JP4497558B1 - Bathing facilities - Google Patents

Bathing facilities Download PDF

Info

Publication number
JP4497558B1
JP4497558B1 JP2009289685A JP2009289685A JP4497558B1 JP 4497558 B1 JP4497558 B1 JP 4497558B1 JP 2009289685 A JP2009289685 A JP 2009289685A JP 2009289685 A JP2009289685 A JP 2009289685A JP 4497558 B1 JP4497558 B1 JP 4497558B1
Authority
JP
Japan
Prior art keywords
hot water
electrode
bathtub
electrolyzed water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009289685A
Other languages
Japanese (ja)
Other versions
JP2010284504A (en
Inventor
博 田村
圭三 岩井
克則 結城
末博 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Manufacturing Co Ltd
Original Assignee
Chugoku Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Manufacturing Co Ltd filed Critical Chugoku Electric Manufacturing Co Ltd
Priority to JP2009289685A priority Critical patent/JP4497558B1/en
Application granted granted Critical
Publication of JP4497558B1 publication Critical patent/JP4497558B1/en
Publication of JP2010284504A publication Critical patent/JP2010284504A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 電気分解によりアルカリイオン水を得る際に酸性イオン水を減少させる。
【解決手段】 正電極15及び負電極16に挟まれて陽イオン交換膜12が設けられ、負電極16と陽イオン交換膜12の間の陰極側の通路に水道水を流通させる経路21を備え、陽イオン交換膜12を正電極15に密着して設け、正電極15側の陽イオン交換膜12に対してはHイオンが透過する湿潤状況にして水素ガスの気泡を負電極16に生成し、陽イオン交換膜12に水酸イオンOH-を透過させずに酸素イオンの発生を抑制して酸性イオン水を減少させる。
【選択図】 図3
PROBLEM TO BE SOLVED: To reduce acidic ion water when obtaining alkaline ion water by electrolysis.
SOLUTION: A cation exchange membrane 12 is provided sandwiched between a positive electrode 15 and a negative electrode 16, and a passage 21 through which tap water is circulated in a cathode side passage between the negative electrode 16 and the cation exchange membrane 12 is provided. The cation exchange membrane 12 is provided in close contact with the positive electrode 15, and hydrogen gas bubbles are generated in the negative electrode 16 in a wet state where H + ions permeate the cation exchange membrane 12 on the positive electrode 15 side. Then, the generation of oxygen ions is suppressed without allowing the hydroxide ions OH to permeate through the cation exchange membrane 12, thereby reducing acidic ion water.
[Selection] Figure 3

Description

本発明は、水素含有電解水を用いた入浴設備に関する。   The present invention relates to a bathing facility using hydrogen-containing electrolyzed water.

水道水から水素含有電解水(アルカリイオン水)及び酸性イオン水を生成するアルカリイオン整水器(水素含有電解水生成装置)として、陽極、陰極の電極間にイオン交換膜を介在させ、水の電気分解作用を利用して、水素含有電解水と酸性イオン水とに分離生成するビルトインタイプの整水器が知られている(例えば、特許文献1参照)。   As an alkaline ion adjuster (hydrogen-containing electrolyzed water generator) that generates hydrogen-containing electrolyzed water (alkaline ion water) and acidic ion water from tap water, an ion exchange membrane is interposed between the anode and cathode electrodes, A built-in type water conditioner that separates and generates hydrogen-containing electrolyzed water and acidic ionic water using electrolysis is known (for example, see Patent Document 1).

一方、新陳代謝の低下等により体内の脂肪が充分に代謝されずに脂肪細胞の周りに固まりとなる脂肪塊が発生することがある。美容志向、健康志向の高まりから脂肪塊の存在がクローズアップされてきている。また、血液は酸化ストレスを受けると、赤血球の表面が粘着力を持ち表面同士がくっついて凝集し(溶血し)、動脈硬化の原因になることがある。   On the other hand, due to a decrease in metabolism or the like, fat in the body is not fully metabolized, and a fat mass that becomes a mass around fat cells may be generated. The presence of fat mass has been highlighted due to the rise in beauty and health orientation. In addition, when blood is subjected to oxidative stress, the surfaces of red blood cells have an adhesive force and the surfaces adhere to each other and aggregate (hemolyze), which may cause arteriosclerosis.

脂肪塊の抑制や酸化ストレスの抑制にはサプリメントの服用が効果的であることが知られているが、サプリメントの服用に関する副作用等の問題があるのも実情である。このため、水素含有電解水による入浴により肌を活性化させて脂肪塊を抑制したり、血液の溶血を抑制することが注目されてきている。入浴に用いる水素含有電解水は、アルカリイオン整水器を用いて水道水から得るのが一般的である。   It is known that taking supplements is effective in suppressing fat mass and oxidative stress, but there are also problems such as side effects associated with taking supplements. For this reason, attention has been focused on activating the skin by bathing with hydrogen-containing electrolyzed water to suppress fat mass and to suppress hemolysis of blood. The hydrogen-containing electrolyzed water used for bathing is generally obtained from tap water using an alkali ion water conditioner.

しかし、水道水から水素含有電解水を得る場合、入浴用として所定の温度に維持する時間が必要であり、また、水素の溶存量は時間と共に減少し、酸化還元電位も高くなり還元力が低下してしまう。このため、水道水から得た水素含有電解水を入浴用に用いる場合、脂肪塊の抑制や血液の溶血の抑制に効果的な状態を持続させることが困難な状況であった。   However, when obtaining hydrogen-containing electrolyzed water from tap water, it is necessary to maintain a predetermined temperature for bathing, and the amount of dissolved hydrogen decreases with time, and the redox potential increases and the reducing power decreases. Resulting in. For this reason, when hydrogen-containing electrolyzed water obtained from tap water is used for bathing, it was difficult to maintain an effective state for suppressing fat mass and blood hemolysis.

特開平10−192858号公報JP-A-10-192858

本発明は上記状況に鑑みてなされたもので、還元力を持続させた水素含有電解水を入浴用に用いることができる入浴設備を提供することを目的とする。   This invention is made | formed in view of the said condition, and it aims at providing the bathing equipment which can use the hydrogen containing electrolyzed water which maintained the reducing power for bathing.

上記目的を達成するための請求項1に係る本発明の入浴設備は、陽極、陰極一対の電極に挟まれてイオン交換膜が電解槽内に備えられ、電気分解により水素含有電解水を得る電解水生成手段と、入浴用の湯が貯められる浴槽と、前記浴槽に貯められた湯を前記電解水生成手段に送るとともに前記電解水生成手段で生成された水素含有電解水を循環流体として前記浴槽に循環させる循環経路とを備え、前記電解水生成手段は、陰極側の前記電極及び陽極側の前記電極がそれぞれメッシュ状に形成され、陰極側の通路に循環流体を流通させる流通路を備え、前記イオン交換膜が、陽イオン交換膜であると共に陽極側の前記電極に密着して前記流通路に対向し、更に、前記電解水生成手段は、陽極側の前記電極が円筒状とされて外周部に円筒状の前記陽イオン交換膜が密着され、前記陽イオン交換膜が密着された陽極側の前記電極の外周に円筒状の陰極側の前記電極が配され、前記流通路が、陽極側の前記電極と陰極側の前記電極との間が前記循環流体の流入側とされると共に、陰極側の前記電極の外側が前記循環流体の流出側とされて水素含有電解水が流出されることを特徴とする。 In order to achieve the above object, the bathing equipment of the present invention according to claim 1 is an electrolysis in which an ion exchange membrane is provided in an electrolytic cell sandwiched between a pair of electrodes of an anode and a cathode, and hydrogen-containing electrolyzed water is obtained by electrolysis. A water generation means; a bathtub in which hot water for bathing is stored; and the hot water stored in the bathtub is sent to the electrolysis water generation means and the hydrogen-containing electrolyzed water generated in the electrolysis water generation means is used as the circulating fluid in the bathtub. And the electrolyzed water generating means includes a flow passage in which the electrode on the cathode side and the electrode on the anode side are each formed in a mesh shape, and a circulation fluid is circulated through the passage on the cathode side, The ion exchange membrane is a cation exchange membrane and is in close contact with the electrode on the anode side so as to face the flow path. Further, the electrolyzed water generating means has an outer periphery in which the electrode on the anode side is cylindrical. Cylindrical front part The cation exchange membrane is in close contact, and the cylindrical cathode side electrode is arranged on the outer periphery of the anode side electrode to which the cation exchange membrane is in close contact, and the flow path is formed between the anode side electrode and the cathode side. The circulating fluid is inflow side between the electrodes and the outside of the electrode on the cathode side is the outflow side of the circulating fluid so that hydrogen-containing electrolyzed water flows out .

請求項1に係る本発明では、浴槽と電解水生成手段の間で水素含有電解水を循環させることで、還元力が持続している水素含有電解水を浴槽の湯とすることができる。このため、還元力を持続させた水素含有電解水を入浴用に用いることが可能になる。
また、陽イオン交換膜が陽極側の電極に密着して流通路に対向しているので、陽極側の電極側の陽イオン交換膜に対しては水素イオンH が透過する湿潤状況にすることで、水素イオンの気泡を陰極側の電極に生成させることができると共に、水酸イオンOH は陽イオン交換膜を透過しないので酸素イオンの発生が抑制され、酸性イオン水を減少させることができる。また、陰極側の電極がメッシュ状に形成されているので、電極に生成される水素ガスの泡のぬれ角を小さくすることができ、水素ガスの泡を小さい状態で離脱させることができ、水素ガスがナノバブルとされた水素含有電解水を浴槽に送ることができる。
更に、円筒状の電解槽を有する電解水生成手段となり、循環系等の配管に容易に設置することができ、既存の給湯設備に対しても設置が容易となる。
In this invention which concerns on Claim 1, the hydrogen containing electrolyzed water with which the reducing power is maintained can be made into the hot water of a bathtub by circulating hydrogen containing electrolyzed water between a bathtub and an electrolyzed water production | generation means. For this reason, it becomes possible to use the hydrogen containing electrolyzed water which maintained the reducing power for bathing.
Further, since the cation exchange membrane is in close contact with the electrode on the anode side and is opposed to the flow path, the cation exchange membrane on the electrode side on the anode side should be in a wet condition where hydrogen ions H + permeate. in the bubbles of the hydrogen ions it is possible to produce the electrode of the cathode side, hydroxide ion OH - generation of oxygen ions does not transmit the cation exchange membrane is suppressed, thereby reducing the acid ion water . Further, since the cathode-side electrode is formed in a mesh shape, the wetting angle of hydrogen gas bubbles generated on the electrode can be reduced, hydrogen gas bubbles can be released in a small state, Hydrogen-containing electrolyzed water in which the gas is nanobubbles can be sent to the bathtub.
Furthermore, it becomes an electrolyzed water production | generation means which has a cylindrical electrolytic vessel, can be easily installed in piping, such as a circulation system, and installation becomes easy also with respect to the existing hot water supply equipment.

そして、請求項2に係る本発明の入浴設備は、請求項1に記載の入浴設備において、前記電解水生成手段が前記浴槽に給湯を行う給湯手段の給湯経路に備えられ、前記循環経路と前記給湯経路を切換える切換え手段を備えたことを特徴とする。   The bathing facility of the present invention according to claim 2 is the bathing facility according to claim 1, wherein the electrolytic water generating means is provided in a hot water supply path of hot water supply means for supplying hot water to the bathtub, and the circulation path and the Switching means for switching the hot water supply path is provided.

請求項2に係る本発明では、給湯手段からの湯を電気分解して還元力を有する水素含有電解水とし浴槽に給湯を行うことで、水素含有電解水を浴槽の湯として給湯することができる。給湯後は、切換え手段により浴槽の湯を循環経路で循環させることで、浴槽と電解水生成手段の間で水素含有電解水が循環し、還元力が持続した状態が維持される。   In this invention which concerns on Claim 2, the hot water from a hot-water supply means is electrolyzed, it can be made into hydrogen-containing electrolyzed water which has a reducing power, and hot water is supplied to a bathtub, and hydrogen-containing electrolyzed water can be supplied as hot water of a bathtub. . After the hot water supply, the hot water in the bathtub is circulated in the circulation path by the switching means, whereby the hydrogen-containing electrolytic water is circulated between the bathtub and the electrolytic water generating means, and the state in which the reducing power is maintained is maintained.

また、請求項3に係る本発明の入浴設備は、請求項2に記載の入浴設備において、前記給湯手段は、ヒートポンプにより得られた温水を貯留する貯湯タンクを備え、前記貯湯タンクに貯留された前記温水が前記給湯経路から前記浴槽に送られることを特徴とする。また、請求項4に係る本発明の入浴設備は、請求項3に記載の入浴設備において、前記貯湯タンクからの温水を熱媒体として前記循環経路の前記循環流体を昇温する熱交換器を備えたことを特徴とする。   The bathing facility of the present invention according to claim 3 is the bathing facility according to claim 2, wherein the hot water supply means includes a hot water storage tank for storing hot water obtained by a heat pump, and is stored in the hot water storage tank. The hot water is sent from the hot water supply path to the bathtub. The bathing facility according to a fourth aspect of the present invention is the bathing facility according to the third aspect, further comprising a heat exchanger that raises the temperature of the circulating fluid in the circulation path using hot water from the hot water storage tank as a heat medium. It is characterized by that.

請求項3及び請求項4に係る本発明では、ヒートポンプにより給湯用の湯の熱エネルギーを得る給湯設備を用いた入浴設備とすることができる。   In this invention which concerns on Claim 3 and Claim 4, it can be set as the bathing facility using the hot water supply equipment which obtains the thermal energy of the hot water for hot water supply with a heat pump.

また、請求項5に係る本発明の入浴設備は、請求項1から請求項4のいずれか一項に記載の入浴設備において、陽極側の前記電極の内周側に陽極側流路を備え、前記陽極側流路への前記循環流体の流入量を規制する規制部材を前記陽極側流路に備えたことを特徴とする。 Moreover, the bathing facility of the present invention according to claim 5 is the bathing facility according to any one of claims 1 to 4 , wherein an anode-side flow path is provided on the inner peripheral side of the electrode on the anode side, The anode side flow path is provided with a regulating member for regulating an inflow amount of the circulating fluid into the anode side flow path .

請求項5に係る本発明では、陽極側に流入する循環流体の量が規制部材により規制されて制限されることで、酸性イオン水を最小限に減少させることができ、電解水生成手段での排水を大幅に減少させることができる。 With the present invention according to claim 5, that the amount of the circulating fluid flowing into the anode side is restricted is regulated by the regulating member, it can be reduced to a minimum acidic ionized water, in the electrolytic water producing means Drainage can be greatly reduced.

また、請求項6に係る本発明の入浴設備は、陽極、陰極一対の電極に挟まれてイオン交換膜が電解槽内に備えられ、電気分解により水素含有電解水を得る電解水生成手段と、入浴用の湯が貯められる浴槽と、前記浴槽に貯められた湯を前記電解水生成手段に送るとともに前記電解水生成手段で生成された水素含有電解水を循環流体として前記浴槽に循環させる循環経路とを備え、前記電解水生成手段は、陰極側の前記電極及び陽極側の前記電極がそれぞれメッシュ状に形成され、前記イオン交換膜が、イオンと共に水粒子を通す中性膜であり、陽極側の前記電極が円筒状とされて外周部に円筒状の前記中性膜が密着され、前記中性膜が密着された陽極側の前記電極の外周に円筒状の陰極側の前記電極が配され、陽極側の前記電極と陰極側の前記電極との間が循環流体の流入側とされると共に、陰極側の前記電極の外側が前記循環流体の流出側とされて水素含有電解水が流出され、前記陽極側の前記電極の内側の電解水に発生する酸素ガスを脱気する脱気手段を前記陽極側の前記電極の内側の流路に備えたことを特徴とする。 Further, the bathing facilities of the present invention according to claim 6, anode, sandwiched cathode pair of electrodes the ion exchange membrane provided in the electrolytic cell, the electrolytic water producing means to obtain a hydrogen-containing electrolytic water by electrolysis, A bathtub in which hot water for bathing is stored, and a circulation path for sending the hot water stored in the bathtub to the electrolyzed water generating means and circulating the hydrogen-containing electrolyzed water generated by the electrolyzed water generating means to the bathtub as a circulating fluid The electrolyzed water generating means includes a cathode-side electrode and an anode-side electrode formed in a mesh shape, and the ion-exchange membrane is a neutral membrane that passes water particles together with ions, and the anode side The cylindrical neutral film is in close contact with the outer periphery of the electrode, and the cylindrical cathode side electrode is disposed on the outer periphery of the anode side electrode in which the neutral film is in close contact. In front of the electrode on the anode side and the cathode side Between the electrodes is the inflow side of the circulating fluid, and the outside of the electrode on the cathode side is the outflow side of the circulating fluid so that hydrogen-containing electrolyzed water flows out, and electrolysis inside the electrode on the anode side is performed. A degassing means for degassing oxygen gas generated in water is provided in a flow path inside the electrode on the anode side .

請求項6に係る本発明では、浴槽と電解水生成手段の間で水素含有電解水を循環させることで、還元力が持続している水素含有電解水を浴槽の湯とすることができる。このため、還元力を持続させた水素含有電解水を入浴用に用いることが可能になる。
また、酸性水の発生がなく、陽極側で生成される電解水は中成膜を透過して水素イオンH の還元で水素に変わり、陽極側の電極の内側の流路の電解水に発生する酸素ガスを脱気手段で放出することにより、酸性排水を一切伴わずに水素含有電解水を得ることができる。
また、電極がメッシュ状に形成されているので、電極に生成される水素ガスの泡のぬれ角を小さくすることができ、水素ガスの泡を小さい状態で離脱させることができ、水素ガスがナノバブルとされた水素含有電解水を浴槽に送ることができる。
In this invention which concerns on Claim 6 , hydrogen-containing electrolyzed water with which reducing power is maintained can be made into the hot water of a bathtub by circulating hydrogen-containing electrolyzed water between a bathtub and electrolyzed water production | generation means. For this reason, it becomes possible to use the hydrogen containing electrolyzed water which maintained the reducing power for bathing.
In addition, there is no generation of acidic water, and electrolyzed water produced on the anode side passes through the middle film and turns into hydrogen by reduction of hydrogen ions H + , and is generated in the electrolyzed water in the channel inside the electrode on the anode side. By releasing the oxygen gas to be discharged by the deaeration means, hydrogen-containing electrolyzed water can be obtained without any acidic drainage.
Moreover, since the electrode is formed in a mesh shape, the wetting angle of the hydrogen gas bubbles generated on the electrode can be reduced, the hydrogen gas bubbles can be released in a small state, and the hydrogen gas is nanobubbles. The hydrogen-containing electrolyzed water determined can be sent to the bathtub.

また、請求項7に係る本発明の入浴設備は、請求項6に記載の入浴設備において、前記電解水生成手段が前記浴槽に給湯を行う給湯手段の給湯経路に備えられ、前記循環経路と前記給湯経路を切換える切換え手段を備えたことを特徴とする。 The bathing facility of the present invention according to claim 7 is the bathing facility according to claim 6, wherein the electrolyzed water generating means is provided in a hot water supply path of hot water supply means for supplying hot water to the bathtub, and the circulation path and the Switching means for switching the hot water supply path is provided .

請求項7に係る本発明では、給湯手段からの湯を電気分解して還元力を有する水素含有電解水とし浴槽に給湯を行うことで、水素含有電解水を浴槽の湯として給湯することができる。給湯後は、切換え手段により浴槽の湯を循環経路で循環させることで、浴槽と電解水生成手段の間で水素含有電解水が循環し、還元力が持続した状態が維持される。 In this invention which concerns on Claim 7, the hot water from a hot-water supply means is electrolyzed, and hydrogen-containing electrolyzed water which has a reducing power is made into hydrogen-containing electrolyzed water. . After the hot water supply, the hot water in the bathtub is circulated in the circulation path by the switching means, whereby the hydrogen-containing electrolytic water is circulated between the bathtub and the electrolytic water generating means, and the state in which the reducing power is maintained is maintained.

また、請求項8に係る本発明の入浴設備は、請求項7に記載の入浴設備において、前記給湯手段は、ヒートポンプにより得られた温水を貯留する貯湯タンクを備え、前記貯湯タンクに貯留された前記温水が前記給湯経路から前記浴槽に送られることを特徴とする。また、請求項9に係る本発明の入浴設備は、請求項8に記載の入浴設備において、前記貯湯タンクからの温水を熱媒体として前記循環経路の前記循環流体を昇温する熱交換器を備えたことを特徴とする。 The bathing facility of the present invention according to claim 8 is the bathing facility according to claim 7, wherein the hot water supply means includes a hot water storage tank for storing hot water obtained by a heat pump, and is stored in the hot water storage tank. The hot water is sent from the hot water supply path to the bathtub . The bathing facility of the present invention according to claim 9 is the bathing facility according to claim 8, further comprising a heat exchanger that raises the temperature of the circulating fluid in the circulation path using hot water from the hot water storage tank as a heat medium. It is characterized by that.

請求項8及び請求項9に係る本発明では、ヒートポンプにより給湯用の湯の熱エネルギーを得る給湯設備を用いた入浴設備とすることができる。  In this invention which concerns on Claim 8 and Claim 9, it can be set as the bathing facility using the hot water supply equipment which obtains the thermal energy of the hot water for hot water supply with a heat pump.

本発明の入浴設備は、還元力を持続させた水素含有電解水を入浴用に用いることが可能になる。   The bathing facility of the present invention makes it possible to use hydrogen-containing electrolyzed water that maintains the reducing power for bathing.

本発明の第1実施形態例に係る入浴設備の概略構成図である。It is a schematic block diagram of the bathing equipment which concerns on the example of 1st Embodiment of this invention. 電解水生成手段の断面図である。It is sectional drawing of an electrolyzed water production | generation means. 図2中のIII−III線矢視図である。It is the III-III arrow directional view in FIG. 酸化還元電位とpHの経時変化を表すグラフである。It is a graph showing a time-dependent change of oxidation-reduction potential and pH. 酸化還元電位とpH及び水素ガスの粒径の経時変化の表図である。It is a table | surface figure of a time-dependent change of oxidation-reduction potential, pH, and the particle size of hydrogen gas. 水素ガスの粒径の分布を表すグラフである。It is a graph showing distribution of the particle size of hydrogen gas. 水素ガスの粒径の分布を表すグラフである。It is a graph showing distribution of the particle size of hydrogen gas. 電解水生成手段の他の例を表す平面断面図である。It is a plane sectional view showing other examples of electrolyzed water generating means. 酸化還元電位とpHの経時変化を表すグラフである。It is a graph showing a time-dependent change of oxidation-reduction potential and pH. 酸化還元電位とpHの経時変化の表図である。It is a table | surface figure of a time-dependent change of oxidation-reduction potential and pH. 本発明の第2実施形態例に係る入浴設備の概略構成図である。It is a schematic block diagram of the bathing equipment which concerns on the 2nd Example of this invention. 給湯手段の概略系統図である。It is a schematic system diagram of a hot water supply means. 酸化還元電位とpHの経時変化を表すグラフである。It is a graph showing a time-dependent change of oxidation-reduction potential and pH. 酸化還元電位とpHの経時変化の表図である。It is a table | surface figure of a time-dependent change of oxidation-reduction potential and pH. 酸化還元電位とpHの経時変化を表すグラフである。It is a graph showing a time-dependent change of oxidation-reduction potential and pH. 酸化還元電位とpHの経時変化の表図である。It is a table | surface figure of a time-dependent change of oxidation-reduction potential and pH. 電解水生成手段の他の例を説明する断面図である。It is sectional drawing explaining the other example of an electrolyzed water production | generation means. 酸化還元電位とpHの経時変化を表すグラフである。It is a graph showing a time-dependent change of oxidation-reduction potential and pH. 酸化還元電位とpHの経時変化の表図である。It is a table | surface figure of a time-dependent change of oxidation-reduction potential and pH. 酸化還元電位とpHの経時変化の表図である。It is a table | surface figure of a time-dependent change of oxidation-reduction potential and pH. 水素ガスの粒径の分布を表すグラフである。It is a graph showing distribution of the particle size of hydrogen gas.

図1には本発明の一実施形態例に係る入浴設備の概略系統、図2には電解水生成手段の構成を説明する側面の断面、図3には電解水生成手段の平面の断面(図2中のIII−III線矢視)を示してある。そして、図4、図5には酸化還元電位とpHの経時変化の状況、図6には電解開始から15分経過後の水素ガスの粒径の分布状況、図7には電解開始から30分経過後の水素ガスの粒径の分布状況を示してある。   FIG. 1 is a schematic system of a bathing facility according to an embodiment of the present invention, FIG. 2 is a side cross-sectional view for explaining the configuration of electrolyzed water generating means, and FIG. (III-III line arrow in 2) is shown. 4 and 5 show the time-dependent changes in oxidation-reduction potential and pH, FIG. 6 shows the hydrogen gas particle size distribution after 15 minutes from the start of electrolysis, and FIG. 7 shows 30 minutes from the start of electrolysis. The distribution state of the particle size of the hydrogen gas after the passage is shown.

図1に基づいて本発明の入浴設備の概略を説明する。   The outline of the bathing equipment of the present invention will be described based on FIG.

図に示すように、入浴設備10は、入浴用の湯が貯められる浴槽1が備えられ、浴槽1には図示しない給湯設備等から給湯が行われる。浴槽1には循環経路2が備えられ、循環経路2には電解水生成手段3が備えられている。電解水生成手段3は、詳細は後述するが、陽極、陰極一対の電極に挟まれてイオンだけを通し水粒子を通さないイオン交換膜(陽イオン交換膜)が電解槽4内に備えられ、電気分解により水素含有電解水(アルカリイオン水)を得るものである。   As shown in the figure, a bathing facility 10 is provided with a bathtub 1 in which hot water for bathing is stored, and hot water is supplied to the bathtub 1 from a hot water supply facility (not shown). The bathtub 1 is provided with a circulation path 2, and the circulation path 2 is provided with electrolyzed water generating means 3. The electrolyzed water generating means 3 will be described in detail later, but an ion exchange membrane (cation exchange membrane) which is sandwiched between a pair of electrodes of an anode and a cathode and allows only ions to pass but not water particles is provided in the electrolytic cell 4. Hydrogen-containing electrolyzed water (alkali ion water) is obtained by electrolysis.

つまり、電解槽4内には一対の電極(正電極、負電極)に挟まれた陽イオン交換膜が備えられ、正電極及び負電極の間に所定の電圧が印加される。電解槽4内に循環される湯は、陽イオン交換膜で区切られた通路に流れ込み、水素イオンHと水酸イオンOHとに電離する。電離した水素イオンHが陽イオン交換膜を透過して陰極側の通路に集まり、負電極に水素ガスの気泡が生成され、湯(2HO)は、電子(2e)によりH+2OHに整水され(水に水素ガスが溶存し)、水素が溶存されたアルカリイオン水が生成される。 That is, the electrolytic cell 4 includes a cation exchange membrane sandwiched between a pair of electrodes (positive electrode and negative electrode), and a predetermined voltage is applied between the positive electrode and the negative electrode. The hot water circulated in the electrolytic cell 4 flows into a passage partitioned by a cation exchange membrane, and is ionized into hydrogen ions H + and hydroxide ions OH . The ionized hydrogen ions H + pass through the cation exchange membrane and gather in the passage on the cathode side, hydrogen gas bubbles are generated at the negative electrode, and hot water (2H 2 O) is converted to H 2 + 2OH by electrons (2e ). The water is adjusted to water (hydrogen gas is dissolved in water), and alkali ion water in which hydrogen is dissolved is generated.

循環経路2は、フィルタ5を通して浴槽1内の湯を電解槽4に送る引入れ路6と、電解槽4で得られたアルカリイオン水を浴槽1に送る流入路7とを備えている。引入れ路6には循環ポンプ8が備えられ、流入路7には流量センサー9が備えられている。循環ポンプ8の駆動により浴槽1内の湯が電解槽4に送られ、流量センサー9により所定流量の湯の流通が検出されると、電解槽4の運転が開始されてアルカリイオン水が循環される。   The circulation path 2 includes an intake path 6 for sending hot water in the bathtub 1 to the electrolytic cell 4 through the filter 5, and an inflow path 7 for sending alkaline ion water obtained in the electrolytic cell 4 to the bathtub 1. The intake passage 6 is provided with a circulation pump 8, and the inflow passage 7 is provided with a flow rate sensor 9. When the circulation pump 8 is driven, hot water in the bathtub 1 is sent to the electrolytic cell 4, and when the flow sensor 9 detects the flow of hot water at a predetermined flow rate, the operation of the electrolytic cell 4 is started and alkaline ionized water is circulated. The

図1中の符号で11は、酸性イオン水を排出するための排出路であり、12は排出路11に備えられ電解槽4の運転が開始された後に開弁されて酸性イオン水を流通させる(排出させる)電磁弁である。また図示は省略したが、流入路7と同一の経路が電磁弁を介して設けられ、排出路及び同一の経路の電磁弁を制御することで、電解水生成手段3の洗浄が行われる。   Reference numeral 11 in FIG. 1 is a discharge path for discharging acidic ionic water, and 12 is provided in the discharge path 11 and is opened after the operation of the electrolytic cell 4 is started to circulate the acidic ionic water. This is a solenoid valve. Although not shown, the same path as the inflow path 7 is provided via an electromagnetic valve, and the electrolyzed water generating means 3 is cleaned by controlling the discharge path and the electromagnetic valve of the same path.

図2、図3に基づいて電解水生成手段3を具体的に説明する。   The electrolyzed water generating means 3 will be specifically described based on FIGS. 2 and 3.

筒状の電解槽4は下側基台31を備え、電解槽4の上部には上側基台32が固定されている。電解槽4は、筒の内側に出入り口を除いてプラスチック製のシート4aが配された構成とされている。電解槽4の下部の筒面には原水入口19が設けられ、原水入口19には浴槽1(図1参照)の湯が流入する引入れ路6が接続されている。電解槽4の上部の筒面にはアルカリイオン水が送り出される吐出口33が設けられ、吐出口33には流入路7が接続されている。   The cylindrical electrolytic cell 4 includes a lower base 31, and an upper base 32 is fixed to the upper part of the electrolytic cell 4. The electrolytic cell 4 is configured such that a plastic sheet 4a is disposed inside the cylinder except for the entrance / exit. A raw water inlet 19 is provided on the bottom cylindrical surface of the electrolytic cell 4, and the raw water inlet 19 is connected to a drawing path 6 through which hot water from the bathtub 1 (see FIG. 1) flows. A discharge port 33 through which alkaline ionized water is sent out is provided on the upper cylindrical surface of the electrolytic cell 4, and the inflow passage 7 is connected to the discharge port 33.

下側基台31の上面には筒状の下ソケット35が設けられ、上側基台32の下面には筒状の上ソケット38が設けられ、上ソケット38の内側の上側基台32に排出口34が設けられている。下ソケット35の上部には、負電極16の外側における電解槽4のへの湯の流入を規制する下部スペーサ18が設けられ、下ソケット35には湯を内側に流入させる流入口35aが設けられている。   A cylindrical lower socket 35 is provided on the upper surface of the lower base 31, a cylindrical upper socket 38 is provided on the lower surface of the upper base 32, and a discharge port is provided on the upper base 32 inside the upper socket 38. 34 is provided. A lower spacer 18 for restricting the inflow of hot water into the electrolytic cell 4 outside the negative electrode 16 is provided at the upper part of the lower socket 35, and an inlet 35 a for allowing hot water to flow inward is provided at the lower socket 35. ing.

下ソケット35の内側における下側基台31には、天井面を有する円筒状の台座41が設けられている。台座41の筒面には湯の流入口42が形成され、台座41の天井面の中心には台座41の内側からの湯を天井面に送る送出口43が形成されている。   A cylindrical base 41 having a ceiling surface is provided on the lower base 31 inside the lower socket 35. A hot water inlet 42 is formed on the cylindrical surface of the pedestal 41, and an outlet 43 for sending hot water from the inside of the pedestal 41 to the ceiling surface is formed at the center of the ceiling surface of the pedestal 41.

台座41の天井面の上には筒状の正電極15が配され、正電極15は台座41と同径とされている。正電極15は細かい網目のメッシュ状に形成され、正電極15の周囲には陽イオン交換膜13の筒が嵌合している。つまり、円筒状の正電極15の外周部に円筒状の陽イオン交換膜13が密着されている。   A cylindrical positive electrode 15 is disposed on the ceiling surface of the pedestal 41, and the positive electrode 15 has the same diameter as the pedestal 41. The positive electrode 15 is formed in a fine mesh mesh, and a cylinder of the cation exchange membrane 13 is fitted around the positive electrode 15. That is, the cylindrical cation exchange membrane 13 is in close contact with the outer peripheral portion of the cylindrical positive electrode 15.

正電極15の上端部の内周は上ソケット38の外周側に嵌合し、円筒状の陽イオン交換膜13の下端部の内周は台座41の筒部に嵌合している。つまり、外周部に陽イオン交換膜13が密着された正電極15は、上ソケット38と台座41とに嵌合されて電解槽4に収容されている。   The inner circumference of the upper end portion of the positive electrode 15 is fitted to the outer circumference side of the upper socket 38, and the inner circumference of the lower end portion of the cylindrical cation exchange membrane 13 is fitted to the cylindrical portion of the pedestal 41. That is, the positive electrode 15 having the cation exchange membrane 13 in close contact with the outer peripheral portion is fitted into the upper socket 38 and the base 41 and accommodated in the electrolytic cell 4.

正電極15の内周側には正極側の端子となる正電極棒45が固定され、正電極棒45の下部にはフランジ部46が設けられている。正電極棒45の下部はフランジ部46を介して下側基台31に係合し、正電極棒45の下端部は下側基台31を貫通して外部に導かれて図示しない電源に接続されている。   A positive electrode rod 45 serving as a positive terminal is fixed to the inner peripheral side of the positive electrode 15, and a flange portion 46 is provided below the positive electrode rod 45. The lower part of the positive electrode rod 45 is engaged with the lower base 31 via the flange portion 46, and the lower end portion of the positive electrode rod 45 is guided to the outside through the lower base 31 and connected to a power source (not shown). Has been.

外周部に陽イオン交換膜13が密着された正電極15の外周側には筒状の負電極16が同心状態に隙間をあけて配され、陽イオン交換膜13と負電極16との間に経路21が形成されている。負電極16は細かい網目のメッシュ状に形成され、正電極15の上端側における陽イオン交換膜13の外周には上部スペーサ17が設けられ、負電極16の上端が上部スペーサ17に嵌合して経路21の上端が閉じられている。   A cylindrical negative electrode 16 is concentrically arranged on the outer peripheral side of the positive electrode 15 in which the cation exchange membrane 13 is in close contact with the outer peripheral portion, and is disposed between the cation exchange membrane 13 and the negative electrode 16. A path 21 is formed. The negative electrode 16 is formed in a fine mesh mesh, an upper spacer 17 is provided on the outer periphery of the cation exchange membrane 13 on the upper end side of the positive electrode 15, and the upper end of the negative electrode 16 is fitted to the upper spacer 17. The upper end of the path 21 is closed.

負電極16の下端部は下ソケット35の内周側に嵌合し、負電極16は上部スペーサ17と下ソケット35とに嵌合されて、外周部に陽イオン交換膜13が密着された正電極15の外側に配された状態で、電解槽4に収容されている。負電極16の外側における電解槽4の内周側(吐出口33に連通する部位)が経路22とされている。   The lower end portion of the negative electrode 16 is fitted to the inner peripheral side of the lower socket 35, the negative electrode 16 is fitted to the upper spacer 17 and the lower socket 35, and the positive electrode with the cation exchange membrane 13 in close contact with the outer peripheral portion. It is accommodated in the electrolytic cell 4 in a state of being arranged outside the electrode 15. The inner peripheral side of the electrolytic cell 4 outside the negative electrode 16 (portion communicating with the discharge port 33) is a path 22.

負電極16の外周側には負極側の端子となる負電極棒55が固定され、負電極棒55の下部にはフランジ部56が設けられている。負電極棒55の下部はフランジ部56を介して下側基台31に係合し、負電極棒55の下端部は下側基台31を貫通して外部に導かれて図示しない電源に接続されている。   A negative electrode rod 55 serving as a negative electrode terminal is fixed to the outer peripheral side of the negative electrode 16, and a flange portion 56 is provided below the negative electrode rod 55. The lower part of the negative electrode bar 55 engages with the lower base 31 via the flange part 56, and the lower end part of the negative electrode bar 55 penetrates the lower base 31 to the outside and is connected to a power source (not shown). Has been.

引入れ路6を通して電解槽4の原水入口19から供給される湯は、下ソケット35の内側に導かれ、陽イオン交換膜13と負電極16との間に形成された経路21に送られる。また、下ソケット35の内側に導かれた湯の一部は、流入口42から台座41の内側に送られ、送出口43から正電極15の内周側に導かれる。正電極15及び負電極16の間に所定の電圧が印加され、原水入口19から流入し、経路21に流れ込んだ湯及び正電極15の内周側に送られた湯は、流通の過程で水素イオンHと水酸イオンOHとに電離する。 Hot water supplied from the raw water inlet 19 of the electrolytic cell 4 through the inlet 6 is guided to the inside of the lower socket 35 and sent to a path 21 formed between the cation exchange membrane 13 and the negative electrode 16. A part of the hot water guided to the inside of the lower socket 35 is sent from the inlet 42 to the inside of the pedestal 41 and led from the outlet 43 to the inner peripheral side of the positive electrode 15. A predetermined voltage is applied between the positive electrode 15 and the negative electrode 16, the hot water flowing into the raw water inlet 19 and flowing into the path 21 and the hot water sent to the inner peripheral side of the positive electrode 15 are hydrogenated during the flow process. It is ionized into ions H + and hydroxide ions OH .

電離した水素イオンHが陽イオン交換膜13を透過して陰極側の経路21に集まり、負電極16に水素ガスの気泡が生成され、湯(2HO)は、電子(2e)によりH+2OHに整水され(水に水素ガスが溶存し)、水素が溶存されたアルカリイオン水が生成される。 The ionized hydrogen ions H + permeate the cation exchange membrane 13 and collect in the cathode-side path 21, hydrogen gas bubbles are generated in the negative electrode 16, and hot water (2H 2 O) is generated by electrons (2e ). Water is adjusted to H 2 + 2OH (hydrogen gas is dissolved in water), and alkali ion water in which hydrogen is dissolved is generated.

そして、陽イオン交換膜13と負電極16との間の経路21から負電極16の反対側(外周側)の面に水素ガスの気泡を通過させて水流と共に水素ガスを流出させ、水素ガスの気泡が小さい状態で負電極16から離脱させる。負電極16が細かい網目のメッシュ状に形成されているため、水素ガスの泡が小さい状態(ナノバブル状態)で離脱され、水素ガスが水に溶存し易くなり、長時間水に水素ガスを留まらせることが可能になる。水素ガスが溶存されたアルカリイオン水は、吐出口33から流入路7を通して浴槽1(図1参照)に循環される。   Then, hydrogen gas bubbles are passed through the path 21 between the cation exchange membrane 13 and the negative electrode 16 to the surface opposite to the negative electrode 16 (outer peripheral side) to flow out the hydrogen gas together with the water flow. The bubbles are separated from the negative electrode 16 in a small state. Since the negative electrode 16 is formed in a fine mesh mesh shape, hydrogen gas bubbles are released in a small state (nano bubble state), the hydrogen gas is easily dissolved in water, and the hydrogen gas remains in the water for a long time. It becomes possible. Alkaline ion water in which hydrogen gas is dissolved is circulated from the discharge port 33 to the bathtub 1 (see FIG. 1) through the inflow path 7.

一方、電離した水酸イオンOH(水粒子)は陽イオン交換膜13を透過しないため陽極側の正電極15の内周側には水酸イオンOHが集まらず、酸性イオン水はほとんど生成されない。また、正電極15はメッシュ状に形成されているので、陽イオン交換膜13への水分の拡散が容易になり、少ない水分量で陽イオン交換膜13を湿潤させることができ、酸性イオン水の排出量を大幅に減らすことができる。このため、排出口34から排出される酸性イオン水は極僅かとなる。 On the other hand, ionized hydroxide ions OH (water particles) do not permeate the cation exchange membrane 13, so that hydroxide ions OH do not collect on the inner peripheral side of the positive electrode 15 on the anode side, and almost acidic ionic water is generated. Not. Further, since the positive electrode 15 is formed in a mesh shape, the diffusion of moisture to the cation exchange membrane 13 is facilitated, and the cation exchange membrane 13 can be moistened with a small amount of moisture, so Emissions can be greatly reduced. For this reason, the acidic ion water discharged | emitted from the discharge port 34 becomes very little.

上述した電解水生成手段3を備えた入浴設備10では、循環ポンプ8の駆動により浴槽1の内部の湯が電解水生成手段3との間を循環し、アルカリイオン水の湯として浴槽1に戻すことができる。このため、水素ガスの泡を小さい状態のまま浴槽1からの湯に溶存させて循環させるので、長時間に亘り浴槽1内の湯に水素ガスを留まらせて還元力を有する湯を得ることができる。   In the bathing facility 10 provided with the electrolyzed water generating means 3 described above, the hot water inside the bathtub 1 circulates between the electrolyzed water generating means 3 by driving the circulation pump 8 and returns to the bathtub 1 as hot water of alkaline ionized water. be able to. For this reason, since the bubble of hydrogen gas is dissolved and circulated in the hot water from the bathtub 1 in a small state, it is possible to obtain a hot water having a reducing power by keeping the hydrogen gas in the hot water in the bathtub 1 for a long time. it can.

図4から図7に基づいて循環される湯の還元力の状況を説明する。   The state of the reducing power of the hot water circulated will be described with reference to FIGS.

浴槽1内の湯の水量を165リットル、温度を42℃、電解水生成手段3の電解電流を7A、循環水量を毎分15.5リットルとした場合の水素イオン指数(pH)と酸化還元電位(ORP:マイナス側の値が大きいほど還元力が強く酸化を抑制する)の状況を説明する。   Hydrogen ion index (pH) and redox potential when the amount of hot water in the bathtub 1 is 165 liters, the temperature is 42 ° C., the electrolysis current of the electrolyzed water generating means 3 is 7 A, and the circulating water amount is 15.5 liters per minute. (ORP: The larger the value on the negative side, the stronger the reducing power and the more the oxidation is suppressed).

図4、図5に示すように、循環初期におけるpH(図4中○印:以下同じ)が7.11であり、ORP(図4中△印:以下同じ)が590mVである。循環開始から5分経過後は、pHが7.34になり、ORPが21mVになり、10分経過後は、pHが7.66になり、ORPが−68mVになり、15分経過後は、pHが7.90になり、ORPが−140mVになっている。そして、20分経過後は、pHが8.10になり、ORPが−224mVになり、25分経過後は、pHが8.21になり、ORPが−340mVになり、30分経過後は、pHが8.29になり、ORPが−428mVになっている。   As shown in FIGS. 4 and 5, the pH at the initial stage of circulation (circles in FIG. 4: the same applies hereinafter) is 7.11, and ORP (Δ marks in FIG. 4 and the same applies hereinafter) is 590 mV. After 5 minutes from the start of circulation, pH becomes 7.34, ORP becomes 21 mV, after 10 minutes, pH becomes 7.66, ORP becomes -68 mV, and after 15 minutes, The pH is 7.90 and the ORP is -140 mV. After 20 minutes, the pH is 8.10 and the ORP is -224 mV. After 25 minutes, the pH is 8.21 and the ORP is -340 mV. After 30 minutes, The pH is 8.29 and the ORP is -428 mV.

図5〜図7に示すように、循環開始から15分経過後の水素ガスの粒径の平均分布は約77nmになり、30分経過後の水素ガスの粒径の平均分布は約45nmになっている。   As shown in FIGS. 5 to 7, the average distribution of the hydrogen gas particle size after 15 minutes from the start of circulation is about 77 nm, and the average distribution of the hydrogen gas particle size after 30 minutes is about 45 nm. ing.

以上の結果から、循環を開始してから20分が経過すると、pHが8を超えると共にORPが充分に低下(−150mV以下)し、還元力を有する湯が浴槽1に貯められ、循環開始から30分が経過すると、充分に小さい状態の水素ガスの泡を溶存させて、高い還元力を有する湯が浴槽1に貯められていることがわかる。   From the above results, when 20 minutes have passed since the circulation was started, the pH exceeded 8 and the ORP was sufficiently reduced (−150 mV or less), and hot water having a reducing power was stored in the bathtub 1, and from the start of the circulation. When 30 minutes have passed, it can be seen that the hydrogen gas bubbles in a sufficiently small state are dissolved and hot water having a high reducing power is stored in the bathtub 1.

このため、上述した入浴設備10の浴槽1に入ることにより、水素の特性及び還元作用の高い酸化還元電位の特性及びアルカリ性の特性による活性酸素への消去作用を介して、例えば、皮膚中の脂肪の酸化変質を防ぐことができる。即ち、充分な濃度の水素を溶存させて高い還元力を得ることにより、活性酸素への消去作用を働かせ、皮膚中の酸化変質を防御し、脂肪滴の形成を抑制して脂肪塊を抑制することができる。また、水素の特性及び還元作用の高い酸化還元電位の特性及びアルカリ性の特性により、肌を活性化させて皮膚中の脂肪の酸化変質を防ぎ、脂肪塊の形成を阻害することができると共に脂肪を燃焼させることができる。   For this reason, by entering the bathtub 1 of the bathing facility 10 described above, for example, the fat in the skin through the action of eliminating hydrogen to the active oxygen due to the characteristics of hydrogen, the characteristics of the redox potential having a high reducing action, and the characteristics of alkalinity. Can prevent oxidative deterioration of That is, by dissolving a sufficient concentration of hydrogen to obtain a high reducing power, it works to eliminate active oxygen, protects against oxidative alteration in the skin, suppresses the formation of lipid droplets and suppresses fat mass be able to. In addition, the characteristics of hydrogen, the characteristics of redox potential with high reducing action and the characteristics of alkalinity can activate the skin to prevent oxidative deterioration of fat in the skin and inhibit the formation of fat mass and Can be burned.

図8から図10に基づいて他の形態の電解水生成手段を説明する。   Another embodiment of the electrolyzed water generating means will be described with reference to FIGS.

図8には電解水生成手段の他の例を説明する平面断面であり、図3に相当する状態である。このため、図3に示した部材と同一部材には同一符号を付して重複する説明は省略してある。また、図9、図10には酸化還元電位とpHの経時変化の状況を示してある。   FIG. 8 is a cross-sectional plan view illustrating another example of the electrolyzed water generating means, which corresponds to FIG. For this reason, the same members as those shown in FIG. FIGS. 9 and 10 show the changes over time in the redox potential and pH.

図8に示すように、本実施形態例の電解水生成手段23は、正電極15の内周に円柱状のスペーサ25が配され、スペーサ25と正電極15の内周面との間には僅かな隙間(例えば、1mm)の通路26が形成されている。正電極15の内周側に導かれた湯は通路26に送られ、正電極15に密着されている陽イオン交換膜13に正電極15側から浸るようになっている。ファラデーの法則に基づき酸性イオン水が少なくなり、負電極16で生成されるアルカリイオン水のpHが中性領域に制御される。   As shown in FIG. 8, in the electrolyzed water generating means 23 of the present embodiment example, a columnar spacer 25 is disposed on the inner periphery of the positive electrode 15, and between the spacer 25 and the inner peripheral surface of the positive electrode 15. A passage 26 having a slight gap (for example, 1 mm) is formed. The hot water led to the inner peripheral side of the positive electrode 15 is sent to the passage 26 so as to be immersed in the cation exchange membrane 13 in close contact with the positive electrode 15 from the positive electrode 15 side. Based on Faraday's law, the amount of acidic ion water is reduced, and the pH of the alkaline ion water generated at the negative electrode 16 is controlled to a neutral region.

図9、図10に基づいて循環される湯の還元力の状況を説明する。   The state of the reducing power of the hot water circulated will be described based on FIGS.

浴槽1内の湯の水量を165リットル、温度を42℃、電解水生成手段3の電解電流を7A、循環水量を毎分10.5リットルとした場合の水素イオン指数(pH)と酸化還元電位(ORP:マイナス側の値が大きいほど還元力が強く酸化を抑制する)の状況を説明する。   Hydrogen ion index (pH) and redox potential when the amount of hot water in the bathtub 1 is 165 liters, the temperature is 42 ° C., the electrolysis current of the electrolyzed water generating means 3 is 7 A, and the circulating water amount is 10.5 liters per minute. (ORP: The larger the value on the negative side, the stronger the reducing power and the more the oxidation is suppressed).

図9、図10に示すように、循環初期におけるpH(図9中○印:以下同じ)が7.1であり、ORP(図9中△印:以下同じ)が547mVである。循環開始から5分経過後は、pHが7.3になり、ORPが36mVになり、10分経過後は、pHが7.6になり、ORPが−72mVになり、15分経過後は、pHが7.7になり、ORPが−178mVになっている。そして、20分経過後は、pHが7.8になり、ORPが−278mVになり、25分経過後は、pHが7.8になり、ORPが−324mVになり、30分経過後は、pHが7.8になり、ORPが−341mVになっている。   As shown in FIGS. 9 and 10, the pH at the beginning of the circulation (circle mark in FIG. 9; the same applies hereinafter) is 7.1, and the ORP (Δ mark in FIG. 9; the same applies hereinafter) is 547 mV. After 5 minutes from the start of circulation, pH becomes 7.3, ORP becomes 36 mV, after 10 minutes, pH becomes 7.6, ORP becomes -72 mV, and after 15 minutes, The pH is 7.7 and the ORP is -178 mV. After 20 minutes, the pH is 7.8 and ORP is -278 mV, after 25 minutes, the pH is 7.8, ORP is -324 mV, and after 30 minutes, The pH is 7.8 and the ORP is -341 mV.

以上の結果から、循環を開始してから15分が経過すると、pHが中性領域に制御された状態でORPが充分に低下(−150mV以下)し、還元力を有する湯が浴槽1に貯められ、循環開始から30分が経過すると、酸性イオン水を減少させた状態で高い還元力を有する湯が浴槽1に貯められていることがわかる。   From the above results, when 15 minutes have passed since the circulation was started, the ORP was sufficiently lowered (−150 mV or less) while the pH was controlled in the neutral region, and hot water having a reducing power was stored in the bathtub 1. When 30 minutes have elapsed since the start of circulation, it can be seen that hot water having a high reducing power is stored in the bathtub 1 in a state where the acidic ion water is reduced.

上述した入浴設備は、浴槽1と電解水生成手段3の間で水素含有電解水を循環させることで、還元力が持続している水素含有電解水を浴槽1の湯とすることができる。このため、還元力を持続させた水素含有電解水を入浴用に用いることが可能になる。   The bathing equipment described above can circulate the hydrogen-containing electrolyzed water between the bathtub 1 and the electrolyzed water generating means 3, so that the hydrogen-containing electrolyzed water that maintains the reducing power can be used as hot water for the bath 1. For this reason, it becomes possible to use the hydrogen containing electrolyzed water which maintained the reducing power for bathing.

図11から図14に基づいて本発明の第2実施形態例に係る入浴設備を説明する。   A bathing facility according to a second embodiment of the present invention will be described with reference to FIGS.

図11には本発明の第2実施形態例に係る入浴設備の概略の系統、図12には給水手段の内部の概略的な系統、図13、図14には酸化還元電位とpHの経時変化の状況を示してある。尚、図1から図3に示した部材と同一部材には同一符号を付して詳細な説明は省略してある。   FIG. 11 shows a schematic system of bathing equipment according to the second embodiment of the present invention, FIG. 12 shows a schematic system inside the water supply means, and FIGS. 13 and 14 show changes in oxidation-reduction potential and pH with time. The situation is shown. The same members as those shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

図11に示すように、入浴設備70は、自然冷媒ヒートポンプ給湯機(エコキュート:登録商標)の電気温水器61に電解水生成手段3(図2、図3参照)が備えられている。浴槽1には電気温水器61から電解水生成手段3を介しての給湯(湯の落とし込み)が行われると共に、浴槽1に貯められた湯は電解水生成手段3との間で循環される。電気温水器61には水道水等が給水される給水口62が備えられ、また、図示しないヒートポンプユニットと電気温水器61との間で加熱用の冷媒が循環されている。   As shown in FIG. 11, the bathing facility 70 includes an electrolyzed water generating means 3 (see FIGS. 2 and 3) in an electric water heater 61 of a natural refrigerant heat pump water heater (Ecocute: registered trademark). Hot water (dropping of hot water) is performed in the bathtub 1 from the electric water heater 61 through the electrolyzed water generating means 3, and hot water stored in the bathtub 1 is circulated between the electrolyzed water generating means 3. The electric water heater 61 is provided with a water supply port 62 through which tap water or the like is supplied, and a heating refrigerant is circulated between a heat pump unit (not shown) and the electric water heater 61.

図12に基づいて電気温水器61を具体的に説明する。   The electric water heater 61 will be specifically described based on FIG.

図12に示すように、電気温水器61には貯湯タンク63が備えられ、貯湯タンク63には給水口62からの給水路64が接続されている。また、貯湯タンク63には加熱用の冷媒が循環される冷媒路65が接続されている。加熱用の冷媒により加熱された貯湯タンク63内の湯は、給湯路66から給湯口67に送られる。   As shown in FIG. 12, the electric water heater 61 is provided with a hot water storage tank 63, and the hot water storage tank 63 is connected with a water supply path 64 from a water supply port 62. The hot water storage tank 63 is connected to a refrigerant path 65 through which a heating refrigerant is circulated. Hot water in the hot water storage tank 63 heated by the heating refrigerant is sent from the hot water supply path 66 to the hot water supply port 67.

給湯路66の途中部には給湯三方弁69が設けられ、給湯三方弁69には給水口62からの給水路64が接続されている。給湯三方弁69の開閉状況を調整することにより、貯湯タンク63からの湯が給水路64からの給水と混合され、所望の温度の湯となって給湯口67から給湯される。   A hot water supply three-way valve 69 is provided in the middle of the hot water supply path 66, and a water supply path 64 from the water supply port 62 is connected to the hot water supply three way valve 69. By adjusting the open / close state of the hot water supply three-way valve 69, the hot water from the hot water storage tank 63 is mixed with the water supplied from the water supply path 64, and hot water having a desired temperature is supplied from the hot water supply port 67.

給湯路66から分岐して貯湯路71(給湯経路)が設けられ、貯湯路71は電解水生成手段3の上流側の引入れ路6に接続されている。貯湯路71の途中部には切換え手段としての貯湯三方弁72が設けられ、貯湯三方弁72には給水口62からの給水路64が接続されている。   A hot water storage path 71 (hot water supply path) is provided branching off from the hot water supply path 66, and the hot water storage path 71 is connected to the intake path 6 on the upstream side of the electrolyzed water generating means 3. A hot water storage three-way valve 72 as a switching means is provided in the middle of the hot water storage passage 71, and a water supply passage 64 from a water supply port 62 is connected to the hot water storage three-way valve 72.

貯湯三方弁72の開閉状況を調整することにより、貯湯タンク63からの湯が給水路64からの給水と混合され、所望の温度の湯となって電解水生成手段3に送られ、浴槽1への湯の落とし込み(湯張り)が実施される(図中白抜き矢印で示してある)。また、貯湯三方弁72の貯湯路71側への流路を閉じた状態で循環ポンプ8を駆動することにより、浴槽1内の湯が引入れ路6から電解水生成手段3に送られ、アルカリイオン水の湯として流入路7から浴槽1に戻される(図中黒太矢印で示してある)。   By adjusting the open / close state of the hot water storage three-way valve 72, the hot water from the hot water storage tank 63 is mixed with the water supplied from the water supply path 64, becomes hot water having a desired temperature, is sent to the electrolyzed water generating means 3, and is sent to the bathtub 1. The hot water is dropped (filled with water) (indicated by a white arrow in the figure). Further, by driving the circulation pump 8 with the flow path to the hot water storage path 71 side of the hot water storage three-way valve 72 closed, the hot water in the bathtub 1 is sent from the intake path 6 to the electrolyzed water generating means 3, and the alkali It is returned to the bathtub 1 from the inflow channel 7 as hot water of ionic water (indicated by a thick black arrow in the figure).

一方、貯湯路71の接続部の上流側における引入れ路6には熱交換器75が設けられ、熱交換器75には貯湯タンク63からの温水が熱媒体として送られる追い炊き経路76が備えられている。炊き経路76から送られる貯湯タンク63からの温水と引入れ路6を循環する湯(循環流体)とが熱交換され、引入れ路6の湯が所定の温度に昇温維持(追い炊き)される。   On the other hand, a heat exchanger 75 is provided in the intake path 6 on the upstream side of the connecting portion of the hot water storage path 71, and the heat exchanger 75 includes a reheating cooking path 76 through which hot water from the hot water storage tank 63 is sent as a heat medium. It has been. The hot water from the hot water storage tank 63 sent from the cooking path 76 and the hot water (circulating fluid) circulating in the intake path 6 are heat-exchanged, and the hot water in the intake path 6 is maintained at a predetermined temperature (followed up). The

電解水生成手段3を備えた電気温水器61では、貯湯三方弁72の貯湯路71側への流路を開いた状態で貯湯タンク63からの湯を電解水生成手段3に送り、電解水生成手段3で電気分解した湯を浴槽1に供給して湯張り(落とし込み)を実施する(図中白抜き矢印で示してある)。所定量の湯が浴槽1に供給されると、貯湯三方弁72の貯湯路71側への流路を閉じて浴槽1と電解水生成手段3との間で湯を循環させ(図中黒太矢印で示してある)、浴槽1の湯の電気分解を実施する。   In the electric water heater 61 provided with the electrolyzed water generating means 3, hot water from the hot water storage tank 63 is sent to the electrolyzed water generating means 3 with the flow path to the hot water storage path 71 side of the hot water storage three-way valve 72 opened to generate electrolyzed water. Hot water electrolyzed by the means 3 is supplied to the bathtub 1 and hot water filling (dropping) is carried out (indicated by white arrows in the figure). When a predetermined amount of hot water is supplied to the bathtub 1, the hot water is circulated between the bathtub 1 and the electrolyzed water generating means 3 by closing the flow path of the hot water storage three-way valve 72 toward the hot water storage path 71 (see FIG. The electrolysis of the hot water in the bathtub 1 is carried out.

図13、図14に基づいて上述した入浴設備において湯張り後に循環させた場合の還元力の状況を説明する。   Based on FIG. 13, FIG. 14, the state of the reducing power at the time of circulating after hot water filling in the bathing facility mentioned above is demonstrated.

浴槽1内の湯の水量を165リットル、温度を42℃、電解水生成手段3の電解電流を7A、循環水量を毎分10.5リットルとした場合の水素イオン指数(pH)と酸化還元電位(ORP)の状況を説明する。   Hydrogen ion index (pH) and redox potential when the amount of hot water in the bathtub 1 is 165 liters, the temperature is 42 ° C., the electrolysis current of the electrolyzed water generating means 3 is 7 A, and the circulating water amount is 10.5 liters per minute. The situation of (ORP) will be described.

図13、図14に示すように、電解水生成手段3で電気分解した湯を浴槽1に供給して湯張りを行い、満水となった時のpH(図13中○印:以下同じ)が7.5であり、ORP(図13中△印:以下同じ)が−103mVである。満水になった後に循環を開始し、開始から5分経過後は、pHが8.2になり、ORPが−273mVになり、10分経過後は、pHが8.4になり、ORPが−340mVになり、15分経過後は、pHが8.6になり、ORPが−371mVになっている。そして、20分経過後は、pHが8.7になり、ORPが−391mVになり、25分経過後は、pHが8.7であり、ORPが−417mVになり、30分経過後は、pHが8.7であり、ORPが−421mVになっている。   As shown in FIGS. 13 and 14, the hot water electrolyzed by the electrolyzed water generating means 3 is supplied to the bathtub 1 to fill the hot water, and the pH when the water is full (O mark in FIG. 13; the same applies hereinafter). 7.5, and ORP (Δ mark in FIG. 13; the same applies hereinafter) is −103 mV. Circulation is started after the water is full. After 5 minutes from the start, pH becomes 8.2, ORP becomes -273 mV, and after 10 minutes, pH becomes 8.4 and ORP becomes- After 15 minutes, the pH is 8.6 and the ORP is -371 mV. After 20 minutes, the pH is 8.7 and ORP is -391 mV. After 25 minutes, the pH is 8.7, ORP is -417 mV, and after 30 minutes, The pH is 8.7 and the ORP is -421 mV.

以上の結果から、湯張りを終了して循環を開始した直後から、pHが中性領域に制御された状態でORPが充分に低下(−150mV以下)し、還元力を有する湯が浴槽1に貯められる。そして循環開始から30分が経過しても、高い還元力を有する湯が浴槽1に維持されることがわかる。   From the above results, immediately after the hot water filling is finished and the circulation is started, the ORP is sufficiently lowered (−150 mV or less) while the pH is controlled in the neutral region, and the hot water having a reducing power is supplied to the bathtub 1. Stored. And even if 30 minutes pass since the circulation start, it turns out that the hot water which has a high reducing power is maintained by the bathtub 1. FIG.

上述した入浴設備70において、電解水生成手段3(図2、図3参照)に代えて電気温水器61に電解水生成手段23(図8参照)を備えた際の湯の還元力の状況を、図15、図16に基づいて説明する。即ち、正電極15の内周に円柱状のスペーサ25が配された電解水生成手段23が電気温水器61に備えられた入浴設備における湯張り後に循環させた場合の還元力の状況を説明する。   In the bathing facility 70 described above, the condition of the reducing power of hot water when the electric water heater 61 is provided with the electrolyzed water generating means 23 (see FIG. 8) instead of the electrolyzed water generating means 3 (see FIGS. 2 and 3). This will be described with reference to FIGS. 15 and 16. That is, the state of the reducing power when the electrolyzed water generating means 23 in which the cylindrical spacer 25 is arranged on the inner periphery of the positive electrode 15 is circulated after hot water filling in the bathing facility provided in the electric water heater 61 will be described. .

浴槽1内の湯の水量を165リットル、温度を42℃、電解水生成手段3の電解電流を7A、循環水量を毎分10.5リットルとした場合の水素イオン指数(pH)と酸化還元電位(ORP)の状況を説明する。   Hydrogen ion index (pH) and redox potential when the amount of hot water in the bathtub 1 is 165 liters, the temperature is 42 ° C., the electrolysis current of the electrolyzed water generating means 3 is 7 A, and the circulating water amount is 10.5 liters per minute. The situation of (ORP) will be described.

図15、図16に示すように、電解水生成手段23で電気分解した湯を浴槽1に供給して湯張りを行い、満水となった時のpH(図15中○印:以下同じ)が7.1であり、ORP(図15中△印:以下同じ)が−79mVである。満水になった後に循環を開始し、開始から5分経過後は、pHが7.1であり、ORPが−210mVになり、10分経過後は、pHが7.3になり、ORPが−259mVになり、15分経過後は、pHが7.3であり、ORPが−298mVになっている。そして、20分経過後は、pHが7.3であり、ORPが−325mVになり、25分経過後は、pHが7.3であり、ORPが−362mVになり、30分経過後は、pHが7.3であり、ORPが−390mVになっている。   As shown in FIGS. 15 and 16, the hot water electrolyzed by the electrolyzed water generating means 23 is supplied to the bathtub 1 to fill the hot water, and the pH when the water is full (marked in FIG. 15: the same applies hereinafter). 7.1, and ORP (Δ mark in FIG. 15; the same applies hereinafter) is −79 mV. Circulation is started after the water is full. After 5 minutes from the start, the pH is 7.1, the ORP is -210 mV, and after 10 minutes, the pH is 7.3, and the ORP is- 259 mV, and after 15 minutes, the pH is 7.3 and the ORP is -298 mV. After 20 minutes, the pH is 7.3 and the ORP is −325 mV. After 25 minutes, the pH is 7.3 and the ORP is −362 mV. After 30 minutes, The pH is 7.3 and the ORP is -390 mV.

以上の結果から、湯張りを終了した直後から、pHが中性領域に制御された状態でORPが充分に低下(−150mV以下)し、還元力を有する湯が浴槽1に貯められる。そして、酸性イオン水を減少させた状態で(排出させない状態で)高い還元力を有する湯が、循環開始から30分が経過しても浴槽1に維持されることがわかる。   From the above results, immediately after the hot water filling is completed, the ORP is sufficiently lowered (−150 mV or less) while the pH is controlled in a neutral region, and hot water having a reducing power is stored in the bathtub 1. And it turns out that the hot water which has high reducing power in the state which reduced acidic ion water (in the state which is not discharged | emitted) is maintained by the bathtub 1 even if 30 minutes pass from a circulation start.

上述した入浴設備70は、貯湯タンク63の湯を電解水生成手段3(23)に通して湯張りを行うことで、還元力を有する水素含有電解水を浴槽1に落とし込むことができる。そして、浴槽1と電解水生成手段3(23)の間で水素含有電解水を循環させることで、還元力が持続している水素含有電解水を浴槽1の湯とすることができる。このため、還元力を持続させた水素含有電解水を短時間で入浴用に用いることが可能になる。   The bathing facility 70 described above can drop the hydrogen-containing electrolyzed water having reducing power into the bathtub 1 by filling the hot water in the hot water storage tank 63 through the electrolyzed water generating means 3 (23) and filling the hot water. And the hydrogen containing electrolyzed water in which the reducing power is maintained can be used as the hot water of the bath 1 by circulating the hydrogen containing electrolyzed water between the bathtub 1 and the electrolyzed water generating means 3 (23). For this reason, it becomes possible to use the hydrogen containing electrolyzed water which maintained the reducing power for bathing in a short time.

図17に基づいて電解水生成手段の他の形態を説明する。   Another embodiment of the electrolyzed water generating means will be described based on FIG.

図17には電解水生成手段の他の例を説明する断面であり、図2に相当する状態である。即ち、図示の電解水生成手段81は、図2に示した電解水生成手段3の一部の構成を変更したものである。このため、図2に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   FIG. 17 is a cross-sectional view illustrating another example of the electrolyzed water generating means, which corresponds to FIG. That is, the illustrated electrolyzed water generating means 81 is obtained by changing a part of the configuration of the electrolyzed water generating means 3 shown in FIG. For this reason, the same members as those shown in FIG.

また、図18から図20には酸化還元電位とpH、水素ガスの粒径の経時変化、図21には電解開始から30分経過後の水素ガスの粒径の分布状況を示してある。   Further, FIGS. 18 to 20 show the redox potential, pH, and hydrogen gas particle size over time, and FIG. 21 shows the distribution of hydrogen gas particle size after 30 minutes from the start of electrolysis.

図17に示すように、正電極15の周囲にはイオンと共に水粒子を通すイオン交換膜としての中性膜82の筒が嵌合し、円筒状の正電極15の外周部に円筒状の中性膜82が密着されている。外周部に中性膜82が密着された正電極15の外周側に負電極16が同心状態に隙間をあけて配され、中性膜82と負電極16との間に経路21が形成されている。   As shown in FIG. 17, a tube of a neutral membrane 82 is fitted around the positive electrode 15 as an ion exchange membrane through which water particles pass along with ions, and a cylindrical medium is formed on the outer periphery of the cylindrical positive electrode 15. The adhesive film 82 is in close contact. The negative electrode 16 is arranged concentrically with a gap on the outer peripheral side of the positive electrode 15 with the neutral film 82 in close contact with the outer peripheral portion, and a path 21 is formed between the neutral film 82 and the negative electrode 16. Yes.

上ソケット38の上側基台32に設けられた排出口34は正電極15の筒の内側に連通し、排出口34には正電極15の内側の電解水に発生する酸素ガス(Oガス)を脱気する脱気手段としての脱気弁83が設けられている。つまり、正電極15の内側の流路に電解水に発生するOガスを脱気する脱気手段が設けられている。 A discharge port 34 provided on the upper base 32 of the upper socket 38 communicates with the inside of the cylinder of the positive electrode 15, and oxygen gas (O 2 gas) generated in the electrolyzed water inside the positive electrode 15 is communicated with the discharge port 34. A degassing valve 83 is provided as a degassing means for degassing the gas. That is, a degassing means for degassing O 2 gas generated in the electrolyzed water is provided in the flow path inside the positive electrode 15.

引入れ路6を通して電解槽4の原水入口19から供給される湯は、下ソケット35の内側に導かれ、正電極15の内部及び中性膜82と負電極16との間に形成された経路21に送られる。正電極15及び負電極16の間に所定の電圧が印加され、原水入口19から流入した湯は水素イオンHと水酸イオンOHとに電離する。 Hot water supplied from the raw water inlet 19 of the electrolytic cell 4 through the inlet 6 is guided to the inside of the lower socket 35, and is a path formed inside the positive electrode 15 and between the neutral film 82 and the negative electrode 16. 21. A predetermined voltage is applied between the positive electrode 15 and the negative electrode 16, and hot water flowing from the raw water inlet 19 is ionized into hydrogen ions H + and hydroxide ions OH .

つまり、正電極15側では、
O→1/2・O+2H+2e
の反応が生じ、
負電極16側では、
2H+2e→H
の反応が生じ、
全体で、
O→1/2・O+H
の反応が生じる。
In other words, on the positive electrode 15 side,
H 2 O → 1/2 · O 2 + 2H + + 2e
Reaction occurs,
On the negative electrode 16 side,
2H + + 2e → H 2
Reaction occurs,
Overall,
H 2 O → 1/2 · O 2 + H 2
Reaction occurs.

電離した水素イオンHが中性膜82を透過して陰極側の経路21に集まり、負電極16に水素ガスの気泡が生成され、湯(2HO)は、電子(2e-)によりH+2OH-に整水され(水に水素ガスが溶存し)、水素が溶存されたアルカリイオン水が生成される。また、正電極15側のHを含む陽極液が中性膜82を通過して陰極側の経路21に導かれる。正電極15の内側に発生するOガスは脱気弁83に集められて脱気される。即ち、酸性排水の発生は生じない。 The ionized hydrogen ions H + pass through the neutral film 82 and collect in the cathode-side path 21, and hydrogen gas bubbles are generated in the negative electrode 16, and hot water (2H 2 O) is converted into H by electrons (2e ). The water is adjusted to 2 +2 OH (hydrogen gas is dissolved in water), and alkali ion water in which hydrogen is dissolved is generated. Further, the anolyte containing H + on the positive electrode 15 side passes through the neutral film 82 and is guided to the path 21 on the cathode side. O 2 gas generated inside the positive electrode 15 is collected by the deaeration valve 83 and deaerated. That is, no acid wastewater is generated.

水素ガスの気泡を、経路21から負電極16の反対側(外周側)の面に通過させて水流と共に水素ガスを流出させ、水素ガスの気泡が小さい状態で負電極16から離脱させる。水素ガスが溶存されたアルカリイオン水は、吐出口33から流入路7を通して浴槽1(図1参照)に循環される。   Hydrogen gas bubbles are allowed to pass through the path 21 to the opposite side (outer peripheral side) of the negative electrode 16 to cause the hydrogen gas to flow out along with the water flow, and the hydrogen gas bubbles are separated from the negative electrode 16 in a small state. Alkaline ion water in which hydrogen gas is dissolved is circulated from the discharge port 33 to the bathtub 1 (see FIG. 1) through the inflow path 7.

図18から図21に基づいて、上述した電解水生成手段81を図1に示した入浴設備10に適用した場合の湯の還元力の状況を説明する。   Based on FIGS. 18-21, the state of the reducing power of hot water when the electrolyzed water generating means 81 described above is applied to the bathing facility 10 shown in FIG. 1 will be described.

浴槽1内の湯の水量を165リットル、温度を42℃、電解水生成手段81の電解電流を7A、循環水量を毎分15.5リットルとした場合の水素イオン指数(pH)と酸化還元電位(ORP:マイナス側の値が大きいほど還元力が強く酸化を抑制する)の状況を説明する。   Hydrogen ion index (pH) and redox potential when the amount of hot water in the bathtub 1 is 165 liters, the temperature is 42 ° C., the electrolysis current of the electrolyzed water generating means 81 is 7 A, and the circulating water amount is 15.5 liters per minute. (ORP: The larger the value on the negative side, the stronger the reducing power and the more the oxidation is suppressed).

図18、図19に示すように、循環初期におけるpH(図18中○印:以下同じ)が7.09であり、ORP(図18中△印:以下同じ)が320mVである。循環開始から5分経過後は、pHが7.22になり、ORPが−61mVになり、10分経過後は、pHが7.34になり、ORPが−227mVになり、15分経過後は、pHが7.49になり、ORPが−485mVになっている。そして、20分経過後は、pHが7.66になり、ORPが−508mVになり、25分経過後は、pHが7.87になり、ORPが−513mVになり、30分経過後は、pHが8.07になり、ORPが−507mVになっている。   As shown in FIGS. 18 and 19, the pH at the initial stage of circulation (circles in FIG. 18: the same applies hereinafter) is 7.09, and ORP (Δ marks in FIG. 18: the same applies hereinafter) is 320 mV. After 5 minutes from the start of circulation, the pH is 7.22, ORP is -61 mV, after 10 minutes, the pH is 7.34, ORP is -227 mV, and after 15 minutes, , The pH is 7.49 and the ORP is -485 mV. After 20 minutes, the pH is 7.66, ORP is -508 mV, after 25 minutes, the pH is 7.87, ORP is -513 mV, and after 30 minutes, The pH is 8.07 and the ORP is -507 mV.

図19、図21に示すように、循環開始から15分経過後の水素ガスの粒径の平均分布は約75nmになり、図19に示すように、30分経過後の水素ガスの粒径の平均分布は約157nmになっている。   As shown in FIG. 19 and FIG. 21, the average distribution of the particle size of hydrogen gas after 15 minutes from the start of circulation is about 75 nm, and as shown in FIG. The average distribution is about 157 nm.

また、図18、図20に示すように、電解停止直後におけるpHが8.07であり、ORPが−507mVである。循環停止から5分経過後は、pHが8.05になり、ORPが−520mVになり、10分経過後は、pHが7.89になり、ORPが−530mVになり、15分経過後は、pHが7.84になり、ORPが−495mVになり、20分経過後は、pHが7.83になり、ORPが−480mVになっている。   Moreover, as shown in FIGS. 18 and 20, the pH immediately after the electrolysis stop is 8.07, and the ORP is −507 mV. After 5 minutes from the circulation stop, pH becomes 8.05, ORP becomes -520 mV, after 10 minutes, pH becomes 7.89, ORP becomes -530 mV, and after 15 minutes, , The pH is 7.84, the ORP is −495 mV, and after 20 minutes, the pH is 7.83 and the ORP is −480 mV.

また、図20に示すように、電解停止から5分経過後の水素ガスの粒径の平均分布は約185nmになり、20分経過後の水素ガスの粒径の平均分布は約181nmになっている。   In addition, as shown in FIG. 20, the average distribution of the hydrogen gas particle size after 5 minutes from the electrolysis stop is about 185 nm, and the average distribution of the hydrogen gas particle size after 20 minutes is about 181 nm. Yes.

以上の結果から、酸性排水を一切伴わずに、循環を開始してからpHの値が高くなり、循環を開始してから10分を経過するとORPが充分に低下(−150mV以下)し、還元力を有する湯が浴槽1に貯められ、循環開始から15分が経過すると、充分に小さい状態の水素ガスの泡を溶存させて、高い還元力を有する湯が浴槽1に貯められていることがわかる。また、電解が停止した後も、pHの値が維持され、ORPも充分に低下した状態が維持されていることがわかる。   From the above results, without any acidic drainage, the pH value became high after starting circulation, and ORP decreased sufficiently (-150 mV or less) after 10 minutes from the start of circulation. The hot water having a high reducing power is stored in the bathtub 1 by dissolving the bubbles of hydrogen gas in a sufficiently small state after 15 minutes have passed since the start of circulation. Recognize. Further, it can be seen that even after the electrolysis is stopped, the pH value is maintained and the ORP is sufficiently lowered.

尚、電解電流を5A、3Aで同様の検証を行った結果、充分に還元力を有する湯が浴槽1に貯められ、電解が停止した後も、pHの値が維持され、ORPも充分に低下した状態が維持されていることが確認されている。電解電流を低くした場合、pHを中性に近い(7に近い)領域で略一定に維持できることが確認されている。   In addition, as a result of conducting the same verification with the electrolysis current of 5A and 3A, hot water having sufficient reducing power is stored in the bathtub 1, and after the electrolysis is stopped, the pH value is maintained and the ORP is sufficiently reduced. It has been confirmed that this condition is maintained. It has been confirmed that when the electrolysis current is lowered, the pH can be maintained substantially constant in a region close to neutrality (close to 7).

本発明は、水素含有電解水を用いた入浴設備の産業分野で利用することができる。   The present invention can be used in the industrial field of bathing equipment using hydrogen-containing electrolyzed water.

1 浴槽
2 循環経路
3、23、81 電解水生成手段
4 電解槽
5 フィルタ
6 引入れ路
11 排出路
13 陽イオン交換膜
15 正電極
16 負電極
17 上部スペーサ
18 下部スペーサ
19 原水入口
20 流通路
21 経路(流入側)
22 経路(流出側)
31 下側基台
32 上側基台
33 吐出口
34 排出口
35 下ソケット
38 上ソケット
41 台座
42 流入口
43 送出口
45 正電極棒
46、56 フランジ部
55 負電極棒
61 電気温水器
62 給水口
63 貯湯タンク
64 給水路
65 冷媒路
66 給湯路
67 給湯口
71 貯湯路
72 貯湯三方弁
75 熱交換器
82 中性膜
83 脱気弁
DESCRIPTION OF SYMBOLS 1 Bathtub 2 Circulation path 3, 23, 81 Electrolyzed water production | generation means 4 Electrolyzer 5 Filter 6 Intake path 11 Discharge path 13 Cation exchange membrane 15 Positive electrode 16 Negative electrode 17 Upper spacer 18 Lower spacer 19 Raw water inlet 20 Flow path 21 Route (inflow side)
22 route (outflow side)
31 Lower base 32 Upper base 33 Discharge port 34 Discharge port 35 Lower socket 38 Upper socket 41 Base 42 Inlet port 43 Outlet port 45 Positive electrode rod 46, 56 Flange portion 55 Negative electrode rod 61 Electric water heater 62 Water supply port 63 Hot water storage tank 64 Water supply path 65 Refrigerant path 66 Hot water supply path 67 Hot water supply port 71 Hot water storage path 72 Hot water storage three-way valve 75 Heat exchanger 82 Neutral membrane 83 Deaeration valve

Claims (9)

陽極、陰極一対の電極に挟まれてイオン交換膜が電解槽内に備えられ、電気分解により水素含有電解水を得る電解水生成手段と、
入浴用の湯が貯められる浴槽と、
前記浴槽に貯められた湯を前記電解水生成手段に送るとともに前記電解水生成手段で生成された水素含有電解水を循環流体として前記浴槽に循環させる循環経路とを備え
前記電解水生成手段は、
陰極側の前記電極及び陽極側の前記電極がそれぞれメッシュ状に形成され、
陰極側の通路に循環流体を流通させる流通路を備え、
前記イオン交換膜が、陽イオン交換膜であると共に陽極側の前記電極に密着して前記流通路に対向し、
更に、前記電解水生成手段は、
陽極側の前記電極が円筒状とされて外周部に円筒状の前記陽イオン交換膜が密着され、
前記陽イオン交換膜が密着された陽極側の前記電極の外周に円筒状の陰極側の前記電極が配され、
前記流通路が、陽極側の前記電極と陰極側の前記電極との間が前記循環流体の流入側とされると共に、陰極側の前記電極の外側が前記循環流体の流出側とされて水素含有電解水が流出される
ことを特徴とする入浴設備。
Electrolyzed water generation means for obtaining hydrogen-containing electrolyzed water by electrolysis provided with an ion exchange membrane in an electrolytic cell sandwiched between a pair of electrodes of an anode and a cathode;
A bathtub where hot water for bathing can be stored;
A circulation path for sending hot water stored in the bathtub to the electrolyzed water generating means and circulating the hydrogen-containing electrolyzed water generated by the electrolyzed water generating means to the bathtub as a circulating fluid ,
The electrolyzed water generating means includes
The electrode on the cathode side and the electrode on the anode side are each formed in a mesh shape,
Provided with a flow passage for circulating a circulating fluid in the cathode side passage,
The ion exchange membrane is a cation exchange membrane and is in close contact with the electrode on the anode side to face the flow path,
Furthermore, the electrolyzed water generating means includes
The electrode on the anode side is cylindrical and the cylindrical cation exchange membrane is in close contact with the outer periphery,
The cylindrical cathode side electrode is arranged on the outer periphery of the anode side electrode to which the cation exchange membrane is closely attached,
The flow passage is between the anode-side electrode and the cathode-side electrode as the inflow side of the circulating fluid, and the outside of the cathode-side electrode is the outflow side of the circulating fluid so that hydrogen is contained. Bathing facilities characterized by the fact that electrolyzed water flows out .
請求項1に記載の入浴設備において、
前記電解水生成手段が前記浴槽に給湯を行う給湯手段の給湯経路に備えられ、
前記循環経路と前記給湯経路を切換える切換え手段を備えた
ことを特徴とする入浴設備。
The bathing facility according to claim 1,
The electrolyzed water generating means is provided in a hot water supply path of hot water supply means for supplying hot water to the bathtub,
A bathing facility comprising switching means for switching between the circulation path and the hot water supply path.
請求項2に記載の入浴設備において、
前記給湯手段は、ヒートポンプにより得られた温水を貯留する貯湯タンクを備え、
前記貯湯タンクに貯留された前記温水が前記給湯経路から前記浴槽に送られる
ことを特徴とする入浴設備。
The bathing facility according to claim 2,
The hot water supply means includes a hot water storage tank for storing hot water obtained by a heat pump,
The bathing facility, wherein the hot water stored in the hot water storage tank is sent from the hot water supply path to the bathtub.
請求項3に記載の入浴設備において、
前記貯湯タンクからの温水を熱媒体として前記循環経路の前記循環流体を昇温する熱交換器を備えた
ことを特徴とする入浴設備。
The bathing facility according to claim 3,
A bathing facility comprising: a heat exchanger that uses hot water from the hot water storage tank as a heat medium to raise the temperature of the circulating fluid in the circulation path.
請求項1から請求項4のいずれか一項に記載の入浴設備において、
陽極側の前記電極の内周側に陽極側流路を備え、
前記陽極側流路への前記循環流体の流入量を規制する規制部材を前記陽極側流路に備えた
ことを特徴とする入浴設備。
In the bathing facility according to any one of claims 1 to 4,
An anode side flow path is provided on the inner peripheral side of the electrode on the anode side,
A bathing facility comprising a regulating member for regulating an inflow amount of the circulating fluid into the anode side channel in the anode side channel .
陽極、陰極一対の電極に挟まれてイオン交換膜が電解槽内に備えられ、電気分解により水素含有電解水を得る電解水生成手段と、
入浴用の湯が貯められる浴槽と、
前記浴槽に貯められた湯を前記電解水生成手段に送るとともに前記電解水生成手段で生成された水素含有電解水を循環流体として前記浴槽に循環させる循環経路とを備え、
前記電解水生成手段は、
陰極側の前記電極及び陽極側の前記電極がそれぞれメッシュ状に形成され、
前記イオン交換膜が、イオンと共に水粒子を通す中性膜であり、
陽極側の前記電極が円筒状とされて外周部に円筒状の前記中性膜が密着され、
前記中性膜が密着された陽極側の前記電極の外周に円筒状の陰極側の前記電極が配され、
陽極側の前記電極と陰極側の前記電極との間が循環流体の流入側とされると共に、陰極側の前記電極の外側が前記循環流体の流出側とされて水素含有電解水が流出され、
前記陽極側の前記電極の内側の電解水に発生する酸素ガスを脱気する脱気手段を前記陽極側の前記電極の内側の流路に備えた
ことを特徴とする入浴設備。
Electrolyzed water generation means for obtaining hydrogen-containing electrolyzed water by electrolysis provided with an ion exchange membrane in an electrolytic cell sandwiched between a pair of electrodes of an anode and a cathode;
A bathtub where hot water for bathing can be stored;
A circulation path for sending hot water stored in the bathtub to the electrolyzed water generating means and circulating the hydrogen-containing electrolyzed water generated by the electrolyzed water generating means to the bathtub as a circulating fluid,
The electrolyzed water generating means includes
The electrode on the cathode side and the electrode on the anode side are each formed in a mesh shape,
The ion exchange membrane is a neutral membrane that passes water particles with ions;
The electrode on the anode side is cylindrical and the cylindrical neutral film is closely attached to the outer periphery,
The electrode on the cylindrical cathode side is arranged on the outer periphery of the electrode on the anode side to which the neutral film is adhered,
Between the electrode on the anode side and the electrode on the cathode side is the inflow side of the circulating fluid, and the outside of the electrode on the cathode side is the outflow side of the circulating fluid, and hydrogen-containing electrolyzed water flows out,
A bathing facility comprising degassing means for degassing oxygen gas generated in electrolyzed water inside the electrode on the anode side in a flow path inside the electrode on the anode side .
請求項6に記載の入浴設備において、
前記電解水生成手段が前記浴槽に給湯を行う給湯手段の給湯経路に備えられ、
前記循環経路と前記給湯経路を切換える切換え手段を備えた
ことを特徴とする入浴設備。
The bathing facility according to claim 6,
The electrolyzed water generating means is provided in a hot water supply path of hot water supply means for supplying hot water to the bathtub,
A bathing facility comprising switching means for switching between the circulation path and the hot water supply path .
請求項7に記載の入浴設備において、
前記給湯手段は、ヒートポンプにより得られた温水を貯留する貯湯タンクを備え、
前記貯湯タンクに貯留された前記温水が前記給湯経路から前記浴槽に送られる
ことを特徴とする入浴設備。
The bathing facility according to claim 7,
The hot water supply means includes a hot water storage tank for storing hot water obtained by a heat pump,
The bathing facility, wherein the hot water stored in the hot water storage tank is sent from the hot water supply path to the bathtub .
請求項8に記載の入浴設備において、
前記貯湯タンクからの温水を熱媒体として前記循環経路の前記循環流体を昇温する熱交換器を備えた
ことを特徴とする入浴設備。
The bathing facility according to claim 8,
A bathing facility comprising a heat exchanger for heating the circulating fluid in the circulation path using hot water from the hot water storage tank as a heat medium .
JP2009289685A 2009-05-15 2009-12-21 Bathing facilities Active JP4497558B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289685A JP4497558B1 (en) 2009-05-15 2009-12-21 Bathing facilities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009119128 2009-05-15
JP2009289685A JP4497558B1 (en) 2009-05-15 2009-12-21 Bathing facilities

Publications (2)

Publication Number Publication Date
JP4497558B1 true JP4497558B1 (en) 2010-07-07
JP2010284504A JP2010284504A (en) 2010-12-24

Family

ID=42575651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289685A Active JP4497558B1 (en) 2009-05-15 2009-12-21 Bathing facilities

Country Status (1)

Country Link
JP (1) JP4497558B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688107B2 (en) 2013-01-31 2015-03-25 中国電機製造株式会社 Hydrogen-containing water generator
JP5688106B2 (en) 2013-01-31 2015-03-25 中国電機製造株式会社 Hydrogen-containing water generating electrode and hydrogen-containing water generating apparatus
JP5688109B2 (en) 2013-01-31 2015-03-25 中国電機製造株式会社 Method for producing hydrogen-containing water generating electrode and hydrogen-containing water generating electrode
JP5688108B2 (en) 2013-01-31 2015-03-25 中国電機製造株式会社 Hydrogen-containing water generator
JP5688105B2 (en) 2013-01-31 2015-03-25 中国電機製造株式会社 Hydrogen-containing water generating electrode and hydrogen-containing water generating apparatus
JP5688104B2 (en) 2013-01-31 2015-03-25 中国電機製造株式会社 Hydrogen-containing water generating electrode and hydrogen-containing water generating apparatus
JP5688112B2 (en) 2013-03-25 2015-03-25 中国電機製造株式会社 Hydrogen-containing water generator
JP6128073B2 (en) * 2014-07-24 2017-05-17 中国電力株式会社 Hydrogen-containing water generator and bathing equipment
KR20180053183A (en) * 2016-11-11 2018-05-21 동명대학교산학협력단 System for producing electrolytic water ice slurry
KR101949235B1 (en) * 2018-11-09 2019-02-18 동명대학교산학협력단 System for producing electrolytic water ice slurry
JP7238076B1 (en) 2021-11-09 2023-03-13 株式会社日本トリム Electrolyzed water generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008318A1 (en) * 1989-01-11 1990-07-26 Plessey Overseas Limited Improvements in or relating to optical biosensors
JP2001204787A (en) * 2000-01-26 2001-07-31 Matsushita Electric Works Ltd Bathtub water circulating device
JP2001276830A (en) * 2000-04-03 2001-10-09 Sanyo Electric Co Ltd Bathtub water circulating and cleaning device
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
JP2006150188A (en) * 2004-11-26 2006-06-15 Noritz Corp Hydrogen water production device
JP3143019U (en) * 2008-04-24 2008-07-03 株式会社ヴィネーション Active hydrogen water generator for underwater
JP2008168180A (en) * 2007-01-09 2008-07-24 Chugoku Electric Manufacture Co Ltd Hydrogen-containing electrolytic water conditioner, bathtub facility, and method for producing hydrogen-containing electrolytic water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438310B2 (en) * 1994-05-10 2003-08-18 株式会社ノーリツ Bath unit
JP3411991B2 (en) * 1997-08-25 2003-06-03 正一 大河内 Method for producing electrolyzed water and apparatus used therefor
JPWO2009008318A1 (en) * 2007-07-10 2010-09-09 公立大学法人県立広島大学 Method for suppressing electrolytically reduced water, hot water for bathing and fat mass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008318A1 (en) * 1989-01-11 1990-07-26 Plessey Overseas Limited Improvements in or relating to optical biosensors
JP2001204787A (en) * 2000-01-26 2001-07-31 Matsushita Electric Works Ltd Bathtub water circulating device
JP2001276830A (en) * 2000-04-03 2001-10-09 Sanyo Electric Co Ltd Bathtub water circulating and cleaning device
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
JP2006150188A (en) * 2004-11-26 2006-06-15 Noritz Corp Hydrogen water production device
JP2008168180A (en) * 2007-01-09 2008-07-24 Chugoku Electric Manufacture Co Ltd Hydrogen-containing electrolytic water conditioner, bathtub facility, and method for producing hydrogen-containing electrolytic water
JP3143019U (en) * 2008-04-24 2008-07-03 株式会社ヴィネーション Active hydrogen water generator for underwater

Also Published As

Publication number Publication date
JP2010284504A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP4497558B1 (en) Bathing facilities
JP2010088972A (en) Hydrogen-containing electrolytic water generation device and hot water supply device
CN107922222B (en) Electrolyzed water generation device, hydrogen-rich water supply device provided with same, and device for producing water for dialysate preparation
JP2010088973A (en) Hydrogen-containing electrolytic water generation device and hot water supply device
US20180037480A1 (en) Method for producing hydrogen water
JP2009005881A (en) Inhalation device of hydrogen gas into body
TW201042090A (en) The electrolytic system for producing HCLO solution
TWI722015B (en) Hydrogen-rich water feeder
TW201716337A (en) Hydrogen-rich water feeder
JP6366360B2 (en) Method for producing electrolytic reduced water containing hydrogen molecules and apparatus for producing the same
KR100620067B1 (en) Water Purifying System Generating Disolved Oxygen and Dissolved Hydrogen
JP5110474B2 (en) Hydrogen-containing electrolyzed water conditioner and bathtub equipment
JP2008168180A (en) Hydrogen-containing electrolytic water conditioner, bathtub facility, and method for producing hydrogen-containing electrolytic water
CN212404301U (en) Oxyhydrogen gas and hydrogen-rich water production system
JP2006150188A (en) Hydrogen water production device
KR20140135387A (en) Production device for hydrogen water
JP4200118B2 (en) Alkaline ion water conditioner
CN212152454U (en) Oxyhydrogen gas and hydrogen-rich water supply system
KR20170104323A (en) Hydrogen Water Generation Device Having A Rapid Cooling
KR20140139182A (en) Hydrogen Water Provider with Cooling Pipe
JP2000202449A (en) Alkaline ionized water producer
CN113526756A (en) Hydrogen-rich water production and filling system
CN212395378U (en) Hydrogen-rich water bathing system
CN212451004U (en) Hydrogen-rich water production and filling system
CN212293027U (en) Hydrogen-rich water direct drinking system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4497558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250