JP4481449B2 - Shading blade material for optical equipment - Google Patents

Shading blade material for optical equipment Download PDF

Info

Publication number
JP4481449B2
JP4481449B2 JP2000217291A JP2000217291A JP4481449B2 JP 4481449 B2 JP4481449 B2 JP 4481449B2 JP 2000217291 A JP2000217291 A JP 2000217291A JP 2000217291 A JP2000217291 A JP 2000217291A JP 4481449 B2 JP4481449 B2 JP 4481449B2
Authority
JP
Japan
Prior art keywords
coating film
weight
carbon black
resin
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000217291A
Other languages
Japanese (ja)
Other versions
JP2002031829A (en
Inventor
修治 一之瀬
隆雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2000217291A priority Critical patent/JP4481449B2/en
Publication of JP2002031829A publication Critical patent/JP2002031829A/en
Application granted granted Critical
Publication of JP4481449B2 publication Critical patent/JP4481449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はカメラのフォーカルプレンシャッタやレンズシャッタなどのシャッタ羽根、あるいは絞り羽根などの用途で遮光性、軽量、高剛性を必要とする光学機器用遮光羽根材に関する。より詳しくは、遮光羽根の基材の両面に塗工する機能性塗膜の組成に関する。
【0002】
【従来の技術】
カメラなど光学機器用の遮光羽根材(シャッタ羽根や絞り羽根など)は、基本的な性質として軽量で且つ高剛性を要求されるが、これと同時にフィルムなど感光材料の前面を覆って光を遮るものであるから、本質的に遮光性を有していなければならない。加えて、表面で光が反射しない様に効率よく光を吸収しなければならないので、遮光羽根材は黒色で且つ表面反射率が低いことが好ましい。更に、シャッタ羽根などは互いに重なり合って作動するので、平面性が良好で且つ帯電防止能がなければならない。このことは、高速で開閉動作するフォカルプレンシャッタ羽根などにおいて特に重要である。
【0003】
【発明が解決しようとする課題】
遮光羽根に要求される機能を付与する為、一般にはプラスチックフィルムからなる機材の両面に機能性の塗膜を被覆している。しかしながら、現状の一般的に使用されている光学機器用途の固体潤滑塗膜は、低光沢度であるが故に製造工程において傷が発生しやすく、外観不良として歩留り低下の原因になっていた。
【0004】
【課題を解決するための手段】
上述した従来の技術の課題に鑑み、本発明は耐擦傷性に優れた光学機器用遮光羽根材を提供することを目的とする。係る目的を達成する為に以下の手段を講じた。即ち、本発明に係る光学機器用遮光羽根材は基材とその両面に配された塗膜とを含む積層構造を有する。前記基材は、PET、PEN及びポリアミドから選択された二軸延伸結晶性高分子化合物のフィルムからなり、その厚みが38〜125μmの範囲にある。又、前記塗膜は、アクリル系、エポキシ系及びジアリルフタレート系の樹脂に、少くとも一部導電性を有するカーボンブラック及び潤滑性を有するPTFEを添加したものからなる。特徴事項として、前記樹脂は、塗膜中の分量が70〜80重量%の範囲にあり、塗膜表面の擦傷及び光反射を共に抑制可能である。又、前記PTFEは、塗膜中の分量が4〜10重量%であり、塗膜の表面に潤滑性の他耐擦傷性を付与する。好ましくは、前記カーボンブラックは、塗膜中の分量が5〜17重量%であり、その内導電性を付与されたカーボンブラックの分量を3重量%以上として、塗膜表面の帯電を抑制する。
【0005】
遮光羽根材表面にある塗膜の傷の発生原因を解析したところ、傷は樹脂とカーボンブラックの濃度バランスに依存しており、傷の発生しにくい濃度範囲があることが判明した。即ち、塗膜組成中の樹脂濃度(樹脂分量)が70〜80重量%であれば、耐擦傷性に優れた塗膜を得ることができる。70重量%以下では耐擦傷性が劣り、傷が多発する。一方、80重量%以上になると、表面の光沢が有り過ぎて、光反射が強くなり光学機器用途には適していない。この様に、塗料成分の面からは、従来よりも樹脂濃度を上げることにより、塗膜自体を固くして、傷が付きにくくしている。
【0006】
又、光学機器用途で特にシャッタ羽根などに使用する場合、帯電防止性が必要となる。一般には、帯電防止性は塗膜樹脂にカーボンブラックを混入することで得られる。通常、カーボンブラックの添加量は入射光に対する遮蔽性の点で5重量%以上必要である。この着色用カーボンブラックでも、添加量を多くすれば上述した様に帯電防止性を付与することが可能である。しかし、カーボンブラックの添加量を増やすと傷が発生しやすく目立ってしまう。そこで、本発明ではカーボンブラックの一部を特に導電性を付与されたカーボンブラックで置き換え、その添加量を3重量%以上に設定し、帯電防止性能を確保している。即ち、全カーボンブラックの添加量を5〜17重量%とし、その内の3重量%以上を導電性を付与されたカーボンブラックとすることで、目的とする帯電防止性、耐擦傷性及び低光沢性(低反射性)を備えた塗膜ができる。即ち、カーボンブラックの一部を導電性を付与されたもので置き換えることにより、カーボンブラック全体の添加量を下げることが可能となり、その分傷が目立ちにくくなる。
【0007】
加えて、潤滑性を目的としたPTFEは4重量%以上添加することが好ましい。塗膜表面にPTFEによって凹凸を付けることにより、遮光羽根材同士がこすれる時、凸部で接している為、傷が目立ちずらくなる。尚、塗料の分散性の観点からはPTFEの添加量は10重量%以下が好ましい。以上に述べた組成により、光学機器用途に適した耐擦傷性、潤滑性、低光沢性及び帯電防止性に優れた塗膜を得ることが可能となる。
【0008】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を詳細に説明する。図1は、本発明に係る光学機器用遮光羽根材の基本的な構成を示す断面図である。図示する様に、光学機器用の遮光羽根材0は、基材1とその両面に配された塗膜2とを含む積層構造を有する。基材1は、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)及びポリアミドから選択された二軸延伸結晶性高分子化合物のフィルムからなり、その厚みが38〜125μmの範囲にある。フィルムの厚みが38μm未満であると、剛性が乏しくなりシャッタ羽根などの可動部材として使えない。又、厚みが125μmを超えると重量が重くなる為、高速走行が必要なシャッタ羽根などに不向きである。塗膜2は、アクリル系、エポキシ系及びジアリルフタレート系から選択された樹脂3に、少くとも一部導電性を有するカーボンブラック及び潤滑性を有するPTFE4を添加したものからなる。特徴事項として、樹脂3は、塗膜2中の分量が70〜80重量%の範囲にあり、塗膜2表面の擦傷及び光反射を共に抑制することができる。樹脂3の分量が70重量%未満であると、塗膜2が柔らかくなる為、傷が付きやすい。逆に、樹脂3の分量が80重量%を超えると、緻密な組成となる為光反射量が増し、不必要な光沢が出てしまう。又、カーボンブラックは、塗膜2中の分量が5〜17重量%に設定されている。その内、特に導電性を付与されたカーボンブラックの分量を3重量%以上として、塗膜2表面の帯電を抑制している。カーボンブラックを多量に混入すると傷が付きやすくなる。そこで、一部を導電性のカーボンブラックで置き換えることにより、全体のカーボンブラック量を17重量%以下に抑え、以て傷が目立たなくしている。加えて、PTFE4は塗膜2中の分量が4〜10重量%であり、塗膜2の表面に潤滑性の他耐擦傷性を付与する。即ち、PTFE4を4重量%以上混合することにより、塗膜2の表面に凹凸が現れ、傷が付きにくくしている。
【0009】
以下、実施例を挙げて本発明を詳細に説明する。図2は、従来例と実施例1〜実施例10の組成及び特性をまとめた表図である。各実施例について、樹脂、カーボンブラック及びPTFEの分量を重量%で表わしてある。樹脂は何れの実施例についてもアクリル樹脂を使っている。カーボンブラックは、着色用として三菱化成のMA−100を使い、導電用として同じく三菱化成の#3150を使った。評価項目については、耐擦傷性、潤滑性、帯電防止性及び光沢性を調べた。何れの項目についても、×、△、〇及び◎の4段階評価としている。
【0010】
耐擦傷性については、同じ塗膜同士を重ねて上から100gの荷重を掛け、3cmの距離を毎分100往復する速度で10分間擦り合わせ、塗膜面の傷の状態を目視で確認した。潤滑性(摺動性)については、塗膜上を200gあるいは50gの荷重を掛けながら、ステンレスボールを摺動させ、その時の摩擦係数を求め、4段階評価をした。帯電防止性については、各塗膜の表面抵抗値を測定し、4段階評価とした。光沢性については、各塗膜の表面光沢度をJIS規格のZ8741に従い、Gs(60°)の条件で測定し、その優劣を4段階評価した。尚、Gs(60°)の条件は、反射角が60°で反射した光の光量に基づいて表面光沢度を測定したものである。
【0011】
図2の表に示した従来例は、アクリル樹脂が66重量%、着色用カーボンブラックが17重量%及びPTFEが4重量%で構成された塗膜である。この塗膜の特性は潤滑性(摩擦係数μ=0.1以下)、帯電防止性(表面抵抗率106 Ω)、反射率(3%)で問題ないが、耐擦傷性において傷が目立ってしまう。
【0012】
実施例1の塗膜は、樹脂86重量%、着色用カーボンブラック7重量%、PTFE2重量%で構成されている。その特性は、耐擦傷性において、上述の従来例に比べ向上している。これは、樹脂濃度の増加及びカーボンブラック濃度の低下による。しかし、潤滑性(摩擦係数μ=0.12以上)、帯電防止性(1011Ω以上)及び反射率(23%)において、実用に合わない場合がある。
【0013】
実施例2は、樹脂が80重量%、着色用カーボンブラックが10重量%、PTFEが2重量%で構成した塗膜である。その特性は、耐擦傷性において従来例に比べ向上している。これは、樹脂濃度の増加及びカーボンブラック濃度の低下による。しかし、PTFEの濃度が低い為、潤滑性(摩擦係数μ=0.12以上)が必ずしも実用的ではない。又、カーボンブラック濃度が低い為帯電防止性(1011Ω)が余り高くない。加えて、反射率(13%)も低いとは言えない。
【0014】
実施例3の塗膜は、樹脂75重量%、着色用カーボンブラック12重量%、PTFE3重量%の組成である。この塗膜の特性は、耐擦傷性において従来例に比べ向上している。これは、樹脂濃度の増加及びカーボンブラック濃度の低下による。反射率(7%)にも問題はない。これは、実施例1及び実施例2と比較し、カーボンブラック濃度が高い為である。しかし、PTFE濃度が低い為、潤滑性(摩擦係数μ=0.12以上)が必ずしも実用的ではない。又、カーボンブラック濃度が低い為、帯電防止性(108 Ω)も十分とは言えない。
【0015】
実施例4の塗膜は、樹脂75重量%、着色用カーボンブラック19重量%、PTFE2重量%の組成を有する。この塗膜の特性は、帯電防止性(107 Ω)に優れている。これは、カーボンブラック濃度が高い為である。しかし、耐擦傷性、潤滑性(摩擦係数μ=0.12以上)及び反射率(9%)は必ずしも最高レベルではない。
【0016】
実施例5に係る塗膜は、樹脂72重量%、着色用カーボンブラック18重量%、PTFE2重量%で構成したものである。この塗膜の特性は、帯電防止性(106 Ω)及び反射率(8%)が優れている。これは、カーボンブラック濃度が高い為である。しかし、耐擦傷性及び潤滑性(摩擦係数μ=0.12以上)は必ずしも実用的に見て十分なレベルではない。
【0017】
実施例6の塗膜は、樹脂70重量%、着色用カーボンブラック18重量%、PTFE3重量%で構成したものである。この塗膜の特性は、帯電防止性(106Ω)及び反射率(7%)において実用上十分な特性が得られた。これはカーボンブラック濃度が高い為である。しかし、耐擦傷性及び潤滑性(摩擦係数μ=0.12以上)は必ずしも十分ではない。
【0018】
実施例7に係る塗膜は、樹脂74重量%、着色用カーボンブラック12重量%、PTFE5重量%の組成を有する。この塗膜の特性は、耐擦傷性、潤滑性(摩擦係数μ=0.08)及び反射率(6%)の点で、実用上十分な特性が得られている。これは、樹脂濃度が高く、加えてPTFE濃度も高い為である。しかし、帯電防止性(108 Ω)は実用的に見て必ずしも十分ではない。
【0019】
実施例8に係る塗膜は、樹脂70重量%、着色用カーボンブラック12重量%、導電用カーボンブラック6重量%、PTFE3重量%で構成した。この塗膜の特性は、帯電防止性(105 Ω)、反射率(4%)において実用上十分な特性が得られた。これは、導電用のカーボンブラックを添加したこと及び全カーボンブラック量が多い為である。しかし、カーボンブラック濃度が高い為、逆に耐擦傷性が弱くなっている。又、PTFE濃度が低い為、潤滑性(摩擦係数μ=0.12以上)が十分ではない。
【0020】
実施例9に係る塗膜は、樹脂72重量%、着色用カーボンブラック12重量%、導電用カーボンブラック2重量%、PTFE4重量%で構成したものである。この塗膜の特性は、耐擦傷性、潤滑性(摩擦係数μ=0.12以下)及び反射率(6%)の点で、実用的に十分な特性が得られている。これは、樹脂濃度及びPTFE濃度が高い為である。しかし、導電用カーボンブラック濃度が低い為、帯電防止性(108 Ω)が必ずしも十分ではない。
【0021】
実施例10に係る塗膜は、樹脂72重量%、着色用カーボンブラック12重量%、導電用カーボンブラック3重量%、PTFE4重量%の組成を有している。この塗膜の特性は、耐擦傷性、潤滑性(摩擦係数μ=0.12以下)、帯電防止性(106 Ω)及び反射率(8%)の全ての点において、実用的に十分な特性が得られている。これは、樹脂濃度、カーボンブラック濃度及びPTFE濃度のバランスがよい為である。
【0022】
図3は、図1に示した遮光羽根材をプレス抜き加工して得られたフォーカルプレンシャッタ羽根の一例を示す。シャッタ羽根10はほぼ長尺型の形状を有し、その一端部には固定用の一対の連結穴20が形成されている。
【0023】
図4は、図3に示したフォーカルプレンシャッタ羽根をフォーカルプレンシャッタに組み込んだ例を示す。シャッタ基板11の中央部には長方形の開口12(一点鎖線で示す)が設けられている。休止状態において4枚の先羽根10が互いに部分的に重なり合ってシャッタ開口12を遮蔽している。図示しないが先羽根群の下方には後羽根群が重なって配置されている。各シャッタ羽根の先端部は羽根押え14によって不要な動きを規制されている。基板11の左端部には1組のアーム15及び16が互いに平行関係を保って回動自在に軸支されている。各先羽根10はその先端部において1組のアーム15及び16に係止されている。後羽根群も同様に図示しない一対のアームによって係止されている。主アーム15には長穴17が設けられており、主アーム15の回動に伴う長穴17の移動軌跡に沿って長溝18が基板11に設けられている。なお、図示しないが長穴17には、長溝18を介して基板11を貫通する駆動ピンが係合している。図示しないシャッタレリースボタンを押すと、駆動ピンは基板11に設けられた長溝18に沿って与えられた付勢力により上方に移動する。これに伴って長穴17において駆動ピンと係合している主アーム15及びこれと連動する従アーム16は上方に回動する。この回動により先羽根10は上方に縦走り走行し開口12を開口する。次いで図示しない後羽根群が縦走り走行し開口12を遮蔽し露光が終了する。
【0024】
【発明の効果】
以上説明したように、本発明によれば、塗膜中における樹脂の分量を70〜80重量%にすることで、光学機器用遮光羽根材表面の擦傷及び光反射を共に抑制することが可能である。更に、カーボンブラックにつき、塗膜中の分量を5〜17重量%とし、その内導電性を付与したカーボンブラックの分量を3重量%以上確保することで、塗膜表面の帯電を抑制可能である。更に、塗膜中におけるPTFEの分量を4〜10重量%に設定することで、潤滑性の他耐擦傷性を強化することが可能である。以上により、耐擦傷性、潤滑性、帯電防止性及び低光沢性を全て兼ね備えた光学機器用遮光羽根材料を実用に供することが可能になる。
【図面の簡単な説明】
【図1】本発明に係る光学機器用遮光羽根材を示す模式的な断面図である。
【図2】本発明に係る遮光羽根材の実施例をまとめた表図である。
【図3】本発明に係る遮光羽根材を用いて作成したフォーカルプレンシャッタ羽根を示す斜視図である。
【図4】図3に示したフォーカルプレンシャッタ羽根を用いて組立てられたシャッタを示す模式的な平面図である。
【符号の説明】
0・・・遮光羽根材、1・・・基材、2・・・塗膜、3・・・樹脂、4・・・PTFE
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light shielding blade material for optical equipment that requires light shielding, light weight, and high rigidity in applications such as shutter blades such as focal plane shutters and lens shutters of cameras, or diaphragm blades. More specifically, the present invention relates to a composition of a functional coating film applied to both surfaces of a base material of a light shielding blade.
[0002]
[Prior art]
Light shielding blade materials (shutter blades, diaphragm blades, etc.) for optical devices such as cameras are required to be lightweight and highly rigid as basic properties, but at the same time, they cover the front surface of photosensitive materials such as films and block light. Since it is a thing, it must have light-shielding property essentially. In addition, the light shielding blade material is preferably black and has a low surface reflectance because light must be efficiently absorbed so that the light does not reflect on the surface. Further, since the shutter blades and the like operate while being overlapped with each other, the flatness and the antistatic ability must be provided. This is particularly important for focal plane shutter blades that open and close at high speed.
[0003]
[Problems to be solved by the invention]
In order to provide the functions required for the light-shielding blade, a functional coating film is generally coated on both surfaces of equipment made of a plastic film. However, currently used solid lubricating coatings for optical equipment that are generally used have a low glossiness, and thus are easily scratched in the production process, causing a decrease in yield as an appearance defect.
[0004]
[Means for Solving the Problems]
In view of the above-described problems of the conventional technology, an object of the present invention is to provide a light-shielding blade material for an optical device having excellent scratch resistance. In order to achieve this purpose, the following measures were taken. That is, the light shielding blade material for an optical device according to the present invention has a laminated structure including a base material and a coating film disposed on both surfaces thereof. The base material is made of a biaxially stretched crystalline polymer compound film selected from PET, PEN and polyamide, and has a thickness in the range of 38 to 125 μm. The coating film is made of an acrylic resin, an epoxy resin, or a diallyl phthalate resin to which carbon black having conductivity and PTFE having lubricity are added. As a feature, the resin has a content of 70 to 80% by weight in the coating film, and can suppress both scratches and light reflection on the coating film surface. The PTFE has an amount of 4 to 10% by weight in the coating film and imparts not only lubricity but also scratch resistance to the surface of the coating film. Preferably, the carbon black, the quantity of the coating film is 5 to 17 wt%, the amount of carbon black that has been granted the inner conductive As 3 wt% or more, you suppress charging of the coating film surface .
[0005]
As a result of analyzing the cause of the scratches on the coating film on the surface of the light shielding blade, it was found that the scratches depend on the concentration balance between the resin and the carbon black and that there is a concentration range in which scratches are difficult to occur. That is, when the resin concentration (resin content) in the coating film composition is 70 to 80% by weight, a coating film having excellent scratch resistance can be obtained. If it is 70% by weight or less, the scratch resistance is inferior and scratches occur frequently. On the other hand, if it is 80% by weight or more, the surface is too glossy and the light reflection is so strong that it is not suitable for optical equipment. In this way, from the viewpoint of the paint component, by increasing the resin concentration as compared with the prior art, the coating film itself is hardened and is hardly damaged.
[0006]
In addition, antistatic properties are required when used for shutter blades and the like in optical equipment applications. In general, the antistatic property can be obtained by mixing carbon black into the coating resin. Usually, the amount of carbon black added is required to be 5% by weight or more from the viewpoint of shielding against incident light. Even with this coloring carbon black, it is possible to impart antistatic properties as described above by increasing the addition amount. However, if the amount of carbon black added is increased, scratches tend to occur and become noticeable. Therefore, in the present invention, a part of the carbon black is replaced with carbon black having conductivity, and the addition amount is set to 3% by weight or more to ensure the antistatic performance. That is, the total amount of carbon black added is 5 to 17% by weight, and 3% by weight or more of the carbon black is provided with conductivity, so that the desired antistatic property, scratch resistance and low gloss can be obtained. A coating film having good properties (low reflectivity) can be obtained. That is, by replacing a part of carbon black with a conductive material, the amount of carbon black added can be reduced, and the damage is less noticeable.
[0007]
In addition, it is preferable to add 4% by weight or more of PTFE for the purpose of lubricity. By applying irregularities to the surface of the coating film with PTFE, when the light shielding blade materials are rubbed together, the scratches are not noticeable because they are in contact with the convex portions. From the viewpoint of the dispersibility of the paint, the amount of PTFE added is preferably 10% by weight or less. The composition described above makes it possible to obtain a coating film excellent in scratch resistance, lubricity, low glossiness and antistatic properties suitable for optical equipment applications.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a basic configuration of a light shielding blade material for an optical apparatus according to the present invention. As shown in the drawing, the light shielding blade material 0 for optical equipment has a laminated structure including a base material 1 and a coating film 2 disposed on both surfaces thereof. The substrate 1 is made of a film of a biaxially stretched crystalline polymer compound selected from PET (polyethylene terephthalate), PEN (polyethylene naphthalate) and polyamide, and has a thickness in the range of 38 to 125 μm. If the thickness of the film is less than 38 μm, the rigidity becomes poor and the film cannot be used as a movable member such as a shutter blade. Further, since the weight increases when the thickness exceeds 125 μm, it is not suitable for shutter blades that require high-speed travel. The coating film 2 is made of a resin 3 selected from acrylic, epoxy, and diallyl phthalate and at least partially added carbon black having conductivity and PTFE 4 having lubricity. As a characteristic matter, the amount of resin 3 in the coating film 2 is in the range of 70 to 80% by weight, and both the scratch and light reflection on the surface of the coating film 2 can be suppressed. When the amount of the resin 3 is less than 70% by weight, the coating film 2 becomes soft, so that it is easily damaged. On the contrary, when the amount of the resin 3 exceeds 80% by weight, the light reflection amount is increased due to a dense composition, and unnecessary gloss is produced. Carbon black is set to 5 to 17% by weight in the coating film 2. In particular, the amount of carbon black imparted with conductivity is set to 3% by weight or more to suppress the charging of the coating film 2 surface. If a large amount of carbon black is mixed, it becomes easy to be damaged. Therefore, by replacing part of the carbon black with conductive carbon black, the total amount of carbon black is suppressed to 17% by weight or less, thereby making the scratches inconspicuous. In addition, the amount of PTFE 4 in the coating film 2 is 4 to 10% by weight, and imparts not only lubricity but also scratch resistance to the surface of the coating film 2. That is, by mixing PTFE 4 in an amount of 4% by weight or more, irregularities appear on the surface of the coating film 2 and are hardly damaged.
[0009]
Hereinafter, the present invention will be described in detail with reference to examples. FIG. 2 is a table summarizing the compositions and characteristics of the conventional example and Examples 1 to 10. For each example, the amounts of resin, carbon black and PTFE are expressed in weight percent. As the resin, acrylic resin is used in any of the examples. For the carbon black, MA-100 made by Mitsubishi Kasei was used for coloring, and # 3150 made by Mitsubishi Kasei was also used for conducting. For the evaluation items, the scratch resistance, lubricity, antistatic property and gloss were examined. Each item has a four-level evaluation of x, Δ, ○, and ◎.
[0010]
Regarding the scratch resistance, the same coating films were overlapped with each other, a load of 100 g was applied from above, and the 3 cm distance was rubbed for 10 minutes at a speed of 100 reciprocations per minute, and the state of scratches on the coating film surface was visually confirmed. With respect to lubricity (slidability), a stainless ball was slid while applying a load of 200 g or 50 g on the coating film, and the coefficient of friction at that time was determined, and evaluated in four stages. About antistatic property, the surface resistance value of each coating film was measured, and it was set as four-step evaluation. Regarding glossiness, the surface glossiness of each coating film was measured in accordance with JIS standard Z8741 under the condition of Gs (60 °), and the superiority or inferiority was evaluated in four stages. The condition of Gs (60 °) is obtained by measuring the surface glossiness based on the amount of light reflected at a reflection angle of 60 °.
[0011]
The conventional example shown in the table of FIG. 2 is a coating film composed of 66% by weight of acrylic resin, 17% by weight of carbon black for coloring, and 4% by weight of PTFE. There are no problems with the properties of this coating film in terms of lubricity (friction coefficient μ = 0.1 or less), antistatic properties (surface resistivity 10 6 Ω), and reflectance (3%), but scratches are conspicuous in scratch resistance. End up.
[0012]
The coating film of Example 1 is composed of 86 wt% resin, 7 wt% carbon black for coloring, and 2 wt% PTFE. The characteristic is improved in abrasion resistance as compared with the above-described conventional example. This is due to an increase in resin concentration and a decrease in carbon black concentration. However, the lubricity (friction coefficient μ = 0.12 or more), antistatic property (10 11 Ω or more), and reflectance (23%) may not be practical.
[0013]
Example 2 is a coating film composed of 80% by weight of resin, 10% by weight of carbon black for coloring, and 2% by weight of PTFE. The characteristic is improved in the scratch resistance as compared with the conventional example. This is due to an increase in resin concentration and a decrease in carbon black concentration. However, since the concentration of PTFE is low, lubricity (friction coefficient μ = 0.12 or more) is not always practical. Further, since the carbon black concentration is low, the antistatic property (10 11 Ω) is not so high. In addition, it cannot be said that the reflectance (13%) is low.
[0014]
The coating film of Example 3 has a composition of 75% by weight of resin, 12% by weight of carbon black for coloring, and 3% by weight of PTFE. The characteristics of this coating film are improved in scratch resistance as compared with the conventional example. This is due to an increase in resin concentration and a decrease in carbon black concentration. There is no problem with the reflectance (7%). This is because the carbon black concentration is higher than in Example 1 and Example 2. However, since the PTFE concentration is low, lubricity (friction coefficient μ = 0.12 or more) is not always practical. Further, since the carbon black concentration is low, it cannot be said that the antistatic property (10 8 Ω) is sufficient.
[0015]
The coating film of Example 4 has a composition of 75 wt% resin, 19 wt% carbon black for coloring, and 2 wt% PTFE. The properties of this coating film are excellent in antistatic properties (10 7 Ω). This is because the carbon black concentration is high. However, scratch resistance, lubricity (friction coefficient μ = 0.12 or more) and reflectivity (9%) are not necessarily the highest levels.
[0016]
The coating film according to Example 5 is composed of 72% by weight of resin, 18% by weight of carbon black for coloring, and 2% by weight of PTFE. The properties of this coating film are excellent in antistatic properties (10 6 Ω) and reflectance (8%). This is because the carbon black concentration is high. However, the scratch resistance and lubricity (friction coefficient μ = 0.12 or more) are not always at a sufficient level in practical use.
[0017]
The coating film of Example 6 is composed of 70% by weight of resin, 18% by weight of carbon black for coloring, and 3% by weight of PTFE. As the characteristics of this coating film, practically sufficient characteristics were obtained in terms of antistatic properties (10 6 Ω) and reflectance (7%). This is because the carbon black concentration is high. However, the scratch resistance and lubricity (friction coefficient μ = 0.12 or more) are not always sufficient.
[0018]
The coating film according to Example 7 has a composition of 74 wt% resin, 12 wt% carbon black for coloring, and 5 wt% PTFE. The coating film has practically sufficient characteristics in terms of scratch resistance, lubricity (friction coefficient μ = 0.08) and reflectance (6%). This is because the resin concentration is high and the PTFE concentration is also high. However, the antistatic property (10 8 Ω) is not always sufficient for practical use.
[0019]
The coating film according to Example 8 was composed of 70% by weight of resin, 12% by weight of carbon black for coloring, 6% by weight of conductive carbon black, and 3% by weight of PTFE. As for the properties of this coating film, practically sufficient properties were obtained in terms of antistatic properties (10 5 Ω) and reflectance (4%). This is because the conductive carbon black is added and the total amount of carbon black is large. However, since the carbon black concentration is high, the scratch resistance is weakened. Further, since the PTFE concentration is low, the lubricity (friction coefficient μ = 0.12 or more) is not sufficient.
[0020]
The coating film according to Example 9 is composed of 72% by weight of resin, 12% by weight of carbon black for coloring, 2% by weight of conductive carbon black, and 4% by weight of PTFE. The coating film has practically sufficient characteristics in terms of scratch resistance, lubricity (friction coefficient μ = 0.12 or less) and reflectance (6%). This is because the resin concentration and the PTFE concentration are high. However, since the conductive carbon black concentration is low, the antistatic property (10 8 Ω) is not always sufficient.
[0021]
The coating film according to Example 10 has a composition of 72% by weight of resin, 12% by weight of carbon black for coloring, 3% by weight of conductive carbon black, and 4% by weight of PTFE. The characteristics of this coating film are practically sufficient in all points of scratch resistance, lubricity (friction coefficient μ = 0.12 or less), antistatic property (10 6 Ω) and reflectance (8%). Characteristics are obtained. This is because the resin concentration, carbon black concentration and PTFE concentration are well balanced.
[0022]
FIG. 3 shows an example of a focal plane shutter blade obtained by press-cutting the light shielding blade material shown in FIG. The shutter blade 10 has a substantially long shape, and a pair of fixing connection holes 20 are formed at one end thereof.
[0023]
FIG. 4 shows an example in which the focal plane shutter blade shown in FIG. 3 is incorporated in the focal plane shutter. A rectangular opening 12 (shown by a one-dot chain line) is provided at the center of the shutter substrate 11. In the resting state, the four front blades 10 partially overlap each other to shield the shutter opening 12. Although not shown, the rear blade group is disposed below the front blade group. Unnecessary movement of the tip of each shutter blade is regulated by the blade presser 14. A pair of arms 15 and 16 are pivotally supported at the left end portion of the substrate 11 so as to be rotatable in parallel with each other. Each leading blade 10 is locked to a pair of arms 15 and 16 at its tip. Similarly, the rear blade group is locked by a pair of arms (not shown). A long hole 17 is provided in the main arm 15, and a long groove 18 is provided in the substrate 11 along the movement locus of the long hole 17 as the main arm 15 rotates. Although not shown, the long hole 17 is engaged with a drive pin that penetrates the substrate 11 through the long groove 18. When a shutter release button (not shown) is pressed, the drive pin moves upward by a biasing force applied along the long groove 18 provided in the substrate 11. Accordingly, the main arm 15 engaged with the drive pin in the elongated hole 17 and the slave arm 16 interlocked therewith rotate upward. By this rotation, the leading blade 10 travels vertically and opens the opening 12. Next, a rear blade group (not shown) travels longitudinally to shield the opening 12 and the exposure ends.
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress both scratches and light reflection on the surface of the light shielding blade material for optical equipment by setting the amount of resin in the coating film to 70 to 80% by weight. is there. Furthermore, with respect to the carbon black, the amount in the coating film is 5 to 17% by weight, and the amount of the carbon black to which the conductivity is imparted is ensured to be 3% by weight or more, thereby suppressing charging of the coating film surface. . Furthermore, by setting the amount of PTFE in the coating film to 4 to 10% by weight, it is possible to enhance the scratch resistance as well as the lubricity. As described above, the light shielding blade material for optical equipment having all of scratch resistance, lubricity, antistatic property and low glossiness can be put to practical use.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a light shielding blade material for an optical apparatus according to the present invention.
FIG. 2 is a table summarizing examples of light shielding blade materials according to the present invention.
FIG. 3 is a perspective view showing a focal plane shutter blade produced using the light shielding blade material according to the present invention.
4 is a schematic plan view showing a shutter assembled using the focal plane shutter blades shown in FIG. 3. FIG.
[Explanation of symbols]
0 ... Light-shielding blade material, 1 ... Base material, 2 ... Coating film, 3 ... Resin, 4 ... PTFE

Claims (2)

基材とその両面に配された塗膜とを含む積層構造を有し、
前記基材は、PET、PEN及びポリアミドから選択された二軸延伸結晶性高分子化合物のフィルムからなり、その厚みが38〜125μmの範囲にあり、
前記塗膜は、アクリル系、エポキシ系及びジアリルフタレート系から選択された樹脂に、少くともカーボンブラック及び潤滑性を有するPTFEを添加したものからなる光学機器用遮光羽根材において、
前記樹脂は、塗膜中の分量が70〜80重量%の範囲にあり、塗膜表面の擦傷及び光反射をともに抑制し、
前記PTFEは、塗膜中の分量が4〜10重量%であり、塗膜の表面に潤滑性の他耐擦傷性を付与することを特徴とする光学機器用遮光羽根材。
Having a laminated structure including a substrate and a coating film disposed on both sides thereof;
The base material comprises a film of a biaxially stretched crystalline polymer compound selected from PET, PEN and polyamide, and the thickness thereof is in the range of 38 to 125 μm.
In the light shielding blade material for optical equipment, the coating film is made of a resin selected from acrylic, epoxy, and diallyl phthalate, and at least carbon black and PTFE having lubricity added.
The resin has a coating amount in the range of 70 to 80% by weight, and suppresses both scratches and light reflection on the coating surface ,
The PTFE has an amount of 4 to 10% by weight in the coating film, and imparts not only lubricity but also scratch resistance to the surface of the coating film .
前記カーボンブラックは、塗膜中の分量が5〜17重量%であり、その内導電性を付与されたカーボンブラックの分量を3重量%以上として、塗膜表面の帯電を抑制することを特徴とする請求項1記載の光学機器用遮光羽根材。  The amount of carbon black in the coating film is 5 to 17% by weight, and the amount of carbon black to which conductivity is imparted is set to 3% by weight or more to suppress charge on the surface of the coating film. The light-shielding blade material for optical equipment according to claim 1.
JP2000217291A 2000-07-18 2000-07-18 Shading blade material for optical equipment Expired - Fee Related JP4481449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217291A JP4481449B2 (en) 2000-07-18 2000-07-18 Shading blade material for optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217291A JP4481449B2 (en) 2000-07-18 2000-07-18 Shading blade material for optical equipment

Publications (2)

Publication Number Publication Date
JP2002031829A JP2002031829A (en) 2002-01-31
JP4481449B2 true JP4481449B2 (en) 2010-06-16

Family

ID=18712422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217291A Expired - Fee Related JP4481449B2 (en) 2000-07-18 2000-07-18 Shading blade material for optical equipment

Country Status (1)

Country Link
JP (1) JP4481449B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007045104A1 (en) * 2007-09-20 2009-04-02 Kömmerling Chemische Fabrik GmbH Sealant for the production of double or multi-pane insulating glass or solar modules
US9115272B2 (en) 2007-09-20 2015-08-25 Adco Products Llc Edge sealants having balanced properties
KR101780631B1 (en) * 2009-10-14 2017-09-21 에이디씨오 프로덕츠 엘엘씨 Edge sealants having balanced properties
US10442950B2 (en) 2017-05-18 2019-10-15 Canon Kabushiki Kaisha Film formed on a sliding surface of a component

Also Published As

Publication number Publication date
JP2002031829A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US9910545B2 (en) Transparent conductive film and touch panel
JP5371601B2 (en) Laminated film for prism sheet, method for producing laminated film for prism sheet, prism sheet, and display device
JP4958950B2 (en) Light shielding member for optical equipment
TW388802B (en) Reflection type projection screen
JP5097381B2 (en) Shielding film and method for producing the same
TWI393632B (en) Durable antireflective film
JP4400458B2 (en) Antireflection film
JP2008527081A (en) Fluoropolymer nanoparticle coating composition
TWI460475B (en) Optical sheet
JP2010122560A (en) Method for manufacturing optical sheet and optical sheet
TW201018951A (en) Substrate comprising unmatched refractive index primer at optically significant thickness
WO2008137271A1 (en) Optical film comprising antistatic primer and antistatic compositions
WO1999037477A1 (en) Multi-layer topcoat for an optical member
WO2011052307A1 (en) Light-blocking member for use in optical equipment
JP3215815B2 (en) Light shielding blades for optical equipment
JP4481449B2 (en) Shading blade material for optical equipment
JP2007065635A5 (en)
US6524760B1 (en) Image receiving sheet and recording process
JP5725842B2 (en) Light shielding member for optical equipment
KR20110070959A (en) Optical sheet
TW554176B (en) Method of optically modifying a polymeric material
KR100603535B1 (en) Lens sheet and rear projection screen including the same
JP2010128108A (en) Method of manufacturing optical sheet, and the optical sheet
JP2011123255A (en) Light-blocking member for use in optical equipment
JP2010128256A (en) Method of manufacturing optical sheet and the optical sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees