JP4456809B2 - Photocatalyst coating composition - Google Patents

Photocatalyst coating composition Download PDF

Info

Publication number
JP4456809B2
JP4456809B2 JP2002375988A JP2002375988A JP4456809B2 JP 4456809 B2 JP4456809 B2 JP 4456809B2 JP 2002375988 A JP2002375988 A JP 2002375988A JP 2002375988 A JP2002375988 A JP 2002375988A JP 4456809 B2 JP4456809 B2 JP 4456809B2
Authority
JP
Japan
Prior art keywords
group
photocatalyst
coating composition
molecular weight
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002375988A
Other languages
Japanese (ja)
Other versions
JP2004204091A (en
Inventor
節子 小浦
淳 梶本
佳子 坂本
克全 阿波
浩茂 中村
智訓 牧野
崇 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemicals Ind.,Ltd.
Nippon Steel Nisshin Co Ltd
Original Assignee
Osaka Organic Chemicals Ind.,Ltd.
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemicals Ind.,Ltd., Nippon Steel Nisshin Co Ltd filed Critical Osaka Organic Chemicals Ind.,Ltd.
Priority to JP2002375988A priority Critical patent/JP4456809B2/en
Publication of JP2004204091A publication Critical patent/JP2004204091A/en
Application granted granted Critical
Publication of JP4456809B2 publication Critical patent/JP4456809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光触媒反応によるセルフクリーニング作用で清浄表面が長期間にわたり維持され、密着性に優れた塗膜の形成に適した光触媒塗料組成物に関する。
【0002】
【従来の技術】
塗膜に光触媒粒子を分散させると、セルフクリーニング作用が塗膜表面に付与され、長期間にわたって清浄な塗膜表面が維持される。有機物ベースの塗膜は光照射で生成した活性酸素によって分解しチョーキング現象が発生するので、活性酸素による分解のない無機物をベースに光触媒塗膜を形成している。
塗膜に光触媒活性を付与する塗料組成物としては、テトラアルコキシシラン等のアルコキシドを溶解した水/エタノール混合溶媒にTiO2の水分散ゾルを分散させた系(WO96/29375),オルガノシリカゾルを有機溶媒に溶解させた溶液にTiO2粉末を分散させた系(特開平8−67835号公報),シラン処理したTiO2粉末をシリコーン樹脂に分散させた系(特開平9−227831号公報)等が報告されている。
【0003】
酸化チタン等の光触媒粒子の結合剤として使用されているテトラアルコキシシランは、加水分解,縮合反応で架橋硬化するので硬化時の体積収縮が大きい。体積収縮は、硬化後の塗膜において非常に大きな収縮応力となり、緩和されることなく残留する。残留応力は乾燥膜厚で5μm以上の厚塗り塗装を施すとき塗膜剥離発生の原因となるので、残留応力に起因する欠陥を回避する薄塗り塗装が余儀なくされている。
【0004】
薄塗り塗装は、浄化作用に必要な光触媒活性を十分に活用できないことは勿論、光触媒塗膜の性能,品質安定性でも不利である。たとえば、大面積の被塗物の表面に均一な膜厚の塗膜を形成することは困難であり、表面の僅かな凹凸や歪みを反映する部分的な厚膜化が避けられない。複雑な表面形状をもつ被塗物に塗装する場合でも、表面の凹凸を倣った厚膜部が生じやすい。厚膜部では、テトラアルコキシシランの体積収縮に起因する収縮応力の影響が現れ、塗膜剥離が発生しやすい。
オルガノシリカゾルを有機溶媒に溶解させた溶液にTiO2粉末を分散させた塗料組成物では、TiO2の分散が不十分で凝集しやすいため、作製された塗膜が不均一になりがちで膜厚制御も難しい。TiO2粉末の分散性を向上させるためにシラン処理したTiO2粉末をシリコーン樹脂に分散させた塗料組成物を使用すると、厚膜化が可能であるが、塗膜に含まれる有機成分が多くなり、光触媒粒子による分解でチョーキングしやすい塗膜になる。
【0005】
【発明が解決しようとする課題】
そこで、本発明者等は、バインダ成分であるオルガノアルコキシシランの一部を光触媒分散トナーに予め添加することによりアナターゼ型チタニア粉末の凝集沈殿が防止できることを紹介した(特開2002−105357号公報)。オルガノアルコキシシランはアナターゼ型チタニア粉末の表面を覆い、粉末表面のゼータ電位が無機バインダのpH値から外れる。その結果、無機バインダと混合した場合でもアナターゼ型チタニア粉末の凝集沈殿が抑制されるものと推察される。
有機成分が極く僅かで主成分がコロイダルシリカの無機バインダを使用すると、チョーキングが抑えられ耐久性に優れた塗膜が形成される。塗膜に含まれる多量のコロイダルシリカは応力緩和に寄与し、シラン縮合物単体のバインダに比較して厚塗り塗装でも耐割れ性に優れた塗膜が形成される。
【0006】
【課題を解決するための手段】
本発明は、先願・特開2002−105357号公報で紹介した光触媒塗料組成物を更に改良したものであり、光触媒塗料組成物に配合する無機バインダの分子量分布を適正管理することにより、厚塗り塗装した場合でも剥離が生じがたく、優れた清浄作用を呈する光触媒塗膜を形成することを目的とする。
【0007】
本発明で提案する光触媒塗料組成物は、光触媒分散トナー,無機バインダを含んでいる。
光触媒分散トナーは、イソプロパノール,エチレングリコールモノブチルエーテルの混合溶媒にTiO2粉末,オルガノアルコキシシラン,水を配合することにより調製される。TiO2粉末には粒径5〜200nmのアナターゼ型チタニア粉末が使用され、塗料組成物の固形分の5〜80質量%を占める割合で配合される。オルガノアルコキシシランは、一般式R1Si(OR2)3〔R1は炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基,γ-メルカプトプロピル基又はクロロプロピル基、R2は炭素数1〜4のアルキル基又はアリール基〕で表され、好ましくは1〜10質量%の割合で配合される。水添加量は、オルガノアルコキシシランを部分加水分解させるが、オルガノアルコキシシラン相互の脱水縮合反応を進行させない範囲、具体的には0.1〜10質量%の範囲で選定される。
【0008】
無機バインダは、シリカ40〜70質量%,オルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物30〜60質量%の固形分を水/イソプロパノール/エチレングリコールモノブチルエーテルの混合溶液に分散させている。オルガノヒドロキシシランは、一般式R1Si(OH)3〔R1は炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基,γ-メルカプトプロピル基又はクロロプロピル基〕で表される化合物である。シリカにオルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物が結合した分子集合体は、加水分解,縮合時の温度,時間を調整することにより所定の分子量分布に収められている。シリカには、コロイダルシリカ、主として水系コロイダルシリカ分散液が使用される。
【0009】
【作用】
光触媒分散トナーに配合したオルガノアルコキシシランは、アナターゼ型チタニア粉末の表面にオルガノアルコキシシランのまま吸着し、或いは溶剤中に単に分散した状態で存在する。吸着したオルガノアルコキシシランはアナターゼ型チタニア粉末の分散性を向上させるが、長期間にわたる貯蔵では分散性が十分とはいえない。
水が存在する系では、オルガノアルコキシシランのアルコキシ基が部分加水分解する。加水分解生成物がアナターゼ型チタニア粉末表面のOH基と結合し、この結合を介しアナターゼ型チタニア粉末表面にオルガノアルコキシシランが付着する。アナターゼ型チタニア粉末は、オルガノアルコキシシランの付着によって分散性が向上し、長期にわたって凝集沈殿なく光触媒分散トナー中に懸濁する。その結果、貯蔵安定性に優れた光触媒分散トナーが得られる。良好な分散性は、無機系バインダと混合した後でも維持される。
【0010】
アナターゼ型チタニア粉末表面に対するオルガノアルコキシシランの付着量は光触媒分散トナーの水添加量で制御でき、オルガノアルコキシシラン付着による分散性の向上は0.1質量%以上の水添加量でみられる。水添加量の増加に応じてアナターゼ型チタニア粉末表面に付着するオルガノアルコキシシランが多くなり、アナターゼ型チタニア粉末の分散性が向上する。しかし、10質量%を超える過剰量の水を添加すると、アナターゼ型チタニア粉末表面に付着するアルコキシ基の加水分解生成物が多くなりすぎ、光触媒活性が損なわれる。過剰量の水添加は、光触媒分散トナーに添加したオルガノアルコキシシラン相互の脱水縮合を促進させ、アナターゼ型チタニア粉末表面に付着する加水分解生成物の割合が却って減少する。
【0011】
光触媒分散トナーに配合される水以外の成分は、次のように定めることが好ましい。
光触媒としては、光触媒活性が高く化学的安定性にも優れた粒径5〜200nmのアナターゼ型チタニア粉末を用い、5〜80質量%の割合で配合する。粒径5nmの粉末は製造自体が難しく、200nmを超える粒径では光触媒活性が不足する。アナターゼ型チタニア粉末の配合割合が5質量%未満になるとチクソ性がなく粒子の沈降が早く固めのケーキになるため、トナー使用時の再分散が困難になる。逆に80質量%を超える配合量では、チクソ性が高くなりすぎ却ってトナーとしての流動性が損なわれる。
【0012】
オルガノアルコキシシランは、一般式R1Si(OR2)3〔R1はアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基,γ-メルカプトプロピル基又はクロロプロピル基,R2は炭素数1〜4のアルキル基又はアリール基〕で表され、1〜10質量%の割合で配合される。オルガノアルコキシシランは、有機官能基の導入によってシラン相互の反応が抑制され、アナターゼ型チタニア粉末の表面に付着する割合が高くなる。この点、テトラアルコキシシランでは、加水分解が過度に進行してアナターゼ型チタニア粉末の表面に付着するだけでなく、シラン相互が反応する結果としてアナターゼ型チタニア粉末の分散に寄与しない割合が高くなる。
【0013】
オルガノアルコキシシランであっても、有機官能基が2個以上になるとアナターゼ型チタニア粉末の表面に付着する有機物の量が増加する。有機物が過剰に付着したアナターゼ型チタニア粉末の分散トナーから作製された光触媒塗膜を光照射環境に置くと有機物が分解し、塗膜のチョーキングが短時間に進行する。そこで、Siに直接結合する有機官能基を一つだけとし、炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基,γ-メルカプトプロピル基又はクロロプロピル基にすることが好適である。
【0014】
オルガノアルコキシシランの配合量は、1〜10質量%の範囲に定められる。1質量%未満の配合量では分散性の向上がみられず、逆に10質量%を超える配合量ではアナターゼ型チタニア粉末表面の被覆率が高くなりすぎて塗膜形成後の光触媒活性が極端に低下する。オルガノアルコキシシランの配合量はアナターゼ型チタニア粉末の粒径に依存する。たとえば、7nmのTiO2粉末は約300m2/gの大きな表面積をもつので、8質量%のオルガノアルコキシシランで最も大きな効果が得られる。粒径20nmのTiO2粉末では表面積が50m2/g程度であり、オルガノアルコキシシランの配合量3質量%で最も効果的になる。
【0015】
溶媒には、イソプロパノール,エチレングリコールモノブチルエーテルの混合溶媒が使用される。混合比率は、イソプロパノール:40〜60質量%,エチレングリコールモノブチルエーテル:40〜60質量%が好ましい。混合比率の調整によって,アナターゼ型チタニア粉末の分散性が改善されると共に、光触媒分散トナーをバインダと混合した後で塗膜を形成する際に揮発スピードが適度にコントロールされるので、剥離に至るクラックの発生が防止される。
光触媒分散トナーは、オルガノアルコキシシラン,水を添加したイソプロパノール/エチレングリコールモノブチルエーテルの混合溶媒にアナターゼ型チタニア粉末を加え、攪拌機で攪拌した後、充填したビーズが攪拌状態に維持されている横型ミルに流量1リットル/分の速さで注入することにより調製される。必要に応じ、顔料,染料等の着色剤や増粘剤等の添加材を添加する。
【0016】
無機バインダは、シリカ,オルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物を固形分として水/イソプロパノール/エチレングリコールモノブチルエーテルの混合溶液に分散させることにより調製される。コロイダルシリカには、水系コロイダルシリカ分散液とイソプロパノール系コロイダルシリカ分散液の混合物が好ましい。シリカの平均粒径は150nm以下(更には、30nm)以下が好ましく、無機バインダの保存安定性を確保する上で好ましくは酸性のコロイダルシリカが使用される。
オルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物は、オルガノアルコキシシランの加水分解によって得られ、一般式R1Si(OH)3で表される。代表的なオルガノアルコキシシランには、光触媒分散トナーの一成分と同じ化合物R1Si(OR2)3を使用できる。オルガノヒドロキシシランの部分縮合物には、一般式R1Si(OH)3のオルガノヒドロキシシランを部分縮合することにより得られるオリゴマー等も使用できる。
【0017】
無機バインダの固形分は、コロイダルシリカを核としてオルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物が脱水縮合で結合した分子集合体になっている。無機バインダを光触媒分散トナーと混合すると,オルガノヒドロキシシランの部分縮合物が付着したアナターゼ型チタニア粉末とコロイダルシリカを核として分子集合体が反応・結合するため、強固なネットワークが形成されると共に、アナターゼ型チタニア粉末が塗膜に均一分散される。
コロイダルシリカにオルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物が結合した分子集合体は、重合時の反応時間,反応温度を制御することにより所定の分子量,分子量分布に収められる。分子量が300以上で、分子量300〜500が0〜20%,分子量500〜1000が20〜40%,分子量1000〜10000が40〜70%の分子量分布に調整することにより、形成された塗膜の耐剥離性が向上する。
【0018】
分子量分布が耐剥離性に及ぼす影響は、次のように考えられ、後述の実施例によっても支持される。低分子量成分を含む塗料組成物から作製された塗膜では、低分子量成分のOH基が反応点となって塗膜に大きな応力を加え、完全に加水分解が完了していない分子が単独で存在し、コロイダルシリカとの結合が生じていない(図1a)。そのため、塗膜形成時に反応点が多く、脱水縮合反応が急激に進行し、結果として大きな応力が塗膜に残留する。しかも、低分子量成分(未反応成分)は塗膜pの表層にブリードしやすく、雨水や紫外線照射UVに曝される環境下で硬化反応が生起する。硬化反応の結果、体積収縮に起因する収縮応力が塗膜pに発生し、基材bに達する亀裂cが生じる(図1b)。
【0019】
他方、完全にアルコキシドの加水分解が完了した成分を含む塗料組成物から作製された塗膜では、アルコキシドとコロイダルシリカとの結合が十分に進み、コロイダルシリカを取り囲んだ大きな分子となっている。そのため、反応点が少なく、塗膜形成時に反応が徐々に進行するため残留応力も小さくなる(図2a)。しかも、塗膜表面に未反応成分のブリードがなく、塗膜内部に微細なクラックfcが入っている。そのため、雨水や紫外線照射に曝される環境下で硬化反応が進行することなく、塗膜に加えられる応力があっても微細クラックによって分散されるため、基材に達するクラックにまで成長しない(図2b)。
【0020】
加水分解及び脱水縮合反応による結合状態は、ゲル濾過クロマトグラフィで測定し、ポリスチレンを標準物質として作成した検量線から算出した分子量で評価できる。具体的には、無機バインダとテトラヒドロフランで20倍希釈し、1μmフィルタで濾過した後、カラムに1000/2000 Shoudex 801,802を用いたゲル濾過クロマトグラフィ(HLC 8020:東ソー株式会社製)を使用し、テトラヒドロフランを測定溶媒としRI検出器により分子量分布を求めた。縮合が分子量300以上に進行し、300未満の低分子量成分がなくなると、過剰なOH基や塗膜表面にブリードする低分子量成分の影響が抑制される。なかでも、分子量300〜500が0〜20%,分子量500〜1000が20〜40%,分子量1000〜10000が40〜70%の分子量分布に管理されているとき、低分子量成分の影響抑制が効果的になる。
【0021】
溶媒は、コロイダルシリカ分散液中の水分,オルガノヒドロキシシランの縮合水,オルガノヒドロキシシランの加水分解で生じるアルコール,イソプロパノール,エチレングリコールモノブチルエーテルから構成される。無機バインダの溶媒として少なくとも20質量%のエチレングリコールモノブチルエーテルを配合すると、無機バインダの保存安定性が飛躍的に向上し、塗装作業性,成膜性に優れた塗料組成物が得られる。従来の無機バインダでは20質量%以上の水分を含ませると保存安定性が劣化するが、20質量%以上のエチレングリコールモノブチルエーテルを含む系では、20質量%以上の水分を含んでいても十分な保存安定性が維持される。無機バインダは、保存安定性を向上させるため、アンモニア水,トリエタノールアミン,ジメチルエタノールアミン等の有機アミン類を用いてpH:4〜5に調整することが好ましい。
【0022】
光触媒分散トナーは、オルガノアルコキシシラン,水を添加したイソプロパノール/エチレングリコールモノブチルエーテルの混合溶媒にアナターゼ型チタニア粉末を加え、攪拌機で攪拌した後、充填したビーズが攪拌状態に維持されている横型ミルに流量1リットル/分の速さで注入することにより調製される。必要に応じ、顔料,染料等の着色剤や増粘剤等の添加材を添加することも可能である。
無機バインダは、コロイダルシリカ分散液に添加したオルガノアルコキシシランを加水分解させてオルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物とした後、溶剤で希釈する方法、コロイダルシリカ分散液を溶剤で希釈した後、オルガノアルコキシシランを添加して加水分解させる方法等によって調製される。コロイダルシリカにオルガノアルコキシシランを添加して加水分解させるとき、液温を10〜80℃に保ち、常圧下で1〜24時間攪拌しながら反応させる。非水性コロイダルシリカ分散液の一部を後で添加し、更に加熱・反応させても良い。オルガノアルコキシシランの加水分解に際しては、無機酸,有機酸等の加水分解触媒を少量添加することもできる。
【0023】
十分に攪拌した光触媒分散トナーに無機バインダを徐々に加えながら、更に攪拌することにより光触媒塗料組成物が調製される。このとき、固形分としてTiO2が5〜80質量%となる配合比率で光触媒分散トナー,無機系バインダを混合する。十分な光触媒活性を得る上で5質量%以上のTiO2含有量が必要であるが、80質量%を超える過剰量のTiO2が含まれると塗膜の密着性が低下する。
調製された塗料は、スプレー法,浸漬法,フローコーティング法,ロールコート法,スクリーン印刷法,静電塗装法等によって、前処理された基材に塗布される。塗布後、80〜130℃で1〜30分加熱することにより、基材に対する密着性に優れた塗膜が形成される。塗膜の厚さは、基材の種類や用途に応じて異なるため一概に定めることはできないが、通常1〜30μmの範囲で調整される。光触媒塗料組成物が塗布される基材には、普通鋼,めっき鋼板,ステンレス鋼板,アルミニウム,銅、真鍮等の金属や、セメント,コンクリート,タイル,スレート板,ガラス,石材等がある。加熱時の温度によっては、プラスチック等の有機材料にも塗装可能である。
【0024】
【実施例】
アナターゼ型チタニア粉末分散トナーの調製
イソプロパノール:50質量%,エチレングリコールモノブチルエーテル:50質量%の混合溶媒に3質量%のオルガノアルコキシシラン,0.3質量%の水を添加し、更に粒径20nmのアナターゼ型チタニア粉末を添加した。アナターゼ型チタニア粉末の添加量は、塗料全体の40質量%となる割合に設定した。ビーズミルを用いた攪拌機で混合物を分散させることにより光触媒分散トナーを調製した。
【0025】
無機系バインダの調製
水系コロイダルシリカ:21.2g(平均粒径5〜20nm,固形分20質量%,pH3.0)とイソプロパノール系コロイダルシリカ62.6g(平均粒径5〜20nm,固形分20質量%)を混合した後、メチルトリメトキシシラン13.9gを加え、80℃で12時間攪拌して加水分解を完了させた。次いで、加水分解物にイソプロパノール:33質量%,エチレングリコールモノブチルエーテル:67質量%の混合溶媒を添加し、更にアンモニア水を添加してpHを4.5に調整した。
得られた光触媒分散トナー,無機系バインダを固形分中のTiO2含有量が40質量%となる割合で混合攪拌し、50μmのメッシュを用いて濾過し塗料化した。
【0026】
前処理したSUS304ステンレス鋼基材に塗料をスプレー塗布し、200℃で20分加熱することにより膜厚10μmの塗膜を形成した。比較のため、水無添加の光触媒分散トナーを無機系バインダと混合することにより調製された塗料(比較例1)及び反応時間の調整により分子量300未満とした無機バインダを光触媒分散トナーと混合した塗料(比較例2)を用いて同様にSUS304ステンレス鋼基材を塗装した。
【0027】
調製された光触媒塗料組成物の分散性及び塗膜の耐剥離性,光触媒活性を以下の方法で評価した。
(1)光触媒塗料組成物の分散性
光触媒分散トナー,無機系バインダを混合した塗料化した後、1日経過後にTiO2粒子の凝集状態を調査した。5μm以上のツブが検出されない塗料組成物を○,10μm以上のツブはないが5〜10μmのツブが検出された塗料組成物を△,10μm以上のツブが生じた塗料組成物を×として分散性を評価した。
【0028】
(2)塗膜の耐剥離性
63℃のサンシャインウェザー試験で塗膜の耐剥離性を調査し、試験開始から3000時間経過した時点で剥離が検出されなかった塗膜を○,剥離した塗膜を×として耐剥離性を評価した。
(3)塗膜の光触媒活性
付着量0.2mg/cm2でサラダ油を試験片表面に付着させ、5mW/cm2のブラックライトで24時間照射した後、試験片に残存しているサラダ油の重量を測定し、重量減少率を油分解率として光触媒活性を評価した。
【0029】
表1の調査結果にみられるように、オルガノアルコキシシラン,水を添加した光触媒分散トナーから得られた塗料組成物では、無機バインダの分子量分布に拘らず良好な分散性を示した。他方、水無添加の光触媒分散トナーを用いた塗料組成物(比較例11)では、5〜10μmのツブが検出された。
【0030】

Figure 0004456809
【0031】
表1の各種塗料組成物を前処理したSUS304ステンレス鋼基材にスプレー塗布し、塗布量によって膜厚を調整した塗膜を形成した。得られた塗膜の耐剥離性,光触媒活性を調査した結果を表2に示す。
表2から明らかなように、分子量300未満の低分子量成分を含む無機バインダを用いた塗料組成物から作製された塗膜は膜厚10μm以上で剥離してしまい、膜厚5μmと薄膜化した塗膜では光触媒活性が極端に低下した。これに対し、本発明に従って調整された塗料組成物から作製された塗膜では、膜厚が15μmと相当厚くなっても脱落することなく、優れた光触媒活性を呈した。
【0032】
Figure 0004456809
【0033】
【発明の効果】
以上に説明したように、分子量分布が制御された無機バインダを光触媒分散トナーと混合して調整された塗料組成物を使用すると、オルガノアルコキシシランの加水分解時に生じる体積収縮に起因する収縮応力が分散された状態で塗膜が被塗物表面に形成されるため、厚塗り塗装した場合でも優れた耐剥離性を示す。しかも、アナターゼ型チタニア粉末,オルガノアルコキシシランを配合した光触媒分散トナーに少量の水を添加してオルガノアルコキシシランを部分加水分解し、アナターゼ型チタニア粉末表面のOH基にアルコキシ基の加水分解生成物を反応させているので、アナターゼ型チタニア粉末の凝集沈殿が抑制され分散性が向上し、アナターゼ型チタニア粉末の光触媒活性が効率よく発現する光触媒塗膜となる。
【図面の簡単な説明】
【図1】 低分子量成分を含む無機バインダを使用した場合の塗料組成物(a),塗膜(b)における欠陥発生を説明する図
【図2】 分子量分布を適正管理した無機バインダを用いた塗料組成物(a),塗膜(b)で欠陥が抑制されることを説明する図
【符号の説明】
b:基材 p:光触媒塗膜 c:クラック fc:微細クラック UV:紫外線又は雨水[0001]
[Industrial application fields]
The present invention relates to a photocatalyst coating composition suitable for forming a coating film having a clean surface maintained for a long period by a self-cleaning action by a photocatalytic reaction and having excellent adhesion.
[0002]
[Prior art]
When the photocatalyst particles are dispersed in the coating film, a self-cleaning action is imparted to the coating film surface, and a clean coating film surface is maintained over a long period of time. Since the organic-based coating film is decomposed by active oxygen generated by light irradiation and a choking phenomenon occurs, the photocatalytic coating film is formed on the basis of an inorganic substance that is not decomposed by active oxygen.
As a coating composition for imparting photocatalytic activity to a coating film, a system in which a water-dispersed sol of TiO 2 is dispersed in a water / ethanol mixed solvent in which an alkoxide such as tetraalkoxysilane is dissolved, an organosilica sol is organic. A system in which TiO 2 powder is dispersed in a solution dissolved in a solvent (Japanese Patent Laid-Open No. 8-67835), a system in which silane-treated TiO 2 powder is dispersed in a silicone resin (Japanese Patent Laid-Open No. 9-227831), etc. It has been reported.
[0003]
Tetraalkoxysilane used as a binder for photocatalyst particles such as titanium oxide has a large volume shrinkage during curing because it undergoes crosslinking and curing by hydrolysis and condensation reactions. The volume shrinkage becomes a very large shrinkage stress in the cured film and remains without being relaxed. Since the residual stress causes the peeling of the coating film when a thick coating having a dry film thickness of 5 μm or more is applied, a thin coating is unavoidable to avoid defects caused by the residual stress.
[0004]
Thin coating is disadvantageous in terms of the performance and quality stability of the photocatalyst coating as well as not fully utilizing the photocatalytic activity necessary for the purification action. For example, it is difficult to form a coating film having a uniform film thickness on the surface of an object to be coated having a large area, and partial thickening that reflects slight unevenness and distortion on the surface is inevitable. Even when coating on an object having a complicated surface shape, a thick film portion following the surface irregularities is likely to occur. In the thick film portion, the influence of shrinkage stress due to the volume shrinkage of the tetraalkoxysilane appears, and coating film peeling is likely to occur.
In a coating composition in which TiO 2 powder is dispersed in a solution in which an organosilica sol is dissolved in an organic solvent, TiO 2 is not sufficiently dispersed and tends to agglomerate, so that the prepared coating tends to be non-uniform. Control is also difficult. Using a coating composition in which silane-treated TiO 2 powder is dispersed in a silicone resin in order to improve the dispersibility of TiO 2 powder can increase the film thickness, but the organic components contained in the coating film increase. It becomes a coating film that is easy to choke by decomposition with photocatalyst particles.
[0005]
[Problems to be solved by the invention]
Accordingly, the present inventors have introduced that aggregation of anatase-type titania powder can be prevented by adding a part of the organoalkoxysilane as a binder component to the photocatalyst-dispersed toner in advance (Japanese Patent Laid-Open No. 2002-105357). . The organoalkoxysilane covers the surface of the anatase type titania powder, and the zeta potential of the powder surface deviates from the pH value of the inorganic binder. As a result, it is presumed that the aggregation and precipitation of the anatase-type titania powder is suppressed even when mixed with an inorganic binder.
When an inorganic binder having an extremely small amount of organic components and a colloidal silica as a main component is used, a choking is suppressed and a coating film having excellent durability is formed. A large amount of colloidal silica contained in the coating film contributes to stress relaxation, and a coating film having excellent cracking resistance is formed even by thick coating compared to a binder of a silane condensate alone.
[0006]
[Means for Solving the Problems]
The present invention is a further improvement of the photocatalyst coating composition introduced in the prior application, Japanese Patent Application Laid-Open No. 2002-105357. By properly managing the molecular weight distribution of the inorganic binder blended in the photocatalyst coating composition, An object is to form a photocatalyst coating film that hardly peels off even when applied and exhibits an excellent cleaning action.
[0007]
The photocatalyst coating composition proposed in the present invention contains a photocatalyst-dispersed toner and an inorganic binder.
The photocatalyst-dispersed toner is prepared by blending TiO 2 powder, organoalkoxysilane, and water in a mixed solvent of isopropanol and ethylene glycol monobutyl ether. Anatase-type titania powder having a particle size of 5 to 200 nm is used as the TiO 2 powder, and is blended at a ratio of 5 to 80% by mass of the solid content of the coating composition. The organoalkoxysilane has the general formula R 1 Si (OR 2 ) 3 [R 1 is an alkyl group having 1 to 3 carbon atoms, vinyl group, 3,4-epoxycyclohexyl group, γ-glycidoxypropyl group, γ-mercapto A propyl group or a chloropropyl group, and R 2 is an alkyl group or an aryl group having 1 to 4 carbon atoms], preferably 1 to 10% by mass. The amount of water added is selected in such a range that the organoalkoxysilane is partially hydrolyzed but the dehydration condensation reaction between the organoalkoxysilanes does not proceed, specifically 0.1 to 10% by mass.
[0008]
In the inorganic binder, a solid content of 40 to 70% by mass of silica and 30 to 60% by mass of a partial condensate of organohydroxysilane and organohydroxysilane is dispersed in a mixed solution of water / isopropanol / ethylene glycol monobutyl ether. Organohydroxysilane has the general formula R 1 Si (OH) 3 [R 1 is an alkyl group having 1 to 3 carbon atoms, vinyl group, 3,4-epoxycyclohexyl group, γ-glycidoxypropyl group, γ-mercaptopropyl Group or chloropropyl group]. A molecular assembly in which organohydroxysilane and a partial condensate of organohydroxysilane are bonded to silica is kept in a predetermined molecular weight distribution by adjusting the temperature and time during hydrolysis and condensation. As the silica, colloidal silica, mainly an aqueous colloidal silica dispersion, is used.
[0009]
[Action]
The organoalkoxysilane blended in the photocatalyst-dispersed toner is adsorbed on the surface of the anatase type titania powder as it is, or simply dispersed in a solvent. Although the adsorbed organoalkoxysilane improves the dispersibility of the anatase-type titania powder, it cannot be said that the dispersibility is sufficient for long-term storage.
In a system in which water is present, the alkoxy group of the organoalkoxysilane is partially hydrolyzed. The hydrolysis product binds to OH groups on the surface of the anatase titania powder, and organoalkoxysilane adheres to the surface of the anatase titania powder through this bond. Anatase-type titania powder has improved dispersibility due to adhesion of organoalkoxysilane, and is suspended in the photocatalyst-dispersed toner for a long time without aggregation and precipitation. As a result, a photocatalyst-dispersed toner having excellent storage stability can be obtained. Good dispersibility is maintained even after mixing with an inorganic binder.
[0010]
The adhesion amount of the organoalkoxysilane to the surface of the anatase-type titania powder can be controlled by the water addition amount of the photocatalyst-dispersed toner, and the improvement in dispersibility due to the adhesion of the organoalkoxysilane can be seen at a water addition amount of 0.1% by mass or more. As the amount of water added increases, the amount of organoalkoxysilane adhering to the surface of the anatase titania powder increases, and the dispersibility of the anatase titania powder improves. However, when an excessive amount of water exceeding 10% by mass is added, the hydrolysis product of the alkoxy group adhering to the surface of the anatase-type titania powder increases so that the photocatalytic activity is impaired. Excess water addition promotes dehydration condensation between the organoalkoxysilanes added to the photocatalyst-dispersed toner, and the ratio of hydrolysis products adhering to the surface of the anatase-type titania powder is reduced.
[0011]
Components other than water blended in the photocatalyst-dispersed toner are preferably determined as follows.
As the photocatalyst, anatase titania powder having a particle size of 5 to 200 nm having high photocatalytic activity and excellent chemical stability is used and blended at a ratio of 5 to 80% by mass. A powder having a particle size of 5 nm is difficult to produce itself, and if the particle size exceeds 200 nm, photocatalytic activity is insufficient. If the blending ratio of the anatase-type titania powder is less than 5% by mass, the thixotropic property is not present and the particles settle quickly, resulting in a hard cake, so that redispersion when using the toner becomes difficult. On the contrary, if the blending amount exceeds 80% by mass, the thixotropy becomes too high and the fluidity as a toner is impaired.
[0012]
The organoalkoxysilane has the general formula R 1 Si (OR 2 ) 3 [R 1 is an alkyl group, a vinyl group, a 3,4-epoxycyclohexyl group, a γ-glycidoxypropyl group, a γ-mercaptopropyl group, or a chloropropyl group. , R 2 is an alkyl group having 1 to 4 carbon atoms or an aryl group], and is blended at a ratio of 1 to 10% by mass. In the organoalkoxysilane, the reaction between silanes is suppressed by the introduction of the organic functional group, and the ratio of adhesion to the surface of the anatase-type titania powder increases. In this respect, tetraalkoxysilane not only contributes to the dispersion of the anatase titania powder as a result of not only the hydrolysis proceeding excessively and adhering to the surface of the anatase titania powder but also the reaction between the silanes.
[0013]
Even in the case of organoalkoxysilane, when there are two or more organic functional groups, the amount of organic matter adhering to the surface of the anatase titania powder increases. When a photocatalytic coating film prepared from a dispersed toner of anatase-type titania powder to which organic substances are excessively deposited is placed in a light irradiation environment, the organic substances are decomposed, and the chalking of the coating proceeds in a short time. Therefore, only one organic functional group directly bonded to Si is used, and an alkyl group having 1 to 3 carbon atoms, a vinyl group, a 3,4-epoxycyclohexyl group, a γ-glycidoxypropyl group, a γ-mercaptopropyl group, or A chloropropyl group is preferred.
[0014]
The compounding amount of the organoalkoxysilane is determined in the range of 1 to 10% by mass. When the blending amount is less than 1% by mass, no improvement in dispersibility is observed. Conversely, when the blending amount exceeds 10% by mass, the anatase-type titania powder has an excessively high surface coverage, and the photocatalytic activity after coating is extremely high. descend. The compounding amount of the organoalkoxysilane depends on the particle size of the anatase type titania powder. For example, 7 nm TiO 2 powder has a large surface area of about 300 m 2 / g, so that 8% by mass of organoalkoxysilane provides the greatest effect. A TiO 2 powder having a particle size of 20 nm has a surface area of about 50 m 2 / g, and is most effective when the amount of organoalkoxysilane is 3% by mass.
[0015]
As the solvent, a mixed solvent of isopropanol and ethylene glycol monobutyl ether is used. The mixing ratio is preferably isopropanol: 40 to 60% by mass and ethylene glycol monobutyl ether: 40 to 60% by mass. By adjusting the mixing ratio, the dispersibility of the anatase-type titania powder is improved, and the volatilization speed is appropriately controlled when the coating film is formed after the photocatalyst-dispersed toner is mixed with the binder. Is prevented from occurring.
The photocatalyst-dispersed toner is added to a horizontal mill in which anatase-type titania powder is added to a mixed solvent of isopropanol / ethylene glycol monobutyl ether to which organoalkoxysilane and water are added, and stirred with a stirrer, and then the filled beads are maintained in a stirred state. Prepare by injecting at a rate of 1 liter / min. Additives such as colorants such as pigments and dyes and thickeners are added as necessary.
[0016]
The inorganic binder is prepared by dispersing silica, organohydroxysilane and a partial condensate of organohydroxysilane as a solid content in a mixed solution of water / isopropanol / ethylene glycol monobutyl ether. The colloidal silica is preferably a mixture of an aqueous colloidal silica dispersion and an isopropanol colloidal silica dispersion. The average particle diameter of silica is preferably 150 nm or less (further, 30 nm) or less, and acidic colloidal silica is preferably used in order to ensure the storage stability of the inorganic binder.
Organohydroxysilane and a partial condensate of organohydroxysilane are obtained by hydrolysis of organoalkoxysilane and are represented by the general formula R 1 Si (OH) 3 . As a typical organoalkoxysilane, the same compound R 1 Si (OR 2 ) 3 as one component of the photocatalyst dispersed toner can be used. As the partial condensation product of organohydroxysilane, an oligomer obtained by partial condensation of an organohydroxysilane of the general formula R 1 Si (OH) 3 can also be used.
[0017]
The solid content of the inorganic binder is a molecular assembly in which organohydroxysilane and a partial condensate of organohydroxysilane are combined by dehydration condensation using colloidal silica as a core. When an inorganic binder is mixed with a photocatalyst-dispersed toner, the anatase-type titania powder with an organohydroxysilane partial condensate adhering to the colloidal silica as a molecular assembly reacts and binds to form a strong network. Type titania powder is uniformly dispersed in the coating film.
A molecular assembly in which organohydroxysilane and a partial condensate of organohydroxysilane are bonded to colloidal silica is controlled to have a predetermined molecular weight and molecular weight distribution by controlling the reaction time and reaction temperature during polymerization. By adjusting the molecular weight to a molecular weight distribution of 300 to 500, molecular weight 300 to 500 is 0 to 20%, molecular weight 500 to 1000 is 20 to 40%, and molecular weight 1000 to 10000 is 40 to 70%. Improved peel resistance.
[0018]
The influence of the molecular weight distribution on the peel resistance is considered as follows and is supported by the examples described later. In coatings made from coating compositions containing low molecular weight components, the OH groups of the low molecular weight components act as reaction points, applying large stress to the coating, and molecules that are not completely hydrolyzed exist alone. However, no bond with colloidal silica occurs (FIG. 1a). Therefore, there are many reaction points at the time of coating film formation, dehydration condensation reaction advances rapidly, and a big stress remains in a coating film as a result. Moreover, the low molecular weight component (unreacted component) tends to bleed on the surface layer of the coating film p, and a curing reaction occurs in an environment exposed to rainwater or UV irradiation UV. As a result of the curing reaction, shrinkage stress due to volume shrinkage is generated in the coating film p, and a crack c reaching the base material b is generated (FIG. 1b).
[0019]
On the other hand, in a coating film prepared from a coating composition containing a component in which hydrolysis of alkoxide is completely completed, the bond between alkoxide and colloidal silica is sufficiently advanced to form a large molecule surrounding colloidal silica. For this reason, there are few reaction points, and the reaction gradually proceeds during the formation of the coating film, so that the residual stress is also reduced (FIG. 2a). Moreover, there is no bleeding of unreacted components on the coating film surface, and fine cracks fc are contained in the coating film. Therefore, the curing reaction does not proceed in an environment exposed to rainwater or ultraviolet irradiation, and even if there is a stress applied to the coating film, it is dispersed by fine cracks, so it does not grow to cracks reaching the substrate (Fig. 2b).
[0020]
The binding state by the hydrolysis and dehydration condensation reaction can be evaluated by gel filtration chromatography and evaluated by a molecular weight calculated from a calibration curve prepared using polystyrene as a standard substance. Specifically, after 20-fold dilution with an inorganic binder and tetrahydrofuran, and filtration through a 1 μm filter, gel filtration chromatography (HLC 8020: manufactured by Tosoh Corporation) using 1000/2000 Shoudex 801, 802 is used for the column. The molecular weight distribution was determined by an RI detector using tetrahydrofuran as a measurement solvent. When the condensation proceeds to a molecular weight of 300 or more and there are no low molecular weight components less than 300, the influence of excessive OH groups or low molecular weight components that bleed on the coating surface is suppressed. In particular, when the molecular weight distribution is controlled to a molecular weight distribution of 0 to 20% in molecular weight 300 to 500, 20 to 40% in molecular weight 500 to 1000, and 40 to 70% in molecular weight 1000 to 10,000, the effect of suppressing the influence of low molecular weight components is effective. Become.
[0021]
The solvent is composed of water in colloidal silica dispersion, condensed water of organohydroxysilane, alcohol generated by hydrolysis of organohydroxysilane, isopropanol, and ethylene glycol monobutyl ether. When at least 20% by mass of ethylene glycol monobutyl ether is added as a solvent for the inorganic binder, the storage stability of the inorganic binder is drastically improved, and a coating composition having excellent coating workability and film formability can be obtained. In conventional inorganic binders, storage stability deteriorates when 20% by mass or more of water is included, but in a system containing 20% by mass or more of ethylene glycol monobutyl ether, it is sufficient even if 20% by mass or more of water is included. Storage stability is maintained. In order to improve storage stability, the inorganic binder is preferably adjusted to pH: 4 to 5 using organic amines such as aqueous ammonia, triethanolamine, and dimethylethanolamine.
[0022]
The photocatalyst-dispersed toner is added to a horizontal mill in which anatase-type titania powder is added to a mixed solvent of isopropanol / ethylene glycol monobutyl ether to which organoalkoxysilane and water are added, and stirred with a stirrer, and then the filled beads are maintained in a stirred state. Prepare by injecting at a rate of 1 liter / min. If necessary, it is also possible to add colorants such as pigments and dyes, and additives such as thickeners.
The inorganic binder is a method of hydrolyzing the organoalkoxysilane added to the colloidal silica dispersion to form a partial condensate of organohydroxysilane and organohydroxysilane, and then diluting with a solvent, after diluting the colloidal silica dispersion with a solvent. It is prepared by a method of hydrolyzing by adding organoalkoxysilane. When the organoalkoxysilane is added to the colloidal silica and hydrolyzed, the liquid temperature is kept at 10 to 80 ° C., and the reaction is carried out with stirring at normal pressure for 1 to 24 hours. A part of the non-aqueous colloidal silica dispersion may be added later, followed by heating and reaction. In hydrolyzing the organoalkoxysilane, a small amount of a hydrolysis catalyst such as an inorganic acid or an organic acid can be added.
[0023]
The photocatalyst coating composition is prepared by further stirring while gradually adding the inorganic binder to the sufficiently stirred photocatalyst-dispersed toner. At this time, the photocatalyst-dispersed toner and the inorganic binder are mixed at a blending ratio of TiO 2 as a solid content of 5 to 80% by mass. In order to obtain sufficient photocatalytic activity, a TiO 2 content of 5% by mass or more is necessary, but if an excessive amount of TiO 2 exceeding 80% by mass is contained, the adhesion of the coating film decreases.
The prepared paint is applied to the pretreated substrate by spraying, dipping, flow coating, roll coating, screen printing, electrostatic coating, or the like. After coating, a coating film having excellent adhesion to the substrate is formed by heating at 80 to 130 ° C. for 1 to 30 minutes. The thickness of the coating film varies depending on the type and application of the base material and cannot be determined unconditionally, but is usually adjusted in the range of 1 to 30 μm. Base materials to which the photocatalytic coating composition is applied include ordinary steel, plated steel plate, stainless steel plate, aluminum, copper, brass and other metals, cement, concrete, tile, slate plate, glass, stone and the like. Depending on the heating temperature, it can also be applied to organic materials such as plastic.
[0024]
【Example】
Preparation of anatase-type titania powder dispersed toner 3% by weight of organoalkoxysilane and 0.3% by weight of water are added to a mixed solvent of isopropanol: 50% by weight, ethylene glycol monobutyl ether: 50% by weight, and further a particle size of 20 nm. Anatase type titania powder was added. The addition amount of the anatase type titania powder was set to a ratio of 40% by mass with respect to the entire coating material. A photocatalyst-dispersed toner was prepared by dispersing the mixture with a stirrer using a bead mill.
[0025]
Preparation of inorganic binder Water-based colloidal silica: 21.2 g (average particle size 5 to 20 nm, solid content 20 mass%, pH 3.0) and isopropanol colloidal silica 62.6 g (average particle size 5 to 20 nm, solid content 20 mass) %) Was added, and 13.9 g of methyltrimethoxysilane was added and stirred at 80 ° C. for 12 hours to complete the hydrolysis. Next, a mixed solvent of isopropanol: 33% by mass and ethylene glycol monobutyl ether: 67% by mass was added to the hydrolyzate, and ammonia water was further added to adjust the pH to 4.5.
The obtained photocatalyst-dispersed toner and inorganic binder were mixed and stirred at a ratio such that the TiO 2 content in the solid content was 40% by mass, and filtered using a 50 μm mesh to form a paint.
[0026]
A paint was spray-coated on the pretreated SUS304 stainless steel substrate and heated at 200 ° C. for 20 minutes to form a coating film having a thickness of 10 μm. For comparison, a paint prepared by mixing a water-free photocatalyst-dispersed toner with an inorganic binder (Comparative Example 1) and a paint obtained by mixing an inorganic binder having a molecular weight of less than 300 by adjusting the reaction time with the photocatalyst-dispersed toner A SUS304 stainless steel substrate was similarly coated using (Comparative Example 2).
[0027]
The dispersibility of the prepared photocatalyst coating composition, the peel resistance of the coating film, and the photocatalytic activity were evaluated by the following methods.
(1) Dispersibility of photocatalyst coating composition The photocatalyst-dispersed toner and the inorganic binder were mixed to form a coating material, and the aggregation state of TiO 2 particles was investigated after one day. Dispersibility with a coating composition in which no tabs of 5 μm or more are detected as ○, a coating composition in which no tabs of 10 μm or more are detected but 5-10 μm are detected is Δ, and a coating composition in which tabs of 10 μm or more are generated is × Evaluated.
[0028]
(2) Peeling resistance of the coating film The peeling resistance of the coating film was investigated by a sunshine weather test at 63 ° C., and the coating film in which peeling was not detected when 3000 hours passed from the start of the test, ○ The peel resistance was evaluated with x.
(3) Weight of salad oil remaining on the test piece after the salad oil was attached to the surface of the test piece with a photocatalytic activity adhesion amount of 0.2 mg / cm 2 on the coating film and irradiated with black light of 5 mW / cm 2 for 24 hours. Was measured, and the photocatalytic activity was evaluated using the weight reduction rate as the oil decomposition rate.
[0029]
As can be seen from the investigation results in Table 1, the coating composition obtained from the photocatalyst-dispersed toner to which organoalkoxysilane and water were added showed good dispersibility regardless of the molecular weight distribution of the inorganic binder. On the other hand, in the coating composition (Comparative Example 11) using the photocatalyst-dispersed toner not containing water, 5 to 10 μm was detected.
[0030]
Figure 0004456809
[0031]
Various coating compositions shown in Table 1 were spray-coated on a pre-treated SUS304 stainless steel substrate to form a coating film whose film thickness was adjusted according to the coating amount. Table 2 shows the results of examining the peel resistance and photocatalytic activity of the obtained coating film.
As is clear from Table 2, the coating film prepared from the coating composition using an inorganic binder containing a low molecular weight component having a molecular weight of less than 300 peeled off at a film thickness of 10 μm or more, and the coating film was thinned to a film thickness of 5 μm. In the film, the photocatalytic activity was extremely reduced. On the other hand, the coating film prepared from the coating composition prepared according to the present invention exhibited excellent photocatalytic activity without falling off even when the film thickness was as large as 15 μm.
[0032]
Figure 0004456809
[0033]
【The invention's effect】
As described above, when a coating composition prepared by mixing an inorganic binder with a controlled molecular weight distribution with a photocatalyst-dispersed toner is used, the shrinkage stress caused by volume shrinkage generated during hydrolysis of the organoalkoxysilane is dispersed. Since the coating film is formed on the surface of the article to be coated, excellent peeling resistance is exhibited even when thick coating is applied. In addition, a small amount of water is added to the photocatalyst-dispersed toner containing anatase-type titania powder and organoalkoxysilane to partially hydrolyze the organoalkoxysilane, and an alkoxy group hydrolysis product is added to the OH group on the anatase-type titania powder surface. Since the reaction is performed, aggregation and precipitation of the anatase-type titania powder is suppressed, dispersibility is improved, and a photocatalytic coating film that efficiently expresses the photocatalytic activity of the anatase-type titania powder is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the occurrence of defects in a coating composition (a) and a coating film (b) when an inorganic binder containing a low molecular weight component is used. FIG. 2 is used with an inorganic binder whose molecular weight distribution is appropriately controlled. Diagram explaining that defects are suppressed by coating composition (a) and coating film (b)
b: Base material p: Photocatalyst coating film c: Crack fc: Fine crack UV: Ultraviolet light or rainwater

Claims (4)

光触媒分散トナー,無機バインダを混合して得られる塗料組成物であり、
光触媒分散トナーは、イソプロパノール,エチレングリコールモノブチルエーテルの混合溶媒にアナターゼ型チタニア粉末,オルガノアルコキシシラン,水を0.1〜10質量%配合しており、
無機バインダは、オルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物30〜60質量%及びシリカ40〜70質量%の固形分を水/イソプロパノール/エチレングリコールモノブチルエーテルの混合溶液に分散させており、コロイダルシリカを核としてオルガノヒドロキシシラン及びオルガノヒドロキシシランの部分縮合物が結合した分子集合体がスチレン換算で分子量が300以上で、分子量300〜500が0〜20%,分子量500〜1000が20〜40%,分子量1000〜10000が40〜70%の分子量分布に管理されていることを特徴とする光触媒塗料組成物。
A coating composition obtained by mixing a photocatalyst-dispersed toner and an inorganic binder,
The photocatalyst-dispersed toner contains 0.1 to 10% by mass of anatase-type titania powder, organoalkoxysilane, and water in a mixed solvent of isopropanol and ethylene glycol monobutyl ether.
The inorganic binder is a colloidal silica in which a solid content of 30 to 60% by mass of organohydroxysilane and a partial condensate of organohydroxysilane and 40 to 70% by mass of silica is dispersed in a mixed solution of water / isopropanol / ethylene glycol monobutyl ether. The molecular aggregate in which the organohydroxysilane and the partial condensate of organohydroxysilane are bonded with the core as the core has a molecular weight of 300 or more in terms of styrene, a molecular weight of 300 to 500 is 0 to 20%, a molecular weight of 500 to 1000 is 20 to 40%, A photocatalyst coating composition characterized in that a molecular weight of 1,000 to 10,000 is controlled to a molecular weight distribution of 40 to 70%.
アナターゼ型チタニア粉末が粒径5〜200nmであり、塗料組成物の固形分に占める割合が5〜80質量%である請求項1記載の光触媒塗料組成物。  The photocatalyst coating composition according to claim 1, wherein the anatase-type titania powder has a particle size of 5 to 200 nm, and the proportion of the coating composition in the solid content is 5 to 80% by mass. 一般式R1Si(OR2)3〔R1は炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基,γ-メルカプトプロピル基又はクロロプロピル基、R2は炭素数1〜4のアルキル基又はアリール基〕で表されるオルガノアルコキシシランを使用する請求項1記載の光触媒塗料組成物。General formula R 1 Si (OR 2 ) 3 [R 1 is an alkyl group having 1 to 3 carbon atoms, vinyl group, 3,4-epoxycyclohexyl group, γ-glycidoxypropyl group, γ-mercaptopropyl group or chloropropyl The photocatalyst coating composition according to claim 1, wherein an organoalkoxysilane represented by the group R 2 is an alkyl group or aryl group having 1 to 4 carbon atoms is used. 一般式R1Si(OH)3〔R1は炭素数1〜3のアルキル基,ビニル基,3,4-エポキシシクロヘキシル基,γ-グリシドキシプロピル基,γ-メルカプトプロピル基又はクロロプロピル基〕で表されるオルガノヒドロキシシランを使用する請求項1記載の光触媒塗料組成物。General formula R 1 Si (OH) 3 [R 1 is an alkyl group having 1 to 3 carbon atoms, vinyl group, 3,4-epoxycyclohexyl group, γ-glycidoxypropyl group, γ-mercaptopropyl group or chloropropyl group The photocatalyst coating composition of Claim 1 using the organohydroxysilane represented by these.
JP2002375988A 2002-12-26 2002-12-26 Photocatalyst coating composition Expired - Fee Related JP4456809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375988A JP4456809B2 (en) 2002-12-26 2002-12-26 Photocatalyst coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375988A JP4456809B2 (en) 2002-12-26 2002-12-26 Photocatalyst coating composition

Publications (2)

Publication Number Publication Date
JP2004204091A JP2004204091A (en) 2004-07-22
JP4456809B2 true JP4456809B2 (en) 2010-04-28

Family

ID=32813558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375988A Expired - Fee Related JP4456809B2 (en) 2002-12-26 2002-12-26 Photocatalyst coating composition

Country Status (1)

Country Link
JP (1) JP4456809B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693424B2 (en) * 2003-08-15 2013-08-21 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Steel product coated with a chromium-free metal surface treatment agent
DE602004025394D1 (en) * 2004-12-28 2010-03-18 Council Scient Ind Res PROCESS FOR PHOTOCATALYTIC SELF-CLEANING OF STAIN
JP5452249B2 (en) * 2010-01-26 2014-03-26 パナソニック株式会社 Coating composition, coated product and coating method
CN104144989B (en) 2012-02-28 2017-05-17 蓝野钢铁有限公司 Protective coating compositions for photocatalytic layers on substrates
US10993441B2 (en) 2014-11-04 2021-05-04 Allied Bioscience, Inc. Antimicrobial coatings comprising organosilane homopolymers
US10258046B2 (en) 2014-11-04 2019-04-16 Allied Bioscience, Inc. Antimicrobial coatings comprising quaternary silanes
US10980236B2 (en) 2014-11-04 2021-04-20 Allied Bioscience, Inc. Broad spectrum antimicrobial coatings comprising combinations of organosilanes
EP3741816A1 (en) 2015-02-11 2020-11-25 Allied Bioscience, Inc Anti-microbial coating and method to form same

Also Published As

Publication number Publication date
JP2004204091A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3348635B2 (en) Coating composition, method for forming hydrophilic film, and hydrophilic film-coated article
KR101082721B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating comopsitions, and self-cleaning member
KR100310196B1 (en) Antifouling silicone emulsion coating composition, process for producing the same and antifouling article coated therewith
WO1999052986A1 (en) Method of forming hydrophilic inorganic coating film and inorganic coating composition
TW201111459A (en) Near-infrared shield coating agent which is curable with ordinary temperature and the near-infrared shield coating prepared using the same and the process for preparing the coating
JP4456809B2 (en) Photocatalyst coating composition
JP5336694B2 (en) Painted
JP4648667B2 (en) Aqueous hydrophilic treatment
JP2004204175A (en) Coating containing colored pigment particle and substrate with visible light-shading film
JP2002249705A (en) Photocatalytic coating composition
JP3424533B2 (en) Hydrophilic inorganic paint and hydrophilic paint using it
JP2003342526A (en) Self-cleaning aqueous coating composition and self- cleaning member
JP3430429B2 (en) Building materials
JP4820152B2 (en) Composite coating structure and painted exterior materials
JP4325076B2 (en) Method for forming coating film
JP3499525B2 (en) Photocatalytic coating composition
JP4352568B2 (en) Inorganic paint
JPH10245505A (en) Coating film resistant to rain flow mark, coating composition, method for forming coating film and coated article
JP3191600B2 (en) Stainless steel painted structure and manufacturing method thereof
JP2004346242A (en) Photocatalytic coating material composition
JP2000212473A (en) Coating composition
JP4227802B2 (en) Photocatalyst dispersed toner
JPH1161042A (en) Highly hydrophilic inorganic paint, painted product using same and application thereof
JPH09268261A (en) Coating material for preventing dispersion of broken piece
JPH0649412A (en) Coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees