JP4446527B2 - スキャンコンバータ及びそのパラメータ設定方法 - Google Patents

スキャンコンバータ及びそのパラメータ設定方法 Download PDF

Info

Publication number
JP4446527B2
JP4446527B2 JP30845599A JP30845599A JP4446527B2 JP 4446527 B2 JP4446527 B2 JP 4446527B2 JP 30845599 A JP30845599 A JP 30845599A JP 30845599 A JP30845599 A JP 30845599A JP 4446527 B2 JP4446527 B2 JP 4446527B2
Authority
JP
Japan
Prior art keywords
output
circuit
synchronization signal
horizontal synchronization
pixel data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30845599A
Other languages
English (en)
Other versions
JP2001125548A (ja
Inventor
靖久 丸毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MegaChips Corp
Original Assignee
MegaChips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MegaChips Corp filed Critical MegaChips Corp
Priority to JP30845599A priority Critical patent/JP4446527B2/ja
Publication of JP2001125548A publication Critical patent/JP2001125548A/ja
Application granted granted Critical
Publication of JP4446527B2 publication Critical patent/JP4446527B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Computer Display Output (AREA)
  • Television Systems (AREA)
  • Controls And Circuits For Display Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、任意の入力側画像表示方式の画像データが入力されて所定の出力側画像表示方式の表示装置に出力する際に、入力に係る画像データの入力側画像表示方式の水平同期周波数を出力側画像表示方式の画像データの同期周波数に適合するよう変換するスキャンコンバータ及びそのパラメータ設定方法に関する。
【0002】
【従来の技術】
一般的なコンピューティングシステムのディスプレー機器においては、用途や設置スペースの問題から、様々なサイズ及び様々な解像度のものが要求される。例えば、一定面積の表示画面中でマルチメディアソフト等の画像情報を大きく表示して楽しみたいような場合には640×480ドットの解像度を使用する一方、仕事のためにできるだけたくさんの情報を1画面で見通しよく表示したい場合や、肉眼での視認による疲れを軽減するためには、1280×1024ドットや1600×1200ドット等のできるだけ高い解像度で表示を行うことが望ましい。また、近年のコンピューティングシステムにおけるマルチメディア技術の発展や、デジタルテレビジョン放送サービスの開始に関連して、近い将来には家庭等でのコンピューティングシステムとテレビジョン放送との棲み分けがなくなる事態も予想されており、異なった複数種類の同期周波数の画像信号を相互に変換して、コンピューティングシステムとテレビジョン放送受像機との間など、異なる同期周波数の画像表示の整合を図ることが益々重要になりつつある。
【0003】
このように、異なった複数種類の同期周波数の画像信号を相互に変換する際のインターフェースとしては、通常はスキャンコンバータが使用される。
【0004】
一般に、スキャンコンバータは、図11の如く、入力元の機器から入力された画像データSinに応じて、水平同期周波数を変換した後に液晶表示ディスプレーまたはプラズマディスプレーといったフラットパネルディスプレー等の表示装置1に出力するようになっている。この際、例えば入力元の信号の表示方式としては、図12の如く、XGA、SVGA、VGA及びVTXTなど様々なものがあり、これらの方式における水平同期周波数(H)及び垂直同期周波数(V)は、これらの方式が開発された時点の技術水準等の要因によって図12のようにまちまちに設定されている。したがって、この様々な周波数の信号をディプレイ装置に同期させるべく調整するのがスキャンコンバータの主な機能である。
【0005】
このスキャンコンバータにおいては、図11の如く、RGB(赤、緑、青)信号、YUV(輝度成分、R−Y色差成分、B−Y色差成分)信号、またはYCrCb(ガンマ変換された輝度/色差分離表色系)信号といった所定の画像データが入力元の機器から入力されると、必要に応じて第1の画素処理部11で画素の間引き処理を行い、メモリコントローラ12を通じて1画面(フレーム)分の画像データをフレームメモリ13に蓄える。そして、再びメモリコントローラ12で画像データを読み出した後、必要に応じて第2の画素処理部14で画素の水増しを行い、YUV信号またはYCrCb信号として色形式変換部15に入力してRGB信号に変換する。そして、輝度及びコントラストを輝度・コントラスト調整部16で調整した後、表示装置毎に異なる色の調整変化の直線性をガンマ補正部17により補正し、表示色が少ない場合に色の近似補正をディザリング部18で行う。そして、所定のディスプレー調整表示をオンスクリーンディスプレー合成部19で画像合成して制御する。しかる後、出力調整部20により、表示装置1の表示デバイスのポート形式に対応して奇数番目の画素に対応する奇数ポートと偶数番目の画素に対応する偶数ポートのそれぞれに、24ビットのRGB信号を交互に出力する。これらの画像処理動作は、全てCPU21が所定のソフトウェアプログラム(ドライバデバイス)に従って実行される。
【0006】
ここで、スキャンコンバータには、少なくとも2個のPLL回路22,23が組み込まれている。一方のPLL回路22は、第1の画素処理部11で画像データを読み込んだ後メモリコントローラ12でフレームメモリ13に画像データを書き込むまでの同期をとることに使用される。また、他方のPLL回路23は、フレームメモリ13から画像データを読み出して表示装置1に出力するまでの動作同期をとることに使用される。即ち、メモリコントローラ12によりフレームメモリ13への画像データの書き込み動作は、一方のPLL回路22の発信周波数に対応して、入力元の機器からの信号に同期して行われる。一方、メモリコントローラ12がフレームメモリ13内の画像データを読み出す動作は、他方のPLL回路23の発信周波数に対応して、出力先の表示装置1の動作クロックに対応するように実行される。このように、CPU21での制御に基づいて別々の2個のPLL回路22,23が互いに異なる周波数の動作クロックを発信し、これに基づいてフレームメモリ13に対する画像データの読み書きを別々のクロック周波数で実行することで、入出力画像信号の水平同期周波数を容易に変更できるようになっている。
【0007】
【発明が解決しようとする課題】
上記したスキャンコンバータにおいて使用されるフレームメモリ13の容量は、最低でも、出力デバイス(即ち出力側の表示装置1)のサイズ以上のものが要求され、例えば1024×768ドットの画面の場合であれば、1024×768×24=18,874,368ビットの容量が必要となる。
【0008】
かかるフレームメモリ13は一般に高価であり、また、回路構成上の省スペース化の阻害原因ともなっていた。
【0009】
そこで1フレームの画素データの全てを格納するフレームメモリを使用するのではなく、一定のライン数の画素データを格納するだけのラインメモリを使用して、入力された画素データをラインメモリに順次書き込みながら、このラインメモリに格納された画素をFIFO(先入れ先出し)方式で読み出して表示装置1に出力する方法が提案されている(例えば、特願平10−147551号の特許出願参照)。これによれば、フレームバッファを省略して少容量で安価なラインメモリを使用すればよいため、スキャンコンバータを安価に構成できる利点がある。
【0010】
しかしながら、この提案例のように少容量のラインメモリを使用する場合、フレームバッファを使用する場合に比べて、ラインメモリに対する画素データの書込み速度と読み出し速度とを精度よく設定する必要がある。即ち、ラインメモリに対する画素データの書込み速度が読み出し速度より早すぎる場合は、その程度によってラインメモリにオーバーフローが発生してしまい、一部分の画素データについては読み出す以前に次の画素データが書き込まれてしまうため、表示画像中に乱れが生じる。逆に、ラインメモリに対する画素データの書込み速度が読み出し速度より遅すぎる場合は、その程度によってラインメモリにアンダーフローが発生してしまい、ラインメモリに書き込みが行われる以前の画素データが読み出されてしまうため、やはり表示画像中に乱れが生じてしまう。したがって、ラインメモリに対する画素データの書込み速度と読み出し速度との整合が極めて重要となる。
【0011】
そこで、この発明の課題は、フレームメモリに代えてラインメモリを使用することでスキャンコンバータを安価に構成するにあたって、そのラインメモリに対する画素データの書込み速度と読み出し速度との整合を効率良く行い得るスキャンコンバータ及びそのパラメータ設定方法を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決すべく、請求項1に記載の発明は、外部からの入力画像データ、入力水平同期信号及び入力垂直同期信号が入力されて、内部で生成した動作クロック信号に従って、所定の表示装置に適した方式の出力画像データ、出力水平同期信号及び出力垂直同期信号を出力するスキャンコンバータであって、動作タイミングの最小時間単位を規律するための動作クロック信号を生成するクロック生成器と、前記出力水平同期信号を前記クロック生成器から与えられた前記動作クロック信号のパルス周期の整数倍の周期に生成する出力水平同期信号発生回路と、外部から与えられた前記入力画像データについて一定ライン数の画素データを随時格納するラインメモリと、外部から入力された前記入力画像データの各画素データを前記ラインメモリに随時書き込む書き込み回路と、前記ラインメモリ内の前記画素データを随時読み出して前記出力画像データとして前記表示装置に出力する読み出し回路と、前記出力水平同期信号発生回路で生成された前記出力水平同期信号のうちの画像中の有効領域における実際の出力有効ライン数を認識し、当該実際の出力有効ライン数と、前記出力水平同期信号発生回路で規律された前記出力水平同期信号の周期に誤差がないものと仮定したときの理論出力有効ライン数とを比較判定する判定回路と、前記判定回路での判定結果に基づいて、前記書き込み回路で前記ラインメモリに書き込んだ後の前記読み出し回路での読み出し開始時点を決定し、この決定結果に基づいて前記書き込み回路の書き込み動作及び前記読み出し回路の読み出し動作を制御する制御部とを備え、前記制御部は、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数より大きい場合に、前記読み出し回路の読み出し開始時点を、前記書き込み回路で前記ラインメモリに書き込む前記画素データのデータ量が当該ラインメモリの最大記憶容量に至る以前であって、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量がゼロ以上となる時点に決定する第一処理と、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数未満である場合に、前記読み出し回路の読み出し開始時点を、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量が当該ラインメモリの最大記憶容量以下となる時点に決定する第二処理と、前記第一処理または前記第二処理により決定された読み出し開始時点に従って前記読み出し回路の読み出し開始制御を行う第三処理とを実行する機能を有するものである。
【0013】
請求項2に記載の発明は、前記制御部は、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数未満である場合に、前記実際の出力有効ライン数が前記理論出力有効ライン数より大きくなるまで前記出力水平同期信号に対して前記出力水平同期信号の周期を前記動作クロック信号のパルス周期ずつ短くするよう繰り返し調整指示し、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数より大きくなった時点で、前記第一処理を実行する一方、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数より大きい場合に、前記実際の出力有効ライン数が前記理論出力有効ライン数より少なくなるまで前記出力水平同期信号に対して前記出力水平同期信号の周期を前記動作クロック信号のパルス周期ずつ長くするよう繰り返し調整指示し、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数未満になった時点で、前記第二処理を実行するものである。
【0014】
請求項3に記載の発明は、所定のクロック生成器により、動作タイミングの最小時間単位を規律するための動作クロック信号を生成し、所定の出力水平同期信号発生回路において、前記クロック生成器から与えられた前記動作クロック信号のパルス周期の整数倍の周期の出力水平同期信号を生成し、外部から入力された入力画像データの各画素データを一定ライン数の容量を有するラインメモリに随時書き込み、前記出力水平同期信号に基づいて前記ラインメモリ内に随時書き込まれた前記画素データを随時読み出して出力画像データとして表示装置に出力するスキャンコンバータのパラメータ設定方法であって、前記出力水平同期信号発生回路により前記出力水平同期信号を予め設定する工程と、前記出力水平同期信号発生回路で生成された前記出力水平同期信号のうちの画像中の有効領域における実際の出力有効ライン数を認識する工程と、前記実際の出力有効ライン数と、前記出力水平同期信号発生回路で規律された前記出力水平同期信号の周期に誤差がないものと仮定したときの理論出力有効ライン数とを比較判定する工程と、前記実際の出力有効ライン数が前記理論出力有効ライン数より大きい場合に、前記読み出し回路の読み出し開始時点を、前記書き込み回路で前記ラインメモリに書き込む前記画素データのデータ量が当該ラインメモリの最大記憶容量に至る以前であって、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量がゼロ以上となる時点に決定する工程と、前記実際の出力有効ライン数が前記理論出力有効ライン数未満である場合に、前記読み出し回路の読み出し開始時点を、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量が当該ラインメモリの最大記憶容量以下となる時点に決定する工程と、前記読み出し回路の読み出し開始時点に従って前記読み出し回路の読み出し開始制御を行う工程とを備えるものである。
【0015】
【発明の実施の形態】
図1はこの発明の一の実施の形態のスキャンコンバータ30を示す図である。このスキャンコンバータは、例えばコンピューティングシステムやテレビジョン受像機等からの画像情報を表示するためのマルチディスプレイ等に予め組み込まれて設置されるものであって、図1の如く、入力元の機器から与えられた入力画像データの各画素データをラインメモリ内に順次に書き込み、さらにこのラインメモリ内の画素データをFIFO(先入れ先出し)方式で順次に読み出して、外部の表示装置31に適した解像度で出力するものであり、特にラインメモリへの画素データの書込み速度と読み出し速度とを適正に調整することで、ラインメモリでの画素データのオーバーフロー及びアンダーフローを効率よく防止するものであり、特に、内部で生成した動作クロック信号に基づいて出力水平同期信号を生成する際に、その周期に誤差がないものと仮定したときの画面中の理論出力有効ライン数と、実際の出力有効ライン数とを比較し、その結果により出力水平同期信号の周期を微調整することで、適正な画像出力を実施しようとするものである。
【0016】
ここで、図1に示した表示装置31としては、1024×768ドットに対応した液晶表示パネル(LCD)モニタが使用されているが、これ以外にも、陰極管等を使用した所謂デスクトップタイプのモニタ装置を適用してもよいことは勿論である。
【0017】
そして、このスキャンコンバータ30は、CPU(制御部)40と、発振器41と、CPU40の制御を受けて動作するメインチップ42が主要な構成要素となっており、このメインチップ42が発振器41から与えれる基本クロック信号に従って入力画像データを表示装置31に適した所望の解像度で出力するようになっている。
【0018】
具体的に、メインチップ42は、CPU40からの制御をレジスタ回路43を通じて受信するとともに、発振器41から与えられた基本クロック信号を受けて所定のPLL回路(クロック生成器)44が動作クロック信号を発生し、この動作クロック信号の動作タイミングでCPU40からの制御指示に従って動作するようになっており、外部から与えられた入力画像データの各画素データを随時格納するラインメモリ45と、外部から入力された入力クロック(CLK)のパルスタイミングに従って入力画像データの各画素データをラインメモリ45に書き込む書き込み回路46と、ラインメモリ45内の各画素データを読み出して出力画像データとしてFIFO方式で表示装置31に出力する読み出し回路47と、外部から入力画像データに同期して与えられる入力垂直同期信号Vsync0及び入力水平同期信号Hsync0を受信してその同期タイミングを計測する入力計測回路48と、入力水平同期信号Hsync0とは別に表示装置31に適した所望の解像度の出力水平同期信号Hsync1を出力する出力水平同期信号発生回路49と、この出力水平同期信号発生回路49から出力された出力水平同期信号Hsync1と入力水平同期信号Hsync0に基づいて入出力の画像データの速度差を判定する判定回路50とを備える。
【0019】
PLL回路44は、発振器41から与えられた基本クロックについて、CPU40からレジスタ回路43を通じて設定された分周比で動作クロック信号を生成するようになっている。尚、この動作クロック信号は、メインチップ42の各部の動作を行う際の最小時間単位を規律するものであり、また、表示装置31に出力画像データ、出力垂直同期信号Vsync1及び出力水平同期信号Hsync1を送信する際の各信号パルスの最小単位を規律するものである。ただし、図1において、PLL回路44から各部への信号線は簡略のため図示省略している。
【0020】
ラインメモリ45としては、3〜5ライン分の画素データを随時格納できる容量を有したものが使用される。
【0021】
書き込み回路46は、ラインメモリ45に各画素データの順次書き込みを行うための書き込み制御信号を出力し、この書き込み制御信号に従って外部から与えられた入力画像データの各画素データをラインメモリ45に書き込むようになっている。
【0022】
読み出し回路47は、動作クロック信号のパルス周期を基準としてラインメモリ45から画素データの順次読み出しを行うための読み出し制御信号を生成しており、この読み出し制御信号と、出力水平同期信号発生回路49で生成された出力水平同期信号Hsync1に従って、ラインメモリ45内の各画素データを読み出し、CPU40からレジスタ回路43を通じて指示されたタイミングで出力画像データとして表示装置31に出力するようになっている。この際、メインチップ42内の図示しない所定の回路またはCPU40によって、画素補間や間引き処理等の所定の必要な処理を行い、その処理の結果が読み出し回路47での処理に反映されるようになっている。
【0023】
入力計測回路48は、PLL回路44で生成された動作クロック信号のパルスタイミングで、入力水平同期信号Hsync0の1周期中の動作クロック信号のパルス数と、入力垂直同期信号Vsync0の1周期中の入力垂直同期信号Vsync0のパルス数をカウントし、そのカウント結果をレジスタ回路43を通じてCPU40に伝達するようになっている。
【0024】
出力水平同期信号発生回路49は、レジスタ回路43を通じてCPU40から与えられた周期設定で出力水平同期信号Hsync1を生成し、これを表示装置31、読み出し回路47及び判定回路50に出力するようになっており、特に、後述するように、CPU40の制御に基づいて、出力水平同期信号Hsync1の1周期中における動作クロック信号のクロック数を増減調整して周期設定できるようになっている。
【0025】
判定回路50は、CPU40からレジスタ回路43を通じて解像度の設定が予め入力されるようになっており、外部から入力された入力水平同期信号Hsync0に基づいて、CPU40によって設定された解像度に応じて入力画像データの垂直帰線期間等の無効領域を除いた有効領域として出力すべきライン数(以下、「理論出力有効ライン数」と称す)を設定する機能を有している。また、この判定回路50は、出力水平同期信号発生回路49で生成された出力水平同期信号Hsync1をカウントし、入力画像データの垂直帰線期間等の無効領域を除いた有効領域の最後のタイミングで、その有効領域内の出力水平同期信号Hsync1のパルス数(実際の出力ライン数)と、理論出力有効ライン数とを比較判定して、その大小関係をレジスタ回路43を通じてCPU40に伝達するようになっている。
【0026】
尚、判定回路50で使用される理論出力有効ライン数は、外部から与えられてくる入力水平同期信号Hsync0の中から有効領域のみについてのパルスをカウントし、さらに表示装置31に表示したい解像度に応じて比例演算して決定されるもので、有効領域における画像データの入出力の速度差がない場合、即ち、ライン数である入力水平同期信号Hsync0と出力水平同期信号Hsync1とが動作クロック単位で整合がとれている場合には、この理論出力有効ライン数が実際に出力される有効領域のライン数に等しくなるはずである。これにも拘わらず、判定回路50が上述のような比較判定を行うのは、次の理由による。
【0027】
即ち、メインチップ42内部のPLL回路44の個体差による分解能によっては、このPLL回路44からの動作クロック信号に基づいて出力水平同期信号発生回路49で生成された出力水平同期信号Hsync1が、外部から与えられる入力クロック(CLK)及び入力水平同期信号Hsync0に対して必ずしも整合するとは限らず、むしろ微小なレベルの誤差が生じるのが常であるため、外部からの入力クロック及び入力水平同期信号Hsync0に同期して入力画像データが書き込み回路46に与えられ、またPLL回路44の動作クロック信号に同期した出力水平同期信号Hsync1に従って読み出し回路47がラインメモリ45内の画素データを読み出した場合に、ラインメモリ45に対する画素データの書き込み速度と読み出し速度とが異なってしまい、その程度によってはラインメモリ45のオーバーフローまたはアンダーフローが生じることがあるため、これらの事態を未然に判定回路50で予測判定してCPU40に伝達するためである。
【0028】
CPU40は、図示しないROM等の記憶装置内に予め格納されたソフトウェアプログラムに従って動作する機能部品であって、メインチップ42内の各部の動作についしての指令を与える機能を有している。特に、CPU40は、入力画像データの解像度に応じて、出力水平同期信号Hsync1の1周期中の動作クロック信号のパルス数や出力垂直同期信号Vsync1の1周期内の出力画像データ中の有効領域におけるライン数(出力水平同期信号Hsync1の個数)を設定し、かかる設定に対応して出力水平同期信号発生回路49の出力水平同期信号Hsync1の単位パルスの長さ(クロック数)を設定した後、上記した判定回路50での判定結果をレジスタ回路43を通じて読み取り、その判定結果に基づいて出力水平同期信号発生回路49で発生する出力水平同期信号Hsync1の単位パルスの長さ(クロック数)を変更して読み出し回路47での読み出しタイミングを変更調整する機能を備えている。
【0029】
この場合のCPU40の動作手順を説明する。
【0030】
まず、図2のように、入力クロックの1周期当たりの時間長さを「idclk」とし、入力水平同期信号Hsync0の1周期中の入力クロックの個数を「ihtot」とする。また、図3のように、入力計測回路48でカウントされた入力垂直同期信号Vsync0の1周期内の入力画像データ中の有効領域におけるライン数(入力水平同期信号Hsync0の個数)を「ivde」とする。さらに、図4のように、PLL回路44で生成された動作クロック信号の1周期当たりの時間長さを「odclk」とし、出力水平同期信号Hsync1の1周期中の動作クロック信号のパルス数を「ohtot」とする。さらにまた、図5のように、出力垂直同期信号Vsync1の1周期内の出力画像データ中の有効領域におけるライン数(出力水平同期信号Hsync1の個数)を「ovde」とする。
【0031】
尚、上記の「idclk」、「ivde」及び「ihtot」は、入力計測回路48で計測された入力垂直同期信号Vsync0及び入力水平同期信号Hsync0の各カウント数に基づいて認識される入力画像データの入力解像度に応じてCPU40が決定するものであり、また、「odclk」及び「ovde」は、出力側の表示装置31で表示したい解像度に応じてCPU40が決定するものである。
【0032】
これらの各変数「idclk」、「ihtot」、「ivde」、「odclk」及び「ovde」を用いて、入力画像データと出力画像データの同期をとるように、図6中のステップS01において、出力側のパラメータ「ohtot」を設定する。
【0033】
即ち、CPU40は、スキャンコンバータの初期動作設定において、まず次の(1)式の値を満たすようにパラメータ「ohtot」を決定し、これをレジスタ回路43を通じて出力水平同期信号発生回路49に指示を与え、「ohtot」を周期とする出力水平同期信号Hsync1を生成するよう出力水平同期信号発生回路49を制御する。
【0034】
【数1】
Figure 0004446527
【0035】
また同時に、入力垂直同期信号Vsync0の1周期中の総ライン数(入力水平同期信号Hsync0の個数)を「ivtot」とし、出力垂直同期信号Vsync1の1周期中の総ライン数(出力水平同期信号Hsync1の個数)を「ovtot」とし、次の(2)式を満たすようにパラメータ「ohtot」を決定し、これをレジスタ回路43を通じて出力水平同期信号発生回路49に指示を与え、「ohtot」を周期とする出力水平同期信号Hsync1を生成するよう出力水平同期信号発生回路49を制御する。
【0036】
【数2】
Figure 0004446527
【0037】
尚、(1)式と(2)式は互いに異なった数式として与えられ、このそれぞれの数式を満たすように「ohtot」が決定されるが、理論的にはパラメータ「ohtot」はこれらの(1)式及び(2)式を同時に満たすような値として現れるものである。
【0038】
尚、これらの設定と同時に、CPU40は、入力水平同期信号Hsync0をカウントし、表示装置31に表示したい解像度に応じて比例演算して、その演算結果を判定回路50に伝達しておく。
【0039】
ところで、スキャンコンバータにおいては、メインチップ42内部のPLL回路44の個体差による分解能によって、このPLL回路44からの動作クロック信号に基づいて出力水平同期信号発生回路49で生成された出力水平同期信号Hsync1が、外部から与えられる入力クロック(CLK)に対して必ずしも整合するとは限らず、むしろ微小なレベルの誤差が生じるのが常である。例えば、図7は、理想的な状態が実現した場合の入力水平同期信号Hsync0と出力水平同期信号Hsync1の関係を示すタイミングチャートである。(1)式によって設定される状態が理論値通り実現するとすれば図7の状態が実現する可能性があるが、実際には、上述の通り、PLL回路44の出力する動作クロック信号の周期が理論値通りに実現されず、図8のように入力水平同期信号Hsync0と出力水平同期信号Hsync1とが非同期となるのが殆どである。このため、ステップS02以降において、この非同期の状態を同期状態に補正する作業を行う。
【0040】
具体的に、CPU40は、図6中のステップS02において、入力計測回路48での入力水平同期信号Hsync0のカウント結果に基づき、次々と入力されてくる有効ラインが入力垂直同期信号Vsync0の1周期内の入力画像データ中の有効領域におけるライン数(入力水平同期信号Hsync0の個数)「ivde」の最後に達しているかどうかを確認する。そして、「ivde」の最後に達するまで、外部からの入力有効ラインを受け入れ続け、その最後に達した時点でステップS03に進む。
【0041】
ステップS03では、判定回路50が出力水平同期信号発生回路49で生成された出力水平同期信号Hsync1をカウントし、有効領域内の出力水平同期信号Hsync1のパルス数(実際の出力ライン数)を認識する。また、これと平行して、CPU40内で演算された解像度の入出力比率に応じて比例演算等の所定の演算動作等を行って理論出力有効ライン数ovdeを認識する。そして、実際の出力ライン数と理論出力有効ライン数ovdeとを比較判定して、その大小関係をレジスタ回路43を通じてCPU40に伝達する。この際、CPU40は、実際に出力された出力有効ライン数が理論出力有効ライン数ovde以上であったときには、ステップS04に進む一方、実際に出力された出力有効ライン数が理論出力有効ライン数ovde未満であったときには、ステップS07に進むことになる。
【0042】
ステップS04に進んだ場合は、CPU40がレジスタ回路43を通じて出力水平同期信号発生回路49に対して指示信号を出力し、出力水平同期信号Hsync1の1周期における動作クロック信号のパルス数「ohtot」を1クロックだけ加算し、出力水平同期信号Hsync1の周期を増大させる。この出力水平同期信号Hsync1は、表示装置31に出力されるとともに読み出し回路47に与えられて出力画像データの送信タイミングを規律することになり、ステップS04の処理によってラインメモリ45からの画素データの読み出し速度をステップS03の時点より遅くなるよう調整したことになる。
【0043】
そして、判定回路50は、ステップS05において、出力水平同期信号発生回路49で生成された出力水平同期信号Hsync1を再びカウントし、この状態での有効領域内の出力水平同期信号Hsync1のパルス数(実際の出力ライン数)と理論出力有効ライン数ovdeとを比較判定して、その大小関係をレジスタ回路43を通じてCPU40に伝達する。CPU40は、実際に出力された出力有効ライン数が理論出力有効ライン数ovde以上である限り、再びステップS04の処理を繰り返した後、さらにステップS05の判定を繰り返す。そして、実際に出力された出力有効ライン数が理論出力有効ライン数ovde未満になった時点で、ステップS06に進むことになる。この時点では、出力水平同期信号Hsync1を最小単位(即ち、動作クロック信号の1パルス)ずつ増加して出力画像データのタイミングを少しずつ遅くなるよう調整し、実際に出力された出力有効ライン数が理論出力有効ライン数ovde未満となった転換点の状態になっており、よって実際に出力された出力有効ライン数と理論出力有効ライン数ovdeとが極めて近似した状態になっていることを意味する。そして、この時点で、ラインメモリ45から画素データを読み出す速度は、書き込み回路46で画素データを書き込む速度より僅かに遅く設定されていることになる。
【0044】
一方、ステップS03からステップS07に進んだ場合は、CPU40がレジスタ回路43を通じて出力水平同期信号発生回路49に対して指示信号を出力し、出力水平同期信号Hsync1の1周期における動作クロック信号のパルス数「ohtot」を1クロックだけ減算して出力水平同期信号Hsync1の周期を減少させる。これにより、ラインメモリ45からの画素データの読み出し速度は、ステップS03の時点より速く調整されていることになる。
【0045】
そして、判定回路50は、ステップS08において、出力水平同期信号発生回路49で生成された出力水平同期信号Hsync1を再びカウントし、この状態における有効領域内の出力水平同期信号Hsync1のパルス数(実際の出力ライン数)と理論出力有効ライン数ovdeとを比較判定して、その大小関係をレジスタ回路43を通じてCPU40に伝達する。CPU40は、実際に出力された出力有効ライン数が理論出力有効ライン数ovde未満である限り、再びステップS07の処理を実行し、さらにステップS08の判定を繰り返す。そして、実際に出力された出力有効ライン数が理論出力有効ライン数ovde以上になった時点で、ステップS06に進む。この時点では、出力水平同期信号Hsync1を最小単位(即ち、動作クロック信号の1パルス)ずつ減少して出力画像データのタイミングを少しずつ速くなるよう調整し、実際に出力された出力有効ライン数が理論出力有効ライン数ovde以上となった転換点の状態になっており、よって実際に出力された出力有効ライン数と理論出力有効ライン数ovdeとが極めて近似した状態になっていることを意味する。そして、この時点で、ラインメモリ45から画素データを読み出す速度は、書き込み回路46で画素データを書き込む速度と同等かあるいはこれより僅かに速く設定されていることになる。
【0046】
このようなステップS05またはステップS08での判定を経て、実際に出力された出力有効ライン数と理論出力有効ライン数ovdeとが極めて近似した状態で、ステップS06に移行する。このステップS06では、ラインメモリ45から読み出し回路47で出力画像データの読み出しを行う際に、各画素データを順次読み出すタイミングが、書き込み回路46でラインメモリ45に画素データを書き込むタイミングに対して追い越しが起きない読み出し開始位置を求める。
【0047】
例えば、図9は、読み出し回路47でラインメモリ45内の画素データを読み出す速度が書き込み回路46で画素データを書き込む速度より速い場合において、時間tの経過に対するラインメモリ45内の残存画素データ量の変化を示す図である。尚、実際には、ラインメモリ45に書き込まれたデータは、その後に読み出しが行われてもその時点ですぐにその画素データを消失するわけではなく、次に別の画素データが上書きされるまで保持されるが、ここでは説明の便宜上、読み出しが行われた時点で読み出された画素データが消失するものとしてし図示している。後述の図10においても同様である。
【0048】
この場合、図9中のP(t0)の時点で書き込み回路46からラインメモリ45に画素データの書き込みを開始し、P(t2)の時点でその書き込みを終了するものとする。また、P(t1)の時点で、読み出し回路47によりラインメモリ45内の画素データを読み出しを開始し、P(t3)の時点でその読み出しを終了するものとする。この場合、時点P(t0)から時点P(t1)までは画素データの読み出しが行われず書き込みだけが行われるため、ラインメモリ45内の画素データ量はその書き込み速度の通りに増加していく。そして、時点P(t1)から時点P(t2)までは、読み出し速度が書き込む速度より速いため、ラインメモリ45の画素データ量は次第に減少していく。そして、時点P(t2)で書き込みが終了した後は、読み出し速度の通りに画素データ量が減少する。ところで、ラインメモリ45の最大記憶容量は一定であるため、このラインメモリ45の最大記憶容量を超えて画素データを記憶することは不可能である。このラインメモリ45の最大記憶容量をPmaxとすると、この最大記憶容量Pmaxを越えて画素データの書き込みを行おうとすると、ラインメモリ45にオーバーフローが発生することになる。即ち、図9のように読み出し速度が書き込み速度より速い場合は、読み出し開始時点P(t1)での残存画素データ量P0がラインメモリ45の最大記憶容量Pmax以下でなければならない。
【0049】
同時に、図9の場合は、画素データの書き込み終了時点P(t2)の残存画素データ量P1がPmin(=0)未満になってしまうと、ラインメモリ45にアンダーフローが発生してしまうため、P1はPmin(=0)以上でなければならない。
【0050】
また、図10は、読み出し回路47でラインメモリ45内の画素データを読み出す速度が書き込み回路46で画素データを書き込む速度より遅い場合において、時間tの経過に対するラインメモリ45内の残存画素データ量の変化を示す図である。図10においても、図9と同様に、P(t0)は画素データの書き込み開始時点、P(t1)は読み出し開始時点、P(t2)は画素データの書き込み終了時点、P(t3)は読み出し終了時点をそれぞれ示している。この場合、時点P(t0)から時点P(t1)までは画素データの読み出しが行われず書き込みだけが行われるため、ラインメモリ45内の画素データ量はその書き込み速度の通りに増加していく。そして、時点P(t1)から時点P(t2)までは、読み出し速度が書き込む速度より遅いため、ラインメモリ45の画素データ量は次第に増加していく。そして、時点P(t2)で書き込みが終了した後は、読み出し速度の通りに画素データ量が減少する。この場合、画素データの書き込み終了時点P(t2)での残存画素データ量P1がラインメモリ45の最大記憶容量Pmax以下でなければならず、また同時に、図9の場合は、画素データの読み出し開始時点P(t1)の残存画素データ量P0がPmin(=0)以上でなければならない。
【0051】
これらのことをまとめると、次の(3)式のようになる。
【0052】
【数3】
Figure 0004446527
【0053】
即ち、ラインメモリ45においてオーバーフロー及びアンダーフローを発生させないようにするためには、P0とP1のうちの大きい方(Max(P0,P1))がPmax以下であり、且つ、P0とP1のうちの小さい方(Min(P0,P1))がPmin以上である必要がある。
【0054】
ここで、ラインメモリ45に対する書き込み回路46の画素データの書き込み速度をαとし、読み出し回路47によるラインメモリ45からの画素データの読み出し速度をβとすると、まずβ=>αの場合(即ち、ステップS08を経てステップS06に進んだ場合)は、読み出し開始時点P(t1)及び書き込み終了時点P(t2)は、図9より、次の(4)式を満たし、且つ(5)式を満たしている必要がある。
【0055】
【数4】
Figure 0004446527
【0056】
【数5】
Figure 0004446527
【0057】
尚、ラインメモリ45に書き込むべき入力画像データの画素データ量と、書き込み回路46の画素データの書き込み速度αが与えられた場合には、読み出し開始時点P(t1)が決定されると、これらの値に基づいて(5)式中の書き込み終了時点P(t2)が必然的に決定されるものである。したがって、CPU40は、上記(4)式を満たす読み出し開始時点P(t1)の許容範囲を認識し、且つ、読み出し開始時点P(t1)の調整によって決定される書き込み終了時点P(t2)を考慮しながら上記及び(5)式を満たす読み出し開始時点P(t1)の許容範囲を認識し、その認識された許容範囲内で読み出し開始時点を決定して読み出し回路47の画素データの読み出し開始についての制御を行う。尚、この(4)式及び(5)式を満たす読み出し開始時点P(t1)が一定の範囲を有するものであるため、実際に読み出し開始時点P(t1)を一意に決定する場合は、導き出された範囲中の平均の時点またはその平均の時点に近い中間時点を採用すればよい。
【0058】
一方、β<αの場合(即ち、ステップS05を経てステップS06に進んだ場合)は、読み出し開始時点P(t1)及び書き込み終了時点P(t2)は、次の(6)式を満たしている必要がある。
【0059】
【数6】
Figure 0004446527
【0060】
したがって、CPU40は、読み出し開始時点P(t1)の調整によって決定される書き込み終了時点P(t2)を考慮しながら、上記(6)式を満たす読み出し開始時点P(t1)の許容範囲を認識し、その許容範囲内で読み出し開始時点P(t1)を一意に決定して読み出し回路47の画素データの読み出し開始制御を行う。
【0061】
以上の動作により、従来のフレームバッファより小容量のラインメモリ45を使用しつつ、そのオーバーフロー及びアンダーフローを効率よく防止しながら、入力画像データを出力画像データに変換して表示装置31に出力できる。したがって、安価な構成で画像の乱れを十分に防止できるスキャンコンバータを提供できる。
【0062】
【発明の効果】
請求項1及び請求項3に記載の発明によれば、制御部は、判定回路での判定結果において実際の出力有効ライン数が理論出力有効ライン数より大きい場合には、ラインメモリ内の画素データの読み出し速度が書き込み速度より速いことを意味しているため、読み出し回路の読み出し開始時点を、書き込み回路でラインメモリに書き込む画素データのデータ量が当該ラインメモリの最大記憶容量に至る以前であって、読み出し回路での読み出し継続中に書き込み回路での書き込みが終了した状態でラインメモリ内の画素データの未読み出しデータ量がゼロ以上となる時点に決定することで、ラインメモリに対する画素データのオーバーフロー及びアンダーフローを防止する一方、判定回路での判定結果において実際の出力有効ライン数が理論出力有効ライン数未満である場合には、ラインメモリ内の画素データの読み出し速度が書き込み速度より遅いことを意味しているため、読み出し回路の読み出し開始時点を、読み出し回路での読み出し継続中に書き込み回路での書き込みが終了した状態でラインメモリ内の画素データの未読み出しデータ量が当該ラインメモリの最大記憶容量以下となる時点に決定することで、ラインメモリでの画素データのオーバーフローを防止するようにできる。尚、ラインメモリ内の画素データの読み出し速度が書き込み速度より遅い場合には、読み出し開始時点が書き込み開始時点以後である限り、アンダーフローになる心配は考慮する必要がない。したがって、従来のような大容量のフレームバッファを使用しなくても、安価で且つ必要面積の少なくて済む小容量のラインメモリを使用するだけで、オーバーフロー及びアンダーフローの問題が生じることなくラインメモリから画素データを読み出して出力画像データを出力できる。
【0063】
請求項2に記載の発明によれば、制御部が、判定回路での判定結果において実際の出力有効ライン数が理論出力有効ライン数未満である場合に、実際の出力有効ライン数が理論出力有効ライン数より大きくなるまで出力水平同期信号に対して出力水平同期信号の周期を動作クロック信号のパルス周期ずつ短くするよう繰り返し調整指示し、あるいは、判定回路での判定結果において実際の出力有効ライン数が理論出力有効ライン数より大きい場合に、実際の出力有効ライン数が理論出力有効ライン数より少なくなるまで出力水平同期信号に対して出力水平同期信号の周期を動作クロック信号のパルス周期ずつ長くするよう繰り返し調整指示し、実際の出力有効ライン数と理論出力有効ライン数との大小関係が転換した時点、即ち、実際の出力有効ライン数と理論出力有効ライン数とが極めて近似した状態になったものと確認できた時点で、請求項1に記載したように読み出し回路の読み出し開始時点を決定し、ラインメモリに対する画素データのオーバーフロー及びアンダーフローを防止するようにしているので、ラインメモリに対する画素データの読み出し速度と書き込み速度の差をある程度調整してから請求項1における読み出し開始時点の決定を実行できる。したがって、読み出し開始時点の決定を確実に且つ効率よく行うことが可能となる。
【図面の簡単な説明】
【図1】この発明の一の実施の形態のスキャンコンバータ及び表示装置を示すブロック図である。
【図2】一般的な入力クロックと入力水平同期信号と入力垂直同期信号の関係を示すタイミングチャートである。
【図3】一般的な入力画像データの無効領域及び有効領域と入力水平同期信号と入力垂直同期信号との関係を示すタイミングチャートである。
【図4】一般的な出力クロックと出力水平同期信号と出力垂直同期信号の関係を示すタイミングチャートである。
【図5】一般的な出力画像データの無効領域及び有効領域と出力水平同期信号と出力垂直同期信号との関係を示すタイミングチャートである。
【図6】このスキャンコンバータの動作を示すフローチャートである。
【図7】理想的な状態が実現した場合の入力水平同期信号と出力水平同期信号の関係を示すタイミングチャートである。
【図8】スキャンコンバータ内部のPLL回路の個体差により入力水平同期信号と出力水平同期信号とが非同期となった状態を示すタイミングチャートである。
【図9】読み出し回路でラインメモリ内の画素データを読み出す速度が書き込み回路で画素データを書き込む速度より速い場合において、時間の経過に対するラインメモリ内の残存画素データ量の変化を示す図である。
【図10】読み出し回路でラインメモリ内の画素データを読み出す速度が書き込み回路で画素データを書き込む速度より遅い場合において、時間の経過に対するラインメモリ内の残存画素データ量の変化を示す図である。
【図11】従来のスキャンコンバータを示すブロック図である。
【図12】一般的な各画面表示方式の水平同期周波数と垂直同期周波数との対応関係を示す図である。
【符号の説明】
30 スキャンコンバータ
31 表示装置
40 CPU
41 発振器
42 メインチップ
43 レジスタ回路
44 PLL回路
45 ラインメモリ
46 書き込み回路
47 読み出し回路
48 入力計測回路
49 出力水平同期信号発生回路
50 判定回路

Claims (3)

  1. 外部からの入力画像データ、入力水平同期信号及び入力垂直同期信号が入力されて、内部で生成した動作クロック信号に従って、所定の表示装置に適した方式の出力画像データ、出力水平同期信号及び出力垂直同期信号を出力するスキャンコンバータであって、
    動作タイミングの最小時間単位を規律するための動作クロック信号を生成するクロック生成器と、
    前記出力水平同期信号を前記クロック生成器から与えられた前記動作クロック信号のパルス周期の整数倍の周期に生成する出力水平同期信号発生回路と、
    外部から与えられた前記入力画像データについて一定ライン数の画素データを随時格納するラインメモリと、
    外部から入力された前記入力画像データの各画素データを前記ラインメモリに随時書き込む書き込み回路と、
    前記ラインメモリ内の前記画素データを随時読み出して前記出力画像データとして前記表示装置に出力する読み出し回路と、
    前記出力水平同期信号発生回路で生成された前記出力水平同期信号のうちの画像中の有効領域における実際の出力有効ライン数を認識し、当該実際の出力有効ライン数と、前記出力水平同期信号発生回路で規律された前記出力水平同期信号の周期に誤差がないものと仮定したときの理論出力有効ライン数とを比較判定する判定回路と、
    前記判定回路での判定結果に基づいて、前記書き込み回路で前記ラインメモリに書き込んだ後の前記読み出し回路での読み出し開始時点を決定し、この決定結果に基づいて前記書き込み回路の書き込み動作及び前記読み出し回路の読み出し動作を制御する制御部と
    を備え、
    前記制御部は、
    前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数より大きい場合に、前記読み出し回路の読み出し開始時点を、前記書き込み回路で前記ラインメモリに書き込む前記画素データのデータ量が当該ラインメモリの最大記憶容量に至る以前であって、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量がゼロ以上となる時点に決定する第一処理と、
    前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数未満である場合に、前記読み出し回路の読み出し開始時点を、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量が当該ラインメモリの最大記憶容量以下となる時点に決定する第二処理と、
    前記第一処理または前記第二処理により決定された読み出し開始時点に従って前記読み出し回路の読み出し開始制御を行う第三処理と
    を実行する機能を有するスキャンコンバータ。
  2. 請求項1に記載のスキャンコンバータであって、
    前記制御部は、
    前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数未満である場合に、前記実際の出力有効ライン数が前記理論出力有効ライン数より大きくなるまで前記出力水平同期信号に対して前記出力水平同期信号の周期を前記動作クロック信号のパルス周期ずつ短くするよう繰り返し調整指示し、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数より大きくなった時点で、前記第一処理を実行する一方、
    前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数より大きい場合に、前記実際の出力有効ライン数が前記理論出力有効ライン数より少なくなるまで前記出力水平同期信号に対して前記出力水平同期信号の周期を前記動作クロック信号のパルス周期ずつ長くするよう繰り返し調整指示し、前記判定回路での判定結果において前記実際の出力有効ライン数が前記理論出力有効ライン数未満になった時点で、前記第二処理を実行することを特徴とするスキャンコンバータ。
  3. 所定のクロック生成器により、動作タイミングの最小時間単位を規律するための動作クロック信号を生成し、所定の出力水平同期信号発生回路において、前記クロック生成器から与えられた前記動作クロック信号のパルス周期の整数倍の周期の出力水平同期信号を生成し、外部から入力された入力画像データの各画素データを一定ライン数の容量を有するラインメモリに随時書き込み、前記出力水平同期信号に基づいて前記ラインメモリ内に随時書き込まれた前記画素データを随時読み出して出力画像データとして表示装置に出力するスキャンコンバータのパラメータ設定方法であって、
    前記出力水平同期信号発生回路により前記出力水平同期信号を予め設定する工程と、
    前記出力水平同期信号発生回路で生成された前記出力水平同期信号のうちの画像中の有効領域における実際の出力有効ライン数を認識する工程と、
    前記実際の出力有効ライン数と、前記出力水平同期信号発生回路で規律された前記出力水平同期信号の周期に誤差がないものと仮定したときの理論出力有効ライン数とを比較判定する工程と、
    前記実際の出力有効ライン数が前記理論出力有効ライン数より大きい場合に、前記読み出し回路の読み出し開始時点を、前記書き込み回路で前記ラインメモリに書き込む前記画素データのデータ量が当該ラインメモリの最大記憶容量に至る以前であって、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量がゼロ以上となる時点に決定する工程と、
    前記実際の出力有効ライン数が前記理論出力有効ライン数未満である場合に、前記読み出し回路の読み出し開始時点を、前記読み出し回路での読み出し継続中に前記書き込み回路での書き込みが終了した状態でラインメモリ内の前記画素データの未読み出しデータ量が当該ラインメモリの最大記憶容量以下となる時点に決定する工程と、
    前記読み出し回路の読み出し開始時点に従って前記読み出し回路の読み出し開始制御を行う工程と
    を備えるスキャンコンバータのパラメータ設定方法。
JP30845599A 1999-10-29 1999-10-29 スキャンコンバータ及びそのパラメータ設定方法 Expired - Fee Related JP4446527B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30845599A JP4446527B2 (ja) 1999-10-29 1999-10-29 スキャンコンバータ及びそのパラメータ設定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30845599A JP4446527B2 (ja) 1999-10-29 1999-10-29 スキャンコンバータ及びそのパラメータ設定方法

Publications (2)

Publication Number Publication Date
JP2001125548A JP2001125548A (ja) 2001-05-11
JP4446527B2 true JP4446527B2 (ja) 2010-04-07

Family

ID=17981240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30845599A Expired - Fee Related JP4446527B2 (ja) 1999-10-29 1999-10-29 スキャンコンバータ及びそのパラメータ設定方法

Country Status (1)

Country Link
JP (1) JP4446527B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770248B2 (ja) * 2005-04-19 2011-09-14 ソニー株式会社 情報処理装置および方法、プログラム、並びに記録媒体
CN100461846C (zh) * 2006-07-31 2009-02-11 华为技术有限公司 一种帧频变换的方法及装置
JP5062661B2 (ja) 2006-11-24 2012-10-31 アルパイン株式会社 映像信号出力装置及び方法
JP4860488B2 (ja) 2007-01-04 2012-01-25 ルネサスエレクトロニクス株式会社 画像表示制御装置
GB2590926B (en) * 2020-01-06 2023-04-12 Displaylink Uk Ltd Managing display data

Also Published As

Publication number Publication date
JP2001125548A (ja) 2001-05-11

Similar Documents

Publication Publication Date Title
US6181300B1 (en) Display format conversion circuit with resynchronization of multiple display screens
US7737960B2 (en) Apparatus and method for image frame synchronization
US8529069B2 (en) Projection apparatus and control method thereof
US7969793B2 (en) Register configuration control device, register configuration control method, and program for implementing the method
AU744053B2 (en) Display system
JPH10319928A (ja) フォーマット変換用マルチスキャンビデオタイミング発生器
US7489323B2 (en) Display apparatus adapted for a display wall, image adjustment method therefor and display wall therewith
KR100609056B1 (ko) 디스플레이장치 및 그 제어방법
US6747656B2 (en) Image processing apparatus and method of the same, and display apparatus using the image processing apparatus
US6948022B2 (en) Digital image transfer controller
JP4446527B2 (ja) スキャンコンバータ及びそのパラメータ設定方法
MXPA00007414A (es) Dispositivo de visualizacion de imagen fuera de rango y metodo de monitoreo.
JP3474120B2 (ja) スキャンコンバータ及びスキャンコンバート方法
US7170469B2 (en) Method and apparatus for image frame synchronization
JPH10198309A (ja) 水平振幅調整回路と垂直振幅調整回路とその両調整回路を備えた液晶表示装置
JP3814625B2 (ja) 表示システム及び画像処理装置
JP3474104B2 (ja) スキャンコンバータ
JP2000253335A (ja) 画像表示装置
JP6893720B1 (ja) 映像信号変換装置
JPH11133939A (ja) 表示装置
JP3501706B2 (ja) 画像表示装置
KR100562352B1 (ko) 액정 디스플레이 모니터의 화상 자동 조정 방법
KR100516052B1 (ko) 블랭크구간을이용한비디오패러미터의전송방법
KR100314071B1 (ko) 화면 크기 자동 조정 방법
KR100232605B1 (ko) Lcd 모니터의 색신호 동기조정장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160129

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees