解したポリイミドプレポリマー(ポリアミック酸)を石英板の上に厚さ1ミクロンになるように塗布し、メガソニック発振器に乗せ、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、300℃で5時間加熱ベークし、その後、周波数1MHzのメガソニックを30分照射した。
(Example 5)
After applying polyimide prepolymer (polyamic acid) dissolved in a solvent on a quartz plate to a thickness of 1 micron, placing it on a megasonic oscillator, putting it in a sealed container, depressurizing the system, and degassing, An inert gas was introduced and purged under reduced pressure to reduce the moisture and oxygen in the system to 1 ppm or less, followed by heating and baking at 300 ° C. for 5 hours, and then irradiation with megasonic with a frequency of 1 MHz for 30 minutes.

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1ppb以下であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream with a moisture and oxygen concentration of 1 ppb or less, and examined with an atmospheric pressure ionization plasma mass spectrometer. It was the following.

(比較例1)
ビスフェノールA型エポキシ樹脂と硬化剤としてヘキサメチレンジアミンをよく混合し、石英板の上に厚さ1ミクロンになるように塗布し、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、100℃で5時間加熱ベークした(メガソニックの照射はしなかった)。
(Comparative Example 1)
Mix well with bisphenol A type epoxy resin and hexamethylenediamine as a curing agent, apply it on a quartz plate to a thickness of 1 micron, put it in a sealed container, depressurize the inside of the system, deaerate it, An active gas was introduced, purge was performed under reduced pressure, the water and oxygen in the system were reduced to 1 ppm or less, and then heat-baked at 100 ° C. for 5 hours (without megasonic irradiation).

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1%以上であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream having a moisture and oxygen concentration of 1 ppb or less, and examined by an atmospheric pressure ionization plasma mass spectrometer. % Or more.

(比較例2)
ビスフェノールA型エポキシ樹脂と硬化剤としてヘキサメチレンジアミンをよく混合し、石英板の上に厚さ1ミクロンになるように塗布し、脱気等の処理を行わずに湿度50%以上の通常大気中、100℃で5時間加熱ベークした。(メガソニック照射は行わなかった)。
(Comparative Example 2)
Bisphenol A type epoxy resin and hexamethylene diamine as a curing agent are mixed well, applied on a quartz plate to a thickness of 1 micron, and in a normal atmosphere with a humidity of 50% or higher without degassing etc. And baking at 100 ° C. for 5 hours. (No megasonic irradiation).

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1%以上であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream having a moisture and oxygen concentration of 1 ppb or less, and examined by an atmospheric pressure ionization plasma mass spectrometer. % Or more.

(比較例3)
残留モノマー揮発成分が重合体重量に対し1%以上である厚さ1mmのポリカーボネート板を、周波数1MHzのメガソニック発振器の上に置き、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、メガソニックは照射せず、100℃で30分間加熱のみ行った。
(Comparative Example 3)
After placing a polycarbonate plate having a thickness of 1 mm with a residual monomer volatile component of 1% or more based on the weight of the polymer on a megasonic oscillator with a frequency of 1 MHz, placing it in a sealed container, depressurizing the system, and degassing, Inert gas was introduced, purge was performed under reduced pressure, the moisture and oxygen in the system were reduced to 1 ppm or less, and then megasonic was not irradiated, and heating was only performed at 100 ° C. for 30 minutes.

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1%以上であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream having a moisture and oxygen concentration of 1 ppb or less, and examined by an atmospheric pressure ionization plasma mass spectrometer. % Or more.

(比較例4)
残留モノマー揮発成分が重合体重量に対し1%以上である厚さ1mmのポリカーボネート板を、80℃の温水中に入れ、20MHzの超音波発振器で1時間継続照射した。
(Comparative Example 4)
A 1 mm thick polycarbonate plate having a residual monomer volatile component of 1% or more based on the weight of the polymer was placed in warm water at 80 ° C. and continuously irradiated with a 20 MHz ultrasonic oscillator for 1 hour.

処理後重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1%以上であった。   After the treatment, the monomer component that volatilizes from the polymer is volatilized at 100 ° C. in a high-purity argon stream having a moisture and oxygen concentration of 1 ppb or less, and examined by an atmospheric pressure ionization plasma mass spectrometer. % Or more.

(比較例5)
溶剤に溶解したポリイミドプレポリマー(ポリアミック酸)を石英板の上に厚さ1ミクロンになるように塗布し、メガソニック発振器に乗せ、密閉容器に入れて系内を減圧し、脱気した後に、不活性ガスを導入し、減圧回分パージを行い、系内中の水分・酸素を1ppm以下にした後、メガソニック照射は行わず、300℃で5時間加熱ベークした。
(Comparative Example 5)
After applying polyimide prepolymer (polyamic acid) dissolved in a solvent on a quartz plate to a thickness of 1 micron, placing it on a megasonic oscillator, putting it in a sealed container, depressurizing the system, and degassing, Inert gas was introduced, purge was performed in a reduced pressure batch, water / oxygen in the system was reduced to 1 ppm or less, and then megabaked at 300 ° C. for 5 hours without being subjected to megasonic irradiation.

処理後、重合体から揮発するモノマー成分を水分および酸素濃度が1ppb以下の高純度アルゴン気流下で100℃で揮発させ、大気圧イオン化プラズママススペクトロメーターにて調べたところ、重合体の重量に対し1%以上であった。   After the treatment, the monomer components that volatilize from the polymer were volatilized at 100 ° C. in a high-purity argon stream with a moisture and oxygen concentration of 1 ppb or less, and examined with an atmospheric pressure ionization plasma mass spectrometer. It was 1% or more.

以上説明したように、本発明の実施の形態による重合体の製造方法によって得られられた重合体は、重合体中にモノマー成分を含まないために、半導体製造における半導体封止材、プリント基板、層間絶縁膜、透明感光性材料や光通信に用いられる光ファイバー、光導波路等の電子・電気・通信材料、電気・電線・配線ケーブル用被覆材料等の電子・電気・通信材料、建築材料、医療用材料、食品用材料、自動車・船舶・飛行機・ロケット用部材等のあらゆる分野における重合体を用いた材料に用いることができる。   As described above, since the polymer obtained by the method for producing a polymer according to the embodiment of the present invention does not contain a monomer component in the polymer, a semiconductor encapsulant in semiconductor production, a printed board, Interlayer insulation film, transparent photosensitive material, optical fiber used for optical communication, optical / electrical / communication materials such as optical waveguides, electronic / electrical / communication materials such as coating materials for electric / electric wires / wiring cables, building materials, medical use It can be used for materials using polymers in various fields such as materials, food materials, automobiles, ships, airplanes, and rocket members.

本発明に係る重合体の製造方法は、重合体中にモノマー成分を含まないために半導体封止材、プリント基板、層間絶縁膜、透明感光性材料、光ファイバー、光導波路、電線・配線ケーブル用被覆材料、建築材料、医療用材料、食品用材料、自動車・船舶・飛行機・ロケット用部材等の種々の分野での重合体材料に適用される。

The method for producing a polymer according to the present invention includes a semiconductor encapsulant, a printed board, an interlayer insulating film, a transparent photosensitive material, an optical fiber, an optical waveguide, and a wire / wiring cable coating because the polymer does not contain a monomer component. It is applied to polymer materials in various fields such as materials, building materials, medical materials, food materials, automobiles, ships, airplanes and rocket members.

Claims (18)

モノマーにエネルギーを加えて前記モノマーを重合反応させる工程を含む重合体の製造方法において、前記反応の間または前記反応の後に反応中のモノマーもしくは重合体または反応生成した重合体にメガソニックを直接印加することを特徴とする重合体の製造方法。   In a method for producing a polymer comprising a step of polymerizing a monomer by applying energy to the monomer, megasonic is directly applied to the monomer or polymer during the reaction or after the reaction or to the polymer produced by the reaction. And a method for producing a polymer. 請求項1に記載の重合体の製造方法において、前記重合反応工程の前に前記モノマー中の気体成分を脱気する工程を含むことを特徴とする重合体の製造方法。   The method for producing a polymer according to claim 1, further comprising a step of degassing a gas component in the monomer before the polymerization reaction step. 塊状重合法で得た重合体にメガソニックを直接印加することを特徴とする重合体の製造方法。   A method for producing a polymer, wherein megasonic is directly applied to a polymer obtained by a bulk polymerization method. 溶剤に溶解させた重合体を成形する工程と前記成形した重合体を加熱して前記溶剤を除去する工程とを含む重合体の製造方法において、前記溶剤の少なくとも一部を除去中または前記溶媒を除去後に前記重合体にメガソニックを直接印加することを特徴とする重合体の製造方法。   In a method for producing a polymer comprising a step of molding a polymer dissolved in a solvent and a step of heating the molded polymer to remove the solvent, during the removal of at least a part of the solvent or the solvent A method for producing a polymer, wherein megasonic is directly applied to the polymer after removal. 請求項1〜4の内のいずれか一つに記載の重合体の製造方法において、前記重合体を得るための重合反応を減圧下または、水分濃度および酸素濃度がそれぞれ1ppm以下の不活性ガス雰囲気下で行うことを特徴とする重合体の製造方法。   The method for producing a polymer according to any one of claims 1 to 4, wherein the polymerization reaction for obtaining the polymer is performed under reduced pressure or an inert gas atmosphere having a water concentration and an oxygen concentration of 1 ppm or less, respectively. A process for producing a polymer, characterized in that it is carried out below. 請求項1〜5の内のいずれか一つに記載の重合体の製造方法において、前記メガソニックの印加を減圧下または、水分濃度および酸素濃度がそれぞれ1ppm以下の不活性ガス雰囲気下で行うことを特徴とする重合体の製造方法。   The method for producing a polymer according to any one of claims 1 to 5, wherein the application of the megasonic is performed under reduced pressure or in an inert gas atmosphere having a water concentration and an oxygen concentration of 1 ppm or less, respectively. A process for producing a polymer characterized by the above. 請求項1〜6の内のいずれか一つに記載された重合体の製造方法において、前記メガソニックの周波数が0.1MHz〜100MHzであることを特徴とする重合体の製造方法。   The method for producing a polymer according to any one of claims 1 to 6, wherein the megasonic frequency is 0.1 MHz to 100 MHz. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体を基板および層間絶縁膜のうちの少なくとも一方の少なくとも一部に用いたことを特徴とするプリント配線基板。   A polymer produced by using the polymer production method according to any one of claims 1 to 7 is used for at least a part of at least one of a substrate and an interlayer insulating film. Printed wiring board. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体を層間絶縁膜の少なくとも一部に用いて配線層を形成した電子装置。   An electronic device in which a wiring layer is formed by using a polymer manufactured by the method for manufacturing a polymer according to any one of claims 1 to 7 as at least a part of an interlayer insulating film. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする透明感光性重合体材料。   A transparent photosensitive polymer material characterized by consisting essentially of a polymer produced by using the method for producing a polymer according to any one of claims 1 to 7. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする光ファイバー。   An optical fiber comprising substantially a polymer produced by using the method for producing a polymer according to any one of claims 1 to 7. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体を光導波路の少なくとも一部に用いた光学装置。   An optical device using a polymer produced by the method for producing a polymer according to any one of claims 1 to 7 as at least a part of an optical waveguide. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする建築用重合体材料。   A polymer material for construction, characterized in that it substantially consists of a polymer produced by using the method for producing a polymer according to any one of claims 1 to 7. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造され重合体から実質的になることを特徴とする医療用重合体材料。   A medical polymer material produced by using the method for producing a polymer according to any one of claims 1 to 7 and substantially consisting of a polymer. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする食品用重合体材料。   A polymer material for food, comprising substantially a polymer produced by using the method for producing a polymer according to any one of claims 1 to 7. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする自動車、船舶、飛行機、ロケットまたは宇宙飛行体用重合体部材。   An automobile, a ship, an airplane, a rocket, or a space vehicle substantially comprising a polymer produced by using the polymer production method according to any one of claims 1 to 7. Polymer member for use. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする半導体封止材料。   A semiconductor encapsulating material substantially comprising a polymer produced by using the method for producing a polymer according to any one of claims 1 to 7. 請求項1〜7の内のいずれか一つに記載された重合体の製造方法を用いて製造された重合体から実質的になることを特徴とする電線・配線ケーブル被覆用重合体材料。

A polymer material for covering an electric wire / wiring cable, substantially comprising a polymer produced by using the method for producing a polymer according to any one of claims 1 to 7.

JP2004085991A 2004-03-24 2004-03-24 POLYMER MANUFACTURING METHOD AND POLYMER MATERIAL Expired - Fee Related JP4502676B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004085991A JP4502676B2 (en) 2004-03-24 2004-03-24 POLYMER MANUFACTURING METHOD AND POLYMER MATERIAL
TW094131458A TW200712067A (en) 2004-03-24 2005-09-13 Polymer producing method and polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085991A JP4502676B2 (en) 2004-03-24 2004-03-24 POLYMER MANUFACTURING METHOD AND POLYMER MATERIAL

Publications (2)

Publication Number Publication Date
JP2005272552A JP2005272552A (en) 2005-10-06
JP4502676B2 true JP4502676B2 (en) 2010-07-14

Family

ID=35172573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085991A Expired - Fee Related JP4502676B2 (en) 2004-03-24 2004-03-24 POLYMER MANUFACTURING METHOD AND POLYMER MATERIAL

Country Status (2)

Country Link
JP (1) JP4502676B2 (en)
TW (1) TW200712067A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032051A1 (en) * 2005-09-12 2007-03-22 Tadahiro Ohmi Process for producing polymer and polymer material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159426A (en) * 1984-12-28 1986-07-19 Stanley Electric Co Ltd Formation of plasma polymer film
JPS61203136A (en) * 1985-03-05 1986-09-09 Kanebo Ltd Formation of transparent electroconductive film
JPS61204008A (en) * 1985-03-06 1986-09-10 Kanebo Ltd Filter having excellent compaction resistance
JPH01124805A (en) * 1987-11-10 1989-05-17 Sumitomo Electric Ind Ltd Polymer clad quartz optical fiber and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489389A (en) * 1987-09-29 1989-04-03 Sumitomo Electric Industries Manufacture of flexible printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159426A (en) * 1984-12-28 1986-07-19 Stanley Electric Co Ltd Formation of plasma polymer film
JPS61203136A (en) * 1985-03-05 1986-09-09 Kanebo Ltd Formation of transparent electroconductive film
JPS61204008A (en) * 1985-03-06 1986-09-10 Kanebo Ltd Filter having excellent compaction resistance
JPH01124805A (en) * 1987-11-10 1989-05-17 Sumitomo Electric Ind Ltd Polymer clad quartz optical fiber and its production

Also Published As

Publication number Publication date
JP2005272552A (en) 2005-10-06
TW200712067A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
KR101502202B1 (en) Moulded article, method for producing the same, electronic device member, and electronic device
US6828015B2 (en) Composite containing thin-film particles having carbon skeleton, method of reducing the thin-film particles, and process for the production of the composite
TWI762512B (en) Laminated body, manufacturing process thereof and manufacturing process for electronic article
WO2008044884A1 (en) Laminating film of plastic/teflon-silicon and method for preparing the same
JP7411014B2 (en) Method for manufacturing laminates and electronic components
KR102269190B1 (en) Polyimide precursor resin composition
CN101068851A (en) Polyimide, polyimide film and laminated body
CN112961609A (en) Sealant capable of being cured by ultraviolet light and moisture as well as preparation method and application thereof
JP4502676B2 (en) POLYMER MANUFACTURING METHOD AND POLYMER MATERIAL
US5348913A (en) Methods for encapsulating electronic devices
WO2007032051A1 (en) Process for producing polymer and polymer material
US20130037513A1 (en) Resin board to be subjected to ozone treatment, wiring board, and method of manufacturing the wiring board
KR100394080B1 (en) Surface modified silica by plasma polymerization, preparation method of thereof and apparatus of thereof
CN110278654B (en) Laminated board
KR100871608B1 (en) Laminating film of teflon-silicon and method for preparing the same
JP2000353866A (en) Manufacture of electronic component
US6764873B2 (en) Semiconductor wafer including a low dielectric constant thermosetting polymer film and method of making same
KR20110025319A (en) Silicon-coated plastic bonding sheet and manufacturing process thereof
CN111093985A (en) Structure, wiring board, substrate for wiring board, copper-clad laminate, and method for manufacturing structure
CN113372591A (en) Method for rapidly preparing ultrathin polyimide film
JPH07335053A (en) Manufacture of porous insulated electric wire
WO2014097920A1 (en) Polyetherimide porous body and method for producing same
Wu et al. Modification of poly (tetrafluoroethylene) and copper foil surfaces by graft polymerization for adhesion improvement
WO2014057898A1 (en) Polyimide-silica composite porous body, and method for producing same
CN111501029A (en) Method for manufacturing silicon substrate with patterned metal layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees