JP4497640B2 - High voltage switch circuit and X-ray apparatus using the same - Google Patents

High voltage switch circuit and X-ray apparatus using the same Download PDF

Info

Publication number
JP4497640B2
JP4497640B2 JP2000091030A JP2000091030A JP4497640B2 JP 4497640 B2 JP4497640 B2 JP 4497640B2 JP 2000091030 A JP2000091030 A JP 2000091030A JP 2000091030 A JP2000091030 A JP 2000091030A JP 4497640 B2 JP4497640 B2 JP 4497640B2
Authority
JP
Japan
Prior art keywords
voltage
high voltage
printed circuit
series connection
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000091030A
Other languages
Japanese (ja)
Other versions
JP2001284097A (en
Inventor
圭一 茶畑
佐藤  裕
博司 高野
和彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2000091030A priority Critical patent/JP4497640B2/en
Publication of JP2001284097A publication Critical patent/JP2001284097A/en
Application granted granted Critical
Publication of JP4497640B2 publication Critical patent/JP4497640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,医療用または工業用のX線発生用電源装置に係わり,X線管からのX線の放射の停止時に該X線管と並列に接続されたコンデンサの電荷を急放電させて前記X線管のアノ−ドとカソ−ド間の電圧(以下、管電圧と記す)を高速に降下させるための高電圧スイッチ回路を小型にする技術およびこれを用いたX線装置に関する。
【0002】
【従来の技術】
従来から,X線高電圧装置の管電圧を高速に制御する装置が開発されてきた。これらX線高電圧装置では,通常,高電圧変圧器の交流高電圧出力を高電圧整流器で整流し,これを高電圧側に付加したコンデンサや高電圧ケーブルの有している浮遊静電容量などのコンデンサで平滑して直流高電圧をX線管に印加する。
【0003】
この場合,高電圧整流器があるために,前記コンデンサに蓄えられた電荷の放電はX線管を経由するルートしかないため,管電圧を高速で立ち上げることは比較的容易であるが,管電圧を高速に降下させることが困難であるという技術的な課題がある。
【0004】
このため,血管内の血流を動画としてシネフィルムに撮影するシネ撮影や,血管でカテーテルを操作するとき高画質なリアルタイム画像を得るためのパルス透視など,高速なパルス状管電圧が要求されるX線高電圧装置では,管電圧の下降時の波形(以下,波尾と呼ぶ)が問題になる。すなわち,この波尾はX線フィルムやX線テレビ上に形成されるX線画像にはほとんど効果がなく,そのうえ,被検者に対する有害な被曝になりやすい低エネルギーX線がX線管から多量に放射されることになる。これは,特に,インターベンショナルラジオロジーに代表される高画質透視下での医療行為に対しては無効被曝となるものである。
【0005】
さらに,前記管電圧の波尾の期間は,X線管で前記コンデンサに蓄えられた電力を消費することになるので,それだけX線管の内部温度を上昇させ,その寿命を早めたり,パルスX線出力後の許容X線条件を制約するなどの問題が生じる。
【0006】
このような問題を解決する一つの方法として,テトロード(四極真空管)を用いてアノード・カソード間を短絡させて波尾を短縮する方法が特開昭51−6689号に開示されている。しかし、この方法ではテトロードは大型であるのでX線高電圧装置の小型化を阻害し、またテトロード自身も高価でそのうえ消耗品であるが故に定期的な交換が必要となり、経済性の面からも不利である。そこで、これらの問題を解決する方法として、X線管のアノード・カソード間に電流制限用インピーダンスと高電圧スイッチとの直列接続体を設け,高電圧側のコンデンサに蓄積された電荷を高速に放電させる方法が特開平8−212948号に開示されている。この方法は、複数個の電力用半導体スイッチング素子を直列接続し、これらのスイッチング素子を順次スイッチングさせる高電圧スイッチと電流制限インピーダンスとの直列接続回路を前記コンデンサと並列に接続し、X線の放射停止時に前記高電圧スイッチをスイッチングさせて前記コンデンサに蓄積された電荷を急激に放電させ管電圧を高速に降下させるものである。
【0007】
【発明が解決しようとする課題】
しかしながら、上記特開平8−212948号に開示されている高電圧スイッチ回路を実装し、これをX線高電圧装置と組み合わせて実用化しようとすると、従来の方法では高電圧スイッチ回路は非常に大型のものとなる。すなわち、上記高電圧スイッチ回路は、前記コンデンサに充電される高電圧に耐えるために、1素子当たりの耐電圧が数百V以上の電力用半導体スイッチング素子を複数個直列に接続しなければならない。例えば、電力用半導体スイッチング素子に耐電圧が1500VのMOSFET(Metal OXid Silicon Field Effect Transistor)を使用するものとすると、最高管電圧が150kVのX線装置では実用的には20%の余裕を考慮して180kVに耐えるようにしなければならない。この場合、直列接続のMOSFETに印加される電圧を1素子当たり1000Vに設定すると、前記180kVに耐えるようにするためには少なくとも180素子を直列に接続する必要がある。このような構成の高電圧スイッチ回路をX線装置に接続して使用する場合には、前記180個の素子をプリント基板に実装するのが一般的であるが、X線高電圧装置に接続する高電圧スイッチ回路は他分野のスイッチ回路と異なり、高電圧絶縁の課題がある。例えば、医用電器機器UL2601-1の規格(安全問題研究会(UL研究会):1996年5月;P140,表16)である110V/mmの基準に適合させるためには素子間の絶縁距離は約9mmとなり、これを180個の素子の縦横間および配線パターン間に適用すると、プリント基板が大型化し、実用的でない。なお、この場合、上記プリント基板上にスリット等を設けることにより絶縁距離を短くすることも考えられるが、曲げ,たわみに弱くなり,プリント基板の破損,信号線の断線など,信頼性の確保が難しくなる。
【0008】
この他に,プリント基板を分割してプリント基板1枚当りの面積を小さくし,この分割したプリント基板に対応した数に前記180素子を分割してこれらの180素子をプリント基板に搭載する方法も考えられるが、この場合も上記高電圧に耐えるためには分割したプリント基板間に十分な絶縁距離を確保する必要がり、このためプリント基板間の距離およびこれらのプリント基板間に搭載した半導体素子同士を接続する配線の距離が長くなる。このように、プリント基板を分割する上記の方法でも高電圧スイッチ回路が大型化すると共に直列接続の半導体素子を駆動する信号線が長くなり、ノイズなどの影響を受けやすくなるために上記半導体素子の誤動作が懸念される。
【0009】
以上のように、シネ撮影や,パルス透視など,高速なパルス状管電圧とするために上記の大型の高電圧スイッチ回路をX線高電圧装置に接続して用いると、これらを組み合わせて構成するX線装置は非常に大型のものとなる。特に、X線高電圧装置はインバータ式の採用により非常に小型のものとなっており、これと上記高電圧スイッチ回路を組み合わせたX線装置は大型なものとなり、インバータ式X線線高電圧装置の特徴の一つである小型化のメリットがなくなる。
【0010】
そこで、本発明の目的は、小型化と誤動作しない信頼性の高い電力用半導体スイッチング素子を直列接続して構成する高電圧スイッチ回路を提供すると共にこの高電圧スイッチ回路をX線高電圧装置に用いて管電圧を高速に降下させて被曝を低減し、パルス透視等の術式に対応可能なX線装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的は、以下の手段によって達成される。
【0012】
(1)複数の電力用半導体スイッチング素子の直列接続体と、該直列接続体の電力用半導体スイッチング素子を導通制御する導通制御手段とを備え、この導通制御手段により前記直列接続体の複数の電力用半導体スイッチング素子を導通させてスイッチ動作する高電圧スイッチ回路において、前記直列接続体は複数に分割した分割直列接続体を直列に接続した接続体から成り、これらの分割直列接続体の電力用半導体スイッチング素子およびこれを導通制御する回路を前記分割直列接続体に対応して複数の搭載手段に分割して搭載し、前記複数の搭載手段を積層する。
【0013】
(2)上記(1)の複数の搭載手段は、上下交互に90度または180度ずつ回転させて積層する。
【0014】
(3)上記(2)の複数の搭載手段を直列に接続する端子は、該接続線が交差しない位置に配置する。
【0015】
(4)複数の電力用半導体スイッチング素子の直列接続体と、該直列接続体の電力用半導体スイッチング素子を導通制御する導通制御手段とを備え、この導通制御手段により前記直列接続体の複数の電力用半導体スイッチング素子を導通させてスイッチ動作する高電圧スイッチ回路において、前記直列接続体は複数に分割した分割直列接続体を直列に接続した接続体から成り、これらの分割直列接続体の電力用半導体スイッチング素子およびこれを導通制御する回路を前記分割直列接続体に対応して複数の搭載手段の両面にに分割して搭載し、前記複数の搭載手段間に絶縁物を挟んで積層する。
【0016】
(5)上記(4)の搭載手段は、上下交互に90度または180度ずつ回転させて積層する。
【0017】
(6)上記(5)の搭載手段を直列に接続する端子は、該接続線が上下双方同じ位置に配置する。
【0018】
(7)複数の電力用半導体スイッチング素子の直列接続体と、該直列接続体の電力用半導体スイッチング素子を導通制御する導通制御手段とを備え、この導通制御手段により前記直列接続体の複数の電力用半導体スイッチング素子を導通させてスイッチ動作する高電圧スイッチ回路において、前記直列接続体は複数に分割した分割直列接続体を直列に接続した接続体から成り、これらの分割直列接続体の電力用半導体スイッチング素子およびこれを導通制御する回路を前記分割直列接続体に対応して複数の搭載手段の表面と裏面の両面に交互に搭載、配置し、前記複数の搭載手段間に絶縁物を挟んで積層する。
【0019】
(8)上記(7)の搭載手段は、上下交互に90度または180度ずつ回転させて積層する。
【0020】
(9)上記(8)の複数の搭載手段を直列に接続する端子は、該接続線が上下双方同じ位置に配置する。
【0021】
上記(1)〜(9)の手段によって高電圧スイッチ回路の小型化が図られる。また、本発明の目的は以下の手段によって達成される。
【0022】
(10)交流電圧源と,この交流電圧源に一次巻線が接続されその電圧を昇圧する高電圧変圧器と,この高電圧変圧器の二次巻線に接続され昇圧された交流電圧を直流高電圧に変換する高電圧整流器と,この高電圧整流器に接続されこの直流高電圧を平滑するコンデンサと,このコンデンサに接続されたX線管とから成るX線高電圧装置の前記コンデンサと並列に電流制限用インピーダンスを介して上記(1)〜(9)の高電圧スイッチ回路を接続する。
【0023】
このように構成することによって、X線の放射停止時に前記高電圧スイッチ回路をスイッチ動作させて管電圧を急激に降下させ、X線写真に寄与しない低エネルギーX線によるX線被曝を低減できる。
【0024】
【発明の実施の形態】
図1は,本発明の高電圧スイッチ回路をインバータ式X線高電圧装置に適用した例を示す図である。1は血管内の血流を動画としてシネフィルムに撮影するシネ撮影や,血管でカテーテルを操作するとき高画質なリアルタイム画像を得るためのパルス透視などの高速なパルス状管電圧を得るための本発明の高電圧スイッチ回路による波尾切断回路で、これは後述するようにX線管と並列に接続された高電圧側のコンデンサと並列に接続される。
【0025】
10は単相交流電源,11は単相交流電源10に接続されこの交流電圧を直流に変換する整流器,12は整流器11に接続されこの直流電圧を平滑するコンデンサ,13はこのコンデンサ12に接続され平滑された直流電圧を高い周波数(以下、高周波と略記)の交流電圧に変換するインバータ回路,14はこのインバータ回路13に接続され前記高周波の交流電圧を昇圧する高電圧変圧器,15はこの高電圧変圧器14の二次側に接続され昇圧された交流電圧を整流する高電圧整流器,16はこの高電圧整流器15に接続されその出力電圧を平滑する高電圧コンデンサで,これは高電圧整流器15と以下で述べるX線管とを接続する高電圧ケーブルの浮遊静電容量と,必要に応じて追加された平滑用付加コンデンサで構成され、前記波尾切断回路1と並列に接続される。17は高電圧コンデンサ16に接続されたX線管、18は前記X線管17からのX線の放射を指令する制御回路、19は前記制御回路18から出力されるX線の放射信号である。なお、波尾切断回路1には端子2a、2b、2c、2dが設けられ、これらは高電圧整流器15と高電圧コンデンサ16に接続される。
【0026】
図2は上記波尾切断回路1の構成図で、管電圧の波尾切断時に高電圧コンデンサ16の電荷を放電するときの電流を制限するインピーダンス5と、このインピーダンスと直列に接続された高電圧スイッチ回路6とダイオード7とで構成されたパルス遮断回路部4と、前記制御回路18からのX線の放射信号に基づいて前記高電圧スイッチ回路6の半導体スイッチング素子を導通、非導通に制御する駆動信号を生成する駆動制御回路部3とで構成され、これらによる波尾切断回路1の一端には端子2aと2cを、他の一端には端子2bと2dとを設け、前記端子2aと2bは高電圧整流器15の直流高電圧側に、端子2cと2dは前記高電圧コンデンサ16の両端に接続する。
【0027】
図3は図2に示した高電圧スイッチ回路6の具体的回路の一実施例である。この高電圧スイッチ回路6は、スイッチング素子にMOS形電界効果トランジスタMOSFET(Metal OXid Silicon Field Effect Transistor)を用い、これらのスイッチング素子Q1〜Qnを直列に接続して、この直列接続の先頭の素子Q1(以下、この素子を最下段の素子と呼ぶ)から最終の素子Qn(以下、この素子を最上段の素子と呼ぶ)まで順次導通させて高電圧スイッチとしての機能を有するものである。
【0028】
各素子Q1〜Qnには、これらの素子を順次導通させるためのコンデンサC(C1〜Cn)、抵抗Rg(Rg1〜Rgn)、ヒステリシス素子、ここではツェナーダイオード21から成る直列接続体を素子のゲートとこの素子の前段の素子のカソードとの間に接続する。最上段の素子Qnには前記コンデンサCn、抵抗Rgn、ヒステリシス素子21から成る直列接続体をアノードとカソード間に並列に接続し、前記アノードを図2に示したダイオード7のカソードに接続する。各素子Q1〜Qnのゲートとカソード間には過電圧防止用ツェナーダイオードZD1〜ZDnが接続されており、各素子Q1〜Qnの非導通時の電圧分担のバランスを図るための各素子と並列に接続する抵抗は省略している。また、+(プラス)端子は図2のダイオード7のカソードに、−(マイナス)端子は図2の端子2b、2dと高電圧スイッチ6との接続点に接続され、素子Q1のゲートとカソードには駆動制御回路3からの駆動信号が入力され、この駆動信号を発生する駆動制御回路3には制御回路18からのX線放射信号が入力されてX線曝射停止時に前記素子Q1を導通して順次Q1以降の素子を導通させるための信号を生成する。前記スイッチング素子Q1〜Qnと直列のダイオード7は、透視あるいは撮影中に管電圧が急激に下降しても前記スイッチング素子が誤動作しないようにするためのものであるが、このダイオード7のみでも不十分であるので、さらに前記スイッチング素子Q1〜Qnのゲートと直列にヒステリシス特性を有するツェナーダイオード21を設けて、前記Q1〜Qnのゲート電圧が一定の電圧以上になったときにスイッチング素子Q1〜Qnを導通するようにして、管電圧の急激な下降に対しても誤動作することなく確実に動作させるようにしている。次に、このように構成された図1〜図3の回路の動作について説明する。
【0029】
制御回路18からX線放射停止信号が出力されると、駆動制御回路3は高電圧スイッチを導通させる駆動電圧を発生し、この駆動電圧はMOSFETの直列接続体の最下段の素子Q1のゲートとソース間に印加される。駆動電圧が印加されるとQ1は導通し、コンデンサC1に充電されている電圧は抵抗Rg1、ヒステリシス素子としてのツェナーダイオード21を介して次段の素子Q2のゲートに電圧が充電される。このとき、Q2のゲートにはツェナーダイオード21の作用により該ツェナーダイオード21のツェナー電圧以上になって初めて前記ゲートに電圧が充電される。
【0030】
Q2のゲート電圧が該Q2を導通させるに十分な電圧に達するとQ2は導通する。このようにして順次Q3から最上段の素子Qnまで導通して、高電圧スイッチのスイッチング動作が完了し、高電圧コンデンサ16の電荷は電流インピーダンス5を介して急放電し、管電圧を急降下させて高電圧の波尾を切断する。管電圧がパルス遮断回路4に印加されている時にはコンデンサC1〜Cnには管電圧の1/nの電圧が充電されている。管電圧が急激に下降した場合、高電圧スイッチの両端電圧は管電圧に比べて下降電圧分高い電位となる。C1〜Cnにはその電圧の1/nに相当する電圧が余分な電圧となる。この電圧差により,上記したようにゲートには充電する方向に電流は流れるが,ツェナーダイオード21のツェナー電圧に到達するまではゲートには電流が流れない。このため管電圧が急激に下降し,ダイオード7が逆回復動作になった場合でもゲート電圧の上昇が防げ,MOSFETを正常に動作させることができる。この動作において、ツェナー電圧に到達するまでの時間は不感帯となるので、正の電圧と負の電圧における動作はヒステリシス特性を有し,このヒステリシス特性は前記ツェナーダイオード21のツェナー電圧により決定される。このヒステリシス特性を決めるツェナーダイオード21のツェナー電圧は管電圧の変動率に応じて任意に決めれば良い。以上のような構成の高電圧スイッチ回路6は、プリント基板に実装するのが一般的であるが、前記高電圧スイッチ回路6は他分野のスイッチ回路と異なり高電圧絶縁の課題がある。したがって、前記他分野のスイッチ回路のように素子と素子の間に所定の距離を設ける絶縁方法では大型化し、実用的でない。
【0031】
そこで、本発明では、上記高電圧スイッチ回路6のスイッチング素子Q1〜Qnとこれらを駆動するための電気部品(コンデンサC1〜Cn、抵抗Rg1〜Rgn、ツェナーダイオード21、ZD1〜ZDnなど)を分割してプリント基盤に搭載し、これらの分割されたプリント基板間そのものを絶縁物とし、該プリント基版を交互に積層することによって絶縁距離を短縮し小型化を図るようにしたものである。
【0032】
図4はこの方法を用いた高電圧スイッチ回路6の本発明の第一の実施例で、同図(a)は正面図、(b)は側面図である。
【0033】
図4(a)において、プリント基板の素材には絶縁耐量が高く,薄型であるアルミナ製セラミックを用い、一枚のプリント基板には4個のMOSFETを搭載し、これらのMOSFETは半時計周りに順次配置している。
【0034】
1枚目のプリント基板右下のG1端子には、前記駆動制御回路3から出力される駆動信号の出力端子のプラス(+)端子を接続し、前記1枚目のプリント基板右上のS1端子には、前記駆動制御回路3から出力される駆動信号の出力端子のマイナス(−)端子を接続し、前記駆動制御回路3からの駆動信号をMOSFET(Q1)のゲートに入力する。
【0035】
MOSFET(Q1)のドレイン端子はMOSFET(Q2)のソース端子に接続し、このようにして順次4段目のMOSFET(Q4)まで接続する。4段目のMOSFET(Q4)のドレイン端子は1枚目のプリント基板の左下のD4端子に接続し,これは2枚目プリント基板の左下S5端子に接続し,さらにMOSFET(Q5)のソース端子(S5)に接続す。1枚目のプリント基板左上のG5端子は2枚目のプリント基板左上のG5端子に接続し,2枚目のプリント基板のMOSFET(Q5)のゲート端子に接続する。2枚目のプリント基板内においても1枚目と同様に接続し、このような方法により3枚目のプリント基板に接続して順次n枚目まで接続する。ここで,1枚目〜n枚目のプリン基板は同様のプリント基板を180度ずつ回転させ積層している。また,各プリント基板間を接続するための端子(D4とS5,G5とG5)は高電圧が印加される接続線が交差しないように同位置になるよう配置し,プリント基板間の接続は強度の高い銅線を用い,該銅線、すなわちプリント基板間の距離は該プリント基板上の搭載電気部品の高さと絶縁距離を考慮し,最も短い距離になるよう選定する。図4(b)は、このようにして実装された高電圧スイッチ回路で、この回路は、さらに樹脂によるモールド,絶縁紙による補強などの方法をとることにより,さらなる絶縁、強度が増すものとなり、実装における利点が増す。
【0036】
図5は高電圧スイッチ回路6のプリント基板上のMOSFETの配置と,各プリント基板間の接続方法を示す本発明の第二の実施例である。
【0037】
プリント基板の素材,MOSFETの搭載数,配置は第一の実施例と同様である。
【0038】
ここで,プリント基板の形状が正方形の場合,駆動信号のプラス端子(+)は1枚目のプリント基板前部のG1端子に接続し、マイナス(-)端子は1枚目のプリント基板前部のS1端子に接続して,駆動信号をMOSFET(Q1)のゲートとソース間に入力する。
【0039】
MOSFET(Q1)のドレイン端子はMOSFET(Q2)のソース端子に接続し、この方法により順次4段目のMOSFET(Q4)まで接続する。4段目のMOSFET(Q4)のドレイン端子は1枚目のプリント基板の左側下部のD4端子に接続し、2枚目プリント基板左側下部のS5端子に接続する。MOSFET(Q4)のソース端子は1枚目のプリント基板の左側中央部のG5端子に接続し、この端子に2枚目のプリント基板の左側中央部のG5端子に接続し,これは2枚目のプリント基板のMOSFET(Q5)ゲート端子に接続して、該MOSFET(Q5)のゲートとソース間には前記MOSFET(Q4)からの駆動信号が入力される。2枚目のプリント基板内のMOSFET(Q5)〜(Q8)においても1枚目と同様に接続し、MOSFET(Q8)のドレイン端子は2枚目のプリント基板後部左側のD8端子に接続し、この端子は図示省略の3枚目プリント基板後部左側のS9端子を介してMOSFET(Q9)のソース端子(S9)に接続する。
【0040】
そして、2枚目のプリント基板後部中央側のG9端子は図示省略の3枚目のプリント基板後部中央側のG9端子に接続し、この端子に3枚目のプリント基板のMOSFET(Q9)ゲート端子を接続して、3枚目のプリント基板のMOSFET(Q9)ゲートとソース間に前記MOSFET(Q8)からの駆動信号が入力される。このようにして、順次n枚目までMOSFETおよびこれらを駆動する回路の電気部品を接続する。ここで,1枚目〜n枚目のプリン基板はそれぞれ90度ずつ回転させて積層する。
【0041】
また,各プリント基板間を接続するための端子(一枚目と二枚目のプリント基板の場合はD4とS5,G5とG5)は高電圧が印加される接続線が交差しないように同位置になるよう配置し,プリント基板間の接続は強度の高い銅線を用い,その長さはプリント基板上の搭載電気部品の高さと絶縁距離を考慮し,最も短い距離になるよう選定する。また,第2の実施例ではプリント基板間の接続線が積層したプリント基板の4面に配線されるので,第一の実施例に比較し,より強度の高いものとなる。
【0042】
図6は高電圧スイッチ回路6のプリント基板上のMOSFETの配置と,各プリント基板間の接続方法を示す本発明の第三の実施例である。
【0043】
MOSFET(Q1〜Qn)およびこれらを駆動するための電気部品(コンデンサC1〜Cn、抵抗Rg1〜Rgn、ツェナーダイオード21、ZD1〜ZDnなど)はプリント基板8の両面に搭載、配置され,各プリント基板の表面と裏面にそれぞれ各MOSFETおよび電気部品を接続し,前記表面の最上段のMOSFETおよび電気部品から裏面の最下段の各MOSFETおよび電気部品へと接続し、直列接続の高電圧スイッチ回路を構成する。そして,前記分割された複数のプリント基板を180度回転させ積層する。前記プリント基板間を接続する端子は180度回転した場合で双方のプリント基板は同じ位置にあることが必要である。このような方法で積層していく際,各プリント基板間には絶縁紙,樹脂,セラミック等の絶縁物9を挟んで所定の絶縁耐電圧を確保するようにする。
【0044】
なお,上記各プリント基板は図5に示した本発明の第二の実施例のように90度回転させて積層しても同様の効果が得られる。この場合も,プリント基板間を接続する端子は該プリント基板同士は同じ位置にあることが必要である。
【0045】
図7は高電圧スイッチ回路6のプリント基板上のMOSFETの配置と,各プリント基板間の接続方法を示す本発明の第四の実施例である。
【0046】
MOSFET(Q1〜Qn)およびこれらを駆動するための電気部品(コンデンサC1〜Cn、抵抗Rg1〜Rgn、ツェナーダイオード21、ZD1〜ZDnなど)はプリント基板8の両面に搭載、配置し,これらのMOSFETおよび電気部品は表面,裏面と交互に接続する。
【0047】
プリント基板間の接続、すなわち下段のプリント基板と上段の基板間との接続は、前記上下段のプリント基板間の距離が最も近い位置に配置されているMOSFETおよび電気部品が接続されている端子に接続する。図7の実施例では、高電圧スイッチ回路6の最下段のMOSFET(Q1)および電気部品を最下段のプリント基板8の表面に配置したので、このプリント基板の裏面に配置されている最上段のMOSFET(Q6)および電気部品は前記プリント基板8の上段のプリント基板8の表面に配置されている最下段のMOSFET(Q7)および電気部品に接続する。そして、下段のプリント基板に対して上段のプリント基板を180度回転させて積層し、これらのプリント基板間を接続する端子は180度回転した場合でも前記プリント基板同士が同じ位置になるように配置する。さらに、積層していく際,各プリント基板間には絶縁紙,樹脂,セラミック等の絶縁物9を挟んで所定の耐電圧を確保できるように絶縁する。このような方法によって、MOSFETおよび電気部品を直列接続して高電圧スイッチ回路を構成することで、各MOSFETおよび電気部品間の電位差が小さくなり,小型化に有利な絶縁ができる。
【0048】
なお、各プリント基板は本発明の第二の実施例のように90度回転し,積層しても同様の効果が得られる。この場合,プリント基板間を接続する端子は該プリント基板間の位置が同じであることが必要である。
【0049】
図8は本発明による上記各実施例の高電圧スイッチ回路を2組に分割し、図1に示すX線管17のアノード・アース間,アース・カソードに並列に接続する第五の実施例である。この実施例においても上記各実施例と同様の効果が得られる。
【0050】
【発明の効果】
以上、本発明によれば,複数の電力用半導体スイッチング素子およびこれらを駆動する回路の直列接続体で構成する高電圧スイッチ回路において、前記直列接続体を複数に分割しこれらを積層して直列に接続する構成としたので、該高電圧スイッチ回路を従来の積層しない方法に比べて非常に小型にできると共に誤動作しない信頼性の高い高電圧スイッチ回路を提供することができる。そして、この高電圧スイッチ回路をX線高電圧装置に用いて管電圧を高速に降下させることにより(管電圧の波尾切断)、X線画像に寄与しない被検者にとって有害な低エネルギーX線による被曝低減と、前記波尾切断回路を用いたパルス透視等の機能を有するX線装置の小型化、高信頼性化に貢献できるという効果がある。
【図面の簡単な説明】
【図1】本発明の高電圧スイッチ回路をインバータ式X線高電圧装置に適用した例を示す図。
【図2】図1の波尾切断回路の構成図。
【図3】図2の高電圧スイッチ回路の具体的回路図の一例。
【図4】高電圧スイッチ回路のプリント基板の実装を示す本発明の第一の実施例図。
【図5】高電圧スイッチ回路のプリント基板の実装を示す本発明の第二の実施例図。
【図6】高電圧スイッチ回路のプリント基板の実装を示す本発明の第三の実施例図。
【図7】高電圧スイッチ回路のプリント基板の実装を示す本発明の第四の実施例図。
【図8】本発明の各実施例の高電圧スイッチ回路を2組に分割し、これらをX線管のアノード・アース間,アース・カソードに並列に接続する第五の実施例図。
【符号の説明】
1 波尾切断回路、2a,2c アノード側端子、2b,2d カソード側端子、3 駆動制御回路、4 パルス遮断回路、5 電流制限インピーダンス、6 高電圧スイッチ回路 7 ダイオード 8 プリント基板 9 絶縁物10 交流電源、11 整流器、12 第一のコンデンサ、13 インバータ回路、14高電圧変圧器、15 高電圧整流器、16 高電圧コンデンサ、17 X線管、18 制御回路、19 X線曝射信号、21 ツェナーダイオード、 Q1〜Qn 電力用半導体スイッチング素子、C1〜Cn コンデンサ、Rg1〜Rgn 抵抗、ZD1〜ZDn ツェナーダイオード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device for X-ray generation for medical or industrial use, and when the emission of X-rays from the X-ray tube is stopped, the electric charge of a capacitor connected in parallel with the X-ray tube is suddenly discharged. The present invention relates to a technique for miniaturizing a high voltage switch circuit for dropping a voltage between an anode and a cathode of an X-ray tube (hereinafter referred to as tube voltage) at high speed, and an X-ray apparatus using the same.
[0002]
[Prior art]
Conventionally, an apparatus for controlling the tube voltage of an X-ray high voltage apparatus at high speed has been developed. In these X-ray high-voltage devices, the AC high-voltage output of a high-voltage transformer is usually rectified by a high-voltage rectifier, and this is added to the high-voltage side, the floating capacitance of a high-voltage cable, etc. The DC high voltage is applied to the X-ray tube after smoothing with the capacitor.
[0003]
In this case, since there is a high voltage rectifier, the discharge of the electric charge stored in the capacitor has only a route via the X-ray tube, so it is relatively easy to start up the tube voltage at a high speed. There is a technical problem that it is difficult to descend the vehicle at high speed.
[0004]
For this reason, high-speed pulsed tube voltage is required, such as cine imaging that captures blood flow in blood vessels on a cine film, and pulse fluoroscopy to obtain high-quality real-time images when operating a catheter in a blood vessel. In the X-ray high voltage apparatus, the waveform when the tube voltage drops (hereinafter referred to as the wave tail) becomes a problem. In other words, this wave tail has little effect on X-ray images formed on X-ray films and X-ray televisions, and in addition, a large amount of low-energy X-rays that are likely to be harmful exposure to the subject from the X-ray tube. Will be emitted. This is an ineffective exposure especially for medical practices under high-quality fluoroscopy represented by interventional radiology.
[0005]
Further, during the wave tail period of the tube voltage, the electric power stored in the capacitor in the X-ray tube is consumed, so that the internal temperature of the X-ray tube is increased by that amount, and the life of the tube is shortened. Problems such as restricting the allowable X-ray conditions after line output occur.
[0006]
As a method for solving such a problem, Japanese Patent Application Laid-Open No. 51-6689 discloses a method of shortening the wave tail by short-circuiting the anode and the cathode using a tetrode (quadrupole vacuum tube). However, with this method, the tetrode is large, which prevents the miniaturization of the X-ray high-voltage device. Also, the tetrode itself is expensive and is a consumable part, so it needs to be replaced regularly. It is disadvantageous. Therefore, as a method to solve these problems, a series connection body of a current limiting impedance and a high voltage switch is provided between the anode and cathode of the X-ray tube, and the charge accumulated in the capacitor on the high voltage side is discharged at high speed. This method is disclosed in JP-A-8-212948. In this method, a plurality of power semiconductor switching elements are connected in series, and a series connection circuit of a high-voltage switch for sequentially switching these switching elements and a current-limiting impedance is connected in parallel with the capacitor, and X-ray radiation is performed. When stopping, the high voltage switch is switched to rapidly discharge the electric charge accumulated in the capacitor, thereby lowering the tube voltage at a high speed.
[0007]
[Problems to be solved by the invention]
However, when the high voltage switch circuit disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-212948 is mounted and put into practical use in combination with an X-ray high voltage device, the high voltage switch circuit is very large in the conventional method. Will be. That is, in order to withstand the high voltage charged in the capacitor, the high-voltage switch circuit must connect a plurality of power semiconductor switching elements having a withstand voltage per element of several hundred volts or more in series. For example, if a MOSFET (Metal OXid Silicon Field Effect Transistor) with a withstand voltage of 1500 V is used as a power semiconductor switching element, an X-ray device with a maximum tube voltage of 150 kV has practically considered a 20% margin. Must withstand 180kV. In this case, when the voltage applied to the MOSFETs connected in series is set to 1000 V per element, at least 180 elements need to be connected in series in order to withstand the 180 kV. When the high voltage switch circuit having such a configuration is used by being connected to an X-ray apparatus, the 180 elements are generally mounted on a printed board, but are connected to the X-ray high voltage apparatus. High voltage switch circuits, unlike switch circuits in other fields, have the problem of high voltage insulation. For example, in order to meet the standard of 110V / mm, which is the standard of medical equipment UL2601-1 (Safety Problem Study Group (UL Study Group): May 1996; P140, Table 16), the insulation distance between elements is If this is about 9 mm and this is applied between the vertical and horizontal lines of 180 elements and between wiring patterns, the printed circuit board becomes large and impractical. In this case, it is conceivable to shorten the insulation distance by providing a slit or the like on the printed circuit board, but it becomes weak against bending and bending, and it is possible to ensure reliability such as breakage of the printed circuit board and disconnection of the signal line. It becomes difficult.
[0008]
In addition, there is a method of dividing the printed circuit board to reduce the area per printed circuit board, dividing the 180 elements into a number corresponding to the divided printed circuit board, and mounting these 180 elements on the printed circuit board. In this case as well, in order to withstand the above-mentioned high voltage, it is necessary to secure a sufficient insulation distance between the divided printed circuit boards. Therefore, the distance between the printed circuit boards and the semiconductor elements mounted between these printed circuit boards The distance of the wiring connecting is increased. As described above, the above-described method of dividing the printed circuit board also increases the size of the high-voltage switch circuit and increases the length of the signal line for driving the serially connected semiconductor elements. There is concern about malfunction.
[0009]
As described above, in order to obtain a high-speed pulsed tube voltage such as cine imaging and pulse fluoroscopy, the large high-voltage switch circuit is used in combination with an X-ray high-voltage device. The X-ray apparatus is very large. In particular, the X-ray high voltage device is very small due to the adoption of the inverter type, and the X-ray device combining this and the above high voltage switch circuit becomes large, and the inverter type X-ray high voltage device. The advantage of downsizing, which is one of the features, is lost.
[0010]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-voltage switch circuit constituted by connecting in series a highly reliable power semiconductor switching element that is downsized and does not malfunction, and uses the high-voltage switch circuit for an X-ray high-voltage device. An object of the present invention is to provide an X-ray apparatus capable of reducing exposure by reducing the tube voltage at a high speed and adapting to a technique such as pulse fluoroscopy.
[0011]
[Means for Solving the Problems]
The above object is achieved by the following means.
[0012]
(1) It is provided with a series connection body of a plurality of power semiconductor switching elements, and a conduction control means for controlling conduction of the power semiconductor switching elements of the series connection body. In a high-voltage switch circuit that performs a switching operation by conducting a semiconductor switching element for a power supply, the series connection body includes a connection body in which a plurality of divided series connection bodies are connected in series, and the power semiconductors of these divided series connection bodies A switching element and a circuit for controlling conduction thereof are divided and mounted on a plurality of mounting means corresponding to the divided series connection body, and the plurality of mounting means are stacked.
[0013]
(2) The plurality of mounting means of (1) above are stacked by rotating 90 degrees or 180 degrees alternately up and down.
[0014]
(3) The terminals for connecting the plurality of mounting means in (2) in series are arranged at positions where the connection lines do not intersect.
[0015]
(4) A series connection body of a plurality of power semiconductor switching elements, and a conduction control means for controlling conduction of the power semiconductor switching elements of the series connection body, and a plurality of electric powers of the series connection body by the conduction control means. In a high-voltage switch circuit that performs a switching operation by conducting a semiconductor switching element for a power supply, the series connection body includes a connection body in which a plurality of divided series connection bodies are connected in series, and the power semiconductors of these divided series connection bodies A switching element and a circuit for controlling conduction thereof are divided and mounted on both surfaces of a plurality of mounting means corresponding to the divided series connection body, and an insulating material is sandwiched between the plurality of mounting means.
[0016]
(5) The mounting means of (4) above is stacked by rotating 90 degrees or 180 degrees alternately up and down.
[0017]
(6) The terminals for connecting the mounting means of (5) in series are arranged at the same position in both the upper and lower connection lines.
[0018]
(7) A series connection body of a plurality of power semiconductor switching elements, and conduction control means for controlling conduction of the power semiconductor switching elements of the series connection body. In a high-voltage switch circuit that performs a switching operation by conducting a semiconductor switching element for a power supply, the series connection body includes a connection body in which a plurality of divided series connection bodies are connected in series, and the power semiconductors of these divided series connection bodies A switching element and a circuit for controlling conduction thereof are alternately mounted and arranged on both the front and back surfaces of a plurality of mounting means corresponding to the divided series connection body, and stacked with an insulator interposed between the plurality of mounting means. To do.
[0019]
(8) The mounting means of (7) above is laminated by rotating 90 degrees or 180 degrees alternately up and down.
[0020]
(9) The terminals for connecting the plurality of mounting means in (8) in series are arranged such that the connection lines are in the same position both above and below.
[0021]
The high voltage switch circuit can be downsized by the means (1) to (9). The object of the present invention is achieved by the following means.
[0022]
(10) An AC voltage source, a high voltage transformer connected to the AC voltage source and boosted by the primary winding, and a boosted AC voltage connected to the secondary winding of the high voltage transformer In parallel with the capacitor of the X-ray high-voltage apparatus comprising a high-voltage rectifier for converting to a high voltage, a capacitor connected to the high-voltage rectifier and smoothing the DC high voltage, and an X-ray tube connected to the capacitor. The high voltage switch circuits (1) to (9) are connected through the current limiting impedance.
[0023]
With this configuration, the X-ray exposure due to low energy X-rays that do not contribute to X-ray photography can be reduced by causing the high-voltage switch circuit to perform a switching operation when X-ray emission is stopped to drastically lower the tube voltage.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing an example in which the high voltage switch circuit of the present invention is applied to an inverter type X-ray high voltage apparatus. 1 is a book for obtaining high-speed pulsed tube voltage, such as cine imaging for imaging blood flow in blood vessels on a cine film, and pulse fluoroscopy for obtaining high-quality real-time images when operating a catheter in a blood vessel. The wave tail cutting circuit by the high voltage switch circuit of the invention is connected in parallel with a capacitor on the high voltage side connected in parallel with the X-ray tube as will be described later.
[0025]
10 is a single-phase AC power source, 11 is a rectifier that is connected to the single-phase AC power source 10 and converts this AC voltage to DC, 12 is a capacitor that is connected to the rectifier 11 and smoothes this DC voltage, and 13 is connected to this capacitor 12 An inverter circuit that converts the smoothed DC voltage into an AC voltage having a high frequency (hereinafter abbreviated as a high frequency), 14 is connected to the inverter circuit 13 and is a high voltage transformer that boosts the high frequency AC voltage, and 15 is this high voltage A high-voltage rectifier connected to the secondary side of the voltage transformer 14 and rectifies the boosted AC voltage, 16 is a high-voltage capacitor connected to the high-voltage rectifier 15 and smoothes its output voltage. And a stray capacitance of a high voltage cable connecting the X-ray tube described below, and an additional capacitor for smoothing added as necessary, and is connected in parallel with the wave tail cutting circuit 1. 17 is an X-ray tube connected to the high voltage capacitor 16, 18 is a control circuit for instructing X-ray emission from the X-ray tube 17, and 19 is an X-ray emission signal output from the control circuit 18. . The wave tail cutting circuit 1 is provided with terminals 2a, 2b, 2c and 2d, which are connected to a high voltage rectifier 15 and a high voltage capacitor 16.
[0026]
FIG. 2 is a block diagram of the wave tail cutting circuit 1. The impedance 5 for limiting the current when discharging the charge of the high voltage capacitor 16 at the time of wave tail cutting of the tube voltage, and the high voltage connected in series with this impedance. Based on the X-ray radiation signal from the control circuit 18, the semiconductor switching element of the high-voltage switch circuit 6 is controlled to be conductive or non-conductive based on the pulse cutoff circuit unit 4 constituted by the switch circuit 6 and the diode 7. It comprises a drive control circuit unit 3 for generating a drive signal, and the wave tail cutting circuit 1 is provided with terminals 2a and 2c at one end, terminals 2b and 2d at the other end, and the terminals 2a and 2b. Is connected to the DC high voltage side of the high voltage rectifier 15 and terminals 2c and 2d are connected to both ends of the high voltage capacitor 16.
[0027]
FIG. 3 shows an example of a specific circuit of the high voltage switch circuit 6 shown in FIG. This high voltage switch circuit 6 uses MOS field effect transistor MOSFETs (Metal OXid Silicon Field Effect Transistors) as switching elements, and these switching elements Q1 to Qn are connected in series, and the first element Q1 of this series connection is connected. From this (hereinafter, this element is referred to as the lowermost element) to the final element Qn (hereinafter, this element is referred to as the uppermost element) is sequentially conducted to have a function as a high voltage switch.
[0028]
Each element Q1 to Qn has a series connection body composed of a capacitor C (C1 to Cn), a resistor Rg (Rg1 to Rgn), a hysteresis element, and a Zener diode 21 in this case, for sequentially conducting these elements. And the cathode of the element preceding this element. In the uppermost element Qn, a series connection body composed of the capacitor Cn, the resistor Rgn, and the hysteresis element 21 is connected in parallel between the anode and the cathode, and the anode is connected to the cathode of the diode 7 shown in FIG. Zener diodes ZD1 to ZDn for preventing overvoltage are connected between the gate and cathode of each element Q1 to Qn, and connected in parallel to each element to balance the voltage sharing when each element Q1 to Qn is non-conductive. The resistance to be omitted is omitted. Further, the + (plus) terminal is connected to the cathode of the diode 7 in FIG. 2, the − (minus) terminal is connected to the connection point between the terminals 2b and 2d and the high voltage switch 6 in FIG. The drive signal from the drive control circuit 3 is inputted, and the X-ray radiation signal from the control circuit 18 is inputted to the drive control circuit 3 for generating the drive signal, and the element Q1 is turned on when the X-ray exposure is stopped. Then, a signal for conducting the elements after Q1 sequentially is generated. The diode 7 in series with the switching elements Q1 to Qn is for preventing the switching element from malfunctioning even if the tube voltage drops rapidly during fluoroscopy or photographing, but this diode 7 alone is not sufficient. Therefore, a Zener diode 21 having hysteresis characteristics is further provided in series with the gates of the switching elements Q1 to Qn, and the switching elements Q1 to Qn are switched when the gate voltage of the Q1 to Qn becomes a certain voltage or more. It is made to conduct so that it can be reliably operated without malfunction even when the tube voltage suddenly drops. Next, the operation of the circuits of FIGS. 1 to 3 configured as described above will be described.
[0029]
When an X-ray emission stop signal is output from the control circuit 18, the drive control circuit 3 generates a drive voltage for conducting the high voltage switch, and this drive voltage is applied to the gate of the element Q1 at the lowest stage of the MOSFET series connection body. Applied between sources. When a drive voltage is applied, Q1 becomes conductive, and the voltage charged in the capacitor C1 is charged to the gate of the next-stage element Q2 via the resistor Rg1 and the Zener diode 21 as a hysteresis element. At this time, the voltage of the gate of Q2 is not charged until the Zener voltage of the Zener diode 21 exceeds the Zener voltage by the action of the Zener diode 21.
[0030]
Q2 conducts when the gate voltage of Q2 reaches a voltage sufficient to conduct Q2. In this way, the conduction from Q3 to the uppermost element Qn is sequentially performed, and the switching operation of the high voltage switch is completed. The charge of the high voltage capacitor 16 is suddenly discharged through the current impedance 5, and the tube voltage is suddenly lowered. Cut the high voltage wave tail. When the tube voltage is applied to the pulse cutoff circuit 4, the capacitors C1 to Cn are charged with 1 / n of the tube voltage. When the tube voltage drops rapidly, the voltage across the high voltage switch becomes higher than the tube voltage by the drop voltage. A voltage corresponding to 1 / n of the voltage is an extra voltage for C1 to Cn. Due to this voltage difference, a current flows in the charging direction as described above, but no current flows through the gate until the Zener voltage of the Zener diode 21 is reached. For this reason, even when the tube voltage drops rapidly and the diode 7 performs reverse recovery operation, the gate voltage can be prevented from rising and the MOSFET can be operated normally. In this operation, the time until the Zener voltage is reached is a dead zone, and therefore the operation at the positive voltage and the negative voltage has a hysteresis characteristic, and this hysteresis characteristic is determined by the Zener voltage of the Zener diode 21. The Zener voltage of the Zener diode 21 that determines this hysteresis characteristic may be arbitrarily determined according to the fluctuation rate of the tube voltage. The high voltage switch circuit 6 having the above configuration is generally mounted on a printed circuit board. However, the high voltage switch circuit 6 has a problem of high voltage insulation unlike switch circuits in other fields. Therefore, the insulation method in which a predetermined distance is provided between elements as in the case of the switch circuit in the other field increases the size and is not practical.
[0031]
Therefore, in the present invention, the switching elements Q1 to Qn of the high voltage switch circuit 6 and the electric components (capacitors C1 to Cn, resistors Rg1 to Rgn, Zener diode 21, ZD1 to ZDn, etc.) for driving them are divided. The printed circuit board is mounted on a printed board, and the divided printed circuit boards themselves are used as insulators. By alternately laminating the printed base plates, the insulation distance is shortened and the size is reduced.
[0032]
4A and 4B show a first embodiment of the present invention of a high voltage switch circuit 6 using this method. FIG. 4A is a front view and FIG. 4B is a side view.
[0033]
In Fig. 4 (a), the printed circuit board is made of alumina ceramic, which has a high dielectric strength and is thin, and one printed circuit board is equipped with four MOSFETs, and these MOSFETs rotate counterclockwise. They are arranged sequentially.
[0034]
Connect the positive (+) terminal of the output terminal of the drive signal output from the drive control circuit 3 to the G1 terminal at the lower right of the first printed circuit board, and connect it to the S1 terminal at the upper right of the first printed circuit board. Connects the minus (−) terminal of the output terminal of the drive signal output from the drive control circuit 3, and inputs the drive signal from the drive control circuit 3 to the gate of the MOSFET (Q1).
[0035]
The drain terminal of the MOSFET (Q1) is connected to the source terminal of the MOSFET (Q2), and in this way, it is sequentially connected up to the fourth-stage MOSFET (Q4). The drain terminal of the fourth-stage MOSFET (Q4) is connected to the lower left D4 terminal of the first printed circuit board, which is connected to the lower left S5 terminal of the second printed circuit board, and the source terminal of the MOSFET (Q5) Connect to (S5). The G5 terminal at the upper left of the first printed circuit board is connected to the G5 terminal at the upper left of the second printed circuit board, and is connected to the gate terminal of the MOSFET (Q5) on the second printed circuit board. The second printed circuit board is connected in the same manner as the first printed circuit board, and is connected to the third printed circuit board by such a method until the nth printed circuit board is connected. Here, the first to n-th printed circuit boards are laminated by rotating the same printed circuit board by 180 degrees. In addition, the terminals (D4 and S5, G5 and G5) for connecting each printed circuit board are placed at the same position so that the connection lines to which high voltage is applied do not cross each other. The distance between the copper wires, that is, the printed circuit boards, is selected so as to be the shortest distance in consideration of the height of the electric components mounted on the printed circuit board and the insulation distance. FIG. 4B shows a high-voltage switch circuit mounted in this manner. This circuit further increases insulation and strength by taking a method such as molding with resin and reinforcement with insulating paper. Increased benefits in implementation.
[0036]
FIG. 5 shows a second embodiment of the present invention showing the arrangement of MOSFETs on the printed circuit board of the high voltage switch circuit 6 and the method for connecting the printed circuit boards.
[0037]
The material of the printed circuit board, the number of mounted MOSFETs, and the arrangement are the same as in the first embodiment.
[0038]
Here, when the printed circuit board is square, the positive terminal (+) of the drive signal is connected to the G1 terminal on the front of the first printed circuit board, and the negative (-) terminal is the front of the first printed circuit board. The drive signal is input between the gate and source of the MOSFET (Q1).
[0039]
The drain terminal of the MOSFET (Q1) is connected to the source terminal of the MOSFET (Q2), and the MOSFET (Q4) in the fourth stage is sequentially connected by this method. The drain terminal of the fourth-stage MOSFET (Q4) is connected to the D4 terminal on the lower left side of the first printed circuit board and to the S5 terminal on the lower left side of the second printed circuit board. The source terminal of the MOSFET (Q4) is connected to the G5 terminal at the left center of the first printed circuit board, and this terminal is connected to the G5 terminal at the left center of the second printed circuit board. The driving signal from the MOSFET (Q4) is input between the gate and source of the MOSFET (Q5). Connect the MOSFETs (Q5) to (Q8) in the second printed circuit board in the same way as the first one. The drain terminal of the MOSFET (Q8) is connected to the D8 terminal on the left side of the rear side of the second printed circuit board. This terminal is connected to the source terminal (S9) of the MOSFET (Q9) via the S9 terminal on the left side of the rear part of the third printed circuit board (not shown).
[0040]
The G9 terminal on the rear center side of the second printed circuit board is connected to the G9 terminal on the rear center side of the third printed circuit board (not shown), and this terminal is connected to the MOSFET (Q9) gate terminal of the third printed circuit board. Are connected, and the drive signal from the MOSFET (Q8) is input between the MOSFET (Q9) gate and source of the third printed circuit board. In this way, the MOSFETs and the electrical components of the circuit that drives them are sequentially connected up to the nth sheet. Here, the first to n-th printed circuit boards are each rotated by 90 degrees and stacked.
[0041]
Also, the terminals for connecting each printed circuit board (D4 and S5, G5 and G5 in the case of the first and second printed circuit boards) are located at the same position so that the connection lines to which high voltage is applied do not intersect In order to connect the printed circuit boards, high-strength copper wires are used, and the length is selected in consideration of the height of the electrical components mounted on the printed circuit boards and the insulation distance. In the second embodiment, since the connection lines between the printed circuit boards are wired on the four surfaces of the laminated printed circuit boards, the strength is higher than that of the first embodiment.
[0042]
FIG. 6 is a third embodiment of the present invention showing the arrangement of MOSFETs on the printed circuit board of the high voltage switch circuit 6 and the method of connection between the printed circuit boards.
[0043]
MOSFETs (Q1 to Qn) and electrical components for driving them (capacitors C1 to Cn, resistors Rg1 to Rgn, Zener diode 21, ZD1 to ZDn, etc.) are mounted and arranged on both sides of the printed circuit board 8, and each printed circuit board Each MOSFET and electrical component are connected to the front and back surfaces of the board, respectively, and the uppermost MOSFET and electrical components on the front side are connected to the bottom MOSFET and electrical components on the back side to form a series-connected high-voltage switch circuit. To do. Then, the plurality of divided printed boards are rotated by 180 degrees and stacked. The terminals connecting the printed circuit boards are rotated by 180 degrees, and both printed circuit boards need to be in the same position. When laminating by such a method, an insulating material 9 such as insulating paper, resin, or ceramic is sandwiched between the printed boards so as to ensure a predetermined withstand voltage.
[0044]
It is to be noted that the same effect can be obtained even if each printed circuit board is rotated 90 degrees and laminated as in the second embodiment of the present invention shown in FIG. Also in this case, the terminals for connecting the printed boards need to be in the same position.
[0045]
FIG. 7 shows a fourth embodiment of the present invention showing the arrangement of MOSFETs on the printed circuit board of the high voltage switch circuit 6 and the method for connecting the printed circuit boards.
[0046]
MOSFETs (Q1 to Qn) and electrical components for driving them (capacitors C1 to Cn, resistors Rg1 to Rgn, Zener diode 21, ZD1 to ZDn, etc.) are mounted and arranged on both sides of the printed circuit board 8, and these MOSFETs And electrical parts are connected alternately on the front and back sides.
[0047]
The connection between printed circuit boards, that is, the connection between the lower printed circuit board and the upper printed circuit board is connected to the terminal to which the MOSFET and the electrical component are connected at the closest distance between the upper and lower printed circuit boards. Connecting. In the embodiment of FIG. 7, the lowermost MOSFET (Q1) and the electrical components of the high voltage switch circuit 6 are connected to the lowermost printed circuit board 8. 2 Therefore, the uppermost MOSFET (Q6) and electrical components arranged on the back surface of the printed circuit board are the printed circuit board 8. 1 Upper printed circuit board 8 2 Connect to the bottom MOSFET (Q7) and electrical components placed on the surface of the. Then, the upper printed circuit board is rotated by 180 degrees and laminated with respect to the lower printed circuit board, and the terminals connecting these printed circuit boards are arranged so that the printed circuit boards are in the same position even when rotated by 180 degrees. To do. Furthermore, when laminating, insulation is performed so that a predetermined withstand voltage can be secured by sandwiching an insulating material 9 such as insulating paper, resin, or ceramic between the printed boards. By such a method, MOSFETs and electrical components are connected in series to form a high-voltage switch circuit, so that the potential difference between each MOSFET and electrical components is reduced, and insulation that is advantageous for miniaturization can be achieved.
[0048]
Each printed board can be rotated 90 degrees as in the second embodiment of the present invention, and the same effect can be obtained even when stacked. In this case, it is necessary that the terminals connecting the printed circuit boards have the same position between the printed circuit boards.
[0049]
FIG. 8 shows a fifth embodiment in which the high voltage switch circuit of each of the above embodiments according to the present invention is divided into two sets and connected in parallel between the anode and the earth of the X-ray tube 17 shown in FIG. is there. Also in this embodiment, the same effects as those in the above embodiments can be obtained.
[0050]
【The invention's effect】
As described above, according to the present invention, in a high-voltage switch circuit constituted by a plurality of power semiconductor switching elements and a series connection body for driving the power semiconductor switching elements, the series connection body is divided into a plurality of layers and stacked in series. Since it is configured to be connected, the high voltage switch circuit can be made very small as compared with the conventional non-stacked method, and a highly reliable high voltage switch circuit that does not malfunction can be provided. Then, by using this high voltage switch circuit for an X-ray high voltage device, the tube voltage is lowered at a high speed (cutting off the wave tail of the tube voltage), which is harmful to the subject who does not contribute to the X-ray image. There is an effect that it is possible to contribute to the reduction in size and the high reliability of an X-ray apparatus having functions such as pulse exposure using the wave tail cutting circuit.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example in which a high voltage switch circuit of the present invention is applied to an inverter type X-ray high voltage device.
FIG. 2 is a configuration diagram of the wave tail cutting circuit of FIG. 1;
3 is an example of a specific circuit diagram of the high voltage switch circuit of FIG. 2;
FIG. 4 is a first embodiment of the present invention showing mounting of a printed circuit board of a high voltage switch circuit.
FIG. 5 is a diagram of a second embodiment of the present invention showing mounting of a printed circuit board of a high voltage switch circuit.
FIG. 6 is a diagram of a third embodiment of the present invention showing mounting of a printed circuit board of a high voltage switch circuit.
FIG. 7 is a diagram of a fourth embodiment of the present invention showing mounting of a printed circuit board of a high voltage switch circuit.
FIG. 8 is a diagram of a fifth embodiment in which the high voltage switch circuit of each embodiment of the present invention is divided into two sets and these are connected in parallel between the anode and the earth of the X-ray tube and to the earth and the cathode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wave tail cutting circuit, 2a, 2c Anode side terminal, 2b, 2d Cathode side terminal, 3 Drive control circuit, 4 Pulse interruption circuit, 5 Current limiting impedance, 6 High voltage switch circuit 7 Diode 8 Printed board 9 Insulator 10 AC Power supply, 11 Rectifier, 12 First capacitor, 13 Inverter circuit, 14 High voltage transformer, 15 High voltage rectifier, 16 High voltage capacitor, 17 X-ray tube, 18 Control circuit, 19 X-ray exposure signal, 21 Zener diode Q1-Qn Power semiconductor switching element, C1-Cn capacitor, Rg1-Rgn resistance, ZD1-ZDn Zener diode

Claims (2)

複数の電力用半導体スイッチング素子の直列接続体と、該直列接続体の電力用半導体スイッチング素子を導通制御する導通制御手段とを備え、この導通制御手段により前記直列接続体の複数の電力用半導体スイッチング素子を導通させてスイッチ動作する高電圧スイッチ回路において、前記直列接続体は複数に分割した分割直列接続体を直列に接続した接続体から成り、これらの分割直列接続体の電力用半導体スイッチング素子は、プリント基板上に一定周回方向に配置され、且つ、分割直列接続体の最端となる2つの電力用半導体スイッチング素子の端子は、前記プリント基板の互いに90度異なる辺の近辺に各々配置されると共に、該プリント基板を順次90度回転し積層させ、隣接したプリント基板上の分割直列接続体同士を高強度の導電部材により直列接続した前記直列接続体を備えることを特徴とする高電圧スイッチ回路。A series connection body of a plurality of power semiconductor switching elements, and conduction control means for controlling conduction of the power semiconductor switching elements of the series connection body, the plurality of power semiconductor switching of the series connection body by the conduction control means In the high-voltage switch circuit that performs switching operation by conducting the element, the series connection body includes a connection body in which a plurality of divided series connection bodies are connected in series, and the power semiconductor switching elements of these divided series connection bodies are The terminals of the two power semiconductor switching elements, which are arranged on the printed circuit board in a fixed circulation direction and are the endmost parts of the divided series connection body, are respectively arranged in the vicinity of the 90 degrees different sides of the printed circuit board. In addition, the printed circuit boards are sequentially rotated by 90 degrees and stacked, and the divided series connection bodies on the adjacent printed circuit boards are connected to each other with a high-strength conductive portion. High voltage switch circuit, characterized in that it comprises the series connection connected in series through. 交流電圧源とこの交流電圧源に一次巻線が接続されその電圧を昇圧する高電圧変圧器とこの高電圧変圧器の二次巻線に接続され昇圧された交流電圧を直流高電圧に変換する高電圧整流器とこの高電圧整流器に接続されこの直流高電圧を平滑するコンデンサとこのコンデンサに接続されたX線管とから成るX線高電圧装置の前記コンデンサと並列に電流制限用インピーダンスを介して請求項に記載の高電圧スイッチ回路を接続したことを特徴とするX線装置。An AC voltage source , a high voltage transformer connected to the AC voltage source with a primary winding to boost the voltage, and a boosted AC voltage connected to the secondary winding of the high voltage transformer to a DC high voltage a high voltage rectifier which converts the capacitor for this is connected to the high voltage rectifier smoothing the high DC voltage, current limiting in parallel with the capacitor of the X-ray high voltage apparatus comprising a connected X-ray tube to the condenser An X-ray apparatus comprising the high-voltage switch circuit according to claim 1 connected through an impedance.
JP2000091030A 2000-03-29 2000-03-29 High voltage switch circuit and X-ray apparatus using the same Expired - Fee Related JP4497640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091030A JP4497640B2 (en) 2000-03-29 2000-03-29 High voltage switch circuit and X-ray apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091030A JP4497640B2 (en) 2000-03-29 2000-03-29 High voltage switch circuit and X-ray apparatus using the same

Publications (2)

Publication Number Publication Date
JP2001284097A JP2001284097A (en) 2001-10-12
JP4497640B2 true JP4497640B2 (en) 2010-07-07

Family

ID=18606546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091030A Expired - Fee Related JP4497640B2 (en) 2000-03-29 2000-03-29 High voltage switch circuit and X-ray apparatus using the same

Country Status (1)

Country Link
JP (1) JP4497640B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392746B2 (en) 2003-05-23 2010-01-06 株式会社日立メディコ X-ray high voltage device
JP4796855B2 (en) * 2006-01-31 2011-10-19 株式会社ネットコムセック Power supply device and high-frequency circuit system
JP5335185B2 (en) * 2006-10-16 2013-11-06 株式会社日立メディコ High voltage generator
JP5216270B2 (en) * 2007-08-03 2013-06-19 株式会社日立メディコ High voltage switch control circuit and X-ray apparatus using the same
US7791175B2 (en) * 2007-12-20 2010-09-07 Mosaid Technologies Incorporated Method for stacking serially-connected integrated circuits and multi-chip device made from same
US8399973B2 (en) * 2007-12-20 2013-03-19 Mosaid Technologies Incorporated Data storage and stackable configurations
JP5768518B2 (en) * 2011-06-13 2015-08-26 日産自動車株式会社 Fuel cell system
WO2013001434A1 (en) * 2011-06-30 2013-01-03 Koninklijke Philips Electronics N.V. Signal and power supply transmission
JP6146739B2 (en) * 2013-06-04 2017-06-14 京都電機器株式会社 DC high voltage power supply
JP6127287B2 (en) * 2013-06-18 2017-05-17 京都電機器株式会社 Circuit unit
KR101529041B1 (en) 2013-08-22 2015-06-16 삼성전자 주식회사 X-ray generator, x-ray imaging apparatus and control method for the x-ray generator
EP4096083A4 (en) * 2020-01-24 2023-07-26 Mitsubishi Electric Corporation Booster circuit and voltage generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164261A (en) * 1986-12-26 1988-07-07 Hitachi Ltd Semiconductor device
JPH0426152A (en) * 1990-05-22 1992-01-29 Matsushita Electric Ind Co Ltd Packaged structure body
JPH0669279A (en) * 1992-08-18 1994-03-11 Nippon Steel Corp Mounting structure for semiconductor device
JPH0878616A (en) * 1994-09-02 1996-03-22 Fujitsu Ltd Multi-chip module
JPH10189286A (en) * 1996-12-25 1998-07-21 Origin Electric Co Ltd Pulse power supply device for electron tube
JPH11214448A (en) * 1998-01-27 1999-08-06 Oki Electric Ind Co Ltd Semiconductor device and method for manufacturing semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3465979B2 (en) * 1995-02-02 2003-11-10 オリジン電気株式会社 X-ray power supply
JPH0937558A (en) * 1995-07-14 1997-02-07 Yokogawa Electric Corp Inverter device
US6215850B1 (en) * 1998-12-22 2001-04-10 General Electric Company X-ray beam control for an imaging system
JP2001230098A (en) * 2000-02-15 2001-08-24 Hitachi Medical Corp High voltage switch circuit and x ray high voltage device using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164261A (en) * 1986-12-26 1988-07-07 Hitachi Ltd Semiconductor device
JPH0426152A (en) * 1990-05-22 1992-01-29 Matsushita Electric Ind Co Ltd Packaged structure body
JPH0669279A (en) * 1992-08-18 1994-03-11 Nippon Steel Corp Mounting structure for semiconductor device
JPH0878616A (en) * 1994-09-02 1996-03-22 Fujitsu Ltd Multi-chip module
JPH10189286A (en) * 1996-12-25 1998-07-21 Origin Electric Co Ltd Pulse power supply device for electron tube
JPH11214448A (en) * 1998-01-27 1999-08-06 Oki Electric Ind Co Ltd Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2001284097A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP4497640B2 (en) High voltage switch circuit and X-ray apparatus using the same
US10361650B2 (en) Half-bridge switching circuit system
US7130203B2 (en) Switching power supply with a snubber circuit
JP2004349149A (en) X-ray high-voltage device
EP3097635A1 (en) Resonant step-down dc-dc power converters
JP2010104135A (en) Power conversion apparatus and electrical machine system for mobile
EP1189333A1 (en) Switching power supply
KR101529041B1 (en) X-ray generator, x-ray imaging apparatus and control method for the x-ray generator
JP5935672B2 (en) Switching element unit
WO2006052032A1 (en) Power converter
US20170294859A1 (en) Half-bridge switching circuit system
US6590788B2 (en) Intrinsically safe universal switching power supply
JP7509424B2 (en) Apparatus and method with power conversion using multiple rectifier circuits
JP2015198545A (en) Power conversion device, and railway vehicle with the same mounted thereon
JP2003257697A (en) High voltage generating device for x-rays
JP2017212837A (en) Drive power supply device for voltage-driven semiconductor switching element, and control method therefor
US10164530B2 (en) Boost chopper circuit including switching device circuit and backflow prevention diode circuit
JP2001284095A (en) High voltage switching circuit and x-ray system equipped with ab0ve circuit
JP4349642B2 (en) X-ray high voltage device
JP2001319799A (en) X-ray high voltage device
JP2001230098A (en) High voltage switch circuit and x ray high voltage device using same
JP4487682B2 (en) Capacitor and installation method
JPH10106793A (en) Pulse x-ray device
JP4959065B2 (en) X-ray high voltage device
JP4104191B2 (en) X-ray high voltage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees