JP4499630B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4499630B2
JP4499630B2 JP2005251502A JP2005251502A JP4499630B2 JP 4499630 B2 JP4499630 B2 JP 4499630B2 JP 2005251502 A JP2005251502 A JP 2005251502A JP 2005251502 A JP2005251502 A JP 2005251502A JP 4499630 B2 JP4499630 B2 JP 4499630B2
Authority
JP
Japan
Prior art keywords
air
cooling
outside air
return
return air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005251502A
Other languages
Japanese (ja)
Other versions
JP2007064556A (en
Inventor
茂 水島
哲 野口
Original Assignee
三機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三機工業株式会社 filed Critical 三機工業株式会社
Priority to JP2005251502A priority Critical patent/JP4499630B2/en
Publication of JP2007064556A publication Critical patent/JP2007064556A/en
Application granted granted Critical
Publication of JP4499630B2 publication Critical patent/JP4499630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は空気調和機に関するものである。 The present invention relates to an air conditioner .
空調対象空間内を冷暖房するための空気調和機としては、例えば特許文献1、2、3に記載されているものがあり、特許文献1の空気調和機は図5に、又、特許文献2の空気調和機は図7に、更に特許文献3の空気調和機は図9に、夫々示されている。   As an air conditioner for cooling and heating the air-conditioning target space, for example, there are those described in Patent Documents 1, 2, and 3. The air conditioner of Patent Document 1 is shown in FIG. The air conditioner is shown in FIG. 7, and the air conditioner of Patent Document 3 is shown in FIG.
特許文献1に記載された図5の空気調和機においては、還気ファン1及び給気ファン2を駆動することによって、空調対象空間に連通する還気系から還気口3を通って、還気・排気通風路4に流入した還気RAの一部は排気口5から排気EAとして外部へ排出され、残りの還気RAは還気ダンパ6を経て外気通風路7の始端側へ流入し、外気口8から流入する外気OAと合流して外気通風路7を給気口9に向けて流れる。   In the air conditioner of FIG. 5 described in Patent Document 1, the return air fan 1 and the supply fan 2 are driven to return from the return air system communicating with the air-conditioning target space through the return air port 3. Part of the return air RA that has flowed into the air / exhaust ventilation path 4 is exhausted to the outside as exhaust EA from the exhaust port 5, and the remaining return air RA flows to the start side of the outside air ventilation path 7 via the return air damper 6. The outside air OA flowing from the outside air port 8 joins and flows through the outside air ventilation path 7 toward the air supply port 9.
還気RAの一部と外気OAが合流して形成された気流は、エアフィルタ10、熱交換器11、温水コイル12、加湿器13を経て、給気ファン2により給気SAとして給気口9から給気系を通り空調対象空間内に送給される。   The airflow formed by joining a part of the return air RA and the outside air OA passes through the air filter 10, the heat exchanger 11, the hot water coil 12, and the humidifier 13, and is then supplied as an air supply SA by the air supply fan 2. 9 is fed into the air-conditioned space through the air supply system.
特許文献2に記載された図7の空気調和機においては、外気口側の外気取入れセクション21と、還気側の還気取入れセクション22とが仕切板23によって仕切られており、ファン24を駆動させることによって外気OAが外気口25から外気取入れセクション21に吸引され、還気RAが還気口26から還気取入れセクション22に吸引されて還気RAと外気OAが空気調和機内に別々に取入れられる。   In the air conditioner of FIG. 7 described in Patent Document 2, an outside air intake section 21 on the outside air side and a return air intake section 22 on the return air side are partitioned by a partition plate 23 to drive the fan 24. As a result, the outside air OA is sucked into the outside air intake section 21 from the outside air port 25, the return air RA is sucked into the return air intake section 22 from the return air port 26, and the return air RA and the outside air OA are separately taken into the air conditioner. It is done.
還気取入れセクション22を通過する還気RAは加湿器27によって加湿された後に、外気取入れセクション21を通過した外気OAと混合され、この混合空気が冷却コイル28や加熱コイル29によって温度調整された後に給気口30から空調対象空間に連通する給気系へ給気SAとして送出される。   The return air RA passing through the return air intake section 22 is humidified by the humidifier 27 and then mixed with the outside air OA passing through the outside air intake section 21, and the temperature of this mixed air is adjusted by the cooling coil 28 and the heating coil 29. Thereafter, the air is supplied as an air supply SA from the air supply port 30 to the air supply system communicating with the air-conditioning target space.
特許文献3に記載された図9の空気調和機では、リターンチャンバ41を二つの並列する第一チャンバ42と第二チャンバ43とで構成し、空調対象空間である被空調室44の還気口45から還気ダクト46を通して第一チャンバ42に導入した還気RAを還気用熱交換器47で熱交換し、外気取入れ口48から外気取入れダクト49を通して第二チャンバ43に導入した外気OAを外気用熱交換器50で熱交換して後に加湿器51で加湿し、還気RAと外気OAをサプライチャンバ52で混合して給気SAとし、この給気SAを送風機53により被空調室44へ給気するようにしている。なお、図9中、54は第一チャンバ42に設置したフィルタ、55は第二チャンバ43に設置したフィルタ、56は被空調室44内の排気吸込み口、57は排風機、58は排気口である。
特開平11−304180号公報 特開2001−263724号公報 特開2004−340529号公報
In the air conditioner of FIG. 9 described in Patent Document 3, the return chamber 41 is configured by two paralleled first chambers 42 and second chambers 43, and a return air port of an air-conditioned room 44 that is an air-conditioning target space. The return air RA introduced into the first chamber 42 through the return air duct 46 from 45 is heat-exchanged by the heat exchanger 47 for return air, and the outside air OA introduced into the second chamber 43 from the outside air inlet 48 through the outside air intake duct 49 is exchanged. Heat exchange is performed by the outside air heat exchanger 50 and then humidification is performed by the humidifier 51. The return air RA and the outside air OA are mixed in the supply chamber 52 to form the supply air SA. I am trying to supply air. In FIG. 9, 54 is a filter installed in the first chamber 42, 55 is a filter installed in the second chamber 43, 56 is an exhaust suction port in the air-conditioned room 44, 57 is an exhaust fan, and 58 is an exhaust port. is there.
JP-A-11-304180 JP 2001-263724 A JP 2004-340529 A
ところで、最近のビル空気調和においては、建物の空調対象空間が建物の領域をなすベリメータ系統と内部側の領域をなすインテリア系統のゾーンに分割されて、各ゾーン別に空調制御を行なうことが多い。又、近年の事務室内ではパーソナルコンピュータ等の使用が増加しており、従来において20W/m程度であった内部発熱量が40〜60W/m程度に増大している。 By the way, in recent building air conditioning, the air conditioning target space of a building is often divided into a verimator system that forms a building area and an interior system zone that forms an internal area, and air conditioning control is often performed for each zone. Also, the use of personal computers and the like in recent years the office room is increasing, the internal heat generation amount was 20W / m 2 approximately in the conventional is increased to about 40~60W / m 2.
このため、中間期及び冬期においてもインテリア系統を冷房運転する場合があり、中間期及び冬期において室温よりも低温である外気を利用した外気冷房が省エネルギの観点から望まれている。なお、ここで中間期とは春季や秋季をいう。   For this reason, there are cases where the interior system is air-cooled in the intermediate period and winter season, and the outside air cooling using the outside air having a temperature lower than room temperature in the intermediate period and winter season is desired from the viewpoint of energy saving. Here, the intermediate period means spring or autumn.
しかし、特許文献1に開示する構成において、冬期冷房運転を外気冷房により行なう場合には、図6に示すように、低温の外気OAと外気OAよりも高温の還気RAが合流することによりA状態となった気流を加湿器13により加湿して給気SAとするので、外気通風路7における外気OAと還気RAの混合が不十分であると、合流した気流中の外気OAが低温下で加湿されることとなり、結果として給気SAに加湿不足が生じる。   However, in the configuration disclosed in Patent Document 1, when the winter cooling operation is performed by outside air cooling, as shown in FIG. 6, the low temperature outside air OA and the return air RA having a temperature higher than the outside air OA are joined together. Since the airflow in the state is humidified by the humidifier 13 to obtain the supply air SA, if the mixing of the outside air OA and the return air RA in the outside air ventilation path 7 is insufficient, the outside air OA in the combined airflow is kept at a low temperature. As a result, the supply air SA is insufficiently humidified.
又、中間期等において冷房負荷が増加し、取込み可能な最大流量の外気OAによっても冷房能力が不足し、熱交換器11による冷却を併用する場合には、合流した気流を冷却後に加湿することになり、給気SAに加湿不足が生じる。   In addition, when the cooling load increases in the interim period or the like, the cooling capacity is insufficient even by the outside air OA having the maximum flow rate that can be taken in, and when the cooling by the heat exchanger 11 is used together, the combined air flow should be humidified after cooling. Thus, the air supply SA is insufficiently humidified.
特許文献2に開示する構成では、冬期においては図8に示すように加湿されてB状態となった還気RAは、低温の外気OAと合流することによりC状態の気流となり、温度調整されて給気SAとしている。   In the configuration disclosed in Patent Document 2, in the winter season, the return air RA that has been humidified and is in the B state as shown in FIG. 8 becomes a C-state airflow by combining with the low-temperature outside air OA, and the temperature is adjusted. Supply air SA.
しかし、特許文献2においては、中間期等において冷房負荷が増えて、取込み可能な最大流量の外気によっても冷却能力が不足し、冷却コイル28による冷却を併用する場合には、合流した気流中の還気RAが冷却コイル28で除湿されることになり、結果として、給気SAに加湿不足が生じる。   However, in Patent Document 2, the cooling load increases in the intermediate period or the like, and the cooling capacity is insufficient even by the outside air with the maximum flow rate that can be taken in. When cooling by the cooling coil 28 is used together, The return air RA is dehumidified by the cooling coil 28, resulting in insufficient humidification of the supply air SA.
特許文献3に開示する構成では、還気RAと外気OAに分けて温度調整し、外気OAを加熱して加湿を行なうので、冬期冷房時運転を外気冷房で行なうと、外気OAを加熱することなく低温下で加湿しつつ、還気RAと混合することとなり、外気OAの低温加湿によって給気SAに加湿不足が生じる。又、外気冷房を行なわずに、外気OAを加熱して加湿を行なう場合には、還気RAを冷却する必要があり、無駄なエネルギを消費することになる。   In the configuration disclosed in Patent Document 3, the temperature is adjusted separately for the return air RA and the outside air OA, and the outside air OA is heated and humidified. Therefore, when the winter cooling operation is performed by the outside air cooling, the outside air OA is heated. Without being humidified, it is mixed with the return air RA while being humidified, and the supply air SA is insufficiently humidified due to the low temperature humidification of the outside air OA. Further, when the outside air OA is heated and humidified without performing the outside air cooling, it is necessary to cool the return air RA, and wasteful energy is consumed.
又、特許文献1、2、3の空気調和機以外に例えば、空調対象空間からの還気を流通させる系統と、外気及び還気の混合した気流を流通させる系統とを設け、外気及び還気の混合した気流(混合空気)を冷却器により冷却し得るようにすると共に、還気を前記冷却器とは異なる別の冷却器により冷却するようにした空気調和機も提案されている。而して、この場合は中間期や冬期に、外気冷房だけでは冷却能力が不足しているために、外気及び還気の混合した気流と、還気とを夫々異なる冷却器により冷却する場合に、外気と還気とを混合した気流を冷却する冷却器側において、混合空気は低い温度で冷却器に入り更に低い温度に冷却される関係から、冷水等の冷媒の冷却器入口側と出口側とにおける温度差は、冷媒の冷却器出口温度が混合空気の冷却器入口温度より低くなるため、大きくとることができない。   In addition to the air conditioners disclosed in Patent Documents 1, 2, and 3, for example, a system that circulates return air from the air-conditioning target space and a system that circulates an air flow mixed with outside air and return air are provided. There has also been proposed an air conditioner in which the mixed airflow (mixed air) can be cooled by a cooler, and the return air is cooled by another cooler different from the cooler. Thus, in this case, in the intermediate period or winter season, since the cooling capacity is insufficient only by the outside air cooling, when the mixed air of the outside air and the return air and the return air are cooled by different coolers, respectively. In the cooler side that cools the airflow that is a mixture of outside air and return air, the mixed air enters the cooler at a low temperature and is cooled to a lower temperature. The temperature difference between the refrigerant and the refrigerant cannot be made large because the refrigerant cooler outlet temperature is lower than the mixed air cooler inlet temperature.
このため、外気と還気とを混合した気流を所定の温度に冷却するためには、冷媒流量が多量に必要となり、冷媒系のポンプの容量が大きくなる結果、必要な動力が大きくなり、該ポンプによる冷媒の搬送エネルギが大きくなって、省エネルギを図ることができない。   For this reason, in order to cool the airflow mixed with the outside air and the return air to a predetermined temperature, a large amount of refrigerant flow is required, and as a result, the capacity of the refrigerant system pump increases, resulting in an increase in necessary power, The energy for transporting the refrigerant by the pump increases, and energy saving cannot be achieved.
本発明は上記実情に鑑み、中間期や冬期において外気を利用した外気冷房を行なう場合にも、給気に対する加湿不足を防止することができると共に、中間期や冬期に、冷房負荷が大きくて、外気冷却だけでは冷房能力が不足しているために冷却器を使用する場合においても、冷却器の入口側と出口側の冷水等の冷媒温度差を大きく採れるようにして、冷媒用のポンプの容量を小型化し、該ポンプによる冷媒の搬送エネルギを小さくして省エネルギを図り得るようにした空気調和機を提供することを目的としてなしたものである。 In view of the above circumstances, the present invention can prevent insufficient humidification for supply air even when performing outside air cooling using outside air in the intermediate period or winter season, and the cooling load is large in the intermediate period or winter season, Even when using a cooler because the cooling capacity is insufficient only with outside air cooling, the capacity of the refrigerant pump can be increased by taking a large temperature difference between the coolant such as cold water on the inlet side and outlet side of the cooler. The purpose of the present invention is to provide an air conditioner that can be reduced in size and can save energy by reducing the refrigerant transport energy by the pump.
本発明の請求項1の空気調和機は、
中間部に回転数制御可能な外気ファン装置を備えた外気系に連通する第一の流通路と、
中間期及び冬期において空調対象空間の室温よりも低温である外気を利用した外気冷房を行うことが可能な前記空調対象空間に還気系を介し連通する第二の流通路と、
前記第一の流通路及び第二の流通路に連通すると共に、給気系を介し前記空調対象空間に連通する、給気ファン装置を有する第三の流通路とを備え、
前記第一の流通路には第一の冷却手段が配置され、
前記第二の流通路には、前記第一の冷却手段に冷媒配管を介して連通する第二の冷却手段と、該第二の冷却手段に対して還気流れ方向下流側に位置するよう設置した、加湿水が供給される加湿手段が配設され、
前記第二の冷却手段から流出する冷媒は、冷凍機及び冷媒ポンプを含む冷媒循環経路を、当該冷媒循環管路から前記冷凍機に戻った後、更に、該冷凍機の冷媒流れ方向下流側の冷媒循環径路から前記第一の冷却手段を介して第二の冷却手段に送給されるよう構成されているものである。
The air conditioner of claim 1 of the present invention is
A first flow passage communicating with an outside air system having an outside air fan device capable of controlling the number of rotations in an intermediate portion ;
A second flow path that communicates with the air-conditioning target space through the return air system that can perform outside air cooling using outside air that is cooler than the room temperature of the air-conditioning target space in the intermediate period and the winter period ;
A third flow path having an air supply fan device that communicates with the first flow path and the second flow path and communicates with the air-conditioning target space through an air supply system ;
A first cooling means is disposed in the first flow path,
In the second flow passage, a second cooling means that communicates with the first cooling means via a refrigerant pipe, and a second cooling means that is positioned downstream of the second cooling means in the return air flow direction A humidifying means to which humidified water is supplied ,
The refrigerant flowing out from the second cooling means, a refrigerant circulation path including the refrigerating machine and a refrigerant pump, after returning to the refrigerator from the refrigerant circulation pipe, further, the refrigerator of the refrigerant flow direction downstream side of the It is configured to be fed from the refrigerant circulation path to the second cooling means via the first cooling means.
本発明の請求項2の空気調和機においては、
還気系には当該還気系からの還気の一部を排気するための、回転数制御可能な排気ファン装置が連通され、前記外気ファン装置により前記第一の流通路に供給される単位時間当たりの外気の吸引量は、前記排気ファン装置から大気に排出される排気の単位時間当たりの排出量と連動するよう構成したものである。
In the air conditioner of claim 2 of the present invention,
The return air system is connected to an exhaust fan device capable of controlling the rotational speed for exhausting a part of the return air from the return air system, and is supplied to the first flow passage by the outside air fan device. The amount of outside air sucked per hour is configured to be linked to the amount of exhaust per unit time of exhaust discharged from the exhaust fan device to the atmosphere .
本発明の請求項3の空気調和機においては、
前記第一の冷却手段の冷媒配管入口側には、弁手段が設けられ、
該弁手段は、
夏期冷房運転時或は外気冷房運転時には、前記空調対象に設けた温度センサにより制御され、
冬期暖房運転時には、前記弁手段は閉止されるよう構成されている。
In the air conditioner of claim 3 of the present invention,
Valve means is provided on the refrigerant piping inlet side of the first cooling means,
The valve means comprises
During summer cooling operation or outside air cooling operation, it is controlled by a temperature sensor provided for the air conditioning target,
The valve means is configured to be closed during a winter heating operation.
本発明の請求項4の空気調和機においては、
前記外気ファン装置は、
夏期冷房運転時或は冬期暖房運転時には、前記空調対象空間における居住人員の呼気還気必要量である排気流量に対応して外気の送給流量が設定され、
外気冷房運転時には、前記空調対象空間の冷房負荷に対応して外気の送給流量が制御されるうよう構成されている。
In the air conditioner of claim 4 of the present invention,
The outside air fan device includes:
During the summer cooling operation or the winter heating operation, the outside air supply flow rate is set in accordance with the exhaust flow rate that is the expiratory return required amount of the resident personnel in the air conditioning target space,
During the outside air cooling operation, the supply flow rate of the outside air is controlled in accordance with the cooling load of the air conditioning target space .
本発明の請求項5の空気調和機においては、
中間部に回転数制御可能な外気ファン装置を備えた外気系に連通する第一の流通路と、
中間期及び冬期において空調対象空間の室温よりも低温である外気を利用した外気冷房を行うことが可能な前記空調対象空間に還気系を介し連通する第二の流通路と、
前記第一の流通路及び第二の流通路に連通すると共に、給気系を介し前記空調対象空間に連通する、給気ファン装置を有する第三の流通路とを備え、
前記第一の流通路には第一の冷却手段が配置され、
前記第二の流通路には、第二の冷却手段と、該第二の冷却手段に対して還気流れ方向下流側に位置するよう設置した、加湿水が供給される加湿手段が配設され、
冷凍機及び冷媒ポンプを含む冷媒循環管路は、第二の弁手段を介して前記第二の冷却手段に連通すると共に、前記第二の弁手段と前記第二の冷却手段の間から分岐して前記第一の冷却手段に第一の弁手段を介して接続され、
前記第一の冷却手段及び第二の冷却手段の冷媒流れ方向下流側において冷媒管路は合流して前記冷凍機に戻るよう構成され、
外気冷房運転時には、前記第二の弁手段は、前記空調対象空間の熱負荷に対応して制御され、前記第一の弁手段は、閉止されるよう構成されているものである。
In the air conditioner of claim 5 of the present invention,
A first flow passage communicating with an outside air system having an outside air fan device capable of controlling the rotation speed at an intermediate portion;
A second flow path that communicates with the air-conditioning target space through the return air system that can perform outside air cooling using outside air that is cooler than the room temperature of the air-conditioning target space in the intermediate period and the winter period;
A third flow path having an air supply fan device that communicates with the first flow path and the second flow path and communicates with the air-conditioning target space through an air supply system;
A first cooling means is disposed in the first flow path,
The second flow passage is provided with a second cooling unit and a humidifying unit that is installed on the downstream side in the return air flow direction with respect to the second cooling unit and to which humidified water is supplied. ,
A refrigerant circulation line including a refrigerator and a refrigerant pump communicates with the second cooling means via the second valve means and branches from between the second valve means and the second cooling means. Connected to the first cooling means via a first valve means,
The refrigerant pipes are configured to join and return to the refrigerator on the downstream side in the refrigerant flow direction of the first cooling means and the second cooling means,
During the outside air cooling operation, the second valve means is controlled corresponding to the heat load of the air-conditioning target space, and the first valve means is configured to be closed .
本発明の請求項6の空気調和機においては、
還気系には当該還気系からの還気の一部を排気するための、回転数制御可能な排気ファン装置が連通され、前記外気ファン装置により前記第一の流通路に吸引される単位時間当たりの外気の吸引量は、前記排気ファン装置から大気に排出される排気の単位時間当たりの排出量と連動しており、外気ファン装置による外気の吸引流量の増加流量が、排気ファン装置による還気の吸引流量の減少流量となり、外気ファン装置による外気の吸引流量の減少流量が、排気ファン装置による還気の吸引流量の増加流量となるよう構成したものである
In the air conditioner of claim 6 of the present invention,
The return air system is connected to an exhaust fan device capable of controlling the rotation speed for exhausting a part of the return air from the return air system, and is sucked into the first flow passage by the outside air fan device. The amount of outside air sucked per hour is linked to the amount of exhaust per unit time discharged to the atmosphere from the exhaust fan device, and the increase in the outside air suction flow rate by the outside air fan device is due to the exhaust fan device. The reduced flow rate of the return air suction flow rate is reduced, and the reduced flow rate of the outside air suction flow rate by the external air fan device is increased to the increased flow rate of the return air suction flow rate by the exhaust fan device .
本発明の請求項の空気調和機においては、第一の流通路には加熱手段が配置されている。 In the air conditioner according to claim 7 of the present invention, heating means is disposed in the first flow passage.
本発明の請求項1〜に記載の空気調和機及び外気冷房運転方法によれば、中間期や冬期において外気を利用した外気冷房を行なう場合に、給気に対する加湿不足を防止することができると共に、中間期や冬期において冷房負荷が大きくて、外気冷却だけでは冷房能力が不足しているために冷却手段を使用する場合においても、冷却手段への入口温度が高い還気を利用して熱交換後の冷媒の出口温度を上昇させることにより、冷却手段の入口側と出口側の冷媒温度差を大きく採ることができるため、冷媒用のポンプの容量を小型化し、該ポンプによる冷媒の搬送エネルギを小さくして省エネルギを図ることができる。 According to the air conditioner and the outside air cooling operation method according to claims 1 to 7 of the present invention, in the case of performing outside air cooling using outside air in an intermediate period or winter season, it is possible to prevent insufficient humidification with respect to supply air. At the same time, even when using cooling means because the cooling load is large in the intermediate period and winter and the cooling capacity is insufficient only with outside air cooling, heat is generated by using return air with a high inlet temperature to the cooling means. By increasing the outlet temperature of the refrigerant after replacement, the refrigerant temperature difference between the inlet side and the outlet side of the cooling means can be increased, so the capacity of the refrigerant pump is reduced and the refrigerant transport energy by the pump is reduced. It is possible to save energy by reducing the size.
以下、本発明の実施の形態を添付図面を参照して説明する。
図1〜図3は本発明の実施の形態の一例である。図1は空気調和機の空気系を示しており、空気調和機61は、ケーシング62の内部に第二の流通路である還気通路63と、第一の流通路である外気通路64と、第三の流通路である給気通路65とを備えると共に、ケーシング62内には、還気通路63と外気通路64を左右に仕切る仕切り壁66が設けられている。又、還気通路63と外気通路64とは、夫々の下流側端部において給気通路65に連通している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 to 3 show an example of an embodiment of the present invention. FIG. 1 shows an air system of an air conditioner. An air conditioner 61 includes a return air passage 63 that is a second flow passage, an outside air passage 64 that is a first flow passage, and a casing 62. An air supply passage 65 that is a third flow passage is provided, and a partition wall 66 that partitions the return air passage 63 and the outside air passage 64 left and right is provided in the casing 62. Further, the return air passage 63 and the outside air passage 64 communicate with the air supply passage 65 at their respective downstream end portions.
還気通路63には、上流側に還気フィルタ67が設けられると共に、下流側に加湿器68が設けられており、且つ、還気フィルタ67と加湿器68との間には、還気冷却コイル69が設けられ、更に、必要に応じて、所定位置には還気加熱コイル(図示せず)が設けられている。加湿器68には、水スプレー、気化式加湿器、超音波加湿器、蒸気スプレー等が用いられる。   The return air passage 63 is provided with a return air filter 67 on the upstream side and a humidifier 68 on the downstream side, and between the return air filter 67 and the humidifier 68, return air cooling is provided. A coil 69 is provided, and a return air heating coil (not shown) is provided at a predetermined position as required. As the humidifier 68, a water spray, a vaporizing humidifier, an ultrasonic humidifier, a steam spray, or the like is used.
外気通路64には、上流側に外気・還気フィルタ70が設けられると共に、下流側に外気・還気加熱コイル71が設けられており、且つ、外気・還気フィルタ70と外気・還気加熱コイル71との間には、外気・還気冷却コイル72が設けられている。   The outside air passage 64 is provided with an outside air / return air filter 70 on the upstream side and an outside air / return air heating coil 71 on the downstream side, and the outside air / return air filter 70 and the outside air / return air heating are provided. An outside air / return air cooling coil 72 is provided between the coils 71.
空調対象空間からの還気RAが流通する還気系73は、下流側端側において並列状態となるよう2系統の還気系73a,73bに分岐し、還気系73aは還気通路63の上流側端部に、又、還気系73bは外気通路64の上流側端部に、夫々連通するよう接続されている。更に、還気系73の中途部には、還気系73からの還気RAの一部を排気EAとして外部へ排出し得るようにした排気系74が接続され、排気系74の中途部には排気ファン装置75が接続されている。   The return air system 73 through which the return air RA from the air-conditioning target space circulates is branched into two return air systems 73 a and 73 b so as to be in a parallel state on the downstream end side, and the return air system 73 a is connected to the return air passage 63. The return air system 73b is connected to the upstream end and to the upstream end of the outside air passage 64 so as to communicate with each other. Further, an exhaust system 74 is connected to the middle part of the return air system 73 so that a part of the return air RA from the return air system 73 can be discharged to the outside as exhaust EA. Is connected to an exhaust fan device 75.
外気通路64の上流側端部には外気系76の下流側端部が接続され、外気系76の中途部には、外気系76を通して新鮮な外気OAを外気通路64から給気通路65へ送給し得るよう、外気ファン装置77が接続されている。   The upstream end of the outside air passage 64 is connected to the downstream end of the outside air system 76, and fresh outside air OA is sent from the outside air passage 64 to the air supply passage 65 through the outside air system 76 in the middle of the outside air system 76. An outside air fan device 77 is connected so that the air can be supplied.
給気通路65の下流側端部には給気系78の上流側端部が接続されており、給気系78には、給気通路65の下流側に配置した給気ファン装置79の吐出側が連通されている。而して、給気ファン装置79は、還気通路63から給気通路65へ還気RA1を吸込み、外気通路64から外気OA及びRA2、又は外気OAを吸込み、給気通路65で混合した還気RA1、RA2及び外気OA、又は還気RA1及び外気OAを給気SAとして給気系78から空調対象空間へ給気し得るようになっている。   The upstream end of the air supply system 78 is connected to the downstream end of the air supply passage 65, and the air supply fan 78 disposed on the downstream side of the air supply passage 65 is discharged to the air supply system 78. The side is in communication. Thus, the air supply fan device 79 sucks the return air RA1 from the return air passage 63 into the air supply passage 65 and sucks the outside air OA and RA2 or the outside air OA from the outside air passage 64 and mixes in the air supply passage 65. The air RA1, RA2 and the outside air OA, or the return air RA1 and the outside air OA can be supplied from the air supply system 78 to the air-conditioning target space as the supply air SA.
給気ファン装置79は給気SAの流量の約50%を還気通路63から吸引し、給気SAの流量の約50%を外気通路64を介して吸引するよう、還気通路63及び外気通路64の形状(流路断面及び抵抗)が設定されている。   The supply air fan device 79 sucks about 50% of the flow rate of the supply air SA from the return air passage 63, and sucks about 50% of the flow rate of the supply air SA through the outside air passage 64. The shape (channel cross section and resistance) of the passage 64 is set.
排気ファン装置75は排出される排気EAの流量を調整し得るよう、又、外気ファン装置77は吸引される外気OAの流量を調整し得るよう、インバータ制御による回転数制御を行なうようになっている。又、外気ファン装置77による外気OAの単位時間当たりの吸引量に連動して、排気ファン装置75による排気EAの単位時間当たりの排出量、換言すれば、還気通路63及び外気通路64への還気RA(RA1+RA2、又はRA1)の単位時間当たりの送給量が、増減するよう、外気ファン装置77及び排気ファン装置75の回転数が制御され、外気OAの吸引流量の増加流量が還気RAの吸引流量の減少流量となり、外気OAの吸引流量の減少流量が還気RAの吸引流量の増加流量となるように形成されている。   The exhaust fan device 75 controls the rotational speed by inverter control so that the flow rate of the exhaust EA to be discharged can be adjusted, and the outside air fan device 77 can adjust the flow rate of the sucked outside air OA. Yes. Further, in conjunction with the amount of outside air OA sucked per unit time by the outside air fan device 77, the amount of exhaust EA discharged by the exhaust fan device 75 per unit time, in other words, to the return air passage 63 and the outside air passage 64. The rotational speed of the outside air fan device 77 and the exhaust fan device 75 is controlled so that the supply amount of the return air RA (RA1 + RA2 or RA1) per unit time is increased or decreased, and the increased flow rate of the suction flow of the outside air OA is returned to the return air. The reduction flow rate of the suction flow rate of RA is formed, and the reduction flow rate of the suction flow rate of the outside air OA is formed to be an increase flow rate of the suction flow rate of the return air RA.
図1に示す空気調和機61の冷媒系である冷水系の一例は図2に示されている。図1においては空気調和機61は1台のみ図示されているが、図2においては空気調和機61は複数基、図示されている。これは実際には、空気調和機61は建物の各階に設置されているためである。図2における複数の空気調和機61は夫々、図1の空気調和機61に対応しているが、図2においては、簡略化のため空気系は省略してある。又、図2中、図1に示すものと同一のものには同一の符号が付してある。   An example of the cold water system which is the refrigerant system of the air conditioner 61 shown in FIG. 1 is shown in FIG. Although only one air conditioner 61 is shown in FIG. 1, a plurality of air conditioners 61 are shown in FIG. This is because the air conditioner 61 is actually installed on each floor of the building. Each of the plurality of air conditioners 61 in FIG. 2 corresponds to the air conditioner 61 in FIG. 1, but in FIG. 2, the air system is omitted for simplification. In FIG. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals.
冷凍機80の出口側に接続された冷水往主配管81は、空気調和機61の台数に対応して分岐し、分岐した各冷水往配管82は、各外気・還気冷却コイル72の入口側に接続されている。各冷水往配管82には制御弁83が接続されている。又、各外気・還気冷却コイル72と還気冷却コイル69とは冷水配管84により直列接続されており、各還気冷却コイル69の出口側に接続された冷水還配管85は合流して冷水還主配管86として冷凍機80の入口側に接続されている。冷水還主配管86の冷凍機80近傍には冷水ポンプ87が設けられている。   The chilled water main pipe 81 connected to the outlet side of the refrigerator 80 branches corresponding to the number of the air conditioners 61, and each chilled water forward pipe 82 is connected to the inlet side of each outside air / return air cooling coil 72. It is connected to the. A control valve 83 is connected to each cold water pipe 82. Further, each outside air / return air cooling coil 72 and the return air cooling coil 69 are connected in series by a chilled water pipe 84, and the chilled water return pipe 85 connected to the outlet side of each return air cooling coil 69 is joined to chilled water. A return main pipe 86 is connected to the inlet side of the refrigerator 80. A cold water pump 87 is provided in the vicinity of the refrigerator 80 of the cold water return main pipe 86.
図2中、88は冷水往主配管81と冷水還主配管86とを結ぶバイパス配管、89はバイパス配管88の中途部に設けられた制御弁である。   In FIG. 2, 88 is a bypass pipe connecting the cold water main pipe 81 and the cold water return main pipe 86, and 89 is a control valve provided in the middle of the bypass pipe 88.
次に、上記した実施の形態の作動を説明する。なお、図1には、夏期冷房運転時、及び中間期や冬期の外気冷房運転時の給気OA、還気RA、RA1、RA2の流量の比率が%で示してある。
I)夏期冷房運転時
この場合には、空調対象空間等に設けた温度センサの信号により制御される、図2に示す各制御弁83は開き勝手に制御される。而して、図1においては、例えば、給気ファン装置79により給気SAとして空調対象空間(図示せず)に送給されて冷房に供され還気系73に排出された還気RAの流量(給気SAの流量に等しい)を100%とすると、排気ファン装置75においては、例えば給気SAの流量の20%、つまり空調対象空間における居住人員の呼気換気必要量のみの排気量割合が排気EAとして排気系74から外部へ排出され、給気SAの流量の80%に相当する流量の還気RAが空気調和機61へ還流されるように運転が行なわれる。
Next, the operation of the above-described embodiment will be described. In FIG. 1, the ratio of the flow rates of the supply air OA, the return air RA, RA1, and RA2 during the summer cooling operation and during the outdoor air cooling operation during the intermediate period and winter is shown in%.
I) During summer cooling operation In this case, each control valve 83 shown in FIG. 2, which is controlled by a signal from a temperature sensor provided in the air-conditioning target space or the like, is controlled freely. Thus, in FIG. 1, for example, the return air RA supplied to the air-conditioning target space (not shown) as the supply air SA by the supply fan device 79, supplied to the cooling system, and discharged to the return air system 73. Assuming that the flow rate (equal to the flow rate of the supply air SA) is 100%, in the exhaust fan device 75, for example, 20% of the flow rate of the supply air SA. Is exhausted from the exhaust system 74 to the outside as exhaust EA, and the operation is performed so that the return air RA having a flow rate corresponding to 80% of the flow rate of the supply air SA is returned to the air conditioner 61.
このとき、例えば、外気通路64は、外気通路64における最大通気量の2/5(給気SAの流量の20%に相当)が外気ファン装置77によって送給される外気OAによって満たされるよう運転が行なわれ、同じく最大通気量の3/5(給気SAの流量の30%に相当)が還気系73bから還流する還気RA2により満たされるよう運転が行なわれる。   At this time, for example, the outside air passage 64 is operated so that 2/5 of the maximum ventilation amount in the outside air passage 64 (corresponding to 20% of the flow rate of the supply air SA) is filled with the outside air OA supplied by the outside air fan device 77. Similarly, the operation is performed so that 3/5 of the maximum ventilation amount (corresponding to 30% of the flow rate of the supply air SA) is satisfied by the return air RA2 returning from the return air system 73b.
このため、還気通路63では最大通気量(給気SAの50%に相当)の全てが還気系73aから還流する還気RA1によって満たされるよう運転が行なわれる。   For this reason, the return air passage 63 is operated so that all of the maximum ventilation amount (corresponding to 50% of the supply air SA) is filled with the return air RA1 returning from the return air system 73a.
還気通路63では、還気フィルタ67を通過した還気RA1は還気冷却コイル69で冷却され、冷却された還気RA1は給気通路65へ流入する。又、外気通路64では、外気・還気フィルタ70を通過した外気OA及び還気RA2が外気・還気冷却コイル72で冷却されて給気通路65へ流入する。このため、給気通路65では、還気RA1、RA2と外気OAは混合されて、外気・還気混合気である給気SAが形成され、給気SAは給気ファン装置79により給気系78から空調対象空間へ送給されて冷房に供され昇温し、還気系73に排出されて、前述したと同様にして運転が継続される。   In the return air passage 63, the return air RA 1 that has passed through the return air filter 67 is cooled by the return air cooling coil 69, and the cooled return air RA 1 flows into the supply air passage 65. In the outside air passage 64, the outside air OA and the return air RA 2 that have passed through the outside air / return air filter 70 are cooled by the outside air / return air cooling coil 72 and flow into the air supply passage 65. Therefore, in the supply passage 65, the return air RA1 and RA2 and the outside air OA are mixed to form the supply air SA which is the outside air / return air mixture, and the supply air SA is supplied by the supply fan device 79. The air is supplied from 78 to the air-conditioning space, supplied to the cooling system, heated up, discharged to the return air system 73, and the operation is continued in the same manner as described above.
一方、冷水系では、冷水ポンプ87により冷凍機80へ送給されて冷却された冷水は、冷水往主配管81から冷水往配管82を経て外気・還気冷却コイル72へ送給され、前記したように外気OA及び還気RA2を冷却し、冷水配管84を通って還気冷却コイル69へ導入され、還気RA1を冷却して冷水還配管85へ送給され、冷水還主配管86から冷水ポンプ87を経て冷凍機80へ送給され、前述したと同様にして運転が継続される。   On the other hand, in the chilled water system, the chilled water fed to the refrigerator 80 by the chilled water pump 87 and cooled is fed from the chilled water forward pipe 81 to the outside air / return air cooling coil 72 via the chilled water forward pipe 82, as described above. Thus, the outside air OA and the return air RA2 are cooled and introduced into the return air cooling coil 69 through the cold water pipe 84, and the return air RA1 is cooled and supplied to the cold water return pipe 85. It is fed to the refrigerator 80 through the pump 87, and the operation is continued in the same manner as described above.
冷凍機80からの冷水のうち、冷凍機80の伝熱の低下や腐食の防止のための最小冷水流量確保のため、外気・還気冷却コイル72側へ送水されなかった冷水は、冷水往主配管81からバイパス配管88を経て冷水還主配管86へ戻り、還気冷却コイル69からの還りの冷水と合流し、冷水ポンプ87から冷凍機80へ送給される。   Of the chilled water from the refrigerator 80, the chilled water that has not been sent to the outside air / return air cooling coil 72 side in order to secure the minimum chilled water flow rate for preventing the heat transfer of the chiller 80 and preventing corrosion, The pipe 81 is returned to the cold water return main pipe 86 via the bypass pipe 88, merged with the return cold water from the return air cooling coil 69, and fed from the cold water pump 87 to the refrigerator 80.
夏期冷房運転時には冷房負荷が大きく、更に低温の空気である外気・還気混合気のOA+RA2に対し、低温である往側冷水を対応させ、高温の空気である還気RA1に対し、低温の空気である外気・還気混合気のOA+RA2と熱交換済みの外気・還気冷却コイル72の出口冷水を対応させ、更に熱交換することができることから、外気・還気冷却コイル72の入口の冷水温度と、還気冷却コイル69の出口側の冷水温度差を大きくすることができ、このため、冷水ポンプ87による冷水流量を減少させることができて、冷水ポンプ87による冷水の搬送エネルギを低減することができ、省エネルギを図ることができる。   During summer cooling operation, the cooling load is large. Further, the cold air on the outside side is made to correspond to OA + RA2 of the outside air / return air mixture which is low temperature air, and the low temperature air is made to correspond to the return air RA1 which is high temperature air. Since the OA + RA2 of the outside air / return air mixture which is the above and the outlet cold water of the heat exchanged outside air / return air cooling coil 72 can be matched and further heat exchange can be performed, the cold water temperature at the inlet of the outside air / return air cooling coil 72 The chilled water temperature difference on the outlet side of the return air cooling coil 69 can be increased, and therefore the chilled water flow rate by the chilled water pump 87 can be reduced, and the conveyance energy of the chilled water by the chilled water pump 87 can be reduced. Can save energy.
II)冬期暖房運転時
この場合には、図2に示す制御弁83は閉止されている。而して、図1においては、例えば、排気ファン装置75は、給気SAの必要換気量である20%に相当する流量の還気RAが排気EAとして排気され、給気SAの流量の80%に相当する流量の還気RAが空気調和機61へ還流されるように運転が行なわれる。このとき、外気ファン装置77においては、例えば、給気SAの流量の20%に相当する流量の外気OAが外気通路64へ送給されるよう運転が行なわれ、外気通路64へ還流される還気RA2は給気SAの30%となり、還気通路63へ還流される還気RA1は給気SAの50%となるよう運転が行なわれる。
II) During winter heating operation In this case, the control valve 83 shown in FIG. 2 is closed. Thus, in FIG. 1, for example, in the exhaust fan device 75, the return air RA having a flow rate corresponding to 20%, which is the necessary ventilation amount of the supply air SA, is exhausted as the exhaust air EA, and the flow rate of the supply air SA is 80%. The operation is performed so that the return air RA having a flow rate corresponding to% is returned to the air conditioner 61. At this time, the outside air fan device 77 is operated so that outside air OA having a flow rate corresponding to 20% of the flow rate of the supply air SA is supplied to the outside air passage 64 and returned to the outside air passage 64. The operation is performed so that the air RA2 becomes 30% of the supply air SA, and the return air RA1 recirculated to the return air passage 63 becomes 50% of the supply air SA.
而して、還気通路63では、還気フィルタ67を通過した還気RA1は加湿器68から噴霧された水により加湿されて給気通路65へ導入され、外気通路64では、外気・還気フィルタ70を通過した外気OA及び還気RA2は、外気・還気加熱コイル71により加熱されて給気通路65へ流入する。加湿器68の加湿量は、空調対象空間等に設置した温度センサの信号により制御されるので、還気側で加湿しても加湿量は不足しない。   Thus, in the return air passage 63, the return air RA1 that has passed through the return air filter 67 is humidified by the water sprayed from the humidifier 68 and introduced into the air supply passage 65. In the outside air passage 64, the outside air / return air The outside air OA and the return air RA2 that have passed through the filter 70 are heated by the outside air / return air heating coil 71 and flow into the supply passage 65. Since the humidification amount of the humidifier 68 is controlled by a signal from a temperature sensor installed in the air-conditioning target space or the like, the humidification amount is not insufficient even if humidification is performed on the return air side.
給気通路65へ流入した還気RA1、RA2及び外気OAは混合され、給気ファン装置79により給気系78から空調対象空間へ送給されて暖房に供され温度降下し、還気RAとして還気系73へ排出され、前述のようにして運転が継続される。   The return air RA1 and RA2 and the outside air OA that have flowed into the supply passage 65 are mixed, and are supplied from the supply system 78 to the air-conditioning target space by the supply fan device 79 and are used for heating to lower the temperature. The air is discharged to the return air system 73 and the operation is continued as described above.
III)中間期や冬期における外気冷房運転時
以下、冷房負荷が大きくて外気冷房を行なう場合に、冷房負荷に対する外気冷房能力が不足するときについて説明すると、この場合には冷水系の運転を併用するため、図2に示す制御弁83は、空調対象空間等にある温度センサの信号により制御され、開き勝手になっている。
III) During outside air cooling operation in the intermediate period and winter In the following, when the outside air cooling capacity is insufficient with respect to the cooling load when the outside air cooling is performed due to a large cooling load, the operation of the cooling water system is used in this case. Therefore, the control valve 83 shown in FIG. 2 is controlled by the signal of the temperature sensor in the air-conditioning target space or the like, and is easy to open.
図1においては、例えば、給気ファン装置79により給気SAとして空調対象空間に送給され冷房に供されて還気系73に排出された還気RAの流量(給気SAの流量に相当)を100%とすると、給気SAの流量の40%が排気EAとして排気ファン装置75により排気系74から外部へ排出され、給気SAの流量の37%に相当する還気RAが還気RA1として空気調和機61の還気通路63へ還流されるように運転が行なわれる。又、外気ファン装置77においては、最大で給気SAの流量の40%に相当する流量の外気OAが外気通路64へ導入されるよう、空調対象空間の熱負荷に対応した運転が行なわれる。従って、給気SAの流量の40%に相当する外気OAが外気通路64へ送給される場合には、外気通路64へ流入する還気RA2の流量は23%となり、外気通路64が給気SAの流量の40%に相当する流量の外気OAにより満たされなかった場合は、外気通路64は、還気系73がその分増加し、還気系73aと還気系73bに概ね5対3の風量比になるように還気RA1,RA2で補完的に充足され、外気OAの流量と還気RA2の流量の合計は、給気SAの約50%から約63%までの風量になるよう運転が行なわれる。   In FIG. 1, for example, the flow rate of the return air RA supplied to the air-conditioning target space by the supply fan device 79 as the supply air SA, cooled, and discharged to the return air system 73 (corresponding to the flow rate of the supply air SA). ) Is 100%, 40% of the flow rate of the supply air SA is discharged as exhaust EA from the exhaust system 74 to the outside by the exhaust fan device 75, and the return air RA corresponding to 37% of the flow rate of the supply air SA is returned. The operation is performed so as to return to the return air passage 63 of the air conditioner 61 as RA1. Further, in the outside air fan device 77, an operation corresponding to the heat load of the air-conditioning target space is performed so that the outside air OA having a flow rate corresponding to 40% of the flow rate of the supply air SA at the maximum is introduced into the outside air passage 64. Accordingly, when the outside air OA corresponding to 40% of the flow rate of the supply air SA is supplied to the outside air passage 64, the flow rate of the return air RA2 flowing into the outside air passage 64 is 23%, and the outside air passage 64 is supplied with air. When the outside air passage OA corresponding to 40% of the SA flow rate is not filled with the outside air OA, the outside air passage 64 is increased by the amount of the return air system 73 corresponding to the return air system 73a and the return air system 73b. The return air RA1 and RA2 are complementarily filled so that the air volume ratio becomes the total airflow OA and the flow rate of the return air RA2 so that the total airflow is about 50% to about 63% of the supply air SA. Driving is performed.
還気通路63では、還気フィルタ67を通過した還気RA1は還気冷却コイル69により冷却され、加湿器68において水により加湿されて給気通路65に流入し、外気通路64では、外気・還気フィルタ70を通過した外気OA、或は外気OA及び還気RA2は外気・還気冷却コイル72で冷却されて給気通路65へ流入し、給気通路65へ流入した還気RA1及び外気OA、或は還気RA1,RA2及び外気OAは混合し、給気SAとして給気ファン装置79により給気系78へ送給され、給気系78から空調対象空間へ送給されて冷房に供されて昇温し、還気RAとして還気系73へ排出され、前述のようにして運転が継続される。   In the return air passage 63, the return air RA1 that has passed through the return air filter 67 is cooled by the return air cooling coil 69, is humidified by water in the humidifier 68, and flows into the air supply passage 65. The outside air OA that has passed through the return air filter 70, or the outside air OA and the return air RA2 is cooled by the outside air / return air cooling coil 72 and flows into the supply passage 65, and the return air RA1 and the outside air that have flowed into the supply passage 65 OA or return air RA1, RA2 and outside air OA are mixed and supplied as an air supply SA to an air supply system 78 by an air supply fan device 79, and supplied from the air supply system 78 to an air-conditioning target space for cooling. Then, the temperature is raised and discharged as return air RA to the return air system 73, and the operation is continued as described above.
この外気冷房運転時には、外気OAの外気通路64への送給量は、冷房負荷により増減させる。例えば、外気ファン装置77による外気OAの送給量を増加させるほど、排気ファン装置75による還気RAの還流量を減少させ、又、外気ファン装置77による外気OAの送給量を減少させるほど、排気ファン装置75による還気RAの還流量を増加させる。   During this outside air cooling operation, the amount of outside air OA supplied to the outside air passage 64 is increased or decreased depending on the cooling load. For example, as the amount of outside air OA supplied by the outside air fan device 77 is increased, the amount of return air RA returned by the exhaust fan device 75 is decreased, and the amount of outside air OA supplied by the outside air fan device 77 is decreased. Then, the return amount of the return air RA by the exhaust fan device 75 is increased.
一方、冷水系では、夏期冷房運転時と同様、冷水ポンプ87により冷凍機80へ送給されて冷却された冷水は、冷水往主配管81から冷水往配管82を経て外気・還気冷却コイル72へ送給され、前記したように外気OA、又は外気OA及び還気RA2を冷却し、冷水配管84を通って還気冷却コイル69へ導入され、還気RA1を冷却して冷水還配管85へ還流し、冷水還主配管86から冷水ポンプ87を経て冷凍機80へ送給され、前述したと同様にして運転が継続される。   On the other hand, in the chilled water system, the chilled water supplied to the refrigerator 80 by the chilled water pump 87 and cooled by the chilled water pump 87 is passed from the chilled water main pipe 81 through the chilled water forward pipe 82 as in the summer cooling operation. As described above, the outside air OA or the outside air OA and the return air RA2 are cooled, introduced into the return air cooling coil 69 through the cold water pipe 84, and the return air RA1 is cooled to the cold water return pipe 85. The refrigerant is refluxed and supplied from the cold water return main pipe 86 to the refrigerator 80 via the cold water pump 87, and the operation is continued in the same manner as described above.
冷凍機80からの冷水のうち、冷凍機80の伝熱の低下や腐食防止のための最小流量確保のため、外気・還気冷却コイル72側へ送水されなかった冷水は、冷水往主配管81からバイパス配管88を経て冷水還主配管86へ戻り、還気冷却コイル69からの還りの冷水と合流し、冷水ポンプ87から冷凍機80へ送給される。   Of the cold water from the refrigerator 80, the cold water that has not been sent to the outside air / return air cooling coil 72 side in order to secure the minimum flow rate for reducing heat transfer and preventing corrosion of the refrigerator 80 is the cold water main pipe 81. Then, it returns to the cold water return main pipe 86 through the bypass pipe 88, merges with the return cold water from the return air cooling coil 69, and is fed from the cold water pump 87 to the refrigerator 80.
中間期や冬期の外気冷房運転時においては、外気・還気混合気が低い温度で外気・還気冷却コイル72に入り、更に低い温度に冷却するので、外気通路64における外気・還気冷却コイル72の入口側と出口側の冷水温度差は、冷水出口温度も上昇せず、それほど大きくならないが、還気通路63における還気冷却コイル69の入口側と出口側の冷水温度差は、還気RA1の還気冷却コイル69に対する入口空気温度が高温であり、且つ、冷水出口温度も高温にできることから、冷水温度差を大きくすることができる。   During the outside air cooling operation in the intermediate period or winter, the outside air / return air mixture enters the outside air / return air cooling coil 72 at a low temperature and cools to a lower temperature, so the outside air / return air cooling coil in the outside air passage 64 is cooled. The chilled water temperature difference between the inlet side and the outlet side of 72 does not increase the chilled water outlet temperature and does not increase so much, but the chilled water temperature difference between the inlet side and the outlet side of the return air cooling coil 69 in the return air passage 63 is the return air. Since the inlet air temperature to the return air cooling coil 69 of RA1 is high and the chilled water outlet temperature can also be increased, the chilled water temperature difference can be increased.
このため、冷水往配管82内の冷水と冷水還配管85内の冷水の温度差も大きくでき、冷水ポンプ87による冷水の搬送エネルギを低減することができる。因みに、外気・還気冷却コイル72の入口側の冷水温度が約7℃の場合、外気・還気冷却コイル72の出口側、すなわち、還気冷却コイル69の入口側では冷水温度は約11℃となり、冷水還配管85の出口側では還りの冷水温度を約16.5℃とすることができる。なお、条件としては、外気温度10℃、相対湿度60%、還気温度25℃、相対湿度40%で、給気ファン装置79が10,000m/hの風量で冷水コイル負荷6.5kWの場合の試算である。 For this reason, the temperature difference between the chilled water in the chilled water forward pipe 82 and the chilled water in the chilled water return pipe 85 can also be increased, and the conveyance energy of the chilled water by the chilled water pump 87 can be reduced. Incidentally, when the cold water temperature on the inlet side of the outside air / return air cooling coil 72 is about 7 ° C., the cold water temperature is about 11 ° C. on the outlet side of the outside air / return air cooling coil 72, that is, on the inlet side of the return air cooling coil 69. Thus, on the outlet side of the cold water return pipe 85, the return cold water temperature can be about 16.5 ° C. As conditions, the outside air temperature is 10 ° C., the relative humidity is 60%, the return air temperature is 25 ° C., the relative humidity is 40%, the supply fan device 79 has an air volume of 10,000 m 3 / h, and a cold water coil load of 6.5 kW. This is a trial calculation.
このため、外気・還気冷却コイル72の入口側と還気冷却コイル69の出口側では、冷水温度差Δtを約9.5℃以上と大きくとることができ、その結果、冷水温度差Δtが小さい場合に比較して、冷水ポンプ87からの冷水流量Qを少なくすることができるため、冷水ポンプ87の動力が少なくてすみ、省エネルギを図ることができる。   Therefore, the chilled water temperature difference Δt can be as large as about 9.5 ° C. or more on the inlet side of the outside air / return air cooling coil 72 and the outlet side of the return air cooling coil 69, and as a result, the chilled water temperature difference Δt is Compared with the case where it is small, the chilled water flow rate Q from the chilled water pump 87 can be reduced, so that the power of the chilled water pump 87 can be reduced and energy saving can be achieved.
冬期の外気冷房運転時の外気OA、還気RA1、RA2、給気SAの状態変化の一例を図3の空気線図をも参照しつつ説明すると、還気系73から還気通路63へ流入した還気RA1は加湿器68で等湿球温度線上を断熱加湿されてイの状態となり、又、外気ファン装置77から外気通路64へ流入した低温の外気OAと、還気系73から外気通路64へ流入した外気OAよりも高温の還気RA2とは、外気通路64で夫々混合しあってロの状態となる。   An example of state changes of the outside air OA, the return air RA1, RA2, and the supply air SA during the outdoor air cooling operation in winter will be described with reference to the air diagram of FIG. The recirculated return air RA1 is adiabatic and humidified on the iso-humidity bulb temperature line by the humidifier 68, and the low temperature outside air OA flowing into the outside air passage 64 from the outside air fan device 77 and the outside air passage from the return air system 73. The return air RA2 having a higher temperature than the outside air OA flowing into the outside air OA is mixed with each other in the outside air passage 64 and becomes a low state.
而して、還気通路63からの還気RA1と、外気通路64からの外気OA及び還気RA2とは、給気通路65において混合し、外気OA及び加湿源の持つ顕熱を冷却源として冷却されて給気SAが得られる。従って、このようにして得られた給気SAにより、中間期や冬期に空調対象空間を冷房することにより、外気OAの低温加湿に起因する給気SAの加湿不足を防止することができ、例えば、冷房負荷33W/mに相当する冷房能力を実現しながら空調対象空間の保健環境を維持することができる。 Thus, the return air RA1 from the return air passage 63, the outside air OA and the return air RA2 from the outside air passage 64 are mixed in the supply passage 65, and the sensible heat of the outside air OA and the humidification source is used as a cooling source. The supply air SA is obtained by cooling. Accordingly, by cooling the air-conditioning target space in the intermediate period or winter season with the air supply SA obtained in this way, insufficient humidification of the air supply SA due to low temperature humidification of the outside air OA can be prevented. The health environment of the air-conditioning target space can be maintained while realizing the cooling capacity corresponding to the cooling load 33 W / m 2 .
中間期や冬期において外気冷房だけで冷房能力が充足する場合には、図2に示す冷水系の制御弁83は制御の結果として閉止している。このため、外気通路64へ流入した外気OA、又は外気OA及び還気RA2は、外気・還気冷却コイル72により冷却されることなく給気通路65へ流入し、還気通路63へ流入した還気RA1は還気冷却コイル69により冷却されることなく給気通路65へ流入しする。又、給気通路65においては、外気OAと還気RA1、又は外気OAと還気RA1、RA2は混合して給気SAとなり、上述したと同様にして空調対象空間へ送給され、外気冷房が行なわれる。   When the cooling capacity is satisfied only by the outside air cooling in the intermediate period or winter season, the control valve 83 of the cold water system shown in FIG. 2 is closed as a result of the control. Therefore, the outside air OA that flows into the outside air passage 64 or the outside air OA and the return air RA2 flows into the supply passage 65 without being cooled by the outside air / return air cooling coil 72, and the return that flows into the return air passage 63. The air RA1 flows into the air supply passage 65 without being cooled by the return air cooling coil 69. In the air supply passage 65, the outside air OA and the return air RA1, or the outside air OA and the return air RA1, RA2 are mixed to become the supply air SA, and are supplied to the air-conditioning target space in the same manner as described above, thereby cooling the outside air. Is done.
図4は本発明の空気調和機61に適用する冷水系の他の例である。而して、本図示例においては、外気・還気冷却コイル72と還気冷却コイル69とは並列接続されている。すなわち、制御弁83を備えた冷水往配管82は、制御弁83の下流側において2系統に分岐して、冷水往分岐配管90,91となり、冷水往分岐配管90は外気・還気冷却コイル72の入口側に接続され、冷水往分岐配管91は還気冷却コイル69の入口側に接続されている。又、冷水往分岐配管90には、制御弁92が設けられている。   FIG. 4 shows another example of a cold water system applied to the air conditioner 61 of the present invention. Thus, in the illustrated example, the outside air / return air cooling coil 72 and the return air cooling coil 69 are connected in parallel. That is, the cold water forward pipe 82 provided with the control valve 83 is branched into two systems on the downstream side of the control valve 83 to become the cold water forward branch pipes 90 and 91, and the cold water forward branch pipe 90 is the outside air / return air cooling coil 72. The cold water forward branch pipe 91 is connected to the inlet side of the return air cooling coil 69. A control valve 92 is provided in the cold water forward branch pipe 90.
外気・還気冷却コイル72の出口側には冷水還配管93が、又、還気冷却コイル69の出口側には冷水還配管94が夫々接続され、合流して冷水還主配管86に接続されている。なお、図中、図2に示すものと同一の符号のものには同一の符号が付してある。   A chilled water return pipe 93 is connected to the outlet side of the outside air / return air cooling coil 72, and a chilled water return pipe 94 is connected to the outlet side of the return air cooling coil 69, which are joined together and connected to the chilled water return main pipe 86. ing. In the figure, the same reference numerals as those shown in FIG. 2 denote the same reference numerals.
本図示例の冷水系の運転の仕方について説明すると、夏期冷房運転時には制御弁83,92は、空調対象空間の熱負荷に応じて制御されて開き勝手になっており、冬期暖房運転時には制御弁83,92は閉止され、中間期や冬期の外気冷房運転時には、外気冷房だけでは冷房能力が不足する場合には、制御弁83は空調対象空間の熱負荷に応じて制御されて開き勝手になっている一方、制御弁92は閉止され、外気冷房だけで冷房能力が充足する場合は制御弁83,92は何れも閉止されて運転が行なわれる。   The operation of the chilled water system in the illustrated example will be described. During the summer cooling operation, the control valves 83 and 92 are controlled according to the heat load of the air-conditioning target space, and are opened freely. During the winter heating operation, the control valves 83 and 92 are open. 83 and 92 are closed, and during the outside air cooling operation in the intermediate period or winter season, when the cooling capacity is insufficient only by the outside air cooling, the control valve 83 is controlled according to the heat load of the air-conditioning target space and becomes open. On the other hand, when the control valve 92 is closed and the cooling capacity is satisfied only by the outside air cooling, the control valves 83 and 92 are both closed and the operation is performed.
この場合、夏期冷房運転時には、冷水は外気・還気冷却コイル72、還気冷却コイル69を流通するため、外気・還気冷却コイル72においては外気OAと還気RA2が冷却され、還気冷却コイル69においては還気RA1が冷却される。   In this case, during the summer cooling operation, since the cold water flows through the outside air / return air cooling coil 72 and the return air cooling coil 69, the outside air OA and the return air RA2 are cooled in the outside air / return air cooling coil 72, and the return air cooling is performed. In the coil 69, the return air RA1 is cooled.
又、中間期や冬期の外気冷房運転時において外気OAによる冷房能力が十分な場合は、冷水は外気・還気冷却コイル72、還気冷却コイル69には流通せず、中間期や冬期の外気冷房運転時において外気OAによる冷房能力が不足している場合は、制御弁83は開いているが、外気・還気混合気は冷却されず、還気冷却コイル69への入口空気温度の高い還気RA1のみが当該還気冷却コイル69により冷却される。   In addition, if the cooling capacity by the outside air OA is sufficient during the outside air cooling operation in the intermediate period or winter, the cold water does not flow to the outside air / return air cooling coil 72 and the return air cooling coil 69, and the outside air in the intermediate period or winter season. When the cooling capacity by the outside air OA is insufficient during the cooling operation, the control valve 83 is open, but the outside air / return air mixture is not cooled, and the return to the return air cooling coil 69 having a high inlet air temperature is performed. Only the air RA1 is cooled by the return air cooling coil 69.
図4に示す冷水系の場合も夏期冷房運転時には、外気OA、還気RA1,還気RA2の何れも温度が高く冷房負荷が大きいため、外気・還気冷却コイル72の入口側と出口側の冷水温度差、還気冷却コイル69の入口側と出口側の冷水温度差を大きくすることができる。従って、冷水ポンプ87による冷水流量を減少させることができるため、冷水ポンプ87による冷水の搬送エネルギを低減することができ、省エネルギを図ることができる。   In the case of the chilled water system shown in FIG. 4 as well, during the summer cooling operation, the outside air OA, the return air RA1, and the return air RA2 are all high in temperature and have a large cooling load. The cold water temperature difference and the cold water temperature difference between the inlet side and the outlet side of the return air cooling coil 69 can be increased. Therefore, since the flow rate of the chilled water by the chilled water pump 87 can be reduced, the energy for conveying the chilled water by the chilled water pump 87 can be reduced, and energy saving can be achieved.
又、中間期や冬期において冷房負荷が高く外気冷房だけでは冷房能力が不足する場合は、外気OAが導入される外気通路64の外気・還気冷却コイル72入口側の制御弁92を閉止し、制御弁83を開いて還気RA1のみが導入される還気通路63の還気冷却コイル69へ冷水を送給して還気RA1を冷却している。外気・還気混合気は冷却されず、還気冷却コイル69への入口空気温度の高い還気RA1のみが当該還気冷却コイル69により冷却される。このため、還気冷却コイル69の入口側と出口側の冷水温度差を大きくすることができる。従って、冷水ポンプ87による冷水流量を減少させることができるため、冷水ポンプ87による冷水の搬送エネルギを低減することができ、省エネルギを図ることができる。   Further, when the cooling load is high in the intermediate period or winter and the cooling capacity is insufficient only by the outside air cooling, the control valve 92 on the inlet side of the outside air / return air cooling coil 72 of the outside air passage 64 into which the outside air OA is introduced is closed, The control valve 83 is opened to cool the return air RA1 by supplying cold water to the return air cooling coil 69 of the return air passage 63 where only the return air RA1 is introduced. The outside air / return air mixture is not cooled, and only the return air RA1 having a high inlet air temperature to the return air cooling coil 69 is cooled by the return air cooling coil 69. For this reason, the chilled water temperature difference between the inlet side and the outlet side of the return air cooling coil 69 can be increased. Therefore, since the flow rate of the chilled water by the chilled water pump 87 can be reduced, the energy for conveying the chilled water by the chilled water pump 87 can be reduced, and energy saving can be achieved.
因みに、夏期冷房運転の負荷ピーク時においては、外気・還気冷却コイル72の入口側における冷水温度は約7℃、出口側における冷水温度は約16℃となり、還気冷却コイル69の入口側の冷水温度は約7℃、出口側における冷水温度は約16℃となり、外気・還気冷却コイル72からの冷水と還気冷却コイル69からの冷水が混合した還りの冷水の温度は約16℃となるため、外気・還気冷却コイル72及び還気冷却コイル69の入口側と出口側の冷水温度差Δtを約9℃とすることができ、冷水ポンプ87からの冷水流量Qを少なくすることができるため、冷水ポンプ87の動力が少なくてすみ、省エネルギを図ることができる。   Incidentally, the cold water temperature at the inlet side of the outside air / return air cooling coil 72 is about 7 ° C. and the cold water temperature at the outlet side is about 16 ° C. at the peak time of summer cooling operation. The chilled water temperature is about 7 ° C., the chilled water temperature on the outlet side is about 16 ° C., and the temperature of the return chilled water mixed with the chilled water from the outside air / return air cooling coil 72 and the chilled water from the return air cooling coil 69 is about 16 ° C. Therefore, the chilled water temperature difference Δt between the inlet side and the outlet side of the outside air / return air cooling coil 72 and the return air cooling coil 69 can be about 9 ° C., and the chilled water flow rate Q from the chilled water pump 87 can be reduced. Therefore, the power of the cold water pump 87 can be reduced and energy can be saved.
この点は、中間期や冬期の外気冷房運転時に冷却能力が不足している場合において、外気・還気冷却コイル72により外気OA、又は外気OAと還気RA2とを冷却せずに、還気冷却コイル69により還気RA1のみを冷却する場合も略同様である。   This is because when the cooling capacity is insufficient during the outdoor air cooling operation in the intermediate period or winter, the outside air OA or the outside air OA and the return air RA2 are not cooled by the outside air / return air cooling coil 72, and the return air is cooled. The same applies to the case where only the return air RA1 is cooled by the cooling coil 69.
なお、本発明の空気調和機においては、冷媒として冷水を用いる場合について説明したが、水に限らず何等かの冷却液体や冷却気体を冷媒として使用することができること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。又、上記実施の形態例の場合の還気RA、RA1、RA2と外気OAの比率は例示であり、条件により種々の比率設定が可能である。 In the air conditioner of the present invention, the case where cold water is used as the refrigerant has been described. However, not only water but also any cooling liquid or cooling gas can be used as the refrigerant. Of course, various changes can be made without departing from the scope. Further, the ratios of the return air RA, RA1, RA2 and the outside air OA in the case of the above embodiment are exemplifications, and various ratios can be set depending on conditions.
本発明の実施の形態における空気調和機の構成を示す模式図である。It is a schematic diagram which shows the structure of the air conditioner in embodiment of this invention. 図1に示す空気調和機の冷水系の一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of the cold water system of the air conditioner shown in FIG. 図1に示す空気調和機の冬期の外気冷房運転時における空気線図を示すグラフである。It is a graph which shows the air line figure at the time of the outdoor air cooling operation of the air conditioner shown in FIG. 1 in winter. 図1に示す空気調和機の冷水系の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the cold water system of the air conditioner shown in FIG. 従来の空気調和機の一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of the conventional air conditioner. 図5に示す空気調和機の冬期冷房運転時における空気線図である。It is an air line figure at the time of the winter cooling operation of the air conditioner shown in FIG. 従来の空気調和機の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the conventional air conditioner. 図7に示す空気調和機の冬期冷房運転時における空気線図である。It is an air line figure at the time of the winter season cooling operation of the air conditioner shown in FIG. 従来の空気調和機の又他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the conventional air conditioner.
符号の説明Explanation of symbols
61 空気調和機
63 還気通路(第二の流通路)
64 外気通路(第一の流通路)
65 給気通路(第三の流通路)
68 加湿器(加湿手段)
69 還気冷却コイル(第二の冷却手段)
71 外気・還気加熱コイル(加熱手段)
72 外気・還気冷却コイル(第一の冷却手段)
73 還気系
73a 還気系
73b 還気系
75 排気ファン装置(排気手段)
76 外気系
77 外気ファン装置(外気送給手段)
79 給気ファン装置(給気手段)
80 冷凍機
81 冷水往主配管(冷媒循環径路
82 冷水往配管(冷媒循環径路)
83 制御弁(弁手段)(第二の弁手段)
84 冷水配管(冷媒循環径路)
85 冷水還配管(冷媒循環径路)
86 冷水還主配管(冷媒循環径路)
87 冷水ポンプ(冷媒ポンプ)
90 冷水往分岐配管(冷媒循環径路)
91 冷水往分岐配管(冷媒循環径路)
92 制御弁(第一の弁手段)
OA 外気
RA 還気
RA1 還気
RA2 還気
SA 給気
61 Air conditioner 63 Return air passage (second flow passage)
64 Outside air passage (first flow passage)
65 Air supply passage (third flow passage)
68 Humidifier (humidifying means)
69 Return air cooling coil (second cooling means)
71 Outside air / return air heating coil (heating means)
72 Outside air / return air cooling coil (first cooling means)
73 Return Air System 73a Return Air System 73b Return Air System 75 Exhaust Fan Device (Exhaust Means)
76 Outside air system 77 Outside air fan device (outside air feeding means)
79 Air supply fan device (air supply means)
80 refrigerator
81 cold water main piping (refrigerant circulation path )
82 cold water往配tube (coolant circulation path)
83 Control valve (valve means) (second valve means)
84 Chilled water piping (refrigerant circulation path)
85 cold water return pipe (refrigerant circulation path)
86 Cold water return main pipe (refrigerant circulation path)
87 Cold water pump (refrigerant pump)
90 Cold water forward branch pipe (refrigerant circulation path)
91 Cold water forward branch pipe (refrigerant circulation path)
92 Control valve (first valve means)
OA outside air RA return air RA1 return air RA2 return air SA supply air

Claims (7)

  1. 中間部に回転数制御可能な外気ファン装置を備えた外気系に連通する第一の流通路と、
    中間期及び冬期において空調対象空間の室温よりも低温である外気を利用した外気冷房を行うことが可能な前記空調対象空間に還気系を介し連通する第二の流通路と、
    前記第一の流通路及び第二の流通路に連通すると共に、給気系を介し前記空調対象空間に連通する、給気ファン装置を有する第三の流通路とを備え、
    前記第一の流通路には第一の冷却手段が配置され、
    前記第二の流通路には、前記第一の冷却手段に冷媒配管を介して連通する第二の冷却手段と、該第二の冷却手段に対して還気流れ方向下流側に位置するよう設置した、加湿水が供給される加湿手段が配設され、
    前記第二の冷却手段から流出する冷媒は、冷凍機及び冷媒ポンプを含む冷媒循環経路を、当該冷媒循環管路から前記冷凍機に戻った後、更に、該冷凍機の冷媒流れ方向下流側の冷媒循環径路から前記第一の冷却手段を介して第二の冷却手段に送給されるよう構成されていることを特徴とする空気調和機。
    A first flow passage communicating with an outside air system having an outside air fan device capable of controlling the number of rotations in an intermediate portion ;
    A second flow path that communicates with the air-conditioning target space through the return air system that can perform outside air cooling using outside air that is cooler than the room temperature of the air-conditioning target space in the intermediate period and the winter period ;
    A third flow path having an air supply fan device that communicates with the first flow path and the second flow path and communicates with the air-conditioning target space through an air supply system ;
    A first cooling means is disposed in the first flow path,
    In the second flow passage, a second cooling means that communicates with the first cooling means via a refrigerant pipe, and a second cooling means that is positioned downstream of the second cooling means in the return air flow direction A humidifying means to which humidified water is supplied ,
    The refrigerant flowing out from the second cooling means, a refrigerant circulation path including the refrigerating machine and a refrigerant pump, after returning to the refrigerator from the refrigerant circulation pipe, further, the refrigerator of the refrigerant flow direction downstream side of the An air conditioner configured to be supplied from a refrigerant circulation path to the second cooling means via the first cooling means.
  2. 還気系には当該還気系からの還気の一部を排気するための、回転数制御可能な排気ファン装置が連通され、前記外気ファン装置により前記第一の流通路に供給される単位時間当たりの外気の吸引量は、前記排気ファン装置から大気に排出される排気の単位時間当たりの排出量と連動するよう構成した請求項1に記載の空気調和気。 The return air system is connected to an exhaust fan device capable of controlling the rotational speed for exhausting a part of the return air from the return air system, and is supplied to the first flow passage by the outside air fan device. The air-conditioning air according to claim 1, wherein an amount of outside air sucked per hour is configured to be linked with a discharge amount per unit time of exhaust discharged from the exhaust fan device to the atmosphere .
  3. 前記第一の冷却手段の冷媒配管入口側には、弁手段が設けられ、
    該弁手段は、
    夏期冷房運転時或は外気冷房運転時には、前記空調対象に設けた温度センサにより制御され、
    冬期暖房運転時には、前記弁手段は閉止されるよう構成した請求項1又は2に記載の空気調和機。
    Valve means is provided on the refrigerant piping inlet side of the first cooling means,
    The valve means comprises
    During summer cooling operation or outside air cooling operation, it is controlled by a temperature sensor provided for the air conditioning target,
    The air conditioner according to claim 1 or 2 , wherein the valve means is closed during a winter heating operation .
  4. 前記外気ファン装置は、
    夏期冷房運転時或は冬期暖房運転時には、前記空調対象空間における居住人員の呼気換気必要量である排気流量に対応して外気の送給流量が設定され、
    外気冷房運転時には、前記空調対象空間の冷房負荷に対応して外気の送給流量が制御されるうよう構成した請求項1乃至3の何れかに記載の空気調和機。
    The outside air fan device includes:
    During the summer cooling operation or the winter heating operation, the outside air supply flow rate is set corresponding to the exhaust flow rate that is the expiratory ventilation required amount of the occupants in the air conditioning target space,
    The air conditioner according to any one of claims 1 to 3 , wherein a supply flow rate of outside air is controlled in accordance with a cooling load of the air-conditioning target space during an outside air cooling operation .
  5. 中間部に回転数制御可能な外気ファン装置を備えた外気系に連通する第一の流通路と、
    中間期及び冬期において空調対象空間の室温よりも低温である外気を利用した外気冷房を行うことが可能な前記空調対象空間に還気系を介し連通する第二の流通路と、
    前記第一の流通路及び第二の流通路に連通すると共に、給気系を介し前記空調対象空間に連通する、給気ファン装置を有する第三の流通路とを備え、
    前記第一の流通路には第一の冷却手段が配置され、
    前記第二の流通路には、第二の冷却手段と、該第二の冷却手段に対して還気流れ方向下流側に位置するよう設置した、加湿水が供給される加湿手段が配設され、
    冷凍機及び冷媒ポンプを含む冷媒循環管路は、第二の弁手段を介して前記第二の冷却手段に連通すると共に、前記第二の弁手段と前記第二の冷却手段の間から分岐して前記第一の冷却手段に第一の弁手段を介して接続され、
    前記第一の冷却手段及び第二の冷却手段の冷媒流れ方向下流側において冷媒循環径路は合流して前記冷凍機に戻るよう構成され、
    外気冷房運転時には、前記第二の弁手段は、前記空調対象空間の熱負荷に対応して制御され、前記第一の弁手段は、閉止されるよう構成されていることを特徴とする空気調和機。
    A first flow passage communicating with an outside air system having an outside air fan device capable of controlling the number of rotations in an intermediate portion;
    A second flow path that communicates with the air-conditioning target space through the return air system that can perform outside air cooling using outside air that is cooler than the room temperature of the air-conditioning target space in the intermediate period and the winter period;
    A third flow path having an air supply fan device that communicates with the first flow path and the second flow path and communicates with the air-conditioning target space through an air supply system;
    A first cooling means is disposed in the first flow path,
    The second flow passage is provided with a second cooling unit and a humidifying unit that is installed on the downstream side in the return air flow direction with respect to the second cooling unit and to which humidified water is supplied. ,
    A refrigerant circulation line including a refrigerator and a refrigerant pump communicates with the second cooling means via the second valve means and branches from between the second valve means and the second cooling means. Connected to the first cooling means via a first valve means,
    The refrigerant circulation path is configured to join and return to the refrigerator on the downstream side in the refrigerant flow direction of the first cooling means and the second cooling means,
    In the outside air cooling operation, the second valve means is controlled in accordance with the heat load of the air-conditioning target space, and the first valve means is configured to be closed. Machine.
  6. 還気系には当該還気系からの還気の一部を排気するための、回転数制御可能な排気ファン装置が連通され、前記外気ファン装置により前記第一の流通路に供給される単位時間当たりの外気の吸引量は、前記排気ファン装置から大気に排出される排気の単位時間当たりの排出量と連動するよう構成した請求項5に記載の空気調和気。 The return air system is connected to an exhaust fan device capable of controlling the rotational speed for exhausting a part of the return air from the return air system, and is supplied to the first flow passage by the outside air fan device. 6. The air-conditioned air according to claim 5, wherein the amount of outside air suction per hour is configured to be linked with the amount of exhaust per unit time of exhaust exhausted from the exhaust fan device to the atmosphere .
  7. 第一の流通路には加熱手段が配置されている請求項1乃至7の何れかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 7 , wherein heating means is disposed in the first flow passage .
JP2005251502A 2005-08-31 2005-08-31 Air conditioner Active JP4499630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251502A JP4499630B2 (en) 2005-08-31 2005-08-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251502A JP4499630B2 (en) 2005-08-31 2005-08-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007064556A JP2007064556A (en) 2007-03-15
JP4499630B2 true JP4499630B2 (en) 2010-07-07

Family

ID=37926953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251502A Active JP4499630B2 (en) 2005-08-31 2005-08-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP4499630B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8151579B2 (en) 2007-09-07 2012-04-10 Duncan Scot M Cooling recovery system and method
JP4966184B2 (en) * 2007-12-28 2012-07-04 株式会社東芝 Air conditioning control device and air conditioning control method
JP5132334B2 (en) * 2008-01-28 2013-01-30 株式会社東芝 Air conditioning control device and air conditioning control system using the same
JP5465953B2 (en) * 2009-08-27 2014-04-09 三機工業株式会社 Outside air-conditioning system and outside air cooling operation method
JP2011141079A (en) * 2010-01-07 2011-07-21 Shimizu Corp Package type air conditioner
JP5623298B2 (en) * 2011-01-13 2014-11-12 三機工業株式会社 Air conditioning system using snow
JP6076591B2 (en) * 2011-09-01 2017-02-08 ダイダン株式会社 Humidification and sterilization air conditioning system and humidification and sterilization air conditioning method
JP5932350B2 (en) 2012-01-18 2016-06-08 株式会社東芝 Air conditioning apparatus and air conditioning control method
TWI479442B (en) * 2013-06-26 2015-04-01 China Steel Corp Central air conditioning user usage estimation method
JP2015059692A (en) * 2013-09-18 2015-03-30 新晃工業株式会社 Air conditioning system
JP2020139663A (en) * 2019-02-27 2020-09-03 株式会社大気社 Air conditioning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082763A (en) * 1999-09-14 2001-03-30 Sogo Setsubi Keikaku:Kk Air conditioner
JP2001263724A (en) * 2000-03-16 2001-09-26 Hitachi Plant Eng & Constr Co Ltd Air-conditioning method and air conditioner
JP2002289241A (en) * 2001-03-27 2002-10-04 Matsushita Seiko Co Ltd Fuel cell
JP2006349276A (en) * 2005-06-17 2006-12-28 Kubota Corp Air conditioner and method for outside air cooling operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082763A (en) * 1999-09-14 2001-03-30 Sogo Setsubi Keikaku:Kk Air conditioner
JP2001263724A (en) * 2000-03-16 2001-09-26 Hitachi Plant Eng & Constr Co Ltd Air-conditioning method and air conditioner
JP2002289241A (en) * 2001-03-27 2002-10-04 Matsushita Seiko Co Ltd Fuel cell
JP2006349276A (en) * 2005-06-17 2006-12-28 Kubota Corp Air conditioner and method for outside air cooling operation

Also Published As

Publication number Publication date
JP2007064556A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
AU2017204552B2 (en) Energy exchange system for conditioning air in an enclosed structure
US8839638B2 (en) Cooling system for electronic equipment
US7430878B2 (en) Air conditioning system and methods
US6976524B2 (en) Apparatus for maximum work
CN103471183B (en) Ground heating type multi-online air-conditioning system
CN102840726B (en) Heat pump and for controlling the method for heat pump
US8036779B2 (en) Air-conditioning system controller
JP4555097B2 (en) Clean room air conditioner
JP2010261696A (en) Outside air cooling type air conditioner for computer room
CN101547803B (en) Air conditioning system for vehicle
JP2005069554A (en) Water heat source air conditioning system
JPWO2012090850A1 (en) Air-conditioning system using outside air, its inside air unit, outside air unit, laminate
EP1632730A2 (en) Ventilator and air conditioner having the same
JP2005195313A (en) Composite air-conditioning system
CN102980248B (en) Outer air-conditioner with air conditioning function
JP5465953B2 (en) Outside air-conditioning system and outside air cooling operation method
JP6414354B1 (en) Air conditioning system
US4300623A (en) Integrated multi-duct dual-stage dual-cooling media air conditioning system
US8408019B2 (en) Air conditioning device utilizing temperature differentiation of exhausted gas to even temperature of external heat exchanger
CN101846368B (en) Solution dehumidifying fresh air handling unit combining heat pump drive and evaporative cooling
US20100077776A1 (en) Air-conditioning method and air-conditioning system
JP2006234378A (en) Heat recovery system having night cold acquisition device
JP4207166B2 (en) Dehumidifying air conditioner
JP5805833B1 (en) Heat pump air conditioner
US7685835B2 (en) Air conditioning system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4499630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250