JP4479236B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4479236B2
JP4479236B2 JP2003433151A JP2003433151A JP4479236B2 JP 4479236 B2 JP4479236 B2 JP 4479236B2 JP 2003433151 A JP2003433151 A JP 2003433151A JP 2003433151 A JP2003433151 A JP 2003433151A JP 4479236 B2 JP4479236 B2 JP 4479236B2
Authority
JP
Japan
Prior art keywords
separator
electrode plate
negative electrode
active material
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003433151A
Other languages
Japanese (ja)
Other versions
JP2005190911A (en
Inventor
澄人 石田
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003433151A priority Critical patent/JP4479236B2/en
Publication of JP2005190911A publication Critical patent/JP2005190911A/en
Application granted granted Critical
Publication of JP4479236B2 publication Critical patent/JP4479236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池のような非水電解液二次電池に関するもので、詳しくは、負極板とセパレータを改良した非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved negative electrode plate and separator.

リチウムイオン二次電池に代表される非水電解液二次電池では、一般的によく知られた構造としては、帯状の集電体に活物質が塗着された正極板と、帯状の集電体に活物質が塗着された負極板との間に帯状のセパレータが配され渦巻き状に巻かれた極板群を備え、この極板群が電解液とともに金属容器内に収容されている。   In a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, a generally well-known structure includes a positive electrode plate in which an active material is coated on a strip-shaped current collector, and a strip-shaped current collector. A strip-shaped separator is arranged between a negative electrode plate coated with an active material on the body, and an electrode plate group wound in a spiral shape is provided. The electrode plate group is housed in a metal container together with an electrolytic solution.

従来の非水電解液二次電池においても、セパレータが、2種以上の融点の異なる材料で構成されたものがある。具体的には、負極板に対向する2枚のセパレータのうち、1枚が微多孔性薄膜セパレータでもう1枚が不織布セパレータから構成されていて、過充電された場合でも、温度の異常上昇や熱暴走が防止されるものが提案されていた(特許文献1)。   In some conventional non-aqueous electrolyte secondary batteries, the separator is made of two or more materials having different melting points. Specifically, among the two separators facing the negative electrode plate, one is composed of a microporous thin film separator and the other is composed of a nonwoven fabric separator. A device that prevents thermal runaway has been proposed (Patent Document 1).

これとは別に、アルカリ蓄電池において、負極板に対向する2枚のセパレータのうち、1枚が微多孔性薄膜セパレータでもう1枚が不織布セパレータから構成されたものもあり、この不織布セパレータは正極板の容量密度が低い面もしくは負極板の容量密度が高い面に配されることにより、急速充電特性が改善されることが提案されていた。   Apart from this, in the alkaline storage battery, among the two separators facing the negative electrode plate, one separator is composed of a microporous thin film separator and the other one is a non-woven separator. It has been proposed that the quick charge characteristics are improved by being disposed on a surface having a low capacity density or a surface having a high capacity density of the negative electrode plate.

しかし、このようなアルカリ蓄電池は、一般的に電池の機能上、過充電に対して特別な配慮を必要としない電池であるため、前述したような構成、すなわち不織布セパレータが正極板の容量密度が低い面もしくは負極板の容量密度が高い面に配された構成であったとしても、本願発明の非水電解液二次電池の過充電対策とは異質のものであった。(特許文献2)。
特開2002−025526号公報 特許3436058号公報
However, such an alkaline storage battery is generally a battery that does not require special consideration for overcharging due to the function of the battery, and therefore the configuration described above, that is, the nonwoven fabric separator has a capacity density of the positive electrode plate. Even when the configuration is arranged on a low surface or a surface having a high capacity density of the negative electrode plate, it is different from the overcharge countermeasure of the nonaqueous electrolyte secondary battery of the present invention. (Patent Document 2).
JP 2002-025526 A Japanese Patent No. 3436058

前記の通り、従来のリチウムイオン二次電池におけるセパレータは、2種以上の融点の異なる材料で構成されており、具体的には、負極板に対向する2枚のセパレータのうち、1枚が微多孔性薄膜セパレータでもう1枚が不織布セパレータから構成されていた。そのため、過充電時においては、温度上昇に伴って、微多孔性薄膜セパレータのイオン伝導パスである細孔が溶けて潰れ、微多孔性薄膜セパレータを挟む正極板と負極板の間ではイオンの伝播ができなくなり、電池として機能しなくなる、いわゆるシャットダウンすることとなる。しかし、融点が高い不織布セパレータではイオン伝導パスである細孔をまだ保持しており、この部分では正極板と負極板の間で放電が起こり、正極板と負極板の過充電状態は進行しない。このことによって、温度の異常上昇や熱暴走を防止できる。しかし、充電終止電圧が4.23〜4.25Vとなる過充電サイクルにおいては、電圧不良が発生するという課題があった。   As described above, the separator in the conventional lithium ion secondary battery is composed of two or more materials having different melting points. Specifically, one of the two separators facing the negative electrode plate is fine. Another porous thin film separator was composed of a nonwoven fabric separator. Therefore, during overcharge, as the temperature rises, the pores that are the ion conduction path of the microporous thin film separator melt and collapse, and ions can propagate between the positive electrode plate and the negative electrode plate that sandwich the microporous thin film separator. It becomes so-called shutdown that does not function as a battery. However, in the nonwoven fabric separator having a high melting point, pores that are ion conduction paths are still retained. In this portion, discharge occurs between the positive electrode plate and the negative electrode plate, and the overcharged state of the positive electrode plate and the negative electrode plate does not proceed. This can prevent abnormal temperature rise and thermal runaway. However, in the overcharge cycle in which the end-of-charge voltage is 4.23 to 4.25 V, there is a problem that a voltage failure occurs.

本発明は、このような従来の課題を解決するもので、過充電された場合でも、従来とは異なるメカニズムにより過充電状態に陥ることなく、過充電を防止することができ、しかも、過充電サイクルが繰り返された場合においても、電圧不良の発生を防止することができる信頼性の高い非水電解液二次電池を提供することを目的とする。   The present invention solves such a conventional problem, and even when overcharged, it is possible to prevent overcharge without falling into an overcharged state by a mechanism different from the conventional one. An object of the present invention is to provide a highly reliable non-aqueous electrolyte secondary battery capable of preventing the occurrence of voltage failure even when the cycle is repeated.

前記課題を解決するために、本発明の非水電解液二次電池は、帯状の集電体に活物質が塗着された正極板と、帯状の集電体に活物質が塗着された負極板との間に帯状のセパレータが配され渦巻き状に巻かれた極板群を備え、この極板群が電解質とともに金属容器内に収容された非水電解液二次電池であり、その帯状のセパレータは、長尺または短尺方向に沿って、微多孔性薄膜部の一部に不織布部がつながった構成からなり、かつ負極板は、セパレータの微多孔性薄膜部に対向する単位面積当たりの活物質重量を100としたとき、不織布部に対向する単位面積当たりの活物質重量が105〜120であり、セパレータの不織布部の面積は、極板群構成に使用されるセパレータの全面積の1〜50%であり、微多孔性薄膜部は、ポリプロピレンまたはポリエチレンの単独又はこれらを組み合わせたポリオレフィン系ポリマーからなり、不織布部は、ポリブチレンテレフタレート製不織布または、ガラス繊維もしくはセルロース繊維からつくられた不織布であるものである。 In order to solve the above problems, a non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode plate in which an active material is applied to a strip-shaped current collector, and an active material applied to the strip-shaped current collector. A non-aqueous electrolyte secondary battery comprising a group of electrode plates wound in a spiral shape with a strip-shaped separator disposed between and a negative electrode plate, the electrode plate group being housed in a metal container together with an electrolyte. The separator has a configuration in which the nonwoven fabric part is connected to a part of the microporous thin film part along the long or short direction, and the negative electrode plate per unit area facing the microporous thin film part of the separator. When the weight of the active material is 100, the active material weight per unit area facing the nonwoven fabric portion is 105 to 120, and the area of the nonwoven fabric portion of the separator is 1 of the total area of the separator used in the electrode plate group configuration. It was 50%, the microporous membrane unit, polypropylene Or consists of polyethylene alone or a polyolefin polymer of a combination of these, nonwoven portion, polybutylene terephthalate nonwoven or those that are non-woven fabric made of glass fibers or cellulose fibers.

これによって、過充電の場合においては、正極板と負極板の間のセパレータの不織布部で、負極板表面に析出したリチウム金属による電子伝導経路が形成され、充電電流がこの経路を流れることによって、実質上は過充電状態が停止するため、過充電を防止することができる。   As a result, in the case of overcharging, an electronic conduction path is formed by lithium metal deposited on the surface of the negative electrode plate in the non-woven fabric portion of the separator between the positive electrode plate and the negative electrode plate. Since the overcharge state stops, overcharge can be prevented.

更に、過充電サイクルが繰り返される場合においても、セパレータの不織布部に対向する部分の負極板の単位面積当たりの負極活物質重量を、微多孔性薄膜部に対向するそれの5〜20%大きくすることにより、不織布部に対向する部分の負極板の充電負荷を軽減することができるため、電圧不良の発生を防止することができ、高信頼性が得られる。   Furthermore, even when the overcharge cycle is repeated, the weight of the negative electrode active material per unit area of the negative electrode plate in the portion facing the nonwoven fabric portion of the separator is increased by 5 to 20% of that facing the microporous thin film portion. Thereby, since the charging load of the negative electrode plate in the portion facing the nonwoven fabric portion can be reduced, the occurrence of voltage failure can be prevented and high reliability can be obtained.

本発明の非水電解液二次電池は、過充電の場合においても、過充電状態に陥ることなく過充電を防止することができ、更に、過充電サイクルが繰り返される場合においても、電圧不良の発生を防止することができ、高信頼性の非水電解液二次電池を得ることができる。   The non-aqueous electrolyte secondary battery of the present invention can prevent overcharge without falling into an overcharge state even in the case of overcharge, and further, even when the overcharge cycle is repeated, Generation | occurrence | production can be prevented and a highly reliable non-aqueous-electrolyte secondary battery can be obtained.

本発明の非水電解液二次電池においては、その帯状のセパレータは、長尺または短尺方向に沿って、微多孔性薄膜部の一部に不織布部がつながった構成からなり、かつ負極板は、セパレータの微多孔性薄膜部に対向する単位面積当たりの活物質重量を100としたとき、不織布部に対向する単位面積当たりの活物質重量が105〜120に構成されているものである。さらに不織布部の面積は、極板群構成に使用されるセパレータの全面積の1〜50%である。これによって、過充電サイクルが繰り返される場合においても、電圧不良の発生を防止することができ、高信頼性が得られ、更に、高容量な非水電解液二次電池を得ることができる。そして、微多孔性薄膜部は、ポリプロピレンまたはポリエチレンの単独又はこれらを組み合わせたポリオレフィン系ポリマーからなり、不織布部は、ポリブチレンテレフタレート製不織布または、ガラス繊維もしくはセルロース繊維からつくられた不織布である。 In the non-aqueous electrolyte secondary battery of the present invention, the strip separator has a configuration in which a nonwoven fabric part is connected to a part of a microporous thin film part along the long or short direction, and the negative electrode plate is When the weight of the active material per unit area facing the microporous thin film portion of the separator is 100, the weight of the active material per unit area facing the nonwoven fabric portion is 105 to 120. Furthermore, the area of the nonwoven fabric portion is 1 to 50% of the total area of the separator used for the electrode plate group structure. Thereby, even when the overcharge cycle is repeated, the occurrence of voltage failure can be prevented, high reliability can be obtained, and a high capacity non-aqueous electrolyte secondary battery can be obtained. The microporous thin film portion is made of a polyolefin polymer obtained by combining polypropylene or polyethylene alone or a combination thereof, and the non-woven fabric portion is a non-woven fabric made of polybutylene terephthalate, or a non-woven fabric made of glass fiber or cellulose fiber.

従って、この実施形態の非水電解液二次電池を構成することによって、過充電の場合においては、正負極間のセパレータの不織布部で、負極板表面に析出したリチウム金属による電子伝導経路が形成され、充電電流がこの経路を流れることによって、実質上は過充電状態が停止することとなるため、過充電を防止することができる。   Therefore, by configuring the nonaqueous electrolyte secondary battery of this embodiment, in the case of overcharging, an electronic conduction path is formed by lithium metal deposited on the surface of the negative electrode plate at the nonwoven fabric portion of the separator between the positive and negative electrodes. When the charging current flows through this path, the overcharge state is substantially stopped, so that overcharge can be prevented.

また、充電器の充電保護回路の故障や誤作動が発生した場合においては、充電終止電圧が最大4.25V(通常の充電終止電圧4.20V)となり、過充電サイクルが繰り返されることとなる。充電終止電圧が4.20Vから4.25Vに大きくなることで、充電電気量は5%以上大きくなる。このような場合でも、不織布部に対向する部分の負極板の単位面積当たりの負極活物質重量を5%以上大きくすることにより、不織布部に対向する部分の負極板の充電負荷を軽減することができる。その結果、過充電サイクルが繰り返される場合においても、電圧不良の発生を防止することができ、信頼性を向上することができる。   Further, when a failure or malfunction of the charging protection circuit of the charger occurs, the charging end voltage becomes 4.25 V at the maximum (normal charging end voltage 4.20 V), and the overcharge cycle is repeated. When the end-of-charge voltage increases from 4.20 V to 4.25 V, the amount of charge electricity increases by 5% or more. Even in such a case, by increasing the weight of the negative electrode active material per unit area of the portion of the negative electrode plate facing the nonwoven fabric portion by 5% or more, the charging load on the negative electrode plate of the portion facing the nonwoven fabric portion can be reduced. it can. As a result, even when the overcharge cycle is repeated, the occurrence of voltage failure can be prevented and the reliability can be improved.

また、この非水電解液二次電池において、セパレータの微多孔性薄膜部と不織布部は、横縞状または縦縞状につながった構成からなり、過充電サイクルが繰り返される場合においても、電圧不良の発生を防止することができ、信頼性を向上することができる。   Further, in this non-aqueous electrolyte secondary battery, the microporous thin film portion and the non-woven fabric portion of the separator are configured in a horizontal stripe shape or a vertical stripe shape, and even when the overcharge cycle is repeated, the occurrence of voltage failure Can be prevented, and the reliability can be improved.

以下、本発明の実施例について詳細に説明する。   Examples of the present invention will be described in detail below.

図1に、本発明を実施した形態の一例である円筒形17500サイズのリチウムイオン二次電池の縦断面図を示す。   FIG. 1 shows a longitudinal sectional view of a cylindrical 17500 size lithium ion secondary battery which is an example of an embodiment of the present invention.

図1、一部は図2で詳細を示した通り、帯状の正極集電体1aに正極活物質1bが塗布された正極板1と、帯状の負極集電体2aに負極活物質2b、2cが塗布された負極板2とが、セパレータ3を介して互いに対向された状態で渦巻き状に巻かれて極板群4が構成され、この極板群4が電解液とともに電池容器5内に収納配置されている。正極板1からは正極リ−ド6が引き出され、安全弁が設けられた封口板7に溶接され、負極板2からは負極リ−ド8が引き出され、電池容器5の底部に溶接されている。9は絶縁リングで極板群4の上下部にそれぞれ設けられている。   As shown in detail in FIG. 1 and partly in FIG. 2, a positive electrode plate 1 in which a positive electrode active material 1b is applied to a strip-shaped positive electrode current collector 1a, and a negative electrode active material 2b, 2c to a strip-shaped negative electrode current collector 2a. The electrode plate group 4 is formed by spirally winding the electrode plate 2 and the negative electrode plate 2 coated with each other with the separator 3 therebetween, and the electrode plate group 4 is stored in the battery container 5 together with the electrolyte. Has been placed. A positive electrode lead 6 is drawn from the positive electrode plate 1 and welded to a sealing plate 7 provided with a safety valve, and a negative electrode lead 8 is drawn from the negative electrode plate 2 and welded to the bottom of the battery container 5. . Insulating rings 9 are provided at the upper and lower portions of the electrode plate group 4, respectively.

以下に、セパレータ3と正極板1、負極板2の関連の構成について説明する。   Below, the structure relevant to the separator 3, the positive electrode plate 1, and the negative electrode plate 2 is demonstrated.

なお、以下の説明に用いる図面においては、わかり易くするために、厚み方向を拡大して示している。   In the drawings used for the following description, the thickness direction is shown enlarged for easy understanding.

(例1)
図2に、例1におけるセパレータ3と正負極板の積層状態の概略断面図を示す。
(Example 1)
FIG. 2 shows a schematic cross-sectional view of the laminated state of the separator 3 and the positive and negative electrode plates in Example 1.

図2に示すように、帯状の負極板2は長さが420mmであり、帯状の負極集電体2aの両面に負極活物質2b,2cが塗布されている。帯状の正極板1は長さが390mmであり、帯状の正極集電体1aの両面に正極活物質1bが塗布されている。
セパレータ3の長さは500mmであり、主体となる厚さ0 .020mmのポリエチレン製微多孔薄膜セパレ−タ3aの長さ40%に相当する200mmが、厚さ0 .040mmのポリブチレンテレフタレート製不織布セパレータ3bで構成されている。
そして、負極板2は、ポリエチレン製微多孔薄膜セパレ−タ3aに対向する負極活物質2bの単位面積当たりの重量を100とした場合、ポリブチレンテレフタレート製不織布セパレータ3bと対向する負極活物質2cの単位面積当たりの重量が105になるように塗布され、一定の厚みになるよう圧延されている。
As shown in FIG. 2, the strip-shaped negative electrode plate 2 has a length of 420 mm, and negative electrode active materials 2b and 2c are applied to both surfaces of the strip-shaped negative electrode current collector 2a. The strip-shaped positive electrode plate 1 has a length of 390 mm, and the positive electrode active material 1b is applied to both surfaces of the strip-shaped positive electrode current collector 1a.
The length of the separator 3 is 500 mm, and the main thickness is 0. 200 mm corresponding to 40% of the length of the 020 mm polyethylene microporous thin film separator 3 a has a thickness of 0. It is composed of a 040 mm polybutylene terephthalate nonwoven fabric separator 3b.
When the weight per unit area of the negative electrode active material 2b facing the polyethylene microporous thin film separator 3a is 100, the negative electrode plate 2 is made of the negative electrode active material 2c facing the polybutylene terephthalate nonwoven fabric separator 3b. It is applied so that the weight per unit area is 105 and rolled to a certain thickness.

(例2)
図3に、例2におけるセパレータと負極板、正極板の積層状態の概略断面図を示す。
(Example 2)
FIG. 3 shows a schematic cross-sectional view of the laminated state of the separator, the negative electrode plate, and the positive electrode plate in Example 2.

例1で説明した帯状の正負極板を用い、
セパレータ3の長さは500mmであり、主体となる厚さ0 .020mmのポリエチレン製微多孔薄膜セパレ−タ3aの長さ1%に相当する5mmが、厚さ0 .040mmのポリブチレンテレフタレート製不織布セパレータ3bで構成されている。
そして、例1と同様に、負極板2は、それぞれのセパレータ3a,3bに対向する負極活物質2b,2cの単位面積当たりの重量を100/105にした。
Using the strip-like positive and negative electrode plates described in Example 1,
The length of the separator 3 is 500 mm, and the main thickness is 0. 5 mm corresponding to 1% of the length of the polyethylene microporous thin film separator 3a having a thickness of 0. It is composed of a 040 mm polybutylene terephthalate nonwoven fabric separator 3b.
In the same manner as in Example 1, the negative electrode plate 2 had the weight per unit area of the negative electrode active materials 2b and 2c facing the separators 3a and 3b set to 100/105.

(例3)
図4に、例3におけるセパレータと負極板、正極板の積層状態の概略断面図を示す。
(Example 3)
FIG. 4 shows a schematic cross-sectional view of the laminated state of the separator, the negative electrode plate, and the positive electrode plate in Example 3.

これも例1で説明した帯状の正負極板を用い、
セパレータ3の長さは500mmであり、主体となる厚さ0 .020mmのポリエチレン製微多孔薄膜セパレ−タ3aの長さ70%に相当する350mmが、厚さ0 .040mmのポリブチレンテレフタレート製不織布セパレータ3bで構成されている。
そして、例1と同様に、負極板2は、それぞれのセパレータ3a,3bに対向する負極活物質2b,2cの単位面積当たりの重量を100/105にした。
This also uses the strip-like positive and negative electrode plates described in Example 1,
The length of the separator 3 is 500 mm, and the main thickness is 0. 350 mm corresponding to 70% of the length of the polyethylene microporous thin film separator 3a having a thickness of 0. It is composed of a 040 mm polybutylene terephthalate nonwoven fabric separator 3b.
In the same manner as in Example 1, the negative electrode plate 2 had the weight per unit area of the negative electrode active materials 2b and 2c facing the separators 3a and 3b set to 100/105.

(例4)
図5に、例4におけるセパレータと負極板、正極板の積層状態の概略断面図を示す。
(Example 4)
FIG. 5 is a schematic cross-sectional view of the laminated state of the separator, the negative electrode plate, and the positive electrode plate in Example 4.

これも例1で説明した帯状の正負極板を用い、
セパレータ3の長さは500mmであり、主体となる厚さ0 .020mmのポリエチレン製微多孔薄膜セパレ−タ3aの長さ0.5%に相当する2.5mmが、厚さ0 .040mmのポリブチレンテレフタレート製不織布セパレータ3bで構成されている。
そして、例1と同様に、負極板2は、それぞれのセパレータ3a,3bに対向する負極活物質2b,2cの単位面積当たりの重量を100/105にした。
This also uses the strip-like positive and negative electrode plates described in Example 1,
The length of the separator 3 is 500 mm, and the main thickness is 0. A thickness of 0.2 mm corresponding to 0.5% of the length of the polyethylene microporous thin film separator 3a of 020 mm is 0.5%. It is composed of a 040 mm polybutylene terephthalate nonwoven fabric separator 3b.
In the same manner as in Example 1, the negative electrode plate 2 had the weight per unit area of the negative electrode active materials 2b and 2c facing the separators 3a and 3b set to 100/105.

ここで、ポリブチレンテレフタレート製不織布セパレータ3bとポリエチレン製微多孔薄膜セパレ−タ3aの厚みの差は0.020mmあるが、帯状のセパレータと負極板、正極板を交互に重ねて渦巻き状に巻かれる場合に加圧を受け、両方のセパレータ3a,3bの厚みの差は無視できる程度である。そのため、図2〜5に示したように、両方のセパレータ3a,3bには段差の無い概略図として示している。   Here, the thickness difference between the polybutylene terephthalate nonwoven fabric separator 3b and the polyethylene microporous thin film separator 3a is 0.020 mm, but the strip separator, the negative electrode plate, and the positive electrode plate are alternately stacked and wound in a spiral shape. In some cases, pressure is applied and the difference in thickness between the separators 3a and 3b is negligible. Therefore, as shown in FIGS. 2 to 5, both separators 3 a and 3 b are shown as schematic diagrams having no step.

また、セパレータ3の作製方法としては、帯状のセパレータ3の短尺方向に沿って、すなわち縦縞状に、ポリブチレンテレフタレート製不織布セパレータ3bとポリエチレン製微多孔薄膜セパレ−タ3aを150℃に熱したコテで熱溶着により貼り合わせて作製した。これとは別に、主体となるポリエチレン製微多孔薄膜セパレータ3aの一部をポリブチレンテレフタレート製不織布セパレータ3bに置き換えるパターンとして、帯状のセパレータ3の長尺方向、すなわち横縞状であっても同様の効果が得られる。セパレータ3の量産性の視点からは、ポリエチレン製微多孔薄膜セパレータ3aとポリブチレンテレフタレート製不織布セパレータ3bを横縞状に貼り合わせる方が望ましい。   In addition, as a method for producing the separator 3, a non-woven separator 3b made of polybutylene terephthalate and a microporous thin film separator 3a made of polyethylene were heated to 150 ° C. along the short direction of the strip-like separator 3, that is, in the form of vertical stripes. And bonded together by heat welding. Apart from this, as a pattern for replacing a part of the polyethylene microporous thin film separator 3a, which is a main component, with the non-woven fabric separator 3b made of polybutylene terephthalate, the same effect can be obtained even in the longitudinal direction of the strip-shaped separator 3, that is, in the form of horizontal stripes. Is obtained. From the viewpoint of mass productivity of the separator 3, it is desirable to bond the microporous thin film separator 3a made of polyethylene and the nonwoven fabric separator 3b made of polybutylene terephthalate in a horizontal stripe shape.

上述した例では、負極板2の両側に対向するセパレータ3が、主体となるポリエチレン製微多孔薄膜セパレータ3aの一部をポリブチレンテレフタレート製不織布セパレータ3bに置き換えた場合について説明したが、負極板2の片面に対向するセパレータ3のみが、ポリエチレン製微多孔薄膜セパレータ3aの一部をポリブチレンテレフタレート製不織布セパレータ3bに置き換えられた場合においてもほぼ同様の効果が得られるものである。   In the above-described example, the separator 3 facing both sides of the negative electrode plate 2 has been described with respect to the case where a part of the main polyethylene microporous thin film separator 3a is replaced with the polybutylene terephthalate nonwoven fabric separator 3b. Only the separator 3 facing one side of this can obtain substantially the same effect even when a part of the polyethylene microporous thin film separator 3a is replaced with the polybutylene terephthalate nonwoven fabric separator 3b.

上記の例1〜4のセパレータ3と正負極板の構成を用いてリチウムイオン二次電池を構成することによって、過充電の場合においては、セパレータ3のポリブチレンテレフタレート製不織布セパレータ3bを挟む正負極間で、負極板表面にデンドライト状に析出したリチウム金属による電子伝導経路が形成され、充電電流がこの経路を流れることによって、実質上は過充電状態が停止することとなるため、過充電を防止することができる。   By configuring the lithium ion secondary battery using the configuration of the separator 3 and the positive and negative electrode plates of Examples 1 to 4 above, in the case of overcharging, the positive and negative electrodes sandwiching the polybutylene terephthalate nonwoven fabric separator 3b of the separator 3 Between them, an electronic conduction path is formed by lithium metal deposited in dendritic form on the negative electrode plate surface, and the overcurrent state is effectively stopped by the charging current flowing through this path, preventing overcharge. can do.

また、充電器の充電保護回路の故障や誤作動が発生した場合において、充電終止電圧が最大4.25V(通常の充電終止電圧4.20V)となり、過充電サイクルが繰り返されることとなる。充電終止電圧が4.20Vから4.25Vに大きくなることで、充電電気容量は5%以上大きくなる。このような場合において、ポリブチレンテレフタレート製不織布セパレータ3bに対向する部分の負極板の単位面積当たりの負極活物質重量を5%以上大きくすることにより、ポリブチレンテレフタレート製不織布セパレータ3bに対向する部分の負極板の負荷を軽減することができる。その結果、過充電サイクルが繰り返される場合においても、過充電が継続されること無く、電池電圧の異常上昇も無く、電圧不良の発生を防止することができ、高信頼性が得られる。   Further, when a failure or malfunction of the charging protection circuit of the charger occurs, the charging end voltage becomes 4.25 V at the maximum (normal charging end voltage 4.20 V), and the overcharge cycle is repeated. When the end-of-charge voltage is increased from 4.20V to 4.25V, the charge electric capacity is increased by 5% or more. In such a case, by increasing the weight of the negative electrode active material per unit area of the negative electrode plate of the portion facing the non-woven fabric separator 3b made of polybutylene terephthalate by 5% or more, the portion facing the non-woven fabric separator 3b made of polybutylene terephthalate The load on the negative electrode plate can be reduced. As a result, even when the overcharge cycle is repeated, the overcharge is not continued, the battery voltage does not rise abnormally, the occurrence of voltage failure can be prevented, and high reliability can be obtained.

以上の例1〜4のように、セパレータと正負極板を構成したリチウムイオン二次電池を各々30個作製した。   As in Examples 1 to 4 above, 30 lithium ion secondary batteries each comprising a separator and a positive and negative electrode plate were produced.

(比較例)
図6に、比較例として用いるセパレータと正負極板の積層状態の概略断面図を示す。
(Comparative example)
FIG. 6 shows a schematic cross-sectional view of a laminated state of a separator and positive and negative electrode plates used as a comparative example.

図6に示すように、帯状の負極板2は、帯状の負極集電体2aの両面に負極活物質2cが塗布されており、セパレータ3は全て、長さ500mm、厚さ0 .020mmのポリエチレン製微多孔薄膜セパレ−タ3aである。
負極板2の負極活物質重量2cは単位面積当たりの重量を105とした。それ以外の構成要素は例1と同じとして、30個作製した。
As shown in FIG. 6, the strip-shaped negative electrode plate 2 has a negative electrode active material 2c applied to both surfaces of a strip-shaped negative electrode current collector 2a, and all the separators 3 have a length of 500 mm, a thickness of 0. This is a 020 mm polyethylene microporous thin film separator 3a.
The negative electrode active material weight 2c of the negative electrode plate 2 was 105 per unit area. The other components were the same as in Example 1, and 30 were produced.

<電池の評価>
前述した例1〜4と比較例の各々30個ずつの電池について、過充電試験と過充電サイクル試験を行った。
<Battery evaluation>
The overcharge test and the overcharge cycle test were performed on 30 batteries each of Examples 1 to 4 and Comparative Example described above.

過充電試験は、環境温度20℃で、充電状態からさらに1Cレート相当の電流値0.8Aで各20セルずつ過充電を行い、電池が異常発熱するかどうかを確認した。   In the overcharge test, 20 cells were overcharged at an environmental temperature of 20 ° C. and a current value of 0.8 A corresponding to the 1C rate from the charged state, and it was confirmed whether or not the battery generated abnormal heat.

過充電サイクル試験は、充電器の充電制御回路のみが故障したことを想定し、各10セルずつ用い、環境温度20℃下で0.8Aの電流値で充電し、電池電圧が4.25Vに達してからは定電圧で電流値が0.05Cの0.04Aになるまで充電を続けた。次に、充電状態の電池を20℃で0.8Aの電流値で電池電圧が3Vになるまで放電を続け、この充電、放電を1サイクルとして500サイクルまで続けた後、環境温度20℃で24時間保存した。その後の電圧不良を確認した。

The overcharge cycle test assumes that only the charging control circuit of the charger has failed, uses 10 cells each, charges at a current value of 0.8 A at an environmental temperature of 20 ° C., and the battery voltage reaches 4.25 V. Once reached, charging was continued at a constant voltage until the current value reached 0.04 A, which was 0.05 C. Next, the battery in a charged state is continuously discharged at 20 ° C. at a current value of 0.8 A until the battery voltage reaches 3 V. This charging and discharging is continued as one cycle up to 500 cycles, and then the ambient temperature is 20 ° C. Saved for hours. Subsequent voltage failure was confirmed.

その結果を表1に示す。過充電試験においては、例1〜3の電池において、異常発熱しなかった。これは、ポリブチレンテレフタレート製不織布セパレータ3bを挟む正負極間で、負極板表面に析出したリチウム金属による電子伝導経路が形成され、充電電流がこの経路を流れることによって、実質上は過充電状態が停止したためである。 The results are shown in Table 1. In the overcharge test, the batteries of Examples 1 to 3 did not generate abnormal heat. This is because an electron conduction path is formed by lithium metal deposited on the surface of the negative electrode plate between the positive and negative electrodes sandwiching the non-woven fabric separator 3b made of polybutylene terephthalate, and the charge current flows through this path. This is because it stopped.

しかし、過充電サイクル試験においては、例1〜4の負極板は、ポリブチレンテレフタレート製不織布セパレータ3bと対向する単位面積当たりの活物質重量が、ポリエチレン製微多孔薄膜セパレータ3aと対向する単位面積当たりの活物質重量より5%重いものとされていることにより、電圧不良が激減した。これは、充電終止電圧が4.20Vから4.25Vに大きくなると充電電気容量は5%以上大きくなるが、ポリブチレンテレフタレート製不織布セパレータ3bに対向する負極板の単位面積当たりの負極活物質重量を5%以上大きくすることにより、その部分の負極板の負荷を軽減することができるためであると考えられる。   However, in the overcharge cycle test, the negative electrode plates of Examples 1 to 4 have an active material weight per unit area facing the polybutylene terephthalate nonwoven fabric separator 3b per unit area facing the polyethylene microporous thin film separator 3a. By making the weight 5% heavier than the active material weight, the voltage failure was drastically reduced. This is because when the end-of-charge voltage increases from 4.20 V to 4.25 V, the charging electric capacity increases by 5% or more, but the negative electrode active material weight per unit area of the negative electrode plate facing the polybutylene terephthalate nonwoven fabric separator 3b is reduced. This is considered to be because by increasing 5% or more, the load on the negative electrode plate in that portion can be reduced.

例4の結果から、極板群構成に使用するセパレータ3の全面積に対するポリブチレンテレフタレート製不織布セパレータ3bの占有率が1%より小さい場合は、ポリブチレンテレフタレート製不織布セパレータ3bを挟む正負極板の間に充分な電子伝導経路が形成されず、この経路に充電電流が流れないため異常発熱を起こす。従って、ポリブチレンテレフタレート製不織布セパレータ3bの占有率は1%以上であることが望ましい。また、例ではポリブチレンテレフタレート製不織布セパレータ3bの占有率が40%の場合について説明したが、50%まで占有率を大きくしてもほぼ同様の効果が得られたため、ポリブチレンテレフタレート製不織布セパレータ3bの占有率は50%以下であればよいと言うこができる。このことから、高信頼性と高容量の両視点からポリブチレンテレフタレート製不織布セパレータ3bは極板群構成に使用するセパレータ3の全面積の1〜50%とすることが望ましい。   From the result of Example 4, when the occupation ratio of the non-woven fabric separator 3b made of polybutylene terephthalate with respect to the total area of the separator 3 used for the electrode plate group structure is smaller than 1%, the non-woven plate separator 3b made of polybutylene terephthalate is sandwiched between the positive and negative electrode plates. A sufficient electron conduction path is not formed, and charging current does not flow through this path, causing abnormal heat generation. Therefore, the occupation ratio of the polybutylene terephthalate nonwoven fabric separator 3b is desirably 1% or more. Further, in the example, the case where the occupation ratio of the polybutylene terephthalate nonwoven fabric separator 3b is 40% has been described. However, even if the occupation ratio is increased up to 50%, substantially the same effect was obtained, so the polybutylene terephthalate nonwoven fabric separator 3b. It can be said that the occupancy of 50% or less is sufficient. From this point of view, it is desirable that the non-woven separator 3b made of polybutylene terephthalate is 1 to 50% of the total area of the separator 3 used in the electrode plate group configuration from both viewpoints of high reliability and high capacity.

また、ここでは負極板2がセパレータ3の不織布部に対向する単位面積当たりの活物質重量2cが105の場合について説明したが、負極活物質重量2cが105より小さい範囲においては、過充電時の温度の異常上昇と過充電サイクル時の電圧不良の発生防止の効果が得られなくなる。負極活物質重量2cは無制限に大きくすることは可能であるが、大き過ぎると負極板2の厚みを一定に圧延することが難くなり、その負極板2と正極板1、そしてセパレータ3を渦巻状に巻いて構成した極板群4は、径が大きくなり、電池容器5に挿入することができないという不具合を生じる。そのため、負極板2の厚みを一定に圧延するために負極活物質重量2cは120以下である必要がある。
従って、負極活物質重量2cの範囲は105〜120であり、発明者らの検討では105〜110の範囲が望ましかった。
Moreover, although the negative electrode plate 2 demonstrated the case where the active material weight 2c per unit area which opposes the nonwoven fabric part of the separator 3 was 105, in the range where the negative electrode active material weight 2c is smaller than 105, at the time of an overcharge The effect of preventing the abnormal rise in temperature and the occurrence of voltage failure during the overcharge cycle cannot be obtained. The negative electrode active material weight 2c can be increased without limitation, but if it is too large, it becomes difficult to roll the negative electrode plate 2 at a constant thickness, and the negative electrode plate 2, the positive electrode plate 1, and the separator 3 are spirally formed. The electrode plate group 4 formed by winding the electrode plate has a problem that the diameter increases and the electrode plate group 4 cannot be inserted into the battery container 5. Therefore, in order to roll the thickness of the negative electrode plate 2 constant, the negative electrode active material weight 2c needs to be 120 or less.
Therefore, the range of the negative electrode active material weight 2c is 105 to 120, and the range of 105 to 110 was desired by the inventors' investigation.

また、ここでは微多孔性薄膜セパレータとして、ポリエチレン製微多孔性薄膜セパレータ3aを用いた場合について説明したが、ポリエチレン製微多孔性薄膜セパレータ3a以外に、大きなイオン透過度を持ち、所定の機械的強度を備え、絶縁性を有した材料であればよい。また、80℃以上で孔を閉塞し、抵抗をあげる機能を有していても構わない。セパレータ3の物理特性としては、最大孔径は0.5μm以下で好ましくは0.1〜0.2μm、ガーレ数は200〜600秒/100cm3で好ましくは250〜300秒/100cm3であればよい。また、耐有機溶剤性と疎水性の視点から、ポリプロピレン、ポリエチレンなどの単独又はこれらを組み合わせたポリオレフィン系ポリマーを用いることが好ましい。 Further, here, the case where the polyethylene microporous thin film separator 3a is used as the microporous thin film separator has been described. However, in addition to the polyethylene microporous thin film separator 3a, it has a large ion permeability and has a predetermined mechanical property. Any material having strength and insulating properties may be used. Moreover, you may have a function which obstruct | occludes a hole at 80 degreeC or more and raises resistance. As the physical properties of the separator 3, the maximum pore diameter is 0.5 μm or less, preferably 0.1 to 0.2 μm, and the Gurley number is 200 to 600 seconds / 100 cm 3 , preferably 250 to 300 seconds / 100 cm 3. . From the viewpoint of organic solvent resistance and hydrophobicity, it is preferable to use a polyolefin polymer such as polypropylene or polyethylene alone or in combination thereof.

また、ここでは不織布セパレータとして、ポリブチレンテレフタレート製不織布セパレータ3bについて説明したが、ポリブチレンテレフタレート製不織布セパレータ3b以外に、ガラス繊維やセルロース繊維などからつくられた不織布であってもよい。セパレータの物理特性としては、繊維径が0.5〜5.0μmで好ましくは1〜2μm、最大孔径は2μm以下で好ましくは0.5〜1μm、ガーレ数は3〜50秒/100cmで好ましくは8〜10秒/100cm、アスペクト比は50以上で好ましくは100あればよい。 Moreover, although the non-woven fabric separator 3b made of polybutylene terephthalate has been described here as the non-woven fabric separator, other than the non-woven fabric separator 3b made of polybutylene terephthalate, a non-woven fabric made of glass fiber or cellulose fiber may be used. As physical properties of the separator, the fiber diameter is preferably 0.5 to 5.0 μm, preferably 1 to 2 μm, the maximum pore diameter is 2 μm or less, preferably 0.5 to 1 μm, and the Gurley number is preferably 3 to 50 seconds / 100 cm 3 . Is 8 to 10 seconds / 100 cm 3 , and the aspect ratio is 50 or more, preferably 100.

また、ここでは電解液を用いる場合について説明したが、液以外の電解質として、ポリマー材料に電解液を含有させたゲル電解質を用いることもできる。ポリマー材料は、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフッ化ビニリデンなどやこれらの誘導体、混合物、複合体などの高分子マトリックス材料が有効である。特に、フッ化ビニリデンとヘキサフルオロプロピレンの共重合体やポリフッ化ビニリデンとポリエチレンオキサイドの混合物が好ましい。   Moreover, although the case where electrolyte solution was used was demonstrated here, the gel electrolyte which made the polymer material contain electrolyte solution can also be used as electrolyte other than a solution. As the polymer material, for example, a polymer matrix material such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride and the like, derivatives, mixtures and composites thereof are effective. In particular, a copolymer of vinylidene fluoride and hexafluoropropylene or a mixture of polyvinylidene fluoride and polyethylene oxide is preferable.

また、ここではリチウムイオン二次電池の形態として、円筒形17500サイズについて説明したが、その形状、電池サイズに規制されることなく、同様の効果が得られるものである。   Although the cylindrical 17500 size has been described here as the form of the lithium ion secondary battery, the same effect can be obtained without being restricted by the shape and the battery size.

また、非水電解液二次電池として、リチウムイオン二次電池について説明したが、リチウムイオン二次電池以外のマグネシウム二次電池などの非水電解液二次電池においても、同様の効果が得られるものである。   Moreover, although the lithium ion secondary battery was demonstrated as a nonaqueous electrolyte secondary battery, the same effect is acquired also in nonaqueous electrolyte secondary batteries, such as magnesium secondary batteries other than a lithium ion secondary battery. Is.

本発明は、正極板と負極板がセパレータを介して渦巻き状に巻かれたリチウムイオン二次電池のような非水電解液二次電池に利用することができ、セパレータと、それに対向する負極板の構成を改良することにより、高信頼性の非水電解液二次電池を提供することができるものである。   INDUSTRIAL APPLICABILITY The present invention can be used for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery in which a positive electrode plate and a negative electrode plate are spirally wound via a separator. By improving the structure, a highly reliable non-aqueous electrolyte secondary battery can be provided.

本発明を実施した形態の一例におけるリチウムイオン二次電池の縦断面図The longitudinal cross-sectional view of the lithium ion secondary battery in an example which implemented this invention 本発明の例1におけるセパレータと正負極板の積層状態の概略断面図Schematic sectional view of the laminated state of the separator and positive and negative electrode plates in Example 1 of the present invention 本発明の例2におけるセパレータと正負極板の積層状態の概略断面図Schematic sectional view of the laminated state of the separator and positive and negative electrode plates in Example 2 of the present invention 本発明の例3におけるセパレータと正負極板の積層状態の概略断面図Schematic sectional view of the laminated state of the separator and positive and negative electrode plates in Example 3 of the present invention 本発明の例4におけるセパレータと正負極板の積層状態の概略断面図Schematic sectional view of the laminated state of the separator and positive and negative electrode plates in Example 4 of the present invention 比較例におけるセパレータと正負極板の積層状態の概略断面図Schematic sectional view of the laminated state of the separator and positive and negative electrode plates in the comparative example

符号の説明Explanation of symbols

1 正極板
1a 正極集電体
1b 正極活物質
2 負極板
2a 負極集電体
2b 負極活物質
2c 負極活物質
3 セパレータ
3a ポリエチレン製微多孔薄膜セパレ−タ
3b ポリブチレンテレフタレート製不織布セパレータ
4 極板群
5 容器
6 正極リード
7 封口板
8 負極リード
9 絶縁リング
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode current collector 1b Positive electrode active material 2 Negative electrode plate 2a Negative electrode current collector 2b Negative electrode active material 2c Negative electrode active material 3 Separator 3a Polyethylene microporous thin film separator 3b Polybutylene terephthalate nonwoven fabric separator 4 Electrode plate group 5 Container 6 Positive electrode lead 7 Sealing plate 8 Negative electrode lead 9 Insulating ring

Claims (1)

帯状の集電体に活物質が塗着された正極板と、帯状の集電体に活物質が塗着された負極板との間に帯状のセパレータが配され渦巻き状に巻かれた極板群を備え、この極板群が電解質とともに金属容器内に収容された非水電解液二次電池であり、その帯状のセパレータは、長尺または短尺方向に沿って、微多孔性薄膜部の一部に不織布部がつながった構成からなり、かつ負極板は、セパレータの微多孔性薄膜部に対向する単位面積当たりの活物質重量を100としたとき、不織布部に対向する単位面積当たりの活物質重量が105〜120であり、前記セパレータの不織布部の面積は、極板群構成に使用されるセパレータの全面積の1〜50%であり、前記微多孔性薄膜部は、ポリプロピレンまたはポリエチレンの単独又はこれらを組み合わせたポリオレフィン系ポリマーからなり、前記不織布部は、ポリブチレンテレフタレート製不織布または、ガラス繊維もしくはセルロース繊維からつくられた不織布であることを特徴とする非水電解液二次電池。 An electrode plate in which a strip-shaped separator is disposed between a positive electrode plate in which an active material is applied to a strip-shaped current collector and a negative electrode plate in which the active material is coated to a strip-shaped current collector, and is wound in a spiral shape A non-aqueous electrolyte secondary battery in which the electrode plate group is housed in a metal container together with an electrolyte, and a strip-shaped separator is formed along the long or short direction of the microporous thin film portion. Active material per unit area facing the non-woven fabric part when the weight of the active material per unit area facing the microporous thin film part of the separator is 100 The weight is 105 to 120, the area of the nonwoven fabric portion of the separator is 1 to 50% of the total area of the separator used in the electrode plate group configuration, and the microporous thin film portion is made of polypropylene or polyethylene alone. Or a combination of these Made of a polyolefin polymer, wherein the nonwoven section, polybutylene terephthalate nonwoven fabric or a non-aqueous electrolyte secondary battery which is a nonwoven fabric made of glass fibers or cellulose fibers.
JP2003433151A 2003-12-26 2003-12-26 Non-aqueous electrolyte secondary battery Expired - Lifetime JP4479236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433151A JP4479236B2 (en) 2003-12-26 2003-12-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433151A JP4479236B2 (en) 2003-12-26 2003-12-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005190911A JP2005190911A (en) 2005-07-14
JP4479236B2 true JP4479236B2 (en) 2010-06-09

Family

ID=34790624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433151A Expired - Lifetime JP4479236B2 (en) 2003-12-26 2003-12-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4479236B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744609B2 (en) * 2011-04-19 2015-07-08 日本バイリーン株式会社 Electrochemical element separator and method for producing electrochemical element separator
JP6282857B2 (en) * 2013-12-13 2018-02-21 株式会社Soken battery
CN107560697B (en) * 2017-09-22 2019-08-13 湖南科霸汽车动力电池有限责任公司 A kind of online full inspection method of anode sheet weight
CN109080468B (en) * 2018-06-27 2021-06-01 中航锂电(洛阳)有限公司 Early warning method and system for battery module with overcharge protection device

Also Published As

Publication number Publication date
JP2005190911A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US10847850B2 (en) Cooling plate for secondary battery and secondary battery module including the same
US10454140B2 (en) Electrode body for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101407772B1 (en) Electorde assembly and secondary battery using the same
KR101650417B1 (en) Secondary battery having jelly roll type electrode assembly with intermittent non-coated positive electrode active material
US20190109313A1 (en) Cylindrical secondary battery module
JP2012195314A (en) Nonaqueous electrolyte secondary battery
KR101650557B1 (en) A jelly roll tap plate assembly, electrochemical device comprising the same, and manufacturing method thereof
EP4080644A1 (en) Electrode assembly comprising disconnection prevention layer, and preparation method thereof
US6727021B1 (en) Lithium ion secondary battery
KR20110034346A (en) Secondary battery and manufacturing method thereof
JP4382557B2 (en) Non-aqueous secondary battery
KR101882920B1 (en) Capsule type foaming agents, coating composition for separator comprising the same, the separator, and secondary cell comprising the same
KR100883922B1 (en) Pouch-type Secondary Battery of Improved Stability
KR101935229B1 (en) Lithium secondary battery
JP4479236B2 (en) Non-aqueous electrolyte secondary battery
JPH09274935A (en) Lithium ion secondary battery
KR102440816B1 (en) Separator Having Melting-Cutting Part and Electrochemical Device Prepared Thereby
KR20210050255A (en) Busbar Having Dissimilar Metals and Manufacturing Method Thereof
JPH1055795A (en) Rectangular secondary battery and its manufacture
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
US20220328909A1 (en) Pouch-shaped secondary battery having increased energy density and method of manufacturing the same
KR102551377B1 (en) Secondary battery
CN110534799B (en) Battery and battery cover plate assembly
JP7110536B2 (en) Cylindrical secondary battery with adhesive part containing gas generating substance
CN114830429A (en) Electrode lead made of dissimilar metal and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3