JP4444557B2 - Ozone water heat treatment method and heat treatment apparatus - Google Patents

Ozone water heat treatment method and heat treatment apparatus Download PDF

Info

Publication number
JP4444557B2
JP4444557B2 JP2002291663A JP2002291663A JP4444557B2 JP 4444557 B2 JP4444557 B2 JP 4444557B2 JP 2002291663 A JP2002291663 A JP 2002291663A JP 2002291663 A JP2002291663 A JP 2002291663A JP 4444557 B2 JP4444557 B2 JP 4444557B2
Authority
JP
Japan
Prior art keywords
ozone water
water
ozone
heat treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002291663A
Other languages
Japanese (ja)
Other versions
JP2004089971A (en
Inventor
洋一 下井
太起夫 安達
利夫 田屋舘
照男 榛原
賢一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kankyo Engineering Ltd
Original Assignee
Tsukishima Kankyo Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kankyo Engineering Ltd filed Critical Tsukishima Kankyo Engineering Ltd
Priority to JP2002291663A priority Critical patent/JP4444557B2/en
Publication of JP2004089971A publication Critical patent/JP2004089971A/en
Application granted granted Critical
Publication of JP4444557B2 publication Critical patent/JP4444557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、オゾン水を用いて被処理対象物の洗浄を含めた表面処理を行う場合のオゾン水の加熱に係わるものである。詳しくは、半導体の製造工程にて行われる基板等のレジスト剥離や洗浄操作において利用されるオゾン水を用いた基板等の処理や、一般の樹脂等の表面処理や金属等の洗浄や表面処理にオゾン水を利用する場合に用いられる方法である。より詳しくは、半導体基板や液晶基板処理においては、レジスト層や有機性の汚染の除去、汚染金属や異物の除去、半導体や液晶製造に用いられている石英板等からなるマスク材における有機性/無機性の汚染または異物の除去等に適用できるオゾン水を用いた基板等の処理方法であり、樹脂や金属の処理においては、樹脂の表面酸化処理、金属表面の有機物除去や洗浄、酸化処理を挙げることができる。
【0002】
【従来の技術】
半導体基板や液晶基板製造時に基板上に形成されるレジストの剥離には、これまでプラズマを用いたアッシングや硫酸と過酸化水素の混合液(以下硫酸過水と略称する)が用いられている。しかし、これら従来の処理方法は、処理の均一性や多量のリンス水の必要性、処理工程からの廃水処理の問題等から、近年新たにオゾン水を用いた処理法の開発が活発になってきた。また、これらと同様にマスク材である石英板の洗浄も硫酸過水からオゾン水への転換が図られている。これらの処理を効果的に行うためにより高濃度のオゾン水を使用したり、オゾン水に超音波や紫外線(UV)照射等を併用する方法が開発されている。
【0003】
従来のオゾン水製造設備では、超高濃度といわれる水中のオゾン濃度100ppmを達成するために2〜5℃以下の低温とすることが必要であり、オゾン濃度は高いものの活性が不十分となる状況であった。このため、基板の処理を洗浄浴の中で行う浸漬型の場合には、オゾン水をヒータ等の加熱源を利用して加熱したり(特開2000−58496号公報、特開2000−301085号公報他)、回転テーブル上に固定した基板にオゾン水を流下する枚葉型の場合には、該テーブルあるいはテーブル近傍からの加熱源により基板を加熱したり、基板に流下したオゾン水を加熱して処理する方法(特開2001−77069号公報、特開2001−156049号公報)等が提案されている。
【0004】
しかしながら、前記の特開2000−58496号公報、特開2000−301085号公報では、オゾン水の加熱にヒーター等の熱源を利用しているため、いわば間接熱交換器に相当する状態での伝熱のために加熱に時間を要し、オゾン水が加熱された結果自己分解速度が急激に増大し、特に高濃度オゾン水を使用する場合昇温の間にオゾン水濃度が低下するおそれがある。また、浸積型では、オゾン水の滞留時間のために高温下での自己分解によるオゾンの濃度低下が大きく、高濃度オゾン水の強酸化特性が十分には利用できなくなる。
【0005】
一方の特開2001−77069号公報、特開2001−156049号公報では、枚葉型ではあるが、基板を加熱する場合には、オゾン水の熱容量が約1.0cal/g・degに対し、基板の熱容量が0.17cal/g・degであるため、加熱した基板に単にオゾン水を接触させるだけでは熱量的にオゾン水の十分な加熱は困難であり、基板を常時下部あるいは上方から加熱することが必要となる。
また、基板を支えるテーブルは、通常フッ素樹脂で製作されており、回転テーブル等に固定された基板上を高速に流れるオゾン水を急速に加熱するため、それに要する有効な伝熱速度を得るためには過大な熱量が必要になる。基板上に流下したオゾン水に水蒸気を吹きかけて昇温する方法では、基板の半径方向にオゾン水の温度分布が生じ処理速度にむらが発生するおそれがある。
【0006】
【発明が解決しようとする課題】
本発明は、高濃度オゾン水を少ないエネルギー投入量で効果的に加熱する方法を提供し、基板等の処理に利用することにより、上記のような従来の高温オゾン水利用上における問題点の改善を図るものである。また、従来の硫酸過水のような濃厚かつ高温度の過酷な条件での薬液処理に比べて、処理作業の安全性を改善し、リンス負荷の軽減、廃水処理負荷の軽減等が見込める技術を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明は、基板等の被処理対象物上にオゾン水を供給して基板等の表面を処理または洗浄する処理方法において、濃度が20ppm以上であるオゾン水の供給ラインに直接水蒸気を流入させるかあるいは混合器を設けて、オゾン水を供給する直前に水蒸気を混合し、常圧の場合に50〜95℃の加熱温度にオゾン水を加熱して2〜10m/sの流速で直ちにノズルから噴出して使用することを特徴とするオゾン水を用いた被処理対象物の処理方法である。
すなわち、水中のオゾンが非常に早く分解してしまう特性を持つことから、オゾン水の加熱にヒータのような間接的な方法を用いるのではなく、オゾン水を被処理物に適用する直前に水蒸気を混合し、水蒸気の凝縮熱を直接利用してオゾン水を急速に加熱し利用する方法である。
【0008】
本発明における被処理対象物としては、オゾン水の有する強酸化特性を利用して処理を行う多くの材料が用いられる。特にこの要求の高い半導体関連材料としては、半導体材料基板であるウェハーや、マスク材である石英板等を挙げることができる。これらの材料は、半導体製造過程において、原材料ウェハー洗浄、レジスト塗布、エッチング、元素ドーピング、レジスト剥離、洗浄等の様々な処理が行われるが、レジスト剥離や原材料ウェハー洗浄を含めた種々の洗浄にオゾン水の利用が進み、そのための開発が行われ、実用化も進展している。
【0009】
また、オゾン水の供給ラインにおけるオゾン水の流速を利用して蒸気を吸引し、オゾン水と蒸気の混合を行うこと好ましい方法の一つである。
【0010】
本発明において用いる蒸気としては凝縮熱が大きく、取扱いの容易さや経済性等から水蒸気が利用される。また、半導体材料の処理用いる場合は、基板等の汚染を防止するために、純水や超純水の使用が望ましい。
【0011】
一方オゾン水についても使用目的に応じ、例えば洗浄や溶解操作においてよく利用されるように、酸やアルカリを含有するオゾン水を用いることができる。
また、水中のオゾンの分解を抑制するためにオゾン水に、酸、二酸化炭素、有機物などのオゾンの分解抑止剤を添加することもよく行われる。常温ではこれらの抑止剤の効果が働きオゾンの自己分解速度が低下する。しかし、これらのオゾン水を加熱し高温にする場合、一般の化学反応特性から予測できるように高温ではオゾンの分解速度が上昇し、これらの系においても被処理物へ供給する直前に蒸気を直接混合し急速加熱を行うことがオゾンの酸化力を有効に利用するために効果的な方法になる。これらの詳細は後述する。
【0012】
オゾン水の濃度としてはオゾンの自己分解が活発になるオゾン水濃度20ppm以上に対して本発明の方法の適用がより効果的である。
【0013】
【発明の実施の形態、作用】
本発明者らは、充填塔を用いてオゾン水を製造する際に、逆混合を防止して効率的に高濃度のオゾン水を製造する方法を開発し、先にこの考え方に基づくオゾン水製造設備について特許出願(特開2000−167366号公報)を行った。
その後本発明者らは、前記のオゾン水製造設備を用いて常温で100ppmを越える超高濃度オゾン水の製造に成功し、この超高濃度オゾン水を用いて自己分解速度や基板上の有機物の除去特性等を検討した結果、超純水中での超高濃度オゾン水の常温での分解速度は、半減期が数秒以下の非常に早い自己分解特性を持つこと、基板上の有機物の除去特性は温度に大きく依存することが判明した。
【0014】
このことにより、基板等を効果的にオゾン水処理するためには、高温での処理が好ましいこと、オゾン水の昇温は時間をかけずに瞬時に達成しなければならないこと、浸漬型のようにオゾン水の滞留時間がある程度必要な処理では、特に高温の場合、オゾンの自己分解のために超高濃度オゾン水の強い酸化分解特性を十分には生かすことができないこと等が重要な要因として明らかになった。
【0015】
本発明者らは、上記の結果を考慮し、枚葉型の基板処理や一般材料の表面処理に対しオゾン水を急速に加熱する方法を開発し、本発明のオゾン水に蒸気を直接混合し加熱して使用する方法を完成した。
【0016】
以下、本発明の実施の形態および作用を、特開2000−167366号公報に開示されている設備で製造したオゾン水を利用した例で説明するが、本発明はオゾン水の製造方法によらず実施可能であり、本発明を限定するものではない。
【0017】
蒸気としては単純な水蒸気以外も有効であるが、代表として水蒸気を例に取ると、100℃の水蒸気は639.15kcal/kgのエンタルピーを持ち、80℃の水は79.993kcal/kgのエンタルピーを持つので、20℃の水(エンタルピー20.030kcal/kg)を80℃まで昇温するためには0.107kg/kg量の水蒸気を添加するだけでよく、水蒸気から水への熱の移動は大部分が凝縮熱(蒸発潜熱)によるので瞬時であり、蒸気の持つエネルギーのほぼ全量を利用できる。
【0018】
また、水に対する蒸気重量は1/10程度であるので、水蒸気を添加することで希釈されるオゾン濃度の減少は1割程度でしかなく、水蒸気は純水や超純水から製造することができるので汚染(コンタミネーション)の少ない均一な加熱オゾン水を作ることができる。加熱温度としては、加圧下ではより高い温度も可能であるが、常圧の場合、反応速度の上昇と取り扱い易さを考慮して50〜95℃、好ましくは60〜90℃程度が適切である。
【0019】
この加熱オゾン水は結果として過飽和のオゾンを含有するオゾン水になるが、水蒸気との混合を基板等へ流下する直前で行い、2〜10m/s程度の流速で基板へ噴出することで自己分解や気相への放散をできるだけ抑えて基板等の処理に利用することができる。
【0020】
オゾン水による強酸化力をより効果的に利用するために加熱を行ったが、オゾン水濃度も処理速度を上昇させるために重要であり、オゾン水の製造に請求項3に示した設備を用いて得られる高濃度のオゾン水を使用することがより効果的である。すなわち、特開2000−167366号公報に詳細な内容が開示されているように、充填塔の上部に水の導入口と排ガスの出口、該充填塔の下部にオゾンガスの導入口とオゾン水の取り出し口を備え、その間にガス逆流防止板で仕切られた充填層を二つ以上設け、水とオゾンガスとを向流接触させる充填塔方式のオゾン水製造設備によりオゾン水を製造することで、高濃度のオゾン水を効率よく入手できる。
【0021】
基板等の洗浄のために、使用するオゾン水に酸を添加することは洗浄能力の増大、オゾンの自己分解抑制に有効であり、酸としては、フッ酸、塩酸、硝酸、硫酸、燐酸、有機酸(例えば蟻酸、酢酸、クエン酸など)から選択し、適宜目的に応じて添加できる。
【0022】
また、オゾン水におけるオゾンの自己分解抑制のために、自己分解抑止剤を予め添加しておくこともよく行われる。オゾン水の自己分解抑止剤としては、酸、二酸化炭素(CO)や有機物の添加が有効であり、酸としては塩酸、硝酸、酢酸、蟻酸等であり、有機物としてはイソプロピルアルコール、アセトン、メチルアルコール、エチルアルコール等をその例として挙げられる。これらのいずれか一種以上を用いることができ、単独でもこれらを併用してもよい。これらの自己分解抑止剤を添加することで、常温でのオゾンの自己分解速度はかなり減少し、本発明のように加熱した場合であっても有効である。
【0023】
次に、本発明を実施するための装置について、図面を基に詳述する。図1は、本発明を実施するための装置の一例で、その概念図を示すものである。
図1のテーブル5上に基板4を固定し、オゾン水と水蒸気を混合器1で混合し瞬間的に加熱して、直ちにノズル2から基板4に対して噴出する機構となっている。
オゾン水と水蒸気の混合を行う方法については、できるだけ短時間に均一な混合を行うことができればよく、オゾン水の供給ラインに直接水蒸気を流入させるかあるいは混合器を設け混合する方法等が例示できる。
図1では噴霧ノズルの形式の混合器を説明したが、混合器1は単にオゾン水ラインに水蒸気を流入させる形式のものでもよい。また、高濃度オゾン水を製造するためにオゾン水は加圧されることが多く、加圧されたオゾン水をそのまま使用すると、ノズルから高速で噴出するので、オゾン水と水蒸気の混合部分を例えばアスピレータのように高速のオゾン水流を利用して水蒸気を吸引する形式のものとしてもよい。
また、実験は静止したノズル1本で行ったが、実用的には適用目的に応じノズルを移動したり、複数本のノズルで行うようにすることも可能である。
【0024】
【実施例1】
図1に示した装置を用いて、基板上にレジストを1μm形成しリン(P)を1×1014ions/cmインプラントしたレジストの剥離試験を行った。レジストの剥離速度は、加熱オゾン水を所定時間流下したときの処理前後のレジスト膜厚を測定し算出した。試験では図示していないカバーに覆われた図1の装置のテーブル5上に基板4をセットした後、オゾン水と水蒸気を混合器1で混合し瞬間的に加熱し、直ちにノズル2から基板4上に噴出させた。処理温度は、あらかじめ、基板を設置しない状況でノズルから基板までの距離に相当する位置に温度計を置きオゾン水の所定流量に対する目的温度まで加熱するのに必要な蒸気量を求めておき、同流量の蒸気を流すことで設定した。濃度100ppmのオゾン水によるレジスト剥離試験の結果を表1に示した。
【0025】

Figure 0004444557
【0026】
水蒸気添加により最大1割程度オゾン水中のオゾン濃度が低下しているにもかかわらず、加熱により格段の剥離除去効果が得られている。また、この実施例から、水蒸気による急速加熱により有効なオゾンが損なわれることなくオゾン処理の効果が得られることが判る。
【0027】
上記実施例では、テーブルおよび基板は静止したままで試験を行ったが、テーブルを回転させることで、基板表面でのより早いオゾン水の更新が起こり、よりよい効果が期待できる。
【0028】
【実施例2】
実施例1と同様の設備及び方法により、蒸気による加熱オゾン水温度を80℃として供給するオゾン水濃度を変えて実験を行った。使用した試料は実施例1と同様に基板上のレジスト(1μm)にリンを1×1014ions/cmインプラントした試料である。得られた結果を表2に示した。
【0029】
Figure 0004444557
【0030】
比較例である単に80℃の温水ではレジストの剥離に効果はなく、加熱したオゾン水がレジストの剥離に有効であった。オゾン濃度の増大と共に直線的に剥離速度が増大している。
【0031】
【発明の効果】
本発明によれば、加熱により増大したオゾンの酸化力を利用して、基板やマスク材等の表面を効果的に処理することが可能となる。本発明の方法は、従来のプラズマアッシングや硫酸過水のような不均一であったり過剰なエネルギーを消費する方法や、多量のリンス水を必要としたり廃水処理に多大なコストがかかる方法に代わる新しい処理法であり、従来の常温のオゾン水と比較して処理時間の大幅な短縮が期待でき、裨益するところ大である。
【図面の簡単な説明】
【図1】 本発明を実施するための装置の概念図の一例である。
【符号の説明】
1 混合器
2 噴出ノズル
3 加熱オゾン水
4 被処理基板
5 テーブル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to heating of ozone water when performing surface treatment including cleaning of an object to be processed using ozone water. Specifically, for substrate removal using ozone water used in resist stripping and cleaning operations for substrates performed in semiconductor manufacturing processes, surface treatment for general resins, etc., and cleaning and surface treatment for metals, etc. This method is used when ozone water is used. More specifically, in the processing of a semiconductor substrate or a liquid crystal substrate, the organic layer in a mask material made of a quartz plate or the like used for removal of a resist layer or organic contamination, removal of contaminated metal or foreign matter, semiconductor or liquid crystal manufacturing, etc. This is a treatment method for substrates using ozone water that can be applied to the removal of inorganic contamination or foreign matter. In the treatment of resins and metals, surface oxidation treatment of the resin, removal of organic substances on the metal surface, washing, and oxidation treatment are performed. Can be mentioned.
[0002]
[Prior art]
Conventionally, ashing using plasma or a mixed solution of sulfuric acid and hydrogen peroxide (hereinafter abbreviated as sulfuric acid / hydrogen peroxide) has been used to peel off a resist formed on a substrate when manufacturing a semiconductor substrate or a liquid crystal substrate. However, these conventional treatment methods have recently been actively developed with a new treatment method using ozone water due to the uniformity of treatment, the necessity of a large amount of rinse water, and the problem of wastewater treatment from the treatment process. It was. Similarly to these, the quartz plate as a mask material is also cleaned from sulfuric acid / hydrogen peroxide to ozone water. In order to effectively perform these treatments, a method of using ozone water having a higher concentration or using ultrasonic water or ultraviolet (UV) irradiation in combination with ozone water has been developed.
[0003]
In conventional ozone water production facilities, it is necessary to set the temperature to 2-5 ° C. or lower in order to achieve an ozone concentration of 100 ppm in water, which is said to be an ultra-high concentration, and the activity is insufficient although the ozone concentration is high. Met. For this reason, in the case of an immersion type in which the substrate is processed in a cleaning bath, ozone water is heated using a heating source such as a heater (Japanese Patent Laid-Open Nos. 2000-58496 and 2000-301985). In the case of a single wafer type in which ozone water flows down to a substrate fixed on a rotary table, the substrate is heated by a heating source from the table or the vicinity of the table, or ozone water that has flowed down to the substrate is heated. And the like (JP 2001-77069 A, JP 2001-156049 A) and the like have been proposed.
[0004]
However, in the above Japanese Patent Laid-Open Nos. 2000-58496 and 2000-301085, a heat source such as a heater is used for heating ozone water, so that heat transfer in a state corresponding to an indirect heat exchanger is used. For this reason, it takes time for heating, and as a result of heating the ozone water, the self-decomposition rate increases rapidly. In particular, when high-concentration ozone water is used, the ozone water concentration may decrease during the temperature rise. Further, in the immersion type, due to the residence time of ozone water, the concentration of ozone is greatly reduced due to self-decomposition at high temperatures, and the strong oxidation characteristics of high-concentration ozone water cannot be fully utilized.
[0005]
On the other hand, in JP-A-2001-77069 and JP-A-2001-156049, although it is a single wafer type, when heating the substrate, the heat capacity of ozone water is about 1.0 cal / g · deg, Since the heat capacity of the substrate is 0.17 cal / g · deg, sufficient heating of ozone water is difficult in terms of calorific value by simply contacting ozone water with the heated substrate, and the substrate is always heated from below or above. It will be necessary.
Also, the table that supports the substrate is usually made of fluororesin, and in order to rapidly heat the ozone water flowing at high speed on the substrate fixed to the rotary table, etc., in order to obtain the effective heat transfer rate required for it Requires an excessive amount of heat. In the method of raising the temperature by blowing water vapor onto the ozone water flowing down on the substrate, the temperature distribution of the ozone water may occur in the radial direction of the substrate, and the processing speed may be uneven.
[0006]
[Problems to be solved by the invention]
The present invention provides a method for effectively heating high-concentration ozone water with a small amount of energy input, and is used for the treatment of substrates and the like, thereby improving the above-described problems in the use of conventional high-temperature ozone water. Is intended. In addition, compared to conventional chemical treatment under harsh conditions such as concentrated sulfuric acid and high temperature, the technology that can improve the safety of processing work, reduce rinse load, reduce wastewater treatment load, etc. It is something to be offered.
[0007]
[Means for Solving the Problems]
According to the present invention, in a processing method in which ozone water is supplied onto an object to be processed such as a substrate to treat or clean the surface of the substrate or the like, water vapor is allowed to flow directly into an ozone water supply line having a concentration of 20 ppm or more . Alternatively, a mixer is provided to mix water vapor immediately before supplying ozone water, and in the case of normal pressure, the ozone water is heated to a heating temperature of 50 to 95 ° C. and immediately ejected from the nozzle at a flow rate of 2 to 10 m / s. is a processing method for the object to be processed with ozone water which is characterized in that to use.
In other words, since ozone in water has the property of decomposing very quickly, it is not necessary to use an indirect method such as a heater to heat ozone water, but to use water vapor immediately before applying ozone water to an object to be treated. The ozone water is rapidly heated and used by directly utilizing the heat of condensation of water vapor.
[0008]
As the object to be treated in the present invention, many materials are used that perform treatment using the strong oxidation characteristics of ozone water. In particular, examples of highly demanding semiconductor-related materials include a wafer as a semiconductor material substrate and a quartz plate as a mask material. These materials are subjected to various processes such as raw material wafer cleaning, resist coating, etching, element doping, resist stripping, and cleaning in the semiconductor manufacturing process. Ozone can be used for various cleaning processes including resist stripping and raw material wafer cleaning. The use of water is progressing, development for that is underway, and practical application is also progressing.
[0009]
Moreover, it is one of the preferable methods that the vapor | steam is attracted | sucked using the flow velocity of the ozone water in the ozone water supply line, and ozone water and a vapor | steam are mixed.
[0010]
The steam used in the present invention, the condensation heat is large, water vapor is available from ease of handling and economy and the like. In addition, when used for processing a semiconductor material, it is desirable to use pure water or ultrapure water in order to prevent contamination of the substrate and the like.
[0011]
On the other hand, ozone water containing acid or alkali can be used depending on the purpose of use, for example, so that it is often used in washing and dissolving operations.
Moreover, in order to suppress decomposition | disassembly of ozone in water, it is also often performed to add ozone decomposition inhibitors, such as an acid, a carbon dioxide, and an organic substance, to ozone water. At normal temperature, the effect of these inhibitors works and the self-decomposition rate of ozone decreases. However, when these ozone waters are heated to high temperatures, the ozone decomposition rate increases at high temperatures, as can be predicted from the general chemical reaction characteristics. Mixing and rapid heating is an effective method for effectively using the oxidizing power of ozone. Details of these will be described later.
[0012]
The concentration of ozone water, application of the method of the present invention to more ozone water concentration 20ppm self decomposition of the ozone is active is more effective.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have developed a method for efficiently producing high-concentration ozone water by preventing back-mixing when producing ozone water using a packed tower. A patent application (Japanese Patent Laid-Open No. 2000-167366) was filed for the equipment.
Thereafter, the present inventors succeeded in producing ultra-high-concentration ozone water exceeding 100 ppm at room temperature using the ozone water production facility, and using this ultra-high-concentration ozone water, the self-decomposition rate and the organic matter on the substrate As a result of examining removal characteristics, etc., the decomposition rate of ultra-high-concentration ozone water in ultrapure water at room temperature has a very fast self-decomposition characteristic with a half-life of several seconds or less, and the removal characteristics of organic substances on the substrate Was found to be highly temperature dependent.
[0014]
Thus, in order to effectively treat the substrate with ozone water, it is preferable to treat at high temperature, that the temperature rise of ozone water must be achieved instantaneously without taking time, In the treatment that requires a certain amount of residence time of ozone water, especially when the temperature is high, the strong oxidative degradation characteristics of ultra-high-concentration ozone water cannot be fully utilized due to the self-decomposition of ozone. It was revealed.
[0015]
In consideration of the above results, the present inventors have developed a method of rapidly heating ozone water for single-wafer type substrate processing and general material surface treatment, and directly mixing steam with the ozone water of the present invention. A method of heating and use was completed.
[0016]
Hereinafter, embodiments and functions of the present invention will be described using an example using ozone water manufactured by equipment disclosed in Japanese Patent Application Laid-Open No. 2000-167366, but the present invention does not depend on a method for manufacturing ozone water. It can be implemented and is not intended to limit the present invention.
[0017]
As steam, other than simple steam is effective, but taking steam as an example, steam at 100 ° C has an enthalpy of 639.15 kcal / kg, and water at 80 ° C has an enthalpy of 79.993 kcal / kg. Therefore, in order to raise the temperature of 20 ° C. water (enthalpy 20.030 kcal / kg) to 80 ° C., it is only necessary to add 0.107 kg / kg of water vapor, and the heat transfer from water vapor to water is large. Since the portion is due to heat of condensation (latent heat of vaporization), it is instantaneous and almost all of the energy of the steam can be used.
[0018]
Moreover, since the steam weight with respect to water is about 1/10, the decrease of the ozone concentration diluted by adding water vapor is only about 10%, and water vapor can be produced from pure water or ultrapure water. Therefore, uniform heated ozone water with little contamination (contamination) can be produced. As the heating temperature, a higher temperature is possible under pressure, but in the case of normal pressure, the temperature is 50 to 95 ° C., preferably about 60 to 90 ° C., considering the increase in reaction rate and ease of handling. .
[0019]
This heated ozone water results in ozone water containing supersaturated ozone, but it is self-decomposed by mixing with water vapor just before flowing down to the substrate, etc., and spouting to the substrate at a flow rate of about 2 to 10 m / s. In addition, it can be used for the processing of substrates and the like while suppressing the emission to the gas phase as much as possible.
[0020]
Although heating was performed in order to use the strong oxidizing power of ozone water more effectively, the concentration of ozone water is also important for increasing the treatment speed, and the equipment described in claim 3 was used for the production of ozone water. It is more effective to use high-concentration ozone water obtained in this way. That is, as disclosed in detail in Japanese Patent Application Laid-Open No. 2000-167366, a water inlet and an exhaust gas outlet are provided at the top of the packed tower, and an ozone gas inlet and ozone water are extracted at the bottom of the packed tower. Highly concentrated by producing ozone water with a packed tower type ozone water production facility that has two or more packed beds partitioned by gas backflow prevention plates between them and makes countercurrent contact between water and ozone gas Of ozone water can be obtained efficiently.
[0021]
Adding acid to the ozone water used for cleaning substrates, etc. is effective in increasing the cleaning ability and suppressing self-decomposition of ozone. Acids include hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, organic An acid (for example, formic acid, acetic acid, citric acid, etc.) can be selected and added depending on the purpose.
[0022]
Moreover, in order to suppress the self-decomposition of ozone in ozone water, it is often performed to add a self-decomposition inhibitor in advance. Addition of acid, carbon dioxide (CO 2 ), and organic substances is effective as an ozone water self-decomposition inhibitor, and acids include hydrochloric acid, nitric acid, acetic acid, formic acid, and organic substances include isopropyl alcohol, acetone, and methyl. Examples thereof include alcohol and ethyl alcohol. Any one or more of these can be used, and these may be used alone or in combination. By adding these self-decomposition inhibitors, the self-decomposition rate of ozone at normal temperature is considerably reduced, and it is effective even when heated as in the present invention.
[0023]
Next, an apparatus for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is an example of an apparatus for carrying out the present invention, and a conceptual diagram thereof is shown.
The substrate 4 is fixed on the table 5 in FIG. 1, ozone water and water vapor are mixed in the mixer 1, heated instantaneously, and immediately ejected from the nozzle 2 onto the substrate 4.
About the method of mixing ozone water and water vapor, it suffices if uniform mixing can be performed in as short a time as possible, and examples include a method in which water vapor is directly introduced into the ozone water supply line or a mixer is provided and mixed. .
Although the mixer in the form of a spray nozzle has been described with reference to FIG. 1, the mixer 1 may be of a type that simply allows water vapor to flow into the ozone water line. Also, ozone water is often pressurized in order to produce high-concentration ozone water, and if pressurized ozone water is used as it is, it is ejected from the nozzle at a high speed. It is good also as a thing of the type which attracts | sucks water vapor | steam using a high-speed ozone water flow like an aspirator.
Further, the experiment was performed with one stationary nozzle, but it is also possible to move the nozzle according to the purpose of application or to perform with a plurality of nozzles.
[0024]
[Example 1]
Using the apparatus shown in FIG. 1, a resist peeling test was performed in which 1 μm of resist was formed on a substrate and phosphorus (P) was implanted at 1 × 10 14 ions / cm 2 . The resist peeling rate was calculated by measuring the resist film thickness before and after the treatment when flowing heated ozone water for a predetermined time. In the test, after setting the substrate 4 on the table 5 of the apparatus of FIG. 1 covered with a cover (not shown), ozone water and water vapor are mixed in the mixer 1 and heated instantaneously. Erupted up. The processing temperature is determined in advance by placing a thermometer at a position corresponding to the distance from the nozzle to the substrate in a situation where no substrate is installed, and obtaining the amount of steam necessary for heating to the target temperature for the predetermined flow rate of ozone water. It was set by flowing steam at a flow rate. Table 1 shows the results of a resist strip test using ozone water having a concentration of 100 ppm.
[0025]
Figure 0004444557
[0026]
Despite the fact that the ozone concentration in ozone water is reduced by about 10% at the maximum due to the addition of water vapor, a remarkable peeling removal effect is obtained by heating. Further, it can be seen from this example that the effect of ozone treatment can be obtained without damaging effective ozone by rapid heating with water vapor.
[0027]
In the above embodiment, the test was performed while the table and the substrate were stationary. However, by rotating the table, the ozone water was updated earlier on the substrate surface, and a better effect can be expected.
[0028]
[Example 2]
Experiments were performed by changing the concentration of ozone water to be supplied at a heating ozone water temperature of 80 ° C. by the same equipment and method as in Example 1. The sample used was a sample obtained by implanting 1 × 10 14 ions / cm 2 of phosphorus in a resist (1 μm) on a substrate in the same manner as in Example 1. The obtained results are shown in Table 2.
[0029]
Figure 0004444557
[0030]
The hot water of 80 ° C., which is a comparative example, was not effective in removing the resist, and heated ozone water was effective in removing the resist. The stripping rate increases linearly with increasing ozone concentration.
[0031]
【The invention's effect】
According to the present invention, it becomes possible to effectively treat the surface of a substrate, a mask material or the like by utilizing the oxidizing power of ozone increased by heating. The method of the present invention is an alternative to conventional methods such as plasma ashing and sulfuric acid / hydrogen peroxide, which consume uneven energy or excessive energy, and which requires a large amount of rinse water or wastewater treatment is very expensive. This is a new treatment method, and it can be expected to greatly shorten the treatment time compared with conventional ozone water at normal temperature, which is greatly beneficial.
[Brief description of the drawings]
FIG. 1 is an example of a conceptual diagram of an apparatus for carrying out the present invention.
[Explanation of symbols]
1 Mixer 2 Spray nozzle 3 Heated ozone water 4 Substrate 5 Table

Claims (7)

被処理対象物上にオゾン水を供給して該被処理対象物の表面を処理または洗浄する方法において、濃度が20ppm以上であるオゾン水の供給ラインに直接水蒸気を流入させるかあるいは混合器を設けて、オゾン水を供給する直前に水蒸気を混合し、常圧の場合に50〜95℃の加熱温度にオゾン水を加熱して2〜10m/sの流速で直ちにノズルから噴出して使用することを特徴とするオゾン水の加熱処理方法。In a method for treating or cleaning the surface of an object to be treated by supplying ozone water onto the object to be treated, water vapor is directly introduced into an ozone water supply line having a concentration of 20 ppm or more, or a mixer is provided. Steam is mixed immediately before supplying ozone water, and ozone water is heated to a heating temperature of 50 to 95 ° C. at normal pressure and immediately ejected from the nozzle at a flow rate of 2 to 10 m / s. A method for heat treatment of ozone water. オゾン水の供給ラインにおけるオゾン水の流速を利用して水蒸気を吸引し、オゾン水と上記の混合を行う請求項1記載のオゾン水の加熱処理方法。  The heat treatment method for ozone water according to claim 1, wherein water vapor is sucked using the flow rate of ozone water in the ozone water supply line, and the ozone water and the above mixing are performed. オゾン水が、充填塔の上部に水の導入口と排ガスの出口、該充填塔の下部にオゾンガスの導入口とオゾン水の取り出し口を備え、その間にガス逆流防止板で仕切られた充填層を二つ以上設け、水とオゾンガスとを向流接触させる充填塔方式のオゾン水製造設備により製造されたオゾン水である請求項1または2記載のオゾン水の加熱処理方法。  Ozone water is provided with a water inlet and exhaust gas outlet at the top of the packed tower, an ozone gas inlet and ozone water outlet at the bottom of the packed tower, and a packed bed partitioned by a gas backflow prevention plate between them. The ozone water heat treatment method according to claim 1 or 2, wherein the ozone water is produced by a packed tower type ozone water production facility in which two or more are provided and water and ozone gas are brought into countercurrent contact. 酸またはアルカリを含有するオゾン水を用いる請求項1〜3のいずれかに記載のオゾン水の加熱処理方法。The heat treatment method for ozone water according to claim 1, wherein ozone water containing an acid or an alkali is used. オゾン水がオゾン分解抑止剤を含有していることを特徴とする請求項1〜4のいずれかに記載のオゾン水の加熱処理方法。The ozone water heating treatment method according to claim 1 , wherein the ozone water contains an ozone decomposition inhibitor. オゾン分解抑止剤が、酸、二酸化炭素、イソプロピルアルコール、アセトン、メチルアルコール、エチルアルコールのいずれか一種以上である請求項5記載のオゾン水の加熱処理方法。The heat treatment method for ozone water according to claim 5 , wherein the ozonolysis inhibitor is at least one of acid, carbon dioxide, isopropyl alcohol, acetone, methyl alcohol, and ethyl alcohol. 請求項1〜6のいずれかに記載のオゾン水の加熱処理方法を実施するための装置であって、オゾン水の供給ラインに直接水蒸気を流入させるかあるいは混合器を設けて、オゾン水を供給する直前に水蒸気を混合しオゾン水を加熱してノズルから被処理対象物に噴出することを特徴とするオゾン水の加熱処理装置。 It is an apparatus for implementing the heat treatment method of ozone water according to any one of claims 1 to 6 , wherein water is directly introduced into a supply line of ozone water or a mixer is provided to supply ozone water. A heat treatment apparatus for ozone water characterized by mixing water vapor immediately before heating to heat ozone water and ejecting the water from a nozzle to an object to be treated.
JP2002291663A 2002-08-29 2002-08-29 Ozone water heat treatment method and heat treatment apparatus Expired - Fee Related JP4444557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291663A JP4444557B2 (en) 2002-08-29 2002-08-29 Ozone water heat treatment method and heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291663A JP4444557B2 (en) 2002-08-29 2002-08-29 Ozone water heat treatment method and heat treatment apparatus

Publications (2)

Publication Number Publication Date
JP2004089971A JP2004089971A (en) 2004-03-25
JP4444557B2 true JP4444557B2 (en) 2010-03-31

Family

ID=32063859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291663A Expired - Fee Related JP4444557B2 (en) 2002-08-29 2002-08-29 Ozone water heat treatment method and heat treatment apparatus

Country Status (1)

Country Link
JP (1) JP4444557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210063511A (en) * 2019-11-22 2021-06-02 세메스 주식회사 Substrate processing apparatus and substrate processing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753656B2 (en) * 2005-08-03 2011-08-24 ジルトロニック アクチエンゲゼルシャフト Method for suppressing boron contamination on silicon wafer surface
TW200801853A (en) * 2006-04-20 2008-01-01 Zenkyo Corp Treating device and manufacturing method for substrate
JP4627522B2 (en) * 2006-08-09 2011-02-09 住友重機械工業株式会社 Organic film removal method and organic film removal apparatus
KR101332806B1 (en) * 2006-09-20 2013-11-27 삼성디스플레이 주식회사 Cleaning apparatus and cleaning method of flat panel display
JP5340550B2 (en) * 2007-02-19 2013-11-13 ライオン株式会社 Ozone stabilized aqueous solution and production method thereof
JP5334802B2 (en) * 2009-11-05 2013-11-06 太田義尾機械工業株式会社 Cleaning and film forming apparatus, and cleaning and film forming method
JP2011205015A (en) * 2010-03-26 2011-10-13 Kurita Water Ind Ltd Cleaning method for electronic material
JP5927033B2 (en) * 2012-05-17 2016-05-25 岩谷産業株式会社 Etching method of aluminum
KR101935578B1 (en) * 2017-03-31 2019-04-03 (주)엔피홀딩스 High temperature mixed-phase fluid cleaning system and cleaning method
CN113764259A (en) * 2020-09-18 2021-12-07 英迪那米(徐州)半导体科技有限公司 Cleaning method of semiconductor chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210063511A (en) * 2019-11-22 2021-06-02 세메스 주식회사 Substrate processing apparatus and substrate processing method
KR102319645B1 (en) * 2019-11-22 2021-11-01 세메스 주식회사 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP2004089971A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
KR100514598B1 (en) Method and apparatus for recovering photoresist film
US6551409B1 (en) Method for removing organic contaminants from a semiconductor surface
JP4444557B2 (en) Ozone water heat treatment method and heat treatment apparatus
JP2001517365A (en) How to remove photoresist
TWI235425B (en) Etching system and method for treating the etching solution thereof
WO2000030164A1 (en) Photoresist film removing method and device therefor
JP2006108304A (en) Substrate processing device
WO2000070667A1 (en) Method for treating a substrate with heat sensitive agents
JP2012049391A (en) Cleaning method and cleaning system
JP2009060112A (en) Single type substrate treating apparatus and cleaning method thereof
JP3152430B2 (en) Organic film removal method
JP2001077069A (en) Substrate treating method and substrate treating device
JP2007201070A (en) Method and device for removing residual organic substance on substrate
KR101809927B1 (en) Method for cleaning metal gate semiconductor
KR100728547B1 (en) Substrate treating method, substrate treating device and computer readable recording medium
JP4791905B2 (en) Substrate cleaning method
JP2006210598A (en) Apparatus and method for processing substrate
JP2002118085A (en) Substrate-treating method and apparatus therefor
JP4114395B2 (en) Device for removing organic coating on substrate surface
JP2004241726A (en) Method and device for treating resist
JP2001156049A (en) Organic substance peeling apparatus and method
JP5126478B2 (en) Cleaning liquid manufacturing method, cleaning liquid supply apparatus and cleaning system
JP3377294B2 (en) Substrate surface treatment method and apparatus
JP2002261068A (en) Device and method for substrate treatment
JP4053976B2 (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080702

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4444557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees