JP4465112B2 - Lcdパネルにおける画像表示に適したdwtに基づくアップサンプリング・アルゴリズム - Google Patents

Lcdパネルにおける画像表示に適したdwtに基づくアップサンプリング・アルゴリズム Download PDF

Info

Publication number
JP4465112B2
JP4465112B2 JP2000564156A JP2000564156A JP4465112B2 JP 4465112 B2 JP4465112 B2 JP 4465112B2 JP 2000564156 A JP2000564156 A JP 2000564156A JP 2000564156 A JP2000564156 A JP 2000564156A JP 4465112 B2 JP4465112 B2 JP 4465112B2
Authority
JP
Japan
Prior art keywords
image
subband
dwt
data
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000564156A
Other languages
English (en)
Other versions
JP2002522831A (ja
JP2002522831A5 (ja
Inventor
アチャーリャ,ティンク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of JP2002522831A publication Critical patent/JP2002522831A/ja
Publication of JP2002522831A5 publication Critical patent/JP2002522831A5/ja
Application granted granted Critical
Publication of JP4465112B2 publication Critical patent/JP4465112B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4084Transform-based scaling, e.g. FFT domain scaling

Description

【0001】
(発明の背景)
(1.発明の分野)
本発明は、一般的に、イメージ処理およびコンピュータ・グラフィックに関する。より詳細には、本発明は画像のアップサンプリングすなわち拡大に関する。
【0002】
(2.関連技術の説明)
撮像技術では、画像のサイズを変更することが望ましいことがある。具体的には、所期の使用法または適用例について画像が小さすぎる場合、その画像を拡大(アップサンプリング)することが望ましいことがある。例えば、デジタルカメラは、Mピクセルの行×Nピクセルの列に小さいサイズの画像を取り込むことができる。画像を印刷する予定ならば、その画像をRピクセルの行×Sピクセルの列(R>Mおよび/またはS>N)に拡大し、画像が印刷域をカバーするようにすることが望ましい場合がある。デジタルカメラによっては、LCD(液晶ディスプレイ)などの表示パネルが用意され、その結果、ユーザは既に撮影した写真やこれから撮影しようしている写真の内容(すなわち、カメラの焦点域にあるもの)を即座に吟味することができる。LCDパネルは、すべての陰極線管(CRT)モニタ装置と同様、サポートできる最大の解像度を有するが、CRTと異なり、その解像度はサポートするビデオ・サブ・システム(すなわち、グラフィックス・カード)によって修正することはできない。例えば、CRT装置では、640ピクセル×480ピクセルの最大解像度は、表示品質にほとんど損失なく低解像度を提供することができることを示している。しかし、LCDパネルは、みることができるピクセルの数が非常に離散的に固定されているので、解像度を変更しようとすると、通常、非常に不鮮明な画像となる。
【0003】
画像が拡大またはアップサンプリングを必要とするときは、画像サイズが拡大すると、LCDパネルにおけるぼやけやブロック化による劣化が深刻になる。例えば、100×100ピクセルのサイズの画像を想定する。画像を表示するLCDパネルの表示画面サイズが使用可能な固定ピクセルで200×200である場合、使用可能な表示画面の4分の1だけしか利用できないことになる。画像を表示するために表示画面全体を利用することが所望であれば、画像を2:1の比率で拡大する必要がある。
【0004】
アップサンプリングの単純で従来型の一方法は、単にピクセルを必要なだけ「複製」することである。この場合、2:1のアップサンプリングが所望であるので、各ピクセルは3回反復され、その結果、1つのピクセルを占有していた情報が、今度は2×2ブロックの4ピクセルを占有することになる。この「充填(fill)」の手法は、計算やイメージ処理が必要ないので、他のいかなるアップサンプリングの方法よりも速度において明らかに有利である。しかし、この手法は、結果として拡大された画像が必ずぼやけてしまい、鮮明さにおいて劣り、個々のピクセルのスクエアが肉眼で容易にみることができ「濃淡にむらがある」。重要なのは、拡大された結果が、同様により濃淡にむらがあり、鮮明さにおいて劣るエッジの形状を有することである。エッジの形状はあらゆる画像に対する人間の知覚にとって重要である。
【0005】
拡大した画像の品質を向上させる従来の一方法は、バイリニア補間法(bi−linear interpolation)を使用することである。2対1のアップサンプリングが所望であれば、オリジナル画像の各ピクセルは、4ピクセルのブロックに置き換えるべきである。例えば、ここで次のオリジナル画像を想定する。
【数1】
Figure 0004465112
【0006】
バイリニア補間法は、拡大された画像データ・セットを決定するために2つの異なる方向を平均化する。補間法で拡大された画像は、次のもので構成されることになるであろう。
【数2】
Figure 0004465112
【0007】
オリジナル画像のサイズがM×Nであれば、拡大された画像は各データ・セットの合計ピクセル数でM・N・4のサイズとなる。この方法や他の平均化の方法は、充填よりも優れた結果をもたらすことがあるが、依然として細部はぼやけており、画像の輪郭が滑らかにならない粗いエッジである。
【0008】
一般的なアップサンプリング技法は不適切で、画像品質が不十分になる。したがって、画像品質をよりよく保存するアップサンプリング技法が必要となる。さらに、複雑さの点において計算が低コストで済むことはデジタルカメラなどの装置では重要なことなので、アップサンプリング技法は、そのような応用例に利用できるように計算効率もよくあるべきである。
【0009】
(発明の概要)
開示されている方法は、画像からDWT(Discrete Wavelet Transform:離散ウェーブレット変換)を実行することなく仮想DWTサブバンドを構築し、次いで逆DWTを仮想サブバンドに適用する。この逆DWTの結果が画像のアップサンプリング・バージョンを表している。あるいは、開示されている装置は、画像データを通信するように構成されたインタフェースとアップサンプリング・ユニットとを備え、そのアップサンプリング・ユニットは画像データを受信するためにインタフェースに結合されおり、画像データから仮想サブバンド入力データを構成するように構成されており、さらに、アップサンプリングされた画像を生成する入力データに逆DWTを実行するように構成されている。別の実施態様では、開示の装置は、実行されると、DWTを実行せずに画像から仮想DWT(離散ウェーブレット変換)サブバンドを構成し、逆DWTを仮想サブバンドに適用する命令を有するコンピュータ可読媒体を備え、その逆DWTの結果が画像のアップサンプリング・バージョンを表す。
【0010】
本発明の方法および装置の目的、特徴、利点は、以下の記述から明らかになろう。
【0011】
(発明の詳細な説明)
図を参照しながら、本発明の例示的な実施形態を次に記述する。例示的な実施形態は、本発明の特徴を例示するために提示されたもので、本発明の範囲を限定するように構成されるべきではない。この例示的な実施形態は、主としてブロック図または流れ図を参照しながら記述されている。流れ図に関しては、流れ図の各ブロックは、方法のステップおよび、その方法のステップを実行するための装置の部品の両方を表している。その実施形態に応じて、対応する装置の部品は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせで構成することができる。
【0012】
本発明の一実施形態による画像のアップサンプリングは、その画像に属する「仮想サブバンド」の値を近似した後で、逆DWT(離散ウェーブレット変換)を画像に適用することにより達成される。図1は、画像の順方向のDWT操作の結果得られたサブバンドを示す。DWTは、信号を分析するために使用できる1つまたは複数の「基礎」関数を利用するウェーブレット論理に基づく「離散的」アルゴリズムであり、正弦曲線を基礎とした関数に基づくDCT(離散コサイン変換)に類似している。ウェーブレットは元来周期的でしばしばギザギサしているので、DWTは、画像のエッジの形状を表すことにより適している。DWTは、連続した完全なウェーブレットの離散的サンプルによって入力信号を近似する。したがって、DWTは、その離散的サンプル・ポイントを使用して、明確な係数を使用した充填操作のようにもみることができる。フーリエ変換や平均フィルタと異なり、ウェーブレット係数は、特に応用例、つまり入力信号のタイプに適するように選択することができる。画像拡大のための本発明の少なくとも1つの実施形態で選択されたDWTは、9−7双直交スプライン・フィルタDWTとして知られている。DWTが離散的であるので、DWTは超大規模集積回路(VLSI)などのデジタル論理を使用して実施することができ、したがって、他のデジタル構成要素と共にチップ上に統合することができる。撮像装置やカメラが既に画像圧縮にDWTを利用している場合、諸経費や費用をほとんど追加することなく、逆DWTを同じ装置で容易に実施することができる。DWTは、画像のエッジの形状の優れた近似を行う能力があるので、アップサンプリングの応用例を処理することができる。DWTは、視覚的に重要な画像形状が拡大された画像内でよりよく再構成できることにおいて、補間法によるタイプの拡大よりも有利である。さらに、下記で示され、記述されるように、単一の出力データを生成するために複数の周期または反復を要するフーリエつまり平均化技法と異なり、DWTに基づくアップサンプリングのためのアーキテクチャは、高いデータ・スループットに対して効率的に実施することができる。
【0013】
通常、2次元DWTとして知られているものの本質は、入力信号を4つの周波数(周波数とは、フィルタの高域(H)または低域(L)の性質のことである)サブバンドに分解することである。この2次元DWTは、4つのサブバンドLL、LH、HL、HHを作成するが、その4つのデータ値は入力データの各4分の1に充てられる。DWTは、マルチ解像度技法であり、DWTを1回反復した結果のデータは、もう1度DWTの反復を受けることができる。解像度の各「レベル」は、直前レベルのDWTによって生成された「LL」サブバンドにDWTを適用することによって得られる。これが可能なのは、LLサブバンドが、ほとんどすべての重要な画像形状を含み、直前のレベルLLサブバンド(または1つのレベルDWTのオリジナル・フル画像)の4分の1大のバージョンと想定することができるからである。DWTのこの機能により、各サブバンドをさらに小さく、より小さなサブバンドを所望の通りに分割することができる。
【0014】
各DWT解像度レベルkは、4つのサブバンド、LLk、HLk、LHk、HHkを有する。DWT解像度の第1レベルは、オリジナル画像全体でDWTを実行することによって得られ、次のDWT解像度は、直前のレベルk−1によって生成されたLLサブバンドでDWTを実行することによって得られる。このLLkサブバンドは、画像の拡大されたバージョンを実質的に再構築するために十分な画像情報を含む。LHkサブバンド、HLkサブバンド、HHkサブバンドは、LLkサブバンドに分散され、表示される情報よりも視覚的に重要でない高周波数のノイズ情報およびエッジ情報を含む。
【0015】
一般に、レベルKのサブバンドは次の特性を有する。(K=1とすると、LL0はオリジナル画像である)
LLk−LLk-1サブバンドの4分の1大のバージョンを含む。
LHk−LLk-1サブバンド画像からのノイズ情報および水平方向のエッジの情報を含む。
HLk−LLk-1サブバンド画像からのノイズ情報および垂直方向のエッジの情報を含む。
HHk−LLk-1サブバンド画像からのノイズ情報および対角線方向のエッジの情報を含む。
【0016】
ほとんどの情報をLLkサブバンドに保存することを可能にするDWTのこの特性は画像をアップサンプリングする際に利用することができる。DWTはマルチ解像度の階層的分解のための単一変形技法であるが、これは逆DWTを実行することによってDWTによって分解された入力信号をほとんど損失なく回復させるものである。前記「順方向」DWTを表す係数は、逆DWTの係数と対称的な関係を有する。本発明の実施形態では、アップサンプリングされるべきオリジナル入力画像を仮想LLサブバンドと想定し、他のサブバンドのための値を近似し、次いで逆DWTを適用することによってアップサンプリングが実行される。これは、どのレベルにせよ生成された4つのサブバンドに適用される場合は、逆DWTは、それが分解された元より高いレベルのLLサブバンドの回復をもたらすか、レベル1サブバンドの場合は、オリジナル画像の回復をもたらすという前提に基づいている。アップサンプリングを達成するために逆DWTを遂行するこの係数およびアーキテクチャの本質は、下記で議論される。
【0017】
図2は、本発明の一実施形態によるDWTに基づいたアップサンプリングの流れ図である。
【0018】
DWTに基づいたアップサンプリングにおいて、第1ステップは、入力画像をLLサブバンドと想定する(ステップ200)。画像がM行×N列のピクセルを有する場合、そのM・N値は、仮想LLサブバンドLLvと想定される。次いで、それぞれM・N値を有する大きさに設定する必要のある各仮想サブバンドLHv、HLv、HHvが近似され、または構成されなければならない(ステップ210)。このサブバンドのデータ値を構成するための一方法は、水平方向のエッジ、垂直方向のエッジ、対角線方向のエッジのための入力画像を分析/検出し(どの方向のエッジが各サブバンドHL、LH、HHに適するかは、上記を参照されたい)、かつエッジが生ずる場合に非ゼロ値を与えて他のすべての値をゼロに近似することである。本発明の一実施形態では、分析や検出を実行する代わりに、仮想サブバンドLHv、HLv、HHvのすべての値がゼロに近似される。9−7双直交スプラインDWTを想定すると、オリジナル画像やより高いレベルのLLサブバンドが逆DWTによって回復されるときに他のすべてのサブバンドのデータ値をゼロと近似することによって、順方向のDWT操作を実行する直前のオリジナルの状態に(人間の視覚で)ほぼ等しい、回復された画像またはより高いレベルのサブバンドをもたらす。したがって、すべてのサブバンド、LLv、LHv、HLv、HHvが構成されると、拡大した画像を生成するために逆2次元DWTを実行することができる(ステップ220)。充填、平均化、または補間法に基づくアップサンプリング技法によって可能になる画像よりも、その拡大された画像は、より優れた視覚的な明瞭性を提示する。その結果、このアップサンプリングは、M・2行×N・2列のピクセルの結果値を有し、これらは共にアップサンプリングされた画像を構成する。
【0019】
図3は、本発明の一実施形態によるDWTに基づくアップサンプリングを示す。
【0020】
データ・セット内のピクセルがM行×N列のオリジナル画像Iは、図2に概略した手順に従って、2倍にアップサンプリングすることができる。この画像は、M・NピクセルIi.jで構成されている。ここで、iは1からMまでのピクセルの行番号を表し、jは1からNまでのピクセルの列番号を表している。したがって、オリジナル画像は、その第1の行にピクセルI1.1、I1.2等を有し、第2の行にピクセルI2.1、I2.2等を有し、以下同様である。本発明の一実施形態による全体の画像データ・セットIは、仮想サブバンドLLvを含む。構成される必要のある他の仮想サブバンドのためのデータが使用不可能なので(実DWT操作が実行されないので)、このデータは、近似されるか、構成されなければならない。本発明の一実施形態に従って、他の仮想サブバンドのデータ値は、すべてゼロに近似される。4つすべてのサブバンドに対して組み合わされたデータ・セットは、2次元逆DWT操作を受けることができるM・2行およびN・2列のピクセル値を有する。アップサンプリングされた画像Uは、オリジナル画像Iと比較したときに画像の品質および明瞭性の認識に関して実質的に等しいM・2行およびN・2列のピクセルを有する。アップサンプリングされた画像Uは、仮想サブバンドに適用されている2次元逆DWTに由来するピクセル値Ur.sを有するように示されている。ここで、rは1からM・2までの範囲のピクセルの行番号を示し、sは1からN・2までの範囲のピクセルの列番号を示す。すべてのUr.sのような値のデータ・セットは、入力画像Iの2対1に拡大されたバージョンを表す。
【0021】
図4(a)は、DWT操作を計算するための基本的な処理セルを示す。基本的な処理セルDk400を示す図4(a)は、1次元の逆DWTを計算する図4(b)のアーキテクチャの理解を助けるように記述されている。図4(a)を参照する。フィルタ係数をc(高域または低域のどちらか)とすると、中間出力Lkは次の式によって決定される。すなわち、Lk=(pk+qk)・cである。Lkの式において、qkの項は逆DWTの対象である入力仮想サブバンドのデータを表し、一方、pk-1の項は直前のクロックサイクルからの結合された処理セルから伝えられた入力データを、pkは現行のクロックサイクルからの入力データをそれぞれに指す。入力pkは出力pk-1に、セルDkから配列の直前のセルDk-1に渡される。したがって、pkおよびpk-1の項は、以後「伝えられた入力」と称することにする。図4(a)の基本的な処理セル400は、図4(b)に示されるような逆DWTを計算するアーキテクチャを実行するように、反復的に構築し、選択的に結合することができる。この処理セルは、加算器と乗算器および逆DWTフィルタ係数を保持するレジスタを結合することによってハードウェア内に組み込むことができる。
【0022】
図4(b)は、1次元逆DWTためのアーキテクチャである。
【0023】
順方向のDWTは、元来、1次元または2次元である。1次元順方向DWT(行単位または列単位で実行されるDWT)は、結果的に2つのサブバンド、すなわちLFS(低周波サブバンド)またはHFS(高周波サブバンド)になる。1次元順方向DWTが行方向である場合、画像に適用されるとき、M行×N/2列の大きさにされた2つの縦方向のサブバンドが作成される。行単位の順方向DWTによるLFSサブバンドは、オリジナル画像の細長いバージョンである。1次元順方向DWTが列方向である場合、画像に適用されるときM行×N/2列に設定された2つの縦方向のサブバンドが作成される。列単位の順方向DWTによるLFSサブバンドはオリジナル画像の幅広いバージョンである。この2つの1次元順方向DWT処理が結合されると、2次元順方向DWTに統合される。同様に、逆DWTを実行すると、行方向の逆DWTおよび列方向の逆DWTは2次元逆DWTを作成するために結合することができるが、これは、画像を比例して(軸のない歪み)拡大する際に望ましい。したがって、図5に示すように、行方向の逆DWTによる結果を、結果データの行方向への他の1次元逆DWT操作が実際には列方向になるように、転置することができる。行方向の1次元逆DWTと列方向の1次元逆DWTを組み合わせると、仮想LLサブバンド(オリジナル画像)の2対1の拡大バージョンを生じる。したがって、図4(b)に示すように、2次元逆DWTは、1次元逆DWTモジュールを反復または再利用することによって構築することができる。
【0024】
アップサンプリングされた画像データUr,sを得るために、1次元逆DWTモジュールを実質的に構築されたサブバンド・データに適用することによって、本発明の一実施形態による中間データ・セットU’iがまず生成される。この中間データ・セットU’iは、次の式によって表される。
【数3】
Figure 0004465112
ここで、anは構築された(仮想)LFSデータであり、cnは構築された(仮想)HFSデータである。LFSデータは、仮想サブバンドLLvおよびLHv内にデータを連結することによって構成することができ、HFSデータは、仮想サブバンドHLvおよびHHv内にデータを連結することによって構成することができる。逆および順方向の9−7双直交スプラインDWTは、図4(a)に示すような効率的でシストリックな(すなわち並列で反復的な)処理セルを利用できるようにする特定の対称的な特性を有する。逆DWTは、一組の逆高域フィルタ係数g(/)kおよび一組の逆低域フィルタ係数h(/)kを有する。(本明細書において(/)はそのすぐ前の記号に付くものである。)この係数の関係は、1996年12月17日出願、出願番号08/767,976の「ウェーブレット変換を使用した信号の分解および再構築のための統合されたシストリック・アーキテクチャ」と題する関連特許出願で議論されている。U’iの表現は、次の2つの加算の合計に分離することができる。
【数4】
Figure 0004465112
【0025】
そのフィルタ係数を使用したU’i (1)およびU’i (2)、すなわちj=0、1、...,n/2−1とすると、U’2j (1)およびU’2j (2)となる偶数項は、次のように拡大される。
【数5】
Figure 0004465112
【0026】
順方向の9−7双直交スプラインDWTフィルタ係数に類似した逆の9−7双直交スプラインDWTフィルタ係数は、結合グループ化を可能にする特定の対称的な特性を有する。逆の高域係数の1つの特性は、hkを順方向のDWT係数とした場合のg(/)n=(−1)n1-nである。さらに、順方向の係数がhn=h-nの特性を有するので、逆高域係数も、g(/)n=(−1)nn-1のような特性を有する。したがって、n=0の場合、g(/)0=h-1である。n=2の場合は、g(/)2=h1およびh-1=g(/)0なので、g(/)2=g(/)0である。同様に、n=4の場合は、g(/)4=h3=g(/)−2である。逆低域係数は、h(/)2=h(/)−2などのh(/)n=h(/)−nの特性を有する。したがって、偶数出力U’2jは、4つの係数h(/)0、h(/)2、g(/)2、g(/)4のみを使用して計算することができる。同様に、奇数出力U’2j-1の場合は、5つの係数h(/)3、h(/)1、g(/)5、g(/)3、g(/)1のみを使用することができる前記で議論した同じフィルタ特性によって示すことができる。
【0027】
前記で記述された関係は、逆DWTが計算される方法を示している。図4(b)の逆DWTを計算するためのアーキテクチャは、2つの入力シーケンスaiおよびciで構成されているが、これらはそれぞれ高周波サブバンド入力と低周波サブバンド入力とを表している。逆アーキテクチャは、2つの入力を受信し、1つの出力を生成する。このアーキテクチャは、奇数出力、すなわちU'1、U'3、U'5...が5つの処理セルを、すなわち1つのセルに各係数が対応するように必要とするが、偶数出力、すなわちU'0、U'2、U'4は4つの処理セルのみを必要とする。奇数出力は奇数のクロックサイクルで生成してよく、偶数出力は偶数のクロックサイクルで、それぞれ交互に生成してよい。
【0028】
したがって、逆DWTアーキテクチャは、2つの別個のブロック、すなわち偶数出力生成ブロック402および奇数出力生成ブロック452で構成されなければならない。偶数出力生成ブロック300は、さらに2つのサブ回路、すなわち偶数高周波サブバンドのサブ回路(HFS)410と偶数低周波サブバンドのサブ回路(LFS)420で構成される。偶数HFSサブ回路410は、それぞれが乗算器および加算器で構成される2つの処理セル415および417で構成されている。処理セル415、417、425、427は、図4(a)に示す基本的な処理セル400に類似しており、2つの入力を受け入れ、それらを合計し、次いでその合計に係数を掛ける。例えば、処理セル415は、aiが処理セル417から伝えられた入力にまず加算され、その合計にh(/)2を掛けるような項を出力する。同様に、低周波サブバンド回路420については、処理セル425が項を加算器/制御装置430に出力するが、それはg(/)4と入力ciと処理セル427から伝えられた入力との積である。その値が直前のクロックにあり、それを次のクロック・サイクルに伝送する場合は、遅延ユニット412がその値を保持してから、処理セル417は、ある入力を0として、別の入力をai-1として受信する。
【0029】
偶数出力生成ブロックは次のように動作する。i=0の場合、a0は遅延412に伝えられ、c0は遅延422に伝えられる。a0およびc0は、それぞれセル415および425への入力でもあるが、加算器/制御装置430は、第3のクロック・サイクルがx0を出力して始めて伝えられた非ゼロ入力を有する。i=0の場合、遅延412、424、422によって解放された初期値がゼロに設定されてから、セル417および427は出力0を有する。i=1の場合、遅延412はa0をセル417のpi入力に解放し、a1は遅延412に保持され、セル415に入力される。その結果、セル415は項h(/)21を生成し、セル417は項h(/)00を生成する。この出力は、加算器/制御装置430に送信されるが、次のクロックがi=2になるまで保持(ラッチ)される。i=1の場合、セル425および427は、項c1g(/)4およびc0g(/)2をそれぞれ生成するが、これらの項は、前記で定義された関係に従い、第1の出力U'0がc2入力データを利用するので、加算器/制御装置430によって無視(消去)される。
【0030】
i=2の場合、第3のクロック・サイクルである遅延424は、c0をセル427のpi(伝えられた)入力に解放し、遅延422は、c1をセル427の入力qiに解放する(qiおよびpiの記述については、図4(a)および関連テキストを参照)。したがって、セル427は項(c1+c0)g(/)2を生成する。セル425はc2g(/)4を生成する。前記の通り、セル415および417の直前のクロックからの出力は、加算器/制御装置430に保持され、次に、i=2でセル425および427で生成された項を使用して合計される。さらに、i−2の場合、セル415および417が項(a0+a2)h(/)2およびa1h(/)0をそれぞれに生成するが、これらの項は1つのクロック・サイクルに保持される。代わりに、c2g(/)4および(c0+c1)・g(/)2であるセル425および427のi=2の出力は、h(/)0a0およびh(/)2a1であるセル415および417のi=1の出力と合計される。したがって、加算器/制御装置430は、次の第1出力を生成する。
【数6】
Figure 0004465112
【0031】
したがって、各クロック・サイクルiについて、i=2(第3クロック・サイクル)の後、加算器/制御装置430は、サブ回路420の現況出力を受信し、それらをサブ回路410の直前クロックの出力に加算する。さらに、加算器/制御装置430は、サブ回路410の現況出力を受信し、それを次のクロック・サイクルまで保持する。
【0032】
図4(c)は、5つの処理セル、465、467、475、477、479を必要とする奇数出力生成ブロック450を示す。処理セル465、467、475、477、479は、図4(a)に示す処理セル400と同様に動作する。遅延ユニット462、464、472、474は、1つのクロック・サイクルに対するその入力を保持し、それらを次のクロック・サイクルに解放する。各セルは加算器および乗算器を有し、そのセルが接続されているセルから伝えられた入力を受信する。
【0033】
奇数出力生成ブロック450は、次のように動作する。i=0の場合、セル475がc0を受信している間に、a0はセル465に伝えられ、遅延462のクロック・サイクルに保持される。i−1の場合、遅延472がc0を477に解放している間に、遅延462はa0をセル467に解放する。さらに、i=1の場合、a1およびc1は、それぞれセル465および475への入力である。i=2の場合、セル465はa2を受信し、セル467はqiとしてa1を、pi入力としてa0を受信する。したがって、セル465は項a2h(/)3を生成し、セル467は(a1+a0)h(/)1を生成する。これらの出力は加算器/制御装置480に送信されるが、1つのクロック・サイクルのために保持された後、セル475、477、479の出力と合計される。i=2の場合、セル475、477、479の出力は加算器/制御装置480によって無視される。
【0034】
i=3の場合、c3はセル475への入力であり、セル477は遅延472からc2を受信し、セル479は伝えられた入力としてciを受信し、セル477はその伝えられた入力としてc0を受信する。したがって、セル475は項c3g(/)5を生成し、セル477は項(c0+c2)・g3を生成し、セル479はc11を生成する。これらの出力は加算器/制御装置480によって受信され、そこでセル475、477、479のi=3出力を、直前のクロック・サイクルからラッチされたセル465および467のi=2出力と加算する。したがって、加算器/制御装置480は、第2出力(第1奇数出力)x1=h(/)1o+h(/)11+h(/)32+g(/)30+g(/)32+g(/)53+g(/)11を生成する。
【0035】
したがって、各クロック・サイクルiについては、i=3の後、(第4クロック・サイクル)、加算器/制御装置480は、セル475、477、479の現況出力を受信し、それらをセル465および467の直前のクロック・サイクルの出力に加算する。さらに、加算器/制御装置480は、セル465および467の現況クロックの出力を受信し、それらを次のクロック・サイクルまで保持する。このようにして得られた一組の結果データU'iを使用して、それらの値は1次元DWTをもう1度反復するための入力として転置され、戻される。LFSおよびHFSからの入力データが図4(b)のアーキテクチャに行方向の方法で戻されるので、中間出力U'0は、拡大された画像空間の行1および列1に位置付けられたデータ結果に対応し、U'1は、行1および列2に位置付けられたデータ結果に対応する。拡大された画像空間第1行の最終エントリは、U'N 2が、拡大された画像空間のM・2行、N・2列の第1列第2行に位置付けられると、U'N 2-1となる。
【0036】
iが0からM・2・n・2−1の範囲であるとき、一旦すべての中間データU'iが生成されると、それらの値は、行方向のデータが今度は列方向のデータになるように、マトリックス転置回路によって転置することができるが、これは当業者なら容易に実施できるものである。この転置されたデータ・セットTU'iは、1次元逆DWTをもう1度反復するための入力データとみなされ、図4(b)と同一または類似のアーキテクチャを有するモジュールに戻される。1次元DWTをデータ・セットTU'iに適用した結果はUi(または行−列表示ではUr s)、すなわち拡大した画像データである。この処理は、図5に要約されている。
【0037】
図5は、本発明の一実施形態の流れ図である。
【0038】
DWT(離散ウェーブレット変換)に基づいた画像のアップサンプリングのための方法論は、逆DWTをステップごとに適用することを必要とする。一旦4つの仮想サブバンドが構築されると、1次元逆DWT(ブロック505)のために、2次元逆DWTを実施する際の第1ステップは、LLvサブバンドおよびHLvサブバンドをLFSデータとみ、LHvサブバンドおよびHHvサブバンドをHFSデータとみる。1次元の逆DWTがLFSデータおよびHFSデータの行方向に適用される(ブロック510)。この逆DWTの最初の反復によって生じたM・N・4出力(図4(b)ないし4(c)のU'iとラベルされた例)は、メモリまたは他の記憶手段でもよいイメージ・アレイに格納することができる。次に、行方向のDWTの出力が転置され、その結果、中間出力データU'iで列は行に、行は列になる(ブロック520)。この転置は、中間出力結果U'iを格納するのと同時に実行することができる。次に、この転置されたデータは、ブロック510の1次元逆DWTを受けるが、データが転置されているので列方向に動作する。転置されたデータの行方向のDWTは、基本的に列方向である。ブロック530の結果生じるデータ・セットUiは、オリジナル画像の2:1の拡大バージョンのピクセル値である。このデータ・セットUiは、拡大画像として格納され、または表示されることができる(ブロック540)。場合によっては、逆DWT操作で発生する可能性のあるより大きなデータ値を変換するために正規化が必要になることがある。データ結果Uiの正規化は、次の公式によって達成することができる。(Ui−min)/(max−min)・K、ここで、minは最小結果値であり、maxは最大結果値、Kは所望の最大正規化値である。例えば、8ビット値が所望であれば、Kを255に設定してよい。
【0039】
図6は、本発明の一実施形態によるイメージ処理装置のブロック図である。
【0040】
図6は、DWTに基づくアップサンプリング・ユニットを含めた本発明の少なくとも一実施形態に組み込む撮像デバイスの内部画像処理構成要素のブロック図である。図6の例示的回路では、センサ600が、いくつかのシーン/環境から色/輝度を評価するピクセル構成要素を生成する。センサ600によって生成されるn−ビットのピクセル値は、取込みインタフェース610に送信される。本発明に関する状況におけるセンサ600は、通常、ある領域または場所の1つの「センス」からR、G、Bの構成要素のどれか1つを感知する。したがって、各ピクセルの輝度値は3つの(G1およびG2が個別に考慮される場合は4つの)カラー・プレーンの1つだけに関連付けられ、バイエル・パタンの未加工の画像と共に形成することができる。取込みインタフェース610は、センサによって生成された画像を分解し、個別のピクセルに輝度値を割り当てる。画像全体に対するすべてのこのようなピクセルのセットは、デジタルカメラ・センサの業界における通常の実施形態にしたがってバイエル・パタンである。
【0041】
いかなるセンサ・デバイスにおいても、通常、センサ・プレーンにおけるいくつかのピクセル・セルは、シーン/環境における照明条件に適切に応答しないことがある。その結果、それらのセルから生成されたピクセル値は不完全なことがある。このピクセルを「デッド・ピクセル」と呼ぶ。「ピクセル置換」ユニット615は、各デッド・ピクセルをその行の直前にある有効ピクセルと置き換える。RAM616は、センサによって供給されるデッド・ピクセルの行および列のインデックスで構成される。RAM616によって、取り込んだイメージに関するデッド・ピクセルの位置の識別が容易になる。
【0042】
1次コンプレッサ628は、圧縮されたセンサの画像データを受信し、DWTに基づく圧縮、JPEG(Joint Photographic Experts Group)、差動パルス符号変調のような画像圧縮を実行する。RAM629は、順方向と逆の両方のDWT係数を格納するために使用できる。1次コンプレッサ628は、復号化/格納ユニット630へのチャネル出力によって圧縮されたチャネルを提供するように設計することができる。復号化/格納ユニット630は、モディファイド・ハフマン符号(RAM631に格納されているテーブルを使用して)のような種々の2進コード化スキームを遂行するように装備することができ、またストレージ・アレイ640に圧縮された画像を直接格納してもよい。
【0043】
画像アップサンプリング・ユニット670は、圧縮され、また表示やその他の目的でセンサから向けられた画像をアップサンプリングするために、バス660を介してストレージ・アレイ640に連結することができる。画像アップサンプリング・ユニット670は、前記のようなDWTに基づくアップサンプリングを含めるように設計することができ、かつ図4(b)ないし図4(c)に示すアーキテクチャや転置回路のようなモジュールを組み込んでもよい。別法として、コンプレッサ・ユニット628がDWTに基づく画像圧縮用に設計されている場合、統合された順方向DWTおよび逆DWTのアーキテクチャは、コンプレッサ628に組み込んでもよく、その結果、アップサンプリング・ユニット670はそのアーキテクチャの逆モードを開始し、事実上構築されたサブバンドのデータをストレージ・アレイ640からコンプレッサ・ユニット628に送信する。撮像ユニットは、バス660に結合されたLCDパネルのような搭載された表示装置のサブ・システム680を備えてもよい。アップサンプリング・ユニット670の一応用例は、アップサンプリングされた画像データを表示装置のサブ・システム680に提供することである。アップサンプリング・ユニット670は、イメージ処理フローのどの段階からでもデータを受け取ることができ、それは所望ならばたとえ画像圧縮の前にセンサから直接データを受け取ることもできる。アップサンプリングされた画像は、圧縮された非常に画像の鮮明で明瞭なバージョンを表示すると有利である。
【0044】
各RAMテーブル616、629、631はバス660と直接通信することができ、したがってそのデータはロードすることができ、その後、所望ならば変更することができる。さらに、そのRAMテーブルや他のRAMテーブルは、必要に応じて中間結果データを格納するために使用してもよい。ストレージ・アレイ640にあるデータやアップサンプリング・ユニット670からのデータが、図6の撮像装置に外部転送する準備ができると、そのデータは転送するためにバス660に置かれる。バス660は、所望に応じてRAMテーブル616、629、631の更新も容易にする。
【0045】
図7は、本発明の一実施形態のシステム図である。PC(パーソナル・コンピュータ)のようないかなる汎用あるいは特殊目的の計算機またはデータ処理マシンであってよく、カメラ730に結合されているコンピュータ・システム710を図に示す。カメラ730は、デジタルカメラ、デジタル・ビデオ・カメラ、または他の画像取り込み装置や撮像システム、あるいはそれらの組み合わせであってよく、シーン740のセンサ画像を取り込むために利用される。取り込まれた画像はイメージ処理回路732によって処理され、したがって、その画像は画像記憶ユニット734に効率的に格納することができるが、このユニットはROM、RAM、または固定ディスクのような他の記憶装置であってよい。画像は、たとえアップサンプリングされていても、コンピュータ・システム710に向かう画像記憶ユニット734に含まれるが、従来のアップサンプリング技法による画像の特徴の損失が、DWTに基づくアップサンプリング処理でエッジの形状をよりよく保存することによって大幅に緩和されるという点で、この画像は品質が改善される。静止画像処理を実行できる大部分のデジタルカメラでは、画像はまず格納され、後でダウンロードされる。これにより、カメラ730は、さらに遅れることなく迅速に次の被写体/シーンを取り込むことができる。しかし、デジタル・ビデオ・カメラの場合、特に生のテレビ会議に使用されるものでは、画像は、迅速に取り込まれるだけでなく、迅速に処理され、カメラ730から転送されることも重要である。様々な実施形態における本発明は、特に拡大処理においては、優れた高速処理能力をイメージ処理回路732の他の部品に提供するのに適切であり、したがって、画像フレーム全体の転送速度は速くなる。画像アップサンプリングは、本発明のこの実施形態のイメージ処理回路732内で達成される。画像がアップサンプリングされた後、LCDパネルのようなカメラ730の表示システムに渡されるか、またはコンピュータ・システムの表示装置アダプタ76に渡されることがある。DWTに基づくアップサンプリングの手順は、カメラ730によって取り込まれるか他の場所で得られたいかなる画像にも適用することができる。逆DWTおよび順方向のDWTは、本質的にフィルタ操作であるので、当業者は、DWTに基づくアップサンプリングを実行するためにコンピュータ・システム710をプログラムすることができる。これは、Pentium(登録商標)プロセッサ(インテル社の製品)のようなプロセッサ712および必要に応じて命令、アドレス、結果データを格納/ロードするために使用されるRAMのようなメモリ711を使用して達成することができる。したがって、別法の実施形態では、アップサンプリングは、ハードウェアで直接達成するのではなく、コンピュータ・システム710で実行中のソフトウェア・アプリケーションで達成することができる。カメラ730からダウンロード後に拡大された画像ピクセルを生成するために使用されるアプリケーションは、C++のような言語で書かれたソース・コードからコンパイルされた実行可能なものによることができる。画像を拡大するのに必要な命令に対応するその実行可能なファイルの命令は、フロッピー・ドライブ、ハード・ドライブ、CD−ROMのようなディスク718、またはメモリ711に格納することができる。さらに、本発明の種々の実施形態は、ビデオ・ディスプレイ・アダプタやアップサンプリングや画像ズーミングを提供するグラフィック処理装置で実施することができる。
【0046】
コンピュータ・システム710は、プロセッサ712やメモリ711およびI/Oバス715に結合するブリッジ714との情報のやりとりを容易にするシステム・バス713を有する。I/Oバス715は、表示装置アダプタ716、ディスク718、I/Oポート717のような種々のI/Oデバイスを接続する。このI/Oデバイス、バス、ブリッジのこのような多くの組み合わせは本発明で利用することができるが、示したこの組み合わせは、このような可能な組み合わせの単なる例示にすぎない。
【0047】
シーン740の画像のような画像がカメラ730によって取り込まれると、その画像はイメージ処理回路732に送信される。イメージ処理回路732は、他の機能の中でもとりわけ取り込まれた画像または圧縮された画像の拡大を実行することのできるICおよび他の構成要素を含む。前記のような拡大操作は、カメラ730によって取り込まれたシーン740のオリジナル画像を格納するために画像メモリ・ユニットを利用することができる。さらに、この同じメモリ・ユニットは、アップサンプリングされた画像データを格納するために使用することができる。ユーザまたはアプリケーションが画像のダウンロードを所望/必要とする場合、画像メモリ・ユニットに格納された拡大された(および/または圧縮された)画像が画像メモリ・ユニット734からI/Oポート717に転送される。I/Oポート717は、拡大され、圧縮された画像データをメモリ711または任意でディスク718に一時的に格納するために、示したバス・ブリッジ階層(I/Oバス715からブリッジ714からシステム・バス713)を使用する。
【0048】
画像は、プロセッサ712をその処理に利用することのできる適切なアプリケーション・ソフトウェア(またはハードウェア)によってコンピュータ・システム712に表示される。次いで画像データが、表示装置アダプタ716を使用してレンダリング/拡大された画像750に視覚的にレンダリングすることができる。拡大された画像は、取り込まれた元のシーンの2倍のサイズに示される。これは、オリジナル・センサがシーンのサイズを取り込む場合の多くの画像応用において望ましい。テレビ会議の応用例において、圧縮され、拡大された形式の画像データは、ネットワークまたは通信システムを経由して別のノードまたはコンピュータ・システム710に追加してまたはこれを除いたコンピュータ・システムに通信することができ、その結果、テレビ会議を開会することができる。アップサンプリングおよび圧縮は、一実施形態においてはカメラのフレーム内で既に達成されているので、テレビ会議において画像データを直接他のノードに転送できるようにするカメラ730の通信ポートを実施することが可能である。コンピュータ・システム710のユーザがモニタ720上で所有するシーンを見ることも望む場合はいつでも、拡大された画像データは、コンピュータ・システム710に送信することも、またネットワークを経由して他のノードに転送することもできる。前記のように、拡大された画像は、DWT係数を厳密かつ注意深く選択することによる拡大処理強化の結果、拡大操作の典型例より視覚的に正確なエッジの形状を有する。最終結果は、一様で典型的なアップサンプリング方法と比較すると、モニタ720またはテレビ会議の他のノードに表示された、より高品質のレンダリングされ、アップサンプリングされた画像750である。
【0049】
本明細書に記載されている例示的な実施形態は、単に本発明の原理を例示するために提示されているものであって、本発明の範囲を限定するように構成されるべきものではない。むしろ、本発明の原理は、本明細書に記載された利点を達成し、同様に他の利点を達成し、または他の目的を満足するために、システムの広範な範囲に適用することができる。
【図面の簡単な説明】
【図1】 画像に対する順方向のDWT操作の結果得られたサブバンドを示す。
【図2】 本発明の一実施形態によるDWTに基づくアップサンプリングの流れ図である。
【図3】 本発明の一実施形態によるDWTに基づくアップサンプリングを示す。
【図4a】 DWT操作を計算するための基本的な処理セルを示す。
【図4b】 1次元逆DWTのアーキテクチャを示す。
【図4c】 5つの処理セルを必要とする奇数出力生成ブロックを示す。
【図5】 本発明の一実施形態の流れ図である。
【図6】 本発明の実施形態によるイメージ処理装置のブロック図である。
【図7】 本発明の一実施形態のシステム図である。

Claims (16)

  1. 仮想離散ウェーブレット変換(DWT)サブバンドを、DWTを実行することなく、近似によって画像から構築するステップであって、仮想LLサブバンドが、縮小なく、元画像のピクセルの幅方向および高さ方向の規模に近似されるステップと、
    前記仮想サブバンドに逆DWTを適用するステップであって、前記逆DWTの結果が、前記画像のアップサンプリングされたバージョンを表わし、前記画像の前記アップサンプリングされたバージョンが、拡大された、前記元画像のピクセルの幅方向および高さ方向の規模を持つステップと、を含んでなる方法であって、
    前記仮想DWTサブバンドが、前記LLサブバンド、HLサブバンド、LHサブバンド、HHサブバンドを含み、前記HLサブバンド、前記LHサブバンド、前記HHサブバンドが、ゼロ・ピクセル値によって近似される、前記方法。
  2. 画像データを伝達するためのインタフェースと、
    アップサンプリング・ユニットであって、
    前記アップサンプリング・ユニットが、前記インタフェースに結合されて、前記画像データを受け取り、
    前記アップサンプリング・ユニットが、近似によって、前記画像データから仮想サブバンド入力データを構築し、LLサブバンドが、縮小なく、元画像のピクセルの幅方向および高さ方向の規模に近似され、
    前記アップサンプリング・ユニットが、前記入力データに対して逆離散ウェーブレット変換(DWT)を実行して、前記入力データからアップサンプリングされた画像を生成し、前記アップサンプリングされた画像が、拡大された、前記元画像のピクセルの幅方向および高さ方向の規模を持ち、仮想サブバンドが、前記LLサブバンド、HLサブバンド、LHサブバンド、HHサブバンドを含み、前記HLサブバンド、前記LHサブバンド、前記HHサブバンドが、ゼロ・ピクセル値によって近似される、アップサンプリング・ユニットと、
    演算処理セルに結合されて、前記中間出力を受け取って、選択的に加算する加算器と、を備えてなる装置。
  3. 画像データを伝達するためのインタフェースと、
    アップサンプリング・ユニットであって、
    前記アップサンプリング・ユニットが、前記インタフェースに結合されて、前記画像データを受け取り、
    前記アップサンプリング・ユニットが、近似によって、前記画像データから仮想サブバンド入力データを構築し、LLサブバンドが、縮小なく、元画像のピクセル規模に近似され、
    前記アップサンプリング・ユニットが、前記入力データに対して逆離散ウェーブレット変換(DWT)を実行して、前記入力データからアップサンプリングされた画像を生成するように構成され、仮想サブバンドが、前記LLサブバンド、HLサブバンド、LHサブバンド、HHサブバンドを含み、前記HLサブバンド、前記LHサブバンド、前記HHサブバンドが、ゼロ・ピクセル値によって近似される、アップサンプリング・ユニットと、
    演算処理セルに結合されて、中間出力を受け取って、選択的に加算する加算器と、を備えてなる装置であって、前記アップサンプリング・ユニットが、
    第一のアップサンプリングされたデータ出力生成と、
    第二のアップサンプリングされたデータ出力生成と、を備えてなり、前記第一および第二の出力生成器が、それぞれの出力を交互に供給し、前記第一の生成および第二の生成の各々は、
    各演算処理セルが、前記入力データから中間逆DWT出力を生成することができる、複数の演算処理セルと、
    前記演算処理セルに結合されて、前記中間出力を受け取って、選択的に加算する加算器と、を備えてなり、前記各出力生成が、
    前記演算処理セルに選択的に結合される遅延素子であって、前記演算処理セルへの出力を選択的に遅延させる前記遅延素子を備えてなる装置。
  4. 前記LLサブバンドが、前記画像と同じ規模を有する請求項1に記載の方法。
  5. 実行された前記逆DWTが、2次元逆DWTである請求項1に記載の装置。
  6. 前記2次元逆DWTの実行が、
    前記仮想サブバンドに行方向に1次元逆DWTを適用することと、
    列が行に、また行が列になるように、前記第1DWTの結果生じる前記データを転置することと、
    前記転置されたデータに前記1次元逆DWTを再度適用することであって、前記転置されたデータに前記1次元逆DWTを適用した結果が拡大された画像データであることとを含む請求項5に記載の方法。
  7. 前記画像がアップサンプリングされたバージョンで2倍のサイズである請求項1に記載の方法。
  8. 前記LLサブバンドが、前記画像と同じピクセル規模を有する請求項2に記載の装置。
  9. 前記画像がアップサンプリングされたバージョンで2倍のサイズである請求項2に記載の方法。
  10. 実行された前記逆DWTが、2次元逆DWTである請求項2に記載の装置。
  11. 各前記処理セルが、逆DWT係数に前記入力データの選択されたデータの合計を掛けるように構成されている請求項3に記載の装置。
  12. 撮像システムに結合するように構成されている請求項3に記載の装置。
  13. 前記撮像システムがデジタルカメラである請求項12に記載の装置。
  14. 前記LLサブバンドが、前記画像と同じピクセル規模を有する請求項3に記載の装置。
  15. 前記画像がアップサンプリングされたバージョンで2倍のサイズである請求項3に記載の装置。
  16. 実行された前記逆DWTが、2次元逆DWTである請求項3に記載の装置。
JP2000564156A 1998-08-05 1999-07-27 Lcdパネルにおける画像表示に適したdwtに基づくアップサンプリング・アルゴリズム Expired - Fee Related JP4465112B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/129,728 US6236765B1 (en) 1998-08-05 1998-08-05 DWT-based up-sampling algorithm suitable for image display in an LCD panel
US09/129,728 1998-08-05
PCT/US1999/017042 WO2000008592A1 (en) 1998-08-05 1999-07-27 A dwt-based up-sampling algorithm suitable for image display in an lcd panel

Publications (3)

Publication Number Publication Date
JP2002522831A JP2002522831A (ja) 2002-07-23
JP2002522831A5 JP2002522831A5 (ja) 2006-09-14
JP4465112B2 true JP4465112B2 (ja) 2010-05-19

Family

ID=22441326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000564156A Expired - Fee Related JP4465112B2 (ja) 1998-08-05 1999-07-27 Lcdパネルにおける画像表示に適したdwtに基づくアップサンプリング・アルゴリズム

Country Status (7)

Country Link
US (1) US6236765B1 (ja)
JP (1) JP4465112B2 (ja)
KR (1) KR100380199B1 (ja)
AU (1) AU5236099A (ja)
GB (1) GB2362054B (ja)
TW (1) TW451160B (ja)
WO (1) WO2000008592A1 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748786A (en) * 1994-09-21 1998-05-05 Ricoh Company, Ltd. Apparatus for compression using reversible embedded wavelets
US6873734B1 (en) * 1994-09-21 2005-03-29 Ricoh Company Ltd Method and apparatus for compression using reversible wavelet transforms and an embedded codestream
US6549666B1 (en) * 1994-09-21 2003-04-15 Ricoh Company, Ltd Reversible embedded wavelet system implementation
US7095164B1 (en) 1999-05-25 2006-08-22 Intel Corporation Display screen
US6697534B1 (en) 1999-06-09 2004-02-24 Intel Corporation Method and apparatus for adaptively sharpening local image content of an image
US6625308B1 (en) 1999-09-10 2003-09-23 Intel Corporation Fuzzy distinction based thresholding technique for image segmentation
US6658399B1 (en) 1999-09-10 2003-12-02 Intel Corporation Fuzzy based thresholding technique for image segmentation
US7106910B2 (en) * 1999-10-01 2006-09-12 Intel Corporation Color video coding scheme
US7053944B1 (en) 1999-10-01 2006-05-30 Intel Corporation Method of using hue to interpolate color pixel signals
US7158178B1 (en) 1999-12-14 2007-01-02 Intel Corporation Method of converting a sub-sampled color image
US6628827B1 (en) 1999-12-14 2003-09-30 Intel Corporation Method of upscaling a color image
US6961472B1 (en) 2000-02-18 2005-11-01 Intel Corporation Method of inverse quantized signal samples of an image during image decompression
US6748118B1 (en) 2000-02-18 2004-06-08 Intel Corporation Method of quantizing signal samples of an image during same
US6738520B1 (en) * 2000-06-19 2004-05-18 Intel Corporation Method of compressing an image
US7046728B1 (en) 2000-06-30 2006-05-16 Intel Corporation Method of video coding the movement of a human face from a sequence of images
US6775413B1 (en) 2000-09-18 2004-08-10 Intel Corporation Techniques to implement one-dimensional compression
US6636167B1 (en) * 2000-10-31 2003-10-21 Intel Corporation Method of generating Huffman code length information
US6563439B1 (en) 2000-10-31 2003-05-13 Intel Corporation Method of performing Huffman decoding
US20020118746A1 (en) * 2001-01-03 2002-08-29 Kim Hyun Mun Method of performing video encoding rate control using motion estimation
US6898323B2 (en) * 2001-02-15 2005-05-24 Ricoh Company, Ltd. Memory usage scheme for performing wavelet processing
US6766286B2 (en) 2001-03-28 2004-07-20 Intel Corporation Pyramid filter
US6889237B2 (en) * 2001-03-30 2005-05-03 Intel Corporation Two-dimensional pyramid filter architecture
US20020184276A1 (en) * 2001-03-30 2002-12-05 Tinku Acharya Two-dimensional pyramid filter architecture
US7062101B2 (en) * 2001-03-30 2006-06-13 Ricoh Co., Ltd. Method and apparatus for storing bitplanes of coefficients in a reduced size memory
US6950558B2 (en) * 2001-03-30 2005-09-27 Ricoh Co., Ltd. Method and apparatus for block sequential processing
US6895120B2 (en) * 2001-03-30 2005-05-17 Ricoh Co., Ltd. 5,3 wavelet filter having three high pair and low pair filter elements with two pairs of cascaded delays
JP2002359846A (ja) 2001-05-31 2002-12-13 Sanyo Electric Co Ltd 画像復号方法および装置
US7581027B2 (en) * 2001-06-27 2009-08-25 Ricoh Co., Ltd. JPEG 2000 for efficent imaging in a client/server environment
US7085436B2 (en) * 2001-08-28 2006-08-01 Visioprime Image enhancement and data loss recovery using wavelet transforms
AU2002244908A1 (en) * 2002-03-04 2003-09-16 Setoguchi Laboratory Ltd. Web-oriented image database building/controlling method
US7120305B2 (en) * 2002-04-16 2006-10-10 Ricoh, Co., Ltd. Adaptive nonlinear image enlargement using wavelet transform coefficients
US20040042551A1 (en) * 2002-09-04 2004-03-04 Tinku Acharya Motion estimation
US7266151B2 (en) * 2002-09-04 2007-09-04 Intel Corporation Method and system for performing motion estimation using logarithmic search
US20040057626A1 (en) * 2002-09-23 2004-03-25 Tinku Acharya Motion estimation using a context adaptive search
US20040169748A1 (en) * 2003-02-28 2004-09-02 Tinku Acharya Sub-sampled infrared sensor for use in a digital image capture device
US20040174446A1 (en) * 2003-02-28 2004-09-09 Tinku Acharya Four-color mosaic pattern for depth and image capture
US7274393B2 (en) * 2003-02-28 2007-09-25 Intel Corporation Four-color mosaic pattern for depth and image capture
JP2007504523A (ja) * 2003-08-28 2007-03-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ビデオフレームの空間のアップスケーリング方法
US20080062311A1 (en) * 2006-09-13 2008-03-13 Jiliang Song Methods and Devices to Use Two Different Clocks in a Television Digital Encoder
US20080062312A1 (en) * 2006-09-13 2008-03-13 Jiliang Song Methods and Devices of Using a 26 MHz Clock to Encode Videos
KR100816187B1 (ko) 2006-11-21 2008-03-21 삼성에스디아이 주식회사 플라즈마 디스플레이 장치 및 그것의 영상 처리 방법
US8294811B2 (en) * 2009-08-04 2012-10-23 Aptina Imaging Corporation Auto-focusing techniques based on statistical blur estimation and associated systems and methods
EP2544144A1 (en) * 2010-03-01 2013-01-09 Sharp Kabushiki Kaisha Image enlargement device, image enlargement program, memory medium on which an image enlargement program is stored, and display device
JP5452337B2 (ja) * 2010-04-21 2014-03-26 日本放送協会 画像符号化装置及びプログラム
JP5419795B2 (ja) * 2010-04-30 2014-02-19 日本放送協会 画像符号化装置及びプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB621372A (en) * 1947-02-24 1949-04-07 Ernest John Munday A permutation switch for the ignition system of a motor vehicle and/or a magnetic lock
US5014134A (en) * 1989-09-11 1991-05-07 Aware, Inc. Image compression method and apparatus
US5321776A (en) * 1992-02-26 1994-06-14 General Electric Company Data compression system including successive approximation quantizer
JP2689823B2 (ja) * 1992-07-21 1997-12-10 松下電器産業株式会社 画像信号再生装置及びディスク装置
US5392255A (en) * 1992-10-15 1995-02-21 Western Atlas International Wavelet transform method for downward continuation in seismic data migration
US5602589A (en) * 1994-08-19 1997-02-11 Xerox Corporation Video image compression using weighted wavelet hierarchical vector quantization
US5737448A (en) * 1995-06-15 1998-04-07 Intel Corporation Method and apparatus for low bit rate image compression
US5706220A (en) * 1996-05-14 1998-01-06 Lsi Logic Corporation System and method for implementing the fast wavelet transform

Also Published As

Publication number Publication date
AU5236099A (en) 2000-02-28
TW451160B (en) 2001-08-21
JP2002522831A (ja) 2002-07-23
US6236765B1 (en) 2001-05-22
KR20010072265A (ko) 2001-07-31
WO2000008592A1 (en) 2000-02-17
GB0102430D0 (en) 2001-03-14
GB2362054A8 (en) 2002-08-21
GB2362054A (en) 2001-11-07
GB2362054B (en) 2003-03-26
KR100380199B1 (ko) 2003-04-11

Similar Documents

Publication Publication Date Title
JP4465112B2 (ja) Lcdパネルにおける画像表示に適したdwtに基づくアップサンプリング・アルゴリズム
US6377280B1 (en) Edge enhanced image up-sampling algorithm using discrete wavelet transform
US6215916B1 (en) Efficient algorithm and architecture for image scaling using discrete wavelet transforms
US6937772B2 (en) Multiresolution based method for removing noise from digital images
US5717789A (en) Image enhancement by non-linear extrapolation in frequency space
US6005983A (en) Image enhancement by non-linear extrapolation in frequency space
JP4559622B2 (ja) 知覚的に無損失の画像をもたらす2次元離散ウェーブレット変換に基づくカラー画像の圧縮
Suetake et al. Image super-resolution based on local self-similarity
KR100311482B1 (ko) 보간 영상의 화질 개선을 위한 필터링 제어방법
Lakshman et al. Image interpolation using shearlet based iterative refinement
US20030138161A1 (en) Method and apparatus for enhancing an image using a wavelet-based retinex algorithm
Witwit et al. Global motion based video super-resolution reconstruction using discrete wavelet transform
JPH08294001A (ja) 画像処理方法および画像処理装置
Lu et al. Multi-parameter regularization methods for high-resolution image reconstruction with displacement errors
JP4019201B2 (ja) ディスクリートコサイン変換を用いた色調回復のためのシステムおよび方法
US6725247B2 (en) Two-dimensional pyramid filter architecture
JP4323808B2 (ja) 二次元ピラミッド・フィルタ・アーキテクチャ
KR100717031B1 (ko) 슬라이딩 윈도우 방법을 이용하는 1차원 이미지 복원 방법및 시스템
US20020184276A1 (en) Two-dimensional pyramid filter architecture
Rohith et al. A novel approach to super resolution image reconstruction algorithm from low resolution panchromatic images
JP2916607B2 (ja) 画像拡大装置
Fan Super-resolution using regularized orthogonal matching pursuit based on compressed sensing theory in the wavelet domain
US20020174154A1 (en) Two-dimensional pyramid filter architecture
Lee General methods for L/M-fold resizing of compressed images using lapped transforms
Cohen et al. Resolution enhancement by polyphase back-projection filtering

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees