JP4471488B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4471488B2
JP4471488B2 JP2000381834A JP2000381834A JP4471488B2 JP 4471488 B2 JP4471488 B2 JP 4471488B2 JP 2000381834 A JP2000381834 A JP 2000381834A JP 2000381834 A JP2000381834 A JP 2000381834A JP 4471488 B2 JP4471488 B2 JP 4471488B2
Authority
JP
Japan
Prior art keywords
resin layer
insulating
electrode pad
semiconductor device
photosensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000381834A
Other languages
Japanese (ja)
Other versions
JP2002184903A (en
Inventor
広一 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2000381834A priority Critical patent/JP4471488B2/en
Publication of JP2002184903A publication Critical patent/JP2002184903A/en
Application granted granted Critical
Publication of JP4471488B2 publication Critical patent/JP4471488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法に関し、特に、熱膨張率差に起因する金属バンプの損傷等を回避する構造の半導体装置及び該半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年の半導体装置では、電子機器の高性能化、小型軽量化及び高速化の要請に応えるため新形態のパッケージが開発されている。搭載する半導体チップの高集積化によって装置の小型化や薄型化が実現され、電子機器の更なる高性能化や高速化が図られており、高密度実装が可能なFCBGA(flip chip ball grid array)方式によるパッケージも出現している。
【0003】
図9は、FCBGA方式による半導体装置を示す側面図であり、(a)は半導体チップを、(b)は半導体チップの実装状態を夫々示す。半導体チップ31は、周辺部又は活性領域上に所定配列の複数の電極パッドを有し、各電極パッド上には金属バンプ25が搭載される(図9(a))。この半導体チップ31は、最終ユーザ側で、バンプ配列パターンと同じパターンの電極を有する多層配線基板(実装基板)32に実装される。
【0004】
一般に、金属バンプ25がはんだボールで構成される場合には、はんだボールは、所定温度下でリフローされて多層配線基板32に固着される。この際に、半導体チップ31と多層配線基板32との熱膨張係数の違いによって応力歪みが発生し、実装信頼性が損なわれるという問題がある。この問題の解決のため、以下のような対策がとられている。
【0005】
例えば、材料としては高価な窒化アルミニウム(AlN)、ムライド、ガラセラ等のセラミック系の材料を多層配線基板32に用い、半導体チップ31を主に構成するシリコンの線膨張係数に多層配線基板32の線膨張係数を近づけ、線膨張係数のミスマッチを最小限にして実装信頼性を高めている。しかし、この対策は、実装信頼性の向上という観点では効果があるものの、多層配線基板32の材料が高価になるので、スーパーコンピュータや大型コンピュータ等の高価な装置への適用用途に限定されることになる。
【0006】
そこで、比較的廉価で線膨張係数が大きい有機系材料を用いた多層配線基板を実装に用い、多層配線基板と半導体チップとの間にアンダーフィル樹脂を挿入し、バンプ接続部に働くせん断応力を分散させることで応力歪みを軽減し、実装信頼性を向上させる技術が開発されている。
【0007】
しかし、上記技術では、廉価な多層配線基板を使用できるが、アンダーフィル樹脂内にボイドが存在する場合、或いは、アンダーフィル樹脂と半導体チップとの界面やアンダーフィル樹脂と多層配線基板との界面の接着特性が悪い場合には、リフロー工程で界面剥離現象を誘発し、製品が不良化するという問題が生じ易い。
【0008】
FCBGA方式の半導体装置は、高い信頼性が要求される大規模半導体集積回路(LSI)に使用されることが一般的であり、製品自体が高価なので、半導体チップ実装後の電気選別工程で、半導体チップ以外の部分に不良が検出された場合には、半導体チップを多層配線基板から取り外して再使用する。この取外し処理では、(図9(c))に示すように、裏面を吸着加熱ツール33で吸着した良品の半導体チップ31を加熱して、バンプ接合部を溶融させながら引き上げ、多層配線基板32から取り外す工程が必要である。
【0009】
通常、上記取外し時には、図9(d)に示すように、金属バンプ25にダメージを与えることになる。しかし、チップ本体部分には損傷が生じない。ここで、半導体チップ31と多層配線基板32との間にアンダーフィル樹脂が介在する半導体装置の場合には、金属バンプ25へのダメージにとどまらず、多層配線基板32を含む周辺デバイスや、活性領域を保護するパッシベーション膜に対してもダメージを与え易い。この場合、半導体チップ31の再生処理は殆ど不可能に近く、有機系材料から成る廉価な多層配線基板を使用しても、必ずしも低コストを推進できるとはいい難かった。
【0010】
【発明が解決しようとする課題】
そこで、半導体基板を覆い電極パッドを露出する開口部を備えた弾性を有する絶縁性樹脂層を備えることで、アンダーフィル樹脂を用いることなく主に絶縁性樹脂層により、金属バンプに働く変形応力を効果的に吸収・緩和する構成の半導体装置、及び該半導体装置の製造方法が本出願人により提案されている(特願平11-313684号)。しかしながら、このような半導体装置の製造方法においては、所要の工程を簡略化する等により製造コストを一層低減することが切望される。
【0011】
本発明は、上記に鑑み、特に、金属バンプに働く変形応力を効果的に吸収・緩和する絶縁性樹脂層のパターニング処理を簡略化して、製造コストの一層の低減を図ることができる半導体装置の製造方法を提供すること、及び、この製造方法で製造された半導体装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の半導体装置の製造方法は、半導体基板上に形成された電極パッドが実装基板の対応する各電極に金属バンプを介して接続される半導体チップを備えた半導体装置の製造方法において、
前記半導体基板上に、前記電極パッドと該電極パッドを露出させるパッシベーション膜とを形成し、
前記電極パッド及びパッシベーション膜を含む前記半導体基板上に、弾性を有する感光性材料から成る絶縁性樹脂層を形成し、
前記絶縁性樹脂層上に所定パターンの金属配線を形成し、
マスク材を用いて前記絶縁性樹脂層の所定領域を覆った状態で露光してからエッチング処理して、前記電極パッドを露出する開口部を形成し、
前記金属配線と前記開口部内に露出する電極パッドとを接続し前記金属配線上に金属バンプを形成することを特徴とする。
【0013】
本発明の半導体装置の製造方法では、絶縁性樹脂層が弾性と共に感光性をも有するので、マスク材で絶縁性樹脂層を覆った状態で直接露光した後にエッチング処理するだけで、絶縁性樹脂層に、電極パッドを露出する開口部を簡単に形成することができる。このため、従来のようなアンダーフィル樹脂を不要とし絶縁性樹脂層の弾性で金属バンプへの変形応力を効果的に吸収・緩和する構成の半導体装置を、極めて簡素なプロセスで製造することができる。つまり、一連の製造プロセスにおいてフォトレジスト層の形成工程を不要としながら絶縁性樹脂層に対するパターニングを簡便に実施できるので、工数が削減し、製造コストが一層低減できる。
【0014】
本発明における絶縁性樹脂層の「弾性」とは、0.01〜8GPa(ギガパスカル)の範囲の弾性率を有することを意味する。また、本発明における絶縁性樹脂層の「感光性」とは、紫外〜可視領域、例えば水銀ランプ等により得られるg線〜i線の範囲の光によって光硬化や光分解等の化学反応を起こす性質を意味する。
【0015】
ここで、前記絶縁性樹脂層の形成工程では、フィルム化された樹脂層を前記電極パッド上及びパッシベーション膜上に貼付することが好ましい。これにより、絶縁性樹脂層の形成工程が大幅に簡略化する。
【0016】
また、前記絶縁性樹脂層が、順次に積層される2つの樹脂層によって構成されることも好ましい態様である。この場合、2段構成の絶縁性樹脂層により、応力緩衝効果を一層向上させてより高い実装信頼性を得ることができ、より高い信頼性が要求されるアプリケーションへの適用が可能になる。
【0017】
具体的には、前記弾性を有する感光性材料は、主成分としてのエポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、シアネートエステル系樹脂、フェノール系樹脂、フルオレン系樹脂、又はナフタレン系樹脂に対して、ビスアジド化合物、オルソジアゾナフトキノン化合物、又はアルカリ可溶性ポリイミドを所定の比率で含有することによって得ることができる。
【0018】
本発明の半導体装置は、半導体基板上に形成された電極パッドが実装基板の対応する各電極に金属バンプを介して接続される半導体チップを備えた半導体装置において、
前記半導体基板を覆い前記電極パッドを露出する開口部を備えた弾性を有する感光性材料から成る絶縁性樹脂層と、該絶縁性樹脂層上に形成された所定パターンの金属配線と、該金属配線上に形成された金属バンプとを備え、
対応する電極パッドと金属配線とが相互に接続された状態で前記開口部が絶縁性樹脂で封止されることを特徴とする。
【0019】
本発明の半導体装置では、弾性を有する絶縁性樹脂層が金属バンプへの変形応力を効果的に吸収・緩和するので、従来のような半導体チップと実装基板との間のアンダーフィル樹脂が不要になる。しかも、絶縁性樹脂層が感光性を有するので、所定のマスク等を用い絶縁性樹脂層を被覆して直接に露光するだけで、その後のエッチング処理で絶縁性樹脂層に開口部を簡単に形成することができる。従って、アンダーフィル樹脂が不要で、高い実装信頼性を有する半導体装置を低コストで簡便に得ることが可能になる。更に、電極パッドと金属配線とが接続された状態で開口部が絶縁性樹脂で封止されるので、耐湿特性が向上する。
【0020】
また、前記絶縁性樹脂層が、順次に積層された2つの樹脂層によって構成されていることが好ましい。これにより、応力緩衝効果が一層向上するので、より高い実装信頼性が得られる。
【0021】
【発明の実施の形態】
以下、図面を参照し、本発明の実施形態例に基づいて本発明を更に詳細に説明する。図1〜図4は、本発明の第1実施形態例におけるFCBGA方式の半導体装置を製造する工程を順に示す断面図である。
【0022】
まず、図1(a)に示すように、半導体基板(シリコン基板)11上に、Al又はCu等から成るパッド電極12を形成し、電極パッド12の外周部及び活性領域面上に、SiO2等の無機系材料又はポリイミド(PI)等の有機系材料から成り活性領域を保護するパッシベーション膜13を形成する。
【0023】
更に、図1(b)に示すように、表面にCu膜21が予め接着されてフィルム化された弾性及び感光性を有する絶縁性応力緩衝樹脂層(絶縁性樹脂層)14a[RCC(Resin Couted Copper)形態]を、フィルムラミネーター法又はプレス法で、半導体基板11の電極パッド12及びパッシベーション膜13上に貼り付ける。この際に、絶縁性応力緩衝樹脂層14a自身が接着特性を有するので、貼り付け工程が極めて簡単に行われる。なお、絶縁性応力緩衝樹脂層14aの弾性率は、0.01〜8GPa(ギガパスカル)の範囲であることが望ましい。
【0024】
本実施形態例における絶縁性応力緩衝樹脂層14aは、ネガ型(化学増幅型)の感光性材料で構成されており、光源からの露光光が照射された領域が化学反応を起こして光硬化する。絶縁性応力緩衝樹脂層14aは、主成分としてのエポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、シアネートエステル系樹脂、フェノール系樹脂、フルオレン系樹脂、又はナフタレン系樹脂に対して、所定の比率で所定化合物を含有させることにより得られる。所定化合物としては、ビスアジド化合物、オルソジアゾナフトキノン化合物、又は、アルカリ可溶性ポリイミドを挙げることができる。
【0025】
一方、ネガ型の感光性材料に代えて、絶縁性応力緩衝樹脂層14aをポジ型の感光性材料で構成することができる。その場合には、光源からの露光光を照射した領域が化学反応を起こして光分解しその後のエッチング処理で溶融するので、ネガ型の場合とは逆のパターンが形成される。
【0026】
次いで、図1(c)に示すように、Cu膜21上にフォトレジスト膜15を形成してから、図1(d)に示すように、フォトリソグラフィ技術を用いてフォトレジスト膜15をパターニング処理する。
【0027】
更に、図2(a)に示すように、フォトレジスト膜15の表面全体にAuメッキ層22を形成してから、図2(b)に示すように、フォトレジスト膜15を除去する。この際に、Auメッキ層22の形成に先立ってNiメッキ処理を施し、配線パターン表面の硬度を上昇させることができる。これにより、フォトレジスト膜15の配線パターンに沿ったAu配線22aを得る。
【0028】
引き続き、図2(c)に示すように、Au配線22aをマスクとして、塩化第2鉄、又は硫酸をベースにしたエッチング液等でCu膜21をエッチング処理することによって、Au配線22aのパターンと同じCu配線21aを得る。
【0029】
次いで、図2(d)に示すように、所定形状の露光マスク31aを使用し、水銀ランプ等の所定光源を使用して露光光32を照射し、感光性を有する絶縁性応力緩衝樹脂層14aに対する露光処理を施す。
【0030】
本実施形態例では、感光性を有する絶縁性応力緩衝樹脂層14aを、ネガ型感光性材料のイメージで描いているので、図3(a)に示すように、光源からの露光光32で露光された領域の絶縁性応力緩衝樹脂層14aのみが化学反応を起こして光硬化層14cを形成する。つまり、光硬化層14cが、その後の現像工程で現像液中に溶出しないような特性変化を起こすので、絶縁性応力緩衝樹脂層14aをパターニングするためのフォトレジスト膜の形成工程が不要である。従って、フォトレジスト膜を形成してパターニングする場合に比して、製造工程が簡略化する。
【0031】
次いで、図3(b)に示すように、露光後の光硬化層14c及びAu配線22aを含む半導体基板11上の全面に、ソルダーレジスト膜33を形成する。本実施形態例では、ソルダーレジスト膜33を、ネガ型(化学増幅型)感光性材料で構成したイメージで描いている。
【0032】
引き続き、図3(c)に示すように、所定パターンを有する露光マスク31bでソルダーレジスト膜33を覆った状態で露光光32を照射し、ソルダーレジスト膜33に対する露光処理を施す。ソルダーレジスト膜33は、絶縁性応力緩衝樹脂層14aと同様にネガ型感光性材料で構成されるので、図3(d)に示すように、光源からの露光光32で露光された領域のみが化学反応を起こして光硬化層33aとなる。このように変化した光硬化層33aは、後述の現像工程で現像液に溶出しない。
【0033】
次いで、図4(a)に示すように、絶縁性応力緩衝樹脂層14a及びソルダーレジスト膜33に対する現像処理を一括的に行う。つまり、現像液を用いたケミカルエッチング処理を施して、露光光32が照射されず光硬化しない領域の絶縁性応力緩衝樹脂層14a及びソルダーレジスト膜33を除去する。これにより、半導体基板11上に形成されている電極パッド12上に開口部16を、また、Au配線22a上の所定位置に金属バンプ搭載ランド部34を夫々形成できる。
【0034】
上記ケミカルエッチング処理で用いる現像液には、電極パッド12に対するダメージ度合を考慮すると、所定の濃度に調整されたTMAH(テトラ・メチル・アンモニウム・ハイドロオキサイド)水溶液が最適である。
【0035】
引き続き、図4(b)に示すように、所定の条件下で高温キュア工程を実施して絶縁性応力緩衝樹脂層14aの熱硬化成分を反応させ、絶縁性応力緩衝樹脂層14a及び光硬化層14cの全体を光硬化層14cに形成する。更に、図4(c)に示すように、ワイヤボンディング法により、Au又はCu等から成る導電性ワイヤ27を形成して、相互に対応する所定位置の電極パッド12とAu配線22aとを電気的に接続する。
【0036】
その後、図4(d)に示すように、パッド電極12上の開口部16内及びその周囲近傍に、所定量の絶縁性樹脂28を盛りつけて硬化させ、これにより導電性ワイヤ27を封止する。この構造によると、パッケージ(PKG)の耐湿特性が向上する。
【0037】
次いで、図4(e)に示すように、金属バンプ搭載ランド部34上に金属バンプ25(はんだボール)を形成する。金属バンプ搭載ランド部34は、Cu配線21a上にAu配線22aを重ね合わせた配線パターン上に形成されており、フラックス(図示せず)を塗布して行う加熱リフロー(IRリフロー)工程によって金属バンプ25が容易に固着形成される。金属バンプ25は、Sn及びPbを主成分とするはんだで構成されるが、これに代えて、Au又はSn-Ag系合金等で構成することもできる。
【0038】
次いで、ダイシングブレード(図示せず)を用いてウエハ状の半導体基板11を所定の大きさに切断して個別の半導体チップ10に分離し、本発明の半導体PKG構成を実現させる。以上の工程により、フリップチップ型半導体装置が得られる。
【0039】
次に、本発明の第2実施形態例について説明する。図5〜図8は、本発明の第2実施形態例における半導体装置の製造工程を順に示す断面図である。まず、図5(a)に示すように、半導体基板11上に、Al又はCu等から成るパッド電極12を形成し、パッド電極12の外周部及び活性領域面上にパッシベーション膜13を形成する。次いで、パッド電極12上及びその周囲を除くパッシベーション膜13上に、絶縁性応力緩衝樹脂層14bを形成する。
【0040】
本実施形態例の絶縁性応力緩衝樹脂層14bは、第1実施形態例におけるフィルム化され弾性及び感光性を有する絶縁性応力緩衝樹脂層14aと同様の構成を有する。このため、絶縁性応力緩衝樹脂層14aに対して行った露光・現像プロセスと同様のプロセスを用いることで、電極パッド12を露出する開口部17を容易に形成することができる。これに対し、絶縁性応力緩衝樹脂層14bが、弾性を有する非感光性材料で構成される場合には、スクリーン印刷法等を用いて、電極パッド12の周辺のみに絶縁性応力緩衝樹脂層14bを形成することで開口部17を得る。
【0041】
更に、図5(b)に示すように、第1実施形態例と同様の絶縁性応力緩衝樹脂層14aを準備し、図5(c)に示すように、フィルムラミネーター法又はプレス法で、所定の形状にパターニングされた絶縁性応力緩衝樹脂層14b上に貼り付ける。このとき、絶縁性応力緩衝樹脂層14a自身が接着特性を有するので、貼付け工程が容易になる。
【0042】
引き続き、図6(a)に示すように、Cu膜21上にフォトレジスト膜15を形成してから、図6(b)に示すように、フォトレジスト膜15に所定のパターニング処理を施す。更に、図6(c)に示すように、フォトレジスト膜15及びCu膜21を含む半導体基板11上の全面にAuメッキ層22を形成した後に、図6(d)に示すように、フォトレジスト膜15を除去する。この際に、Auメッキ層22の形成に先立ってNiメッキ処理を施すことにより、配線パターン表面の硬度を上昇させることができる。これにより、フォトレジスト膜15の配線パターンに従ったAu配線22aが得られる。
【0043】
次いで、図7(a)に示すように、Au配線22aをマスクとして、塩化第2鉄、又は硫酸をベースとしたエッチング液等でCu膜21をエッチング処理し、Au配線22aのパターンと同様のCu配線21aを形成する。
【0044】
この後、図7(b)に示すように、所定形状の露光マスク31aを使用し、水銀ランプ等の所定光源からの露光光32を照射し、ネガ型感光性材料から成る絶縁性応力緩衝樹脂層14aに対し、露光処理を施す。つまり、露光光32が照射された領域の絶縁性応力緩衝樹脂層14aのみが光硬化層14cとなる。この光硬化層14cが、その後の現像工程で現像液中に溶出しない特性変化を起こしているので、絶縁性応力緩衝樹脂層14aをパターニングするためにフォトレジスト膜を形成する等の工程が不要であり、工数が削減される。
【0045】
引き続き、図7(d)に示すように、光硬化層14c及びAu配線22aを含む半導体基板11上の全面に、ソルダーレジスト膜33を形成する。このソルダーレジスト膜33も、第1実施形態例と同様に、ネガ型(化学増幅型)感光性材料から成る。
【0046】
次いで、図8(a)に示すように、所定形状の露光マスク31bを使用して露光光32を照射し、ソルダーレジスト膜33に対して露光処理を施す。ソルダーレジスト膜33は、ネガ型感光性材料から成るので、図8(b)に示すように、露光光32が照射された領域のみが化学反応を起こして光硬化層33aとなり、後述する現像工程で現像液中に溶出しない。
【0047】
引き続き、図8(c)に示すように、光硬化層33a及び絶縁性応力緩衝樹脂層14aに対する一括現像処理を施す。つまり、現像液を用いたケミカルエッチング処理で、露光光32を受けず光硬化しない領域の樹脂層を除去することで、電極パッド12上には、開口部17に連通する開口部16を、Au配線22a上の所定位置には、金属バンプ搭載ランド部34を夫々形成する。上記ケミカルエッチング処理で使用する現像液は、第1実施形態例と同様である。
【0048】
次いで、図8(d)に示すように、所定の条件下で高温キュア工程を実施して絶縁性応力緩衝樹脂層14aの熱硬化成分を反応させ、絶縁性応力緩衝樹脂層14a及び光硬化層14cの全体を光硬化層14cに形成する。
【0049】
以下、第1実施形態例と同様の手法によって、本発明の半導体PKGを得る。本実施形態例では、第1段階で、半導体基板11上に絶縁性応力緩衝樹脂層14bを形成した後に、Cu膜21が予め接着されたフィルム状の絶縁性応力緩衝樹脂層14aを用いて配線加工処理を施す。このため、第1実施形態例に比して製造プロセスにおける工数は多くなるが、絶縁性応力緩衝樹脂層が2段構成となるので、応力緩衝効果が第1実施形態例よりも向上しており、より高い信頼性が要求されるアプリケーションへの適用が可能になる。
【0050】
一般に、感光性を有する絶縁性応力緩衝樹脂層14aとして、常温測定時での弾性率が1Gpa(ギガパスカル)以下の材料を開発することは難しい。その場合は、第1段階で用いる絶縁性応力緩衝樹脂層14bに、非感光性材料で構成され弾性率が1Gpa以下の材料を使用し、弾性率がやや低い絶縁性応力緩衝樹脂層14b上に1Gpa以上の弾性を有する絶縁性応力緩衝樹脂層14aを形成することで、各構成材料の機能を分割する。これにより、材料自身の製造コストを低減し、結果的にトータルコストを削減することが可能になる。
【0051】
以上のように、第1及び第2実施形態例では、絶縁性応力緩衝樹脂層14a、14bが感光性材料で構成されるので、絶縁性応力緩衝樹脂層14a、14bに対して露光・現像処理を直接に施して、簡便にパターニング処理を施すことができる。これにより、絶縁性応力緩衝樹脂層14a、14bをパターニングするためのフォトレジスト膜の形成工程等が不要になるので、製造工程が簡略化する。
【0052】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の半導体装置及びその製造方法は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施した半導体装置及びその製造方法も、本発明の範囲に含まれる。
【0053】
【発明の効果】
以上説明したように、本発明の半導体装置及びその製造方法によると、特に、金属バンプに働く変形応力を効果的に吸収・緩和する絶縁性樹脂層のパターニング処理を簡略化して、製造コストの一層の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(d)は各工程を段階的に示す。
【図2】第1実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(d)は各工程を段階的に示す。
【図3】第1実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(d)は各工程を段階的に示す。
【図4】第1実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(e)は各工程を段階的に示す。
【図5】本発明の第2実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(c)は各工程を段階的に示す。
【図6】第2実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(d)は各工程を段階的に示す。
【図7】第2実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(d)は各工程を段階的に示す。
【図8】第2実施形態例における半導体装置の製造過程を示す断面図であり、(a)〜(d)は各工程を段階的に示す。
【図9】従来型のFCBGA方式のパッケージ構造を備えた半導体装置を示す側面図であり、(a)は半導体チップを、(b)は半導体チップの実装状態を、(c)は半導体チップの取外し状態を、(d)は取外し後の半導体チップの状態を夫々示す側面図である。
【符号の説明】
10:半導体チップ
11:半導体基板
12:パッド電極
13:パッシベーション膜
14a、14b:絶縁性応力緩衝樹脂層(絶縁性樹脂層)
14c:光硬化層
15:フォトレジスト膜
16、17:開口部
21:Cu膜
21a:Cu配線
22:Auメッキ層
22a:Au配線
25:金属バンプ
27:導電性ワイヤ
28:絶縁性樹脂
31a、31b:露光マスク
32:露光光
33:ソルダーレジスト膜
33a:光硬化層
34:金属バンプ搭載ランド部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly, to a semiconductor device having a structure that avoids damage to metal bumps caused by a difference in thermal expansion coefficient and a manufacturing method of the semiconductor device.
[0002]
[Prior art]
In recent semiconductor devices, new types of packages have been developed to meet the demand for higher performance, smaller size, lighter weight, and higher speed of electronic devices. FCBGA (flip chip ball grid array) capable of high-density mounting, which is achieved by miniaturization and thinning of the device due to high integration of the semiconductor chips to be mounted, and further improvement in performance and speed of electronic devices. ) Package has also appeared.
[0003]
9A and 9B are side views showing a semiconductor device using the FCBGA method. FIG. 9A shows a semiconductor chip and FIG. 9B shows a mounting state of the semiconductor chip. The semiconductor chip 31 has a plurality of electrode pads arranged in a predetermined arrangement on the periphery or active region, and metal bumps 25 are mounted on each electrode pad (FIG. 9A). The semiconductor chip 31 is mounted on a multilayer wiring board (mounting board) 32 having electrodes having the same pattern as the bump arrangement pattern on the end user side.
[0004]
Generally, when the metal bumps 25 are composed of solder balls, the solder balls are reflowed at a predetermined temperature and fixed to the multilayer wiring board 32. At this time, there is a problem that stress distortion occurs due to the difference in thermal expansion coefficient between the semiconductor chip 31 and the multilayer wiring board 32, and the mounting reliability is impaired. In order to solve this problem, the following measures are taken.
[0005]
For example, as the material, an expensive ceramic material such as aluminum nitride (AlN), mlide, or glassera is used for the multilayer wiring board 32, and the linear expansion coefficient of silicon mainly constituting the semiconductor chip 31 is set to the line of the multilayer wiring board 32. The expansion coefficient is made close, and the mismatch of the linear expansion coefficient is minimized to improve the mounting reliability. However, although this measure is effective from the viewpoint of improving the mounting reliability, the material of the multilayer wiring board 32 becomes expensive, so that it is limited to the application to an expensive apparatus such as a supercomputer or a large computer. become.
[0006]
Therefore, a multilayer wiring board using an organic material having a relatively low cost and a large linear expansion coefficient is used for mounting, and an underfill resin is inserted between the multilayer wiring board and the semiconductor chip, so that the shear stress acting on the bump connection portion is reduced. Technology has been developed to reduce stress strain by dispersing and improve mounting reliability.
[0007]
However, in the above technique, an inexpensive multilayer wiring board can be used. However, when a void exists in the underfill resin, or the interface between the underfill resin and the semiconductor chip or the interface between the underfill resin and the multilayer wiring board. In the case where the adhesive properties are poor, an interfacial debonding phenomenon is induced in the reflow process, which tends to cause a problem that the product becomes defective.
[0008]
FCBGA semiconductor devices are generally used in large-scale semiconductor integrated circuits (LSIs) that require high reliability, and the products themselves are expensive. When a defect is detected in a portion other than the chip, the semiconductor chip is removed from the multilayer wiring board and reused. In this removal process, as shown in FIG. 9C, the non-defective semiconductor chip 31 having the back surface adsorbed by the adsorption heating tool 33 is heated and pulled up while melting the bump bonding portion. A removal process is required.
[0009]
Usually, at the time of the removal, as shown in FIG. 9D, the metal bumps 25 are damaged. However, the chip body portion is not damaged. Here, in the case of a semiconductor device in which an underfill resin is interposed between the semiconductor chip 31 and the multilayer wiring substrate 32, not only damage to the metal bumps 25 but also peripheral devices including the multilayer wiring substrate 32, active regions, and the like. It is easy to damage the passivation film that protects the film. In this case, the regeneration process of the semiconductor chip 31 is almost impossible, and even if an inexpensive multilayer wiring board made of an organic material is used, it is not always possible to promote low cost.
[0010]
[Problems to be solved by the invention]
Therefore, by providing an insulating resin layer having elasticity with an opening that covers the semiconductor substrate and exposes the electrode pads, the deformation stress acting on the metal bumps is mainly generated by the insulating resin layer without using the underfill resin. A semiconductor device having a structure that effectively absorbs and relaxes and a method for manufacturing the semiconductor device have been proposed by the present applicant (Japanese Patent Application No. 11-313684). However, in such a semiconductor device manufacturing method, it is desired to further reduce the manufacturing cost by simplifying a required process.
[0011]
In view of the above, the present invention simplifies the patterning process of the insulating resin layer that effectively absorbs and relaxes the deformation stress acting on the metal bump, and in particular, a semiconductor device capable of further reducing the manufacturing cost. It is an object to provide a manufacturing method and a semiconductor device manufactured by the manufacturing method.
[0012]
[Means for Solving the Problems]
To achieve the above object, a semiconductor device manufacturing method of the present invention includes a semiconductor chip including a semiconductor chip in which electrode pads formed on a semiconductor substrate are connected to corresponding electrodes of a mounting substrate via metal bumps. In the device manufacturing method,
On the semiconductor substrate, the electrode pad and a passivation film that exposes the electrode pad are formed,
Forming an insulating resin layer made of an elastic photosensitive material on the semiconductor substrate including the electrode pad and the passivation film;
Forming a predetermined pattern of metal wiring on the insulating resin layer;
Etching is performed after exposure in a state of covering a predetermined region of the insulating resin layer using a mask material to form an opening exposing the electrode pad,
The metal wiring and an electrode pad exposed in the opening are connected to form a metal bump on the metal wiring.
[0013]
In the method for manufacturing a semiconductor device of the present invention, since the insulating resin layer has both elasticity and photosensitivity, the insulating resin layer can be obtained simply by performing an etching process after direct exposure in a state where the insulating resin layer is covered with a mask material. In addition, the opening for exposing the electrode pad can be easily formed. Therefore, it is possible to manufacture a semiconductor device having a configuration in which the conventional underfill resin is not required and the elastic stress of the insulating resin layer absorbs and relaxes the deformation stress to the metal bumps by an extremely simple process. . That is, patterning of the insulating resin layer can be easily performed while eliminating the need for a photoresist layer forming step in a series of manufacturing processes, thereby reducing man-hours and manufacturing costs.
[0014]
The “elasticity” of the insulating resin layer in the present invention means having an elastic modulus in the range of 0.01 to 8 GPa (gigapascal). In addition, the “photosensitivity” of the insulating resin layer in the present invention causes a chemical reaction such as photocuring and photolysis by light in the ultraviolet to visible region, for example, g-line to i-line obtained by a mercury lamp or the like. Means nature.
[0015]
Here, in the step of forming the insulating resin layer, it is preferable that the resin layer formed into a film is stuck on the electrode pad and the passivation film. This greatly simplifies the process of forming the insulating resin layer.
[0016]
Moreover, it is also a preferable aspect that the insulating resin layer is composed of two resin layers that are sequentially laminated. In this case, the two-stage insulating resin layer can further improve the stress buffering effect to obtain higher mounting reliability, and can be applied to applications that require higher reliability.
[0017]
Specifically, the photosensitive material having elasticity is an epoxy resin, a silicone resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin, a fluorene resin, or a naphthalene resin as a main component. It can be obtained by containing a bisazide compound, an orthodiazonaphthoquinone compound, or an alkali-soluble polyimide in a predetermined ratio with respect to the resin.
[0018]
The semiconductor device of the present invention is a semiconductor device including a semiconductor chip in which electrode pads formed on a semiconductor substrate are connected to corresponding electrodes of the mounting substrate via metal bumps.
An insulating resin layer made of an elastic photosensitive material having an opening that covers the semiconductor substrate and exposes the electrode pad, a metal wiring having a predetermined pattern formed on the insulating resin layer, and the metal wiring With metal bumps formed on the top,
The opening is sealed with an insulating resin in a state where the corresponding electrode pad and the metal wiring are connected to each other.
[0019]
In the semiconductor device of the present invention, since the elastic insulating resin layer effectively absorbs and relaxes the deformation stress to the metal bumps, the conventional underfill resin between the semiconductor chip and the mounting substrate is unnecessary. Become. Moreover, since the insulating resin layer has photosensitivity, it is possible to easily form an opening in the insulating resin layer by subsequent etching treatment by simply covering the insulating resin layer with a predetermined mask and exposing it directly. can do. Therefore, it is possible to easily obtain a semiconductor device that does not require underfill resin and has high mounting reliability at low cost. Furthermore, since the opening is sealed with the insulating resin in a state where the electrode pad and the metal wiring are connected, the moisture resistance is improved.
[0020]
Moreover, it is preferable that the said insulating resin layer is comprised by the two resin layers laminated | stacked one by one. Thereby, since the stress buffering effect is further improved, higher mounting reliability can be obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to the drawings, the present invention will be described in more detail based on exemplary embodiments of the present invention. 1 to 4 are cross-sectional views sequentially showing steps of manufacturing an FCBGA type semiconductor device according to the first embodiment of the present invention.
[0022]
First, as shown in FIG. 1A, a pad electrode 12 made of Al, Cu or the like is formed on a semiconductor substrate (silicon substrate) 11, and SiO 2 is formed on the outer peripheral portion of the electrode pad 12 and on the active region surface. A passivation film 13 made of an inorganic material such as polyimide or an organic material such as polyimide (PI) is formed to protect the active region.
[0023]
Further, as shown in FIG. 1B, an insulating stress buffering resin layer (insulating resin layer) 14a [RCC (Resin Couted) having elasticity and photosensitivity in which a Cu film 21 is preliminarily bonded to the surface to form a film. Copper) form] is pasted on the electrode pad 12 and the passivation film 13 of the semiconductor substrate 11 by a film laminator method or a press method. At this time, since the insulating stress buffering resin layer 14a itself has adhesive properties, the attaching process can be performed very easily. The elastic modulus of the insulating stress buffer resin layer 14a is desirably in the range of 0.01 to 8 GPa (Giga Pascal).
[0024]
The insulating stress buffer resin layer 14a in this embodiment is made of a negative (chemical amplification) photosensitive material, and a region irradiated with exposure light from a light source undergoes a chemical reaction and is photocured. . The insulating stress buffer resin layer 14a is an epoxy resin, a silicone resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin, a fluorene resin, or a naphthalene resin as a main component. It is obtained by containing a predetermined compound in a predetermined ratio. Examples of the predetermined compound include bisazide compounds, orthodiazonaphthoquinone compounds, and alkali-soluble polyimides.
[0025]
On the other hand, in place of the negative photosensitive material, the insulating stress buffer resin layer 14a can be composed of a positive photosensitive material. In this case, the region irradiated with the exposure light from the light source undergoes a chemical reaction, photodecomposes, and melts in the subsequent etching process, so that a pattern opposite to the negative type is formed.
[0026]
Next, as shown in FIG. 1C, a photoresist film 15 is formed on the Cu film 21, and then, as shown in FIG. 1D, the photoresist film 15 is patterned using a photolithography technique. To do.
[0027]
Further, as shown in FIG. 2A, an Au plating layer 22 is formed on the entire surface of the photoresist film 15, and then the photoresist film 15 is removed as shown in FIG. 2B. At this time, prior to the formation of the Au plating layer 22, Ni plating can be performed to increase the hardness of the surface of the wiring pattern. Thereby, the Au wiring 22a along the wiring pattern of the photoresist film 15 is obtained.
[0028]
Subsequently, as shown in FIG. 2C, by using the Au wiring 22a as a mask, the Cu film 21 is etched with an etching solution or the like based on ferric chloride or sulfuric acid. The same Cu wiring 21a is obtained.
[0029]
Next, as shown in FIG. 2 (d), an exposure mask 31a having a predetermined shape is used, and exposure light 32 is irradiated using a predetermined light source such as a mercury lamp, so that an insulating stress buffer resin layer 14a having photosensitivity. Is subjected to exposure processing.
[0030]
In the present embodiment, the insulating stress buffer resin layer 14a having photosensitivity is drawn with an image of a negative photosensitive material, so that exposure is performed with exposure light 32 from a light source, as shown in FIG. Only the insulating stress buffer resin layer 14a in the formed region causes a chemical reaction to form the photocured layer 14c. That is, the photocuring layer 14c undergoes a characteristic change that does not elute into the developer in the subsequent development process, and therefore a photoresist film forming process for patterning the insulating stress buffer resin layer 14a is not required. Therefore, the manufacturing process is simplified as compared with the case where a photoresist film is formed and patterned.
[0031]
Next, as shown in FIG. 3B, a solder resist film 33 is formed on the entire surface of the semiconductor substrate 11 including the photocured layer 14c and the Au wiring 22a after the exposure. In this embodiment, the solder resist film 33 is drawn with an image made of a negative (chemical amplification) photosensitive material.
[0032]
Subsequently, as shown in FIG. 3C, exposure light 32 is irradiated in a state where the solder resist film 33 is covered with an exposure mask 31b having a predetermined pattern, and the solder resist film 33 is exposed. Since the solder resist film 33 is composed of a negative photosensitive material like the insulating stress buffer resin layer 14a, only the region exposed by the exposure light 32 from the light source is shown in FIG. 3 (d). A chemical reaction is caused to become the photocured layer 33a. The photocured layer 33a thus changed does not elute into the developer in the development process described later.
[0033]
Next, as shown in FIG. 4A, development processing is collectively performed on the insulating stress buffer resin layer 14a and the solder resist film 33. That is, a chemical etching process using a developing solution is performed to remove the insulating stress buffer resin layer 14a and the solder resist film 33 in a region where the exposure light 32 is not irradiated and is not photocured. Thereby, the opening 16 can be formed on the electrode pad 12 formed on the semiconductor substrate 11, and the metal bump mounting land 34 can be formed at a predetermined position on the Au wiring 22a.
[0034]
In consideration of the degree of damage to the electrode pad 12, a TMAH (tetramethylmethylammonium hydroxide) aqueous solution adjusted to a predetermined concentration is optimal for the developer used in the chemical etching process.
[0035]
Subsequently, as shown in FIG. 4B, a high temperature curing step is performed under predetermined conditions to react the thermosetting component of the insulating stress buffer resin layer 14a, and the insulating stress buffer resin layer 14a and the photocured layer. The whole 14c is formed in the photocuring layer 14c. Further, as shown in FIG. 4C, a conductive wire 27 made of Au or Cu or the like is formed by wire bonding, and the electrode pad 12 and the Au wiring 22a at predetermined positions corresponding to each other are electrically connected. Connect to.
[0036]
Thereafter, as shown in FIG. 4D, a predetermined amount of insulating resin 28 is placed and cured in the opening 16 on the pad electrode 12 and in the vicinity thereof, thereby sealing the conductive wire 27. . According to this structure, the moisture resistance of the package (PKG) is improved.
[0037]
Next, as shown in FIG. 4E, metal bumps 25 (solder balls) are formed on the metal bump mounting lands 34. The metal bump mounting land 34 is formed on a wiring pattern in which the Au wiring 22a is superimposed on the Cu wiring 21a, and the metal bump is mounted by a heating reflow (IR reflow) process performed by applying a flux (not shown). 25 is easily fixed. The metal bump 25 is made of solder containing Sn and Pb as main components, but may be made of Au or Sn—Ag alloy or the like instead.
[0038]
Next, a wafer-like semiconductor substrate 11 is cut into a predetermined size by using a dicing blade (not shown) and separated into individual semiconductor chips 10 to realize the semiconductor PKG configuration of the present invention. Through the above steps, a flip chip type semiconductor device is obtained.
[0039]
Next, a second embodiment of the present invention will be described. 5 to 8 are cross-sectional views sequentially showing the manufacturing steps of the semiconductor device according to the second embodiment of the present invention. First, as shown in FIG. 5A, a pad electrode 12 made of Al, Cu or the like is formed on a semiconductor substrate 11, and a passivation film 13 is formed on the outer peripheral portion of the pad electrode 12 and the active region surface. Next, an insulating stress buffer resin layer 14b is formed on the pad electrode 12 and on the passivation film 13 excluding the periphery thereof.
[0040]
The insulative stress buffer resin layer 14b of the present embodiment has the same configuration as the insulative stress buffer resin layer 14a having elasticity and photosensitivity in the first embodiment. For this reason, the opening part 17 which exposes the electrode pad 12 can be easily formed by using the process similar to the exposure and the development process performed with respect to the insulating stress buffer resin layer 14a. On the other hand, when the insulating stress buffer resin layer 14b is made of a non-photosensitive material having elasticity, the insulating stress buffer resin layer 14b is formed only around the electrode pad 12 by using a screen printing method or the like. To form the opening 17.
[0041]
Further, as shown in FIG. 5 (b), an insulating stress buffer resin layer 14a similar to that of the first embodiment is prepared. As shown in FIG. 5 (c), a predetermined film laminator method or press method is used. It is affixed on the insulating stress buffering resin layer 14b patterned into the shape. At this time, since the insulating stress buffering resin layer 14a itself has adhesive properties, the attaching process is facilitated.
[0042]
Subsequently, after a photoresist film 15 is formed on the Cu film 21 as shown in FIG. 6A, a predetermined patterning process is performed on the photoresist film 15 as shown in FIG. 6B. Further, as shown in FIG. 6C, after an Au plating layer 22 is formed on the entire surface of the semiconductor substrate 11 including the photoresist film 15 and the Cu film 21, as shown in FIG. The film 15 is removed. At this time, the Ni plating process is performed prior to the formation of the Au plating layer 22 to increase the hardness of the surface of the wiring pattern. Thereby, Au wiring 22a according to the wiring pattern of the photoresist film 15 is obtained.
[0043]
Next, as shown in FIG. 7A, the Cu film 21 is etched with an etching solution or the like based on ferric chloride or sulfuric acid using the Au wiring 22a as a mask, and the same pattern as that of the Au wiring 22a is obtained. Cu wiring 21a is formed.
[0044]
Thereafter, as shown in FIG. 7B, an insulating stress buffer resin made of a negative photosensitive material is used by irradiating exposure light 32 from a predetermined light source such as a mercury lamp using an exposure mask 31a having a predetermined shape. An exposure process is performed on the layer 14a. That is, only the insulating stress buffer resin layer 14a in the region irradiated with the exposure light 32 becomes the photocured layer 14c. Since this photocured layer 14c has undergone a characteristic change that does not elute into the developer in the subsequent development process, a process such as forming a photoresist film is not required for patterning the insulating stress buffer resin layer 14a. Yes, man-hours are reduced.
[0045]
Subsequently, as shown in FIG. 7D, a solder resist film 33 is formed on the entire surface of the semiconductor substrate 11 including the photo-curing layer 14c and the Au wiring 22a. The solder resist film 33 is also made of a negative (chemically amplified) photosensitive material as in the first embodiment.
[0046]
Next, as shown in FIG. 8A, exposure light 32 is irradiated using an exposure mask 31b having a predetermined shape, and the solder resist film 33 is exposed. Since the solder resist film 33 is made of a negative photosensitive material, as shown in FIG. 8B, only the region irradiated with the exposure light 32 undergoes a chemical reaction to become a photocured layer 33a, which will be described later. Does not dissolve in the developer.
[0047]
Subsequently, as shown in FIG. 8C, a collective development process is performed on the photocured layer 33a and the insulating stress buffer resin layer 14a. That is, by removing the resin layer in the region that does not receive the exposure light 32 and is not photocured by chemical etching using a developer, the opening 16 that communicates with the opening 17 is formed on the electrode pad 12. Metal bump mounting land portions 34 are respectively formed at predetermined positions on the wiring 22a. The developer used in the chemical etching process is the same as that in the first embodiment.
[0048]
Next, as shown in FIG. 8 (d), a high temperature curing step is performed under predetermined conditions to react the thermosetting component of the insulating stress buffer resin layer 14a, and the insulating stress buffer resin layer 14a and the photocured layer. The whole 14c is formed in the photocuring layer 14c.
[0049]
Hereinafter, the semiconductor PKG of the present invention is obtained by the same method as in the first embodiment. In this embodiment, after forming the insulating stress buffer resin layer 14b on the semiconductor substrate 11 in the first stage, wiring is performed using the film-like insulating stress buffer resin layer 14a to which the Cu film 21 is bonded in advance. Apply processing. For this reason, although the man-hour in a manufacturing process increases compared with 1st Embodiment, since an insulating stress buffer resin layer becomes a 2 step | paragraph structure, the stress buffering effect is improving rather than 1st Embodiment. Therefore, it can be applied to applications that require higher reliability.
[0050]
In general, it is difficult to develop a material having an elastic modulus of 1 Gpa (gigapascal) or less at normal temperature as the insulating stress buffer resin layer 14a having photosensitivity. In that case, the insulating stress buffer resin layer 14b used in the first stage is made of a material made of a non-photosensitive material and having an elastic modulus of 1 Gpa or less, and on the insulating stress buffer resin layer 14b having a slightly low elastic modulus. The function of each constituent material is divided by forming the insulating stress buffer resin layer 14a having elasticity of 1 Gpa or more. Thereby, the manufacturing cost of the material itself can be reduced, and as a result, the total cost can be reduced.
[0051]
As described above, in the first and second embodiments, since the insulating stress buffer resin layers 14a and 14b are made of a photosensitive material, the insulating stress buffer resin layers 14a and 14b are exposed and developed. Can be applied directly and patterning can be easily performed. This eliminates the need for a photoresist film forming step for patterning the insulating stress buffering resin layers 14a and 14b, thereby simplifying the manufacturing process.
[0052]
Although the present invention has been described based on the preferred embodiment, the semiconductor device and the manufacturing method thereof according to the present invention are not limited to the configuration of the above embodiment, and the configuration of the above embodiment. The semiconductor device and the manufacturing method thereof subjected to various modifications and changes are included in the scope of the present invention.
[0053]
【The invention's effect】
As described above, according to the semiconductor device and the manufacturing method thereof of the present invention, in particular, the patterning process of the insulating resin layer that effectively absorbs and relaxes the deformation stress acting on the metal bumps can be simplified to further increase the manufacturing cost. Can be reduced.
[Brief description of the drawings]
FIGS. 1A to 1D are cross-sectional views showing a manufacturing process of a semiconductor device according to a first embodiment of the present invention, wherein FIGS.
FIGS. 2A to 2D are cross-sectional views showing a manufacturing process of a semiconductor device according to the first embodiment, wherein FIGS.
FIGS. 3A to 3D are cross-sectional views showing a manufacturing process of a semiconductor device according to the first embodiment, wherein FIGS.
FIGS. 4A and 4B are cross-sectional views showing a manufacturing process of the semiconductor device according to the first embodiment, wherein FIGS.
FIGS. 5A to 5C are cross-sectional views showing a manufacturing process of a semiconductor device according to a second embodiment of the present invention, wherein FIGS.
FIG. 6 is a cross-sectional view showing a manufacturing process of a semiconductor device in a second embodiment, wherein (a) to (d) show each process step by step.
FIGS. 7A to 7D are cross-sectional views showing a manufacturing process of a semiconductor device according to a second embodiment, wherein FIGS.
FIGS. 8A to 8D are cross-sectional views showing a manufacturing process of a semiconductor device according to a second embodiment, wherein FIGS.
FIGS. 9A and 9B are side views showing a semiconductor device having a conventional FCBGA type package structure, where FIG. 9A shows a semiconductor chip, FIG. 9B shows a semiconductor chip mounted state, and FIG. 9C shows a semiconductor chip; (D) is a side view showing the state of the semiconductor chip after removal, respectively.
[Explanation of symbols]
10: Semiconductor chip 11: Semiconductor substrate 12: Pad electrode 13: Passivation films 14a, 14b: Insulating stress buffer resin layer (insulating resin layer)
14c: Photocured layer 15: Photoresist film 16, 17: Opening 21: Cu film 21a: Cu wiring 22: Au plating layer 22a: Au wiring 25: Metal bump 27: Conductive wire 28: Insulating resin 31a, 31b : Exposure mask 32: Exposure light 33: Solder resist film 33 a: Photo-cured layer 34: Land area for mounting metal bumps

Claims (4)

半導体基板上に形成された電極パッドが実装基板の対応する各電極に金属バンプを介して接続される半導体チップを備えた半導体装置の製造方法において、
前記半導体基板上に、前記電極パッドと該電極パッドを露出させるパッシベーション膜とを形成し、
前記電極パッド及びパッシベーション膜を含む前記半導体基板上に、弾性を有する感光性材料から成る絶縁性樹脂層を形成し、
前記絶縁性樹脂層上に所定パターンの金属配線を形成し、
マスク材を用いて前記絶縁性樹脂層の所定領域を覆った状態で露光してからエッチング処理して、前記電極パッドを露出する開口部を形成し、
前記金属配線と前記開口部内に露出する電極パッドとを接続し前記金属配線上に金属バンプを形成し、
前記絶縁性樹脂層は、弾性率が1GPa以下の非感光性材料を使用し、前記電極パッドの周辺のみに印刷法により形成された第1の絶縁性応力緩衝樹脂層と、前記第1の絶縁性応力緩衝樹脂層に積層され、弾性率が1GPa以上の感光性材料を使用した第2の絶縁性応力緩衝樹脂層とからなることを特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device including a semiconductor chip in which electrode pads formed on a semiconductor substrate are connected to corresponding electrodes of a mounting substrate via metal bumps,
On the semiconductor substrate, the electrode pad and a passivation film that exposes the electrode pad are formed,
Forming an insulating resin layer made of an elastic photosensitive material on the semiconductor substrate including the electrode pad and the passivation film;
Forming a predetermined pattern of metal wiring on the insulating resin layer;
Etching is performed after exposure in a state of covering a predetermined region of the insulating resin layer using a mask material to form an opening exposing the electrode pad,
Connecting the metal wiring and the electrode pad exposed in the opening to form a metal bump on the metal wiring;
The insulating resin layer uses a non-photosensitive material having an elastic modulus of 1 GPa or less, and a first insulating stress buffer resin layer formed by a printing method only around the electrode pad, and the first insulating resin layer. A method of manufacturing a semiconductor device, comprising: a second insulating stress buffering resin layer that is laminated on an insulating stress buffering resin layer and uses a photosensitive material having an elastic modulus of 1 GPa or more.
前記絶縁性樹脂層の形成工程では、フィルム化された樹脂層を前記電極パッド上及びパッシベーション膜上に貼付することを特徴とする、請求項1に記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein, in the forming step of the insulating resin layer, a filmed resin layer is pasted on the electrode pad and the passivation film. 前記弾性を有する感光性材料が、主成分としてのエポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、シアネートエステル系樹脂、フェノール系樹脂、フルオレン系樹脂、又はナフタレン系樹脂に対して、ビスアジド化合物、オルソジアゾナフトキノン化合物、又はアルカリ可溶性ポリイミドを所定の比率で含有することを特徴とする、請求項1又は2に記載の半導体装置の製造方法。  The photosensitive material having elasticity is an epoxy resin, silicone resin, polyimide resin, polyolefin resin, cyanate ester resin, phenol resin, fluorene resin, or naphthalene resin as a main component. The method for manufacturing a semiconductor device according to claim 1, comprising a bisazide compound, an orthodiazonaphthoquinone compound, or an alkali-soluble polyimide in a predetermined ratio. 半導体基板上に形成された電極パッドが実装基板の対応する各電極に金属バンプを介して接続される半導体チップを備えた半導体装置において、
前記半導体基板を覆い前記電極パッドを露出する開口部を備えた弾性を有する感光性材料から成る絶縁性樹脂層と、該絶縁性樹脂層上に形成された所定パターンの金属配線と、該金属配線上に形成された金属バンプとを備え、
対応する電極パッドと金属配線とが相互に接続された状態で前記開口部が絶縁性樹脂で封止され、
前記絶縁性樹脂層は、弾性率が1GPa以下の非感光性材料を使用し、前記電極パッドの周辺のみに印刷法により形成された第1の絶縁性応力緩衝樹脂層と、前記第1の絶縁性応力緩衝樹脂層に積層され、弾性率が1GPa以上の感光性材料を使用した第2の絶縁性応力緩衝樹脂層とからなることを特徴とする半導体装置。
In a semiconductor device including a semiconductor chip in which electrode pads formed on a semiconductor substrate are connected to corresponding electrodes of a mounting substrate via metal bumps,
An insulating resin layer made of an elastic photosensitive material having an opening that covers the semiconductor substrate and exposes the electrode pad, a metal wiring having a predetermined pattern formed on the insulating resin layer, and the metal wiring With metal bumps formed on the top,
The opening is sealed with an insulating resin in a state where the corresponding electrode pad and the metal wiring are connected to each other,
The insulating resin layer uses a non-photosensitive material having an elastic modulus of 1 GPa or less, and a first insulating stress buffer resin layer formed by a printing method only around the electrode pad, and the first insulating resin layer. A semiconductor device comprising: a second insulating stress buffering resin layer that is laminated on the stress buffering resin layer and uses a photosensitive material having an elastic modulus of 1 GPa or more.
JP2000381834A 2000-12-15 2000-12-15 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4471488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381834A JP4471488B2 (en) 2000-12-15 2000-12-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381834A JP4471488B2 (en) 2000-12-15 2000-12-15 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002184903A JP2002184903A (en) 2002-06-28
JP4471488B2 true JP4471488B2 (en) 2010-06-02

Family

ID=18849761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381834A Expired - Fee Related JP4471488B2 (en) 2000-12-15 2000-12-15 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4471488B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4088120B2 (en) * 2002-08-12 2008-05-21 株式会社ルネサステクノロジ Semiconductor device

Also Published As

Publication number Publication date
JP2002184903A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
JP4131595B2 (en) Manufacturing method of semiconductor device
JP3450238B2 (en) Semiconductor device and manufacturing method thereof
US8410614B2 (en) Semiconductor device having a semiconductor element buried in an insulating layer and method of manufacturing the same
US6597070B2 (en) Semiconductor device and method of manufacturing the same
US7633169B2 (en) Chip package structure
WO2007063954A1 (en) Circuit device and method for manufacturing circuit device
JP2001144204A (en) Semiconductor device and manufacture thereof
JPH0837190A (en) Semiconductor device
JP2009252859A (en) Semiconductor device and method of manufacturing the same
JP4206885B2 (en) Manufacturing method of semiconductor device
JP2005175263A (en) Semiconductor device, manufacturing method therefor, and electronic equipment
US20130052796A1 (en) Method for manufacturing a circuit device
US20010031515A1 (en) Semiconductor device and method of manufacturing the same, circuit board and electronic instrument
US8143099B2 (en) Method of manufacturing semiconductor package by etching a metal layer to form a rearrangement wiring layer
JPH08340002A (en) Manufacture of semiconductor device
US8062927B2 (en) Wiring board and method of manufacturing the same, and electronic component device using the wiring board and method of manufacturing the same
JPH11204560A (en) Semiconductor device and manufacture thereof
JP2002313985A (en) Method of manufacturing chip size package
JP4471488B2 (en) Semiconductor device and manufacturing method thereof
JP2002076166A (en) Resin sealing type semiconductor device and its manufacturing method
JP2001168242A (en) Semiconductor device and manufacturing method thereof
JP2002324873A (en) Semiconductor device and its manufacturing method
JP3115807B2 (en) Semiconductor device
JP3148202B2 (en) Semiconductor package and manufacturing method thereof
JP3339478B2 (en) Flip chip type semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees