JP4440287B2 - Plumbing material for building and method for molding this piping material for building - Google Patents

Plumbing material for building and method for molding this piping material for building Download PDF

Info

Publication number
JP4440287B2
JP4440287B2 JP2007168867A JP2007168867A JP4440287B2 JP 4440287 B2 JP4440287 B2 JP 4440287B2 JP 2007168867 A JP2007168867 A JP 2007168867A JP 2007168867 A JP2007168867 A JP 2007168867A JP 4440287 B2 JP4440287 B2 JP 4440287B2
Authority
JP
Japan
Prior art keywords
piping material
expandable graphite
resin
temperature
thermally expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007168867A
Other languages
Japanese (ja)
Other versions
JP2008180068A (en
Inventor
英治 木村
幸治 市原
優志 岡部
敏文 三二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007168867A priority Critical patent/JP4440287B2/en
Publication of JP2008180068A publication Critical patent/JP2008180068A/en
Application granted granted Critical
Publication of JP4440287B2 publication Critical patent/JP4440287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に、建築物の仕切り部に貫通施工される耐火性に優れた建築用配管材に関するものである。   In particular, the present invention relates to a building piping material having excellent fire resistance and penetrating through a partition of a building.

建築物内に、配管(電線管、排水管、ダクト等)を設置する場合には、建築物の床、壁、間仕切り等の仕切り部に、配管等を貫通させる貫通孔(区画貫通部)を設け、この区画貫通部に配管を貫通させた後、前記区画貫通部と配管との間に隙間が生じないように、隙間をモルタルなどにより閉塞する防火措置工法が行われている。   When installing pipes (conduit pipes, drain pipes, ducts, etc.) in a building, through holes (partition penetrating parts) for penetrating the pipes, etc. in partition parts such as building floors, walls, partitions, etc. After the pipe is penetrated through the partition penetrating part, a fire-protection method for closing the gap with mortar or the like is performed so that no gap is formed between the compartment penetrating part and the pipe.

配管材が、金属製である場合は、それ自体に耐熱性、不燃性を有するので、上記の防火措置工法を採用しても特に問題はないが、配管材が、合成樹脂製である場合は、金属製に比べ軽量で取り扱い性に優れるものの、耐熱性に劣る。したがって、火災時に、配管材が燃焼によって消失したり、熱変形して、区画貫通部と配管材との間に隙間が生じて、仕切り部の一方の側で発生した熱、火炎、煙等が他方側へ到達してしまう恐れがある。   When the piping material is made of metal, it has heat resistance and non-flammability, so there is no particular problem even if the above-mentioned fire protection method is adopted, but when the piping material is made of synthetic resin Although it is lighter and easier to handle than metal, it is inferior in heat resistance. Therefore, in the event of a fire, the piping material disappears due to combustion or is thermally deformed, creating a gap between the partition through portion and the piping material, and heat, flame, smoke, etc. generated on one side of the partitioning portion. There is a risk of reaching the other side.

そこで、例えば、合成樹脂製の配管材の外面に、アルミガラスクロスやモルタルなどの防耐火被覆層を積層した耐火管が提案されている(例えば、特許文献1参照)。しかし、このような耐火管は、異種材料を複合して形成したものであり、連続成形が困難で、生産性に劣るという問題点がある。さらに、外面をモルタルで被覆した耐火管は、管の重量が非常に重くなるため、運搬時や施工時の作業性に劣るという問題点もある。   Therefore, for example, a fireproof pipe in which a fireproof coating layer such as aluminum glass cloth or mortar is laminated on the outer surface of a piping material made of synthetic resin has been proposed (see, for example, Patent Document 1). However, such a refractory tube is formed by combining different materials, and has a problem that continuous molding is difficult and productivity is inferior. Furthermore, the refractory pipe whose outer surface is covered with mortar has a problem that the weight of the pipe becomes very heavy, so that the workability during transportation and construction is inferior.

一方、合成樹脂製の配管材の外面に、耐火膨張性を備えたシート状被覆材を巻きつける防火措置工法も採用されている。また、このようなシート状被覆材を構成する耐火性樹脂組成物としては、例えば、ゴムや熱可塑性エラストマーや液状ポリマーなどのベース樹脂に、無機系膨張剤として熱膨張性黒鉛を配合するとともに、形崩れ防止用樹脂としてポリカーボネート樹脂やポリフェニレンサルファイド樹脂などを配合したもの(例えば、特許文献2参照)、ポリ塩化ビニル等の熱可塑性樹脂に、リン化合物、熱膨張性黒鉛、および無機充填剤を多量に含有させたもの(例えば、特許文献3参照)が提案されている。   On the other hand, a fire-protection method is also employed in which a sheet-shaped coating material having fire expansion properties is wound around the outer surface of a synthetic resin piping material. In addition, as a refractory resin composition that constitutes such a sheet-like coating material, for example, a thermal expansion graphite as an inorganic expansion agent is blended with a base resin such as rubber, a thermoplastic elastomer, or a liquid polymer, A large amount of phosphorus compound, thermally expandable graphite, and inorganic filler added to a polycarbonate resin, polyphenylene sulfide resin, or the like as a resin for preventing deformation (for example, see Patent Document 2), and a thermoplastic resin such as polyvinyl chloride. (For example, refer to Patent Document 3) has been proposed.

しかし、このシート状被覆材を用いた防火措置工法の場合、一旦、合成樹脂製の配管材を仮配管して、シート状被覆材を巻きつける部位の位置決めを行った後に、シート状被覆材を配管材に巻きつけ、配管材の支持、固定を行ってから開口部をモルタルで埋め戻すようになっているため、作業工数が多く施工時間が長くかかる上、シート状被覆材を配管材に巻きつけた後は、配管の位置調整がやりにくいという問題がある。   However, in the case of the fire protection method using this sheet-shaped coating material, temporarily laying a synthetic resin piping material and positioning the portion around which the sheet-shaped coating material is wound, Since the opening is backfilled with mortar after being wrapped around the piping material, and supporting and fixing the piping material, the work takes a lot of time and the construction time is long, and the sheet-like coating material is wound around the piping material. After attaching, there is a problem that it is difficult to adjust the position of the pipe.

そこで、耐火膨張性を有する樹脂組成物を用いて配管材を直接製造すれば、上記問題は解決されるのであるが、上記特許文献2の耐火性樹脂組成物の場合、ベース樹脂としてゴムや熱可塑性エラストマーや液状ポリマーなどが用いられているため、得られる配管材は、機械的強度に劣るという問題がある。
一方、上記特許文献3の耐火性樹脂組成物の場合、難燃性には優れているものの、無機充填剤、熱膨張性黒鉛、リン化合物などの比率が高いため、押出成形や射出成形等の成形性に劣るという問題があるとともに、ポリリン酸アンモニウム等のリン化合物が、押出成形や射出成形の際に分解して成形体の外観を損ねる恐れがある。リン化合物の分解を抑えるために低温で成形をした場合は、成形体の機械的強度や耐衝撃性が低下する恐れがある。
Therefore, if the piping material is directly manufactured using a resin composition having fire expansion resistance, the above problem can be solved. However, in the case of the fire resistant resin composition of Patent Document 2, rubber or heat is used as the base resin. Since a plastic elastomer or a liquid polymer is used, the obtained piping material has a problem that it is inferior in mechanical strength.
On the other hand, in the case of the refractory resin composition of Patent Document 3, although the flame retardancy is excellent, since the ratio of inorganic filler, thermally expandable graphite, phosphorus compound, etc. is high, extrusion molding, injection molding, etc. There exists a problem that it is inferior to a moldability, and there exists a possibility that phosphorus compounds, such as ammonium polyphosphate, may decompose | disassemble in the case of extrusion molding or injection molding, and may impair the external appearance of a molded object. When molding is performed at a low temperature to suppress the decomposition of the phosphorus compound, the mechanical strength and impact resistance of the molded body may be reduced.

登録実用新案第3036449号公報Registered Utility Model No. 3036449 特許第3133683号公報Japanese Patent No. 3133683 特開平10−95887号公報JP-A-10-95887

本発明は、上記問題点に鑑みて提案されたものであって、配管材そのもので防火措置が可能な施工性に優れた建築用配管材、およびこの建築用配管材の成形方法を提供することを目的としている。   This invention is proposed in view of the said problem, Comprising: The piping material for construction excellent in the workability which can perform a fire prevention measure with piping material itself, and the shaping | molding method of this piping material for construction are provided. It is an object.

そして、配管材そのもので防火措置を可能とするためには、配管材に以下の機能を持たせることが必要である。
(1)配管材の燃焼速度を遅延させて、非加熱側に火炎を噴出させないこと。
燃焼速度を遅延させるには、配管材そのものの燃焼を防止するとともに、燃焼時に管壁を熱膨張させ、区画貫通部内への熱の流入をできるだけ防ぐようにすることが望ましい。すなわち、加熱側において、配管材を閉塞させて遮炎することが最良である。また、膨張後の残渣が脱落しないことがより好ましい。
(2)燃焼時に配管材とその外周のモルタルとのシールを保って、非加熱側へ発煙させないこと。
And in order to enable fire prevention measures with the piping material itself, it is necessary to give the piping material the following functions.
(1) The flame rate of the piping material is delayed so that no flame is ejected to the non-heating side.
In order to delay the combustion rate, it is desirable to prevent combustion of the piping material itself and to thermally expand the tube wall during combustion so as to prevent heat from flowing into the partition through portion as much as possible. That is, on the heating side, it is best to block the piping material and shield the flame. Moreover, it is more preferable that the residue after expansion does not fall off.
(2) During combustion, keep a seal between the piping material and the mortar on its outer periphery, and do not allow smoke generation to the non-heated side.

そこで、本願発明者らは、上記(1)(2)の機能を配管材に持たせることを考慮した上で、上記目的を達成するために鋭意検討を行った結果、以下の発明に至ったのである。
すなわち、請求項1記載の発明の建築用配管材は、ポリ塩化ビニル系樹脂に熱膨張性黒鉛と無機充填剤とを含有させた耐火性樹脂組成物で構成されており、その配合比が、ポリ塩化ビニル系樹脂100重量部に対して、熱膨張性黒鉛が1〜10重量部、無機充填剤が1〜50重量部であることを特徴とする。
請求項1記載の発明において、ポリ塩化ビニル系樹脂100重量部に対して熱膨張性黒鉛を1〜10重量部配合した理由としては、熱膨張性黒鉛が1重量部未満であると、燃焼時に、十分な熱膨張性が得られず、所望の耐火性が得られないし、10重量部を超えると、加熱により組織が熱膨張しすぎて、その形状を保持できずに残渣が脱落し、耐火性が低下してしまうからである。なお、熱膨張性黒鉛の配合比は、好ましくはポリ塩化ビニル系樹脂100重量部に対して1〜8重量部であり、さらに好ましくはポリ塩化ビニル系樹脂100重量部に対して2〜7重量部である。
また、ポリ塩化ビニル系樹脂100重量部に対して無機充填剤を1〜50重量部配合した理由としては、無機充填剤が1重量部未満であると、燃焼時に、骨材的な働きがなされず、その形状を保持できずに残渣が脱落して、耐火性が低下してしまう恐れがあるし、50重量部を超えると、組成物全体に対するポリ塩化ビニル系樹脂の割合が低くなるため、引張強度が低下してしまう恐れがあるからである。
なお、無機充填剤の好ましい配合比は、請求項2に記載するように、ポリ塩化ビニル系樹脂100重量部に対して2〜5重量部である。
Accordingly, the inventors of the present application have made extensive studies in order to achieve the above object in consideration of giving the piping materials the functions (1) and (2), and as a result, the following inventions have been achieved. It is.
That is, the building piping material of the invention according to claim 1 is composed of a refractory resin composition containing a polyvinyl chloride resin containing thermally expandable graphite and an inorganic filler. The heat-expandable graphite is 1 to 10 parts by weight and the inorganic filler is 1 to 50 parts by weight with respect to 100 parts by weight of the polyvinyl chloride resin.
In the invention of claim 1, the reason why 1 to 10 parts by weight of thermally expandable graphite is blended with 100 parts by weight of the polyvinyl chloride resin is that when the thermally expandable graphite is less than 1 part by weight, If sufficient thermal expansion properties cannot be obtained and desired fire resistance cannot be obtained, and if the amount exceeds 10 parts by weight, the structure expands too much due to heating and the shape cannot be maintained, and the residue falls off, resulting in fire resistance. This is because the performance is lowered. The blending ratio of the thermally expandable graphite is preferably 1 to 8 parts by weight with respect to 100 parts by weight of the polyvinyl chloride resin, and more preferably 2 to 7 parts by weight with respect to 100 parts by weight of the polyvinyl chloride resin. Part.
The reason why 1 to 50 parts by weight of the inorganic filler is blended with 100 parts by weight of the polyvinyl chloride resin is that when the inorganic filler is less than 1 part by weight, an aggregate function is performed at the time of combustion. Without retaining its shape, the residue may fall off and the fire resistance may decrease, and if it exceeds 50 parts by weight, the ratio of the polyvinyl chloride resin to the entire composition will be low, This is because the tensile strength may decrease.
In addition, the preferable compounding ratio of an inorganic filler is 2-5 weight part with respect to 100 weight part of polyvinyl chloride-type resin, as described in Claim 2. FIG.

請求項1または請求項2に記載の発明で用いられるポリ塩化ビニル系樹脂としては、例えば、ポリ塩化ビニル単独重合体;塩化ビニルモノマーと、該塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとの共重合体;塩化ビニル以外の(共)重合体に塩化ビニルをグラフト共重合したグラフト共重合体等が挙げられ、これらは単独で使用されてもよく、2種以上が併用されてもよい。又、必要に応じて上記ポリ塩化ビニル系樹脂を塩素化してもよい。 Examples of the polyvinyl chloride resin used in the invention according to claim 1 or 2 include, for example, a polyvinyl chloride homopolymer; a vinyl chloride monomer, and an unsaturated bond copolymerizable with the vinyl chloride monomer. Copolymers with monomers; examples include graft copolymers obtained by graft copolymerization of vinyl chloride with (co) polymers other than vinyl chloride, and these may be used alone or in combination of two or more. Also good. Further, the polyvinyl chloride resin may be chlorinated as necessary.

上記塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、特に限定されず、例えば、エチレン、プロピレン、ブチレン等のα−オレフィン類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;ブチルビニルエーテル、セチルビニルエーテル等のビニルエーテル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルアクリレート等の(メタ)アクリル酸エステル類;スチレン、α−メチルスチレン等の芳香族ビニル類;N−フェニルマレイミド、N−シクロヘキシルマレイミド等のN−置換マレイミド類などが挙げられ、これらは単独で使用されてもよく、2種以上が併用されてもよい。   The monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer is not particularly limited, and examples thereof include α-olefins such as ethylene, propylene, and butylene; vinyl esters such as vinyl acetate and vinyl propionate; butyl Vinyl ethers such as vinyl ether and cetyl vinyl ether; (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl acrylate; aromatic vinyls such as styrene and α-methylstyrene; N-phenylmaleimide N-substituted maleimides such as N-cyclohexylmaleimide and the like may be used, and these may be used alone or in combination of two or more.

上記塩化ビニルをグラフト共重合する(共)重合体としては、塩化ビニルをグラフト(共)重合するものであれば、特に限定されず、例えば、エチレン−酢酸ビニル共重合体、エチレン−酢酸ビニル−一酸化炭素共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート−一酸化炭素共重合体、エチレン−メチルメタクリレート共重合体、エチレン−プロピレン共重合体、アクリロニトリル−ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレンなどが挙げられ、これらは単独で使用されてもよく、2種以上が併用されてもよい。   The (co) polymer graft-copolymerized with vinyl chloride is not particularly limited as long as vinyl chloride is grafted (co) polymerized. For example, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate- Carbon monoxide copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate-carbon monoxide copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, acrylonitrile-butadiene copolymer, polyurethane , Chlorinated polyethylene, chlorinated polypropylene, and the like. These may be used alone, or two or more thereof may be used in combination.

上記ポリ塩化ビニル系樹脂の平均重合度は、特に限定されるものではないが、小さくなると成形体の物性低下が起こり、大きくなると溶融粘度が高くなって成形が困難になるので、400〜1600が好ましく、600〜1400が、特に好ましい。尚、上記平均重合度とは、複合塩化ビニル系樹脂をテトラヒドロフラン(THF)に溶解させ、濾過により不溶成分を除去した後、濾液中のTHFを乾燥除去して得た樹脂を試料とし、JIS K−6721「塩化ビニル樹脂試験方法」に準拠して測定した平均重合度を意味する。   The average degree of polymerization of the polyvinyl chloride-based resin is not particularly limited. However, when it becomes smaller, the physical properties of the molded body are lowered, and when it becomes larger, the melt viscosity becomes higher and molding becomes difficult. Preferably, 600-1400 is particularly preferable. The average degree of polymerization is defined as JIS K using a resin obtained by dissolving a composite vinyl chloride resin in tetrahydrofuran (THF), removing insoluble components by filtration, and then removing the THF in the filtrate by drying. It means the average degree of polymerization measured according to -6721 “Testing method of vinyl chloride resin”.

上記ポリ塩化ビニル系樹脂の重合方法は、特に限定されず、従来公知の任意の重合方法が採用されてよく、例えば、塊状重合方法、溶液重合方法、乳化重合方法、懸濁重合方法等が挙げられる。   The polymerization method of the polyvinyl chloride resin is not particularly limited, and any conventionally known polymerization method may be employed, and examples thereof include a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, and a suspension polymerization method. It is done.

上記ポリ塩化ビニル系樹脂の塩素化方法としては、特に限定されず、従来公知の塩素化方法が採用されてよく、例えば、熱塩素化方法、光塩素化方法等が挙げられる。   The method for chlorinating the polyvinyl chloride resin is not particularly limited, and a conventionally known chlorination method may be employed, and examples thereof include a thermal chlorination method and a photochlorination method.

上記ポリ塩化ビニル系樹脂はいずれも、樹脂組成物としての耐火性能を阻害しない範囲で、架橋、変性して用いてもよい。この場合、予め架橋、変性した樹脂を用いてもよく、添加剤等を配合する際に、同時に架橋、変性してもよいし、あるいは樹脂に前記成分を配合した後に架橋、変性してもよい。上記樹脂の架橋方法についても、特に限定はなく、ポリ塩化ビニル系樹脂の通常の架橋方法、例えば、各種架橋剤、過酸化物を使用する架橋、電子線照射による架橋、水架橋性材料を使用した方法等が挙げられる。   Any of the above polyvinyl chloride resins may be used after being crosslinked or modified within a range not impairing the fire resistance performance of the resin composition. In this case, a resin that has been cross-linked or modified in advance may be used. When an additive or the like is blended, it may be cross-linked or modified at the same time, or it may be cross-linked or modified after the above components are blended in the resin. . There is no particular limitation on the crosslinking method of the resin, and a conventional crosslinking method of polyvinyl chloride resin, for example, crosslinking using various crosslinking agents, peroxides, crosslinking by electron beam irradiation, water crosslinkable material is used. And the like.

また、請求項1または請求項2に記載の発明で用いられる熱膨張性黒鉛は、従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を濃硫酸、硝酸、セレン酸等の無機酸と濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理し、グラファイト層間化合物を生成させたもので、炭素の層状構造を維持したままの結晶化合物である Further, the thermally expandable graphite used in the invention of claim 1 or claim 2 is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with concentrated sulfuric acid, nitric acid, and selenic acid. And processed with a strong oxidizing agent such as concentrated acid such as concentrated nitric acid, perchloric acid, perchlorate, permanganate, dichromate, hydrogen peroxide, etc. It is a crystalline compound that maintains the layered structure of carbon .

た、請求項1または請求項2に記載の発明で用いられる無機充填剤としては、特に限定されず、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーンナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム「MOS」、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥等が候補に挙げられる。 Also, the inorganic filler used in the invention described in claim 1 or claim 2, not particularly limited, for example, silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide , Tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawn night, hydrotalcite, calcium sulfate, sulfuric acid Barium, gypsum fiber, calcium silicate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, boron nitride, silicon nitride, carbon black The Fight, carbon fiber, carbon balun, charcoal powder, various metal powders, potassium titanate, magnesium sulfate "MOS", lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, zinc borate, various magnetic powders Candidates include slag fiber, fly ash, dehydrated sludge and the like.

また、含水無機物は、加熱時に脱水し、吸熱する性質を有するため、耐火性を高めるうえで有利である。具体的には、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。これらは、単独でも、2種以上を混合して用いてもよい。   In addition, the water-containing inorganic substance has the property of dehydrating and absorbing heat when heated, which is advantageous in improving fire resistance. Specific examples include calcium hydroxide, magnesium hydroxide, and aluminum hydroxide. These may be used alone or in admixture of two or more.

また、請求項3に記載の発明は、請求項1または請求項2に記載の建築用配管材の成形方法であって、熱膨張性黒鉛の膨張温度T1と、成形時の樹脂温度T2とが、T1≦240℃、かつ、(T2+10℃)≦T1≦(T2+60℃)
の関係を満たしていることを特徴とするものである。
The invention described in claim 3 is the method for forming a building piping material according to claim 1 or 2, wherein the expansion temperature T1 of the thermally expandable graphite and the resin temperature T2 at the time of molding are T1 ≦ 240 ° C. and (T2 + 10 ° C.) ≦ T1 ≦ (T2 + 60 ° C.)
It is characterized by satisfying the relationship.

本発明において、熱膨張性黒鉛の膨張温度T1とは、熱膨張性黒鉛の熱重量分析において、熱膨張性黒鉛の重量が5%減少するときの温度である。
熱膨張性黒鉛の膨張は、黒鉛の層状構造の界面に注入された硫酸等が高温時に揮発して層間が広げられることに起因するため、熱重量分析によって、熱膨張性黒鉛の膨張開始温度を判断することができる。
しかしながら、熱膨張性黒鉛を加熱膨張させたときの各温度におけるガス発生量すなわち膨張量は、黒鉛の層間に処理する酸の種類などによって様々であるため、膨張開始温度から熱膨張性黒鉛の膨張特性は特定されにくい。
そこで、本願発明者らが実験を重ねて様々な熱膨張性黒鉛を分析し評価した結果、ポリ塩化ビニル系樹脂が溶融し分解(発泡)するまでの温度と、熱膨張性黒鉛が目に見えて膨張する温度との関係が重要であると判明したため、熱膨張性黒鉛を膨張開始温度ではなく、熱膨張性黒鉛の膨張がある程度目に見えて進行する温度で規定するのがよいとの結論に至ったのである。
そこで、本発明においては、熱膨張性黒鉛の膨張がある程度目に見えて進行する温度として、熱膨張性黒鉛の熱重量分析において、熱膨張性黒鉛の重量が5%減少するときの温度を熱膨張性黒鉛の膨張温度T1と規定したのである。
なお、熱重量分析は、熱重量分析装置を用いて、熱膨張性黒鉛の試料を白金パン開放容器に入れ、50ml/minの窒素フロー雰囲気の中、10℃/分の昇温速度で、30℃〜500℃まで昇温させて行った。
また、成形時の樹脂温度T2とは、樹脂の溶融時の最高温度をいうものとする。
In the present invention, the expansion temperature T1 of the thermally expandable graphite is a temperature at which the weight of the thermally expandable graphite is reduced by 5% in the thermogravimetric analysis of the thermally expandable graphite.
The expansion of thermally expandable graphite is caused by the fact that sulfuric acid injected into the interface of the layered structure of graphite volatilizes at a high temperature and the layers are expanded. Judgment can be made.
However, the amount of gas generated at each temperature when the thermally expandable graphite is expanded by heating, that is, the amount of expansion, varies depending on the type of acid to be processed between the graphite layers. Characteristics are difficult to identify.
Therefore, as a result of the inventors conducting experiments and analyzing and evaluating various thermally expandable graphites, the temperature until the polyvinyl chloride resin melts and decomposes (foams) and the thermally expandable graphite are visible. The conclusion that the expansion of the thermally expandable graphite should be specified not at the expansion start temperature but at the temperature at which the expansion of the thermally expandable graphite progresses to some extent, since the relationship with the expansion temperature is found to be important. It came to.
Therefore, in the present invention, as the temperature at which the expansion of the thermally expandable graphite progresses to some extent, the temperature at which the weight of the thermally expandable graphite is reduced by 5% in the thermogravimetric analysis of the thermally expandable graphite is This is defined as the expansion temperature T1 of the expandable graphite.
The thermogravimetric analysis was performed by using a thermogravimetric analyzer and putting a sample of thermally expandable graphite in a platinum pan open container at a temperature increase rate of 10 ° C./min in a nitrogen flow atmosphere of 50 ml / min. C. to 500.degree. C. was performed.
Further, the resin temperature T2 at the time of molding refers to the maximum temperature at the time of melting of the resin.

請求項3に記載の発明は、熱膨張性黒鉛の膨張温度T1と、成形時の樹脂温度T2とが、T1≦240℃、かつ、(T2+10℃)≦T1≦(T2+60℃)の関係を満たしていなければならない。
その理由は、熱膨張性黒鉛の膨張温度T1が、成形時の樹脂温度T2よりも低い場合や、成形時の樹脂温度T2との差がほとんどない場合には、配管材を成形する過程において、熱膨張性黒鉛の膨張が開始してしまうため、耐火性を十分に発現できない恐れがあるからである。
一方、熱膨張性黒鉛の膨張温度T1が、押出成形時の樹脂温度T2よりも格段に高い場合には、配管材を成形する過程において、熱膨張性黒鉛の膨張が開始してしまう恐れはないものの、燃焼時には、ポリ塩化ビニル系樹脂が溶融して分解(発泡)が進行し、ポリ塩化ビニル系樹脂の柔軟性が低下した後に、熱膨張性黒鉛の膨張が起こるため、ポリ塩化ビニル系樹脂が熱膨張性黒鉛の膨張に耐えきれなくなり、バラバラに崩壊してしまうことがあるからである。
In the invention according to claim 3, the expansion temperature T1 of the thermally expandable graphite and the resin temperature T2 at the time of molding satisfy the relationship of T1 ≦ 240 ° C. and (T2 + 10 ° C.) ≦ T1 ≦ (T2 + 60 ° C.). Must be.
The reason is that when the expansion temperature T1 of the thermally expandable graphite is lower than the resin temperature T2 at the time of molding or when there is almost no difference from the resin temperature T2 at the time of molding, This is because the expansion of the heat-expandable graphite is likely to start, so that there is a possibility that the fire resistance cannot be sufficiently exhibited.
On the other hand, when the expansion temperature T1 of the thermally expandable graphite is much higher than the resin temperature T2 at the time of extrusion molding, there is no possibility that the expansion of the thermally expandable graphite starts in the process of forming the piping material. However, at the time of combustion, the polyvinyl chloride resin melts and decomposes (foams), and the flexibility of the polyvinyl chloride resin decreases, followed by the expansion of the thermally expandable graphite. This is because the material cannot withstand the expansion of the thermally expandable graphite and may collapse apart.

なお、熱膨張性黒鉛の膨張温度T1が低すぎると、成形時の樹脂温度T2も低くする必要があるが、成形時の樹脂温度T2が低いと、ポリ塩化ビニル系樹脂の混練状態が悪くなり、配管材としての物性が発現しにくくなってしまう。したがって、使用される熱膨張性黒鉛の膨張温度T1は、190℃以上であることが好ましい。   If the expansion temperature T1 of the thermally expandable graphite is too low, the resin temperature T2 at the time of molding needs to be lowered, but if the resin temperature T2 at the time of molding is low, the kneading state of the polyvinyl chloride resin becomes worse. , Physical properties as a piping material are difficult to express. Therefore, the expansion temperature T1 of the heat-expandable graphite used is preferably 190 ° C. or higher.

請求項4に記載の発明は、請求項1または請求項2に記載の建築用配管材の成形方法であって、熱膨張性黒鉛の1.3倍膨張温度T3が180℃〜240℃であり、成形時の樹脂温度T2が、熱膨張性黒鉛の1.3倍膨張温度T3よりも5℃以上低く、かつ、170℃〜210℃であることを特徴とする。 Invention of Claim 4 is a shaping | molding method of the piping material for construction of Claim 1 or Claim 2 , Comprising: 1.3 times expansion temperature T3 of a thermally expansible graphite is 180 to 240 degreeC. The resin temperature T2 at the time of molding is 5 ° C. or more lower than the 1.3 times expansion temperature T3 of the thermally expandable graphite, and is 170 ° C. to 210 ° C.

本発明において、熱膨張性黒鉛の1.3倍膨張温度T3とは、加熱炉内を一定温度にして、熱膨張性黒鉛の試料を30分加熱した後の熱膨張性黒鉛の膨張倍率が、1.3以上になる温度である。なお、膨張倍率=(加熱後の試料の体積/加熱前の試料の体積)である。
また、成形時の樹脂温度T2とは、樹脂の溶融時の最高温度をいうものとする。
In the present invention, the 1.3 times expansion temperature T3 of the heat-expandable graphite is defined as the expansion ratio of the heat-expandable graphite after heating the sample of the heat-expandable graphite at a constant temperature for 30 minutes. The temperature is 1.3 or higher. The expansion ratio = (volume of sample after heating / volume of sample before heating).
Further, the resin temperature T2 at the time of molding refers to the maximum temperature at the time of melting of the resin.

請求項4に記載の発明は、熱膨張性黒鉛の1.3倍膨張温度T3が180℃〜240℃の範囲であり、成形時の樹脂温度T2が、1.3倍膨張温度T3よりも5℃以上低く、かつ、170℃〜210℃の範囲でなければならない。
その理由は、熱膨張性黒鉛の1.3倍膨張温度T3が、成形時の樹脂温度T2よりもかなり高い温度であると、成形時の安定性には優れているものの、燃焼時に必要な耐火性が得られず、管が崩落してしまうという問題が生じる恐れがあるからである。
一方、熱膨張性黒鉛の1.3倍膨張温度T3が、成形時の樹脂温度T2とほぼ同じ温度であると、成形中に熱膨張性黒鉛が膨張を開始してしまい、管の外観不良を引き起こす上、燃焼時の耐火性が低下してしまう恐れがあるからである。
In the invention according to claim 4, the 1.3 times expansion temperature T3 of the thermally expandable graphite is in the range of 180 ° C. to 240 ° C., and the resin temperature T2 at the time of molding is 5 than the 1.3 times expansion temperature T3. It must be lower than ℃ and in the range of 170 ℃ to 210 ℃.
The reason is that if the 1.3 times expansion temperature T3 of the thermally expandable graphite is considerably higher than the resin temperature T2 at the time of molding, the stability at the time of molding is excellent, but the fire resistance necessary at the time of combustion is required. This is because there is a possibility that a problem that the tube cannot be obtained and the tube collapses may occur.
On the other hand, if the 1.3 times expansion temperature T3 of the heat-expandable graphite is substantially the same as the resin temperature T2 at the time of molding, the heat-expandable graphite starts to expand during molding, resulting in poor appearance of the tube. This is because the fire resistance during combustion may be reduced.

なお、請求項1または請求項2に記載の発明にかかる建築用配管材には、その物性を損なわない範囲で、難燃剤、安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、光安定剤、紫外線吸収剤、顔料、可塑剤、熱可塑性エラストマーなどの添加剤が添加されていてもよい。 In addition, in the piping material for construction concerning the invention of Claim 1 or Claim 2 , in the range which does not impair the physical property, a flame retardant, a stabilizer, a lubricant, a processing aid, an impact modifier, a heat improver Additives such as antioxidants, light stabilizers, ultraviolet absorbers, pigments, plasticizers, and thermoplastic elastomers may be added.

上記難燃剤としては、燃焼時の難燃性を高めるためのものであれば特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、ハイドロタルサイト、二酸化アンチモン、三酸化アンチモン、五酸化アンチモン等の酸化アンチモン、三酸化モリブデン、二硫化モリブデン、アンモニウムモリブデート等のモリブデン化合物、テトラブロモビスフェノールA、テトラブロムエタン、テトラブロムエタン、テトラブロムエタン等の臭素系化合物、トリフェニルフォスフェート、アンモニウムポリフォスフェート等のリン系化合物、ホウ酸カルシウム、ホウ酸亜鉛などが挙げられるが、ポリ塩化ビニルの燃焼抑制効果としては、三酸化アンチモンが特に好ましい。アンチモン化合物は、ハロゲン系化合物の存在下では、高温条件のもとで、ハロゲン化アンチモン化合物を作り、燃焼サイクルを抑制させる効果が非常に強く、相乗効果が著しいからである。   The flame retardant is not particularly limited as long as it is for enhancing flame retardancy during combustion. For example, hydroxides such as aluminum hydroxide and magnesium hydroxide, hydrotalcite, antimony dioxide, and antimony trioxide. Antimony oxides such as antimony pentoxide, molybdenum compounds such as molybdenum trioxide, molybdenum disulfide, ammonium molybdate, bromine compounds such as tetrabromobisphenol A, tetrabromoethane, tetrabromoethane, tetrabromoethane, triphenylphosphine Phosphorus compounds such as phosphate and ammonium polyphosphate, calcium borate, zinc borate and the like can be mentioned, but antimony trioxide is particularly preferable as a combustion suppressing effect of polyvinyl chloride. This is because the antimony compound has a very strong synergistic effect in producing a halogenated antimony compound under high temperature conditions and suppressing the combustion cycle in the presence of a halogen compound.

難燃剤を併用することにより、燃焼時において、熱膨張性黒鉛の膨張による断熱効果と難燃剤による燃焼遅延効果が相乗効果を発揮して、より効率的に耐火性能を向上させることができる。難燃剤の添加部数は、特に限定されないが、ポリ塩化ビニル系樹脂100重量部に対して、1重量部以上20重量部以下、添加されていることが好ましい。難燃剤が1重量部未満であると、十分な相乗効果が得られにくいことがあるし、難燃剤が20重量部を超えて添加されると、成形性や物性が著しく低下してしまう恐れがあるからである。   By using a flame retardant in combination, the heat insulation effect due to the expansion of the thermally expandable graphite and the combustion delay effect due to the flame retardant exhibit a synergistic effect during combustion, and the fire resistance can be improved more efficiently. The number of added flame retardants is not particularly limited, but it is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polyvinyl chloride resin. If the flame retardant is less than 1 part by weight, it may be difficult to obtain a sufficient synergistic effect, and if the flame retardant is added in excess of 20 parts by weight, the moldability and physical properties may be significantly reduced. Because there is.

上記安定剤としては特に限定されず、例えば、熱安定剤、熱安定化助剤などが挙げられる。上記熱安定剤としては特に限定されず、例えば、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジメチル錫メルカプト、ジブチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレートポリマー等の有機錫系安定剤;ステアリン酸鉛、二塩基性亜りん酸鉛、三塩基性硫酸鉛等の鉛系安定剤;カルシウム−亜鉛系安定剤;バリウム−亜鉛系安定剤;バリウムーカドミウム系安定剤などが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。   The stabilizer is not particularly limited, and examples thereof include a heat stabilizer and a heat stabilization aid. The heat stabilizer is not particularly limited. Organotin stabilizers such as tin laurate and dibutyltin laurate polymer; lead stabilizers such as lead stearate, dibasic lead phosphite and tribasic lead sulfate; calcium-zinc stabilizer; barium-zinc System stabilizers; barium-cadmium stabilizers and the like. These may be used alone or in combination of two or more.

上記熱安定化助剤としては特に限定されず、例えば、エポキシ化大豆油、りん酸エステル、ポリオール、ハイドロタルサイト、ゼオライト等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。   The heat stabilization aid is not particularly limited, and examples thereof include epoxidized soybean oil, phosphate ester, polyol, hydrotalcite, and zeolite. These may be used alone or in combination of two or more.

上記滑剤としては、内部滑剤、外部滑剤が挙げられる。
内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。上記内部滑剤としては特に限定されず、例えば、ブチルステアレート、ラウリルアルコール、ステアリルアルコール、エポキシ大豆油、グリセリンモノステアレート、ステアリン酸、ビスアミド等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。外部滑剤としては特に限定されず、例えば、パラフィンワックス、ポリオレフィンワックス、エステルワックス、モンタン酸ワックスなどが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
Examples of the lubricant include an internal lubricant and an external lubricant.
The internal lubricant is used for the purpose of lowering the flow viscosity of the molten resin during molding and preventing frictional heat generation. The internal lubricant is not particularly limited, and examples thereof include butyl stearate, lauryl alcohol, stearyl alcohol, epoxy soybean oil, glycerin monostearate, stearic acid, and bisamide. These may be used alone or in combination of two or more.
The external lubricant is used for the purpose of increasing the sliding effect between the molten resin and the metal surface during molding. The external lubricant is not particularly limited, and examples thereof include paraffin wax, polyolefin wax, ester wax, and montanic acid wax. These may be used alone or in combination of two or more.

上記加工助剤としては特に限定されず、例えば重量平均分子量10万〜200万のアルキルアクリレート−アルキルメタクリレート共重合体等のアクリル系加工助剤などが挙げられる。上記アクリル系加工助剤としては特に限定されず、例えば、n−ブチルアクリレート−メチルメタクリレート共重合体、2−エチルヘキシルアクリレート−メチルメタクリレート−ブチルメタクリレート共重合体等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。   The processing aid is not particularly limited, and examples thereof include acrylic processing aids such as alkyl acrylate-alkyl methacrylate copolymers having a weight average molecular weight of 100,000 to 2,000,000. The acrylic processing aid is not particularly limited, and examples thereof include n-butyl acrylate-methyl methacrylate copolymer and 2-ethylhexyl acrylate-methyl methacrylate-butyl methacrylate copolymer. These may be used alone or in combination of two or more.

上記衝撃改質剤としては特に限定されず、例えばメタクリル酸メチル−ブタジエン−スチレン共重合体(MBS)、塩素化ポリエチレン、アクリルゴムなどが挙げられる。   The impact modifier is not particularly limited, and examples thereof include methyl methacrylate-butadiene-styrene copolymer (MBS), chlorinated polyethylene, and acrylic rubber.

上記耐熱向上剤としては特に限定されず、例えばα−メチルスチレン系、N−フェニルマレイミド系樹脂等が挙げられる。   The heat resistance improver is not particularly limited, and examples thereof include α-methylstyrene-based and N-phenylmaleimide-based resins.

上記酸化防止剤としては特に限定されず、例えば、フェノール系抗酸化剤などが挙げられる。   It does not specifically limit as said antioxidant, For example, a phenolic antioxidant etc. are mentioned.

上記光安定剤としては特に限定されず、例えば、ヒンダードアミン系等の光安定剤等が挙げられる。   The light stabilizer is not particularly limited, and examples thereof include hindered amine light stabilizers.

上記紫外線吸収剤としては特に限定されず、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤などが挙げられる。   The ultraviolet absorber is not particularly limited, and examples thereof include salicylic acid ester-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers.

上記顔料としては特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料;酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアニン化物系などの無機顔料などが挙げられる。   The pigment is not particularly limited, and examples thereof include organic pigments such as azo, phthalocyanine, selenium, and dye lakes; oxides, molybdenum chromates, sulfides / selenides, ferrocyanides, and the like. Examples include inorganic pigments.

また、上記ポリ塩化ビニル系樹脂には可塑剤が添加されていてもよいが、成形品の耐熱性や耐火性を低下させることがあるため、多量に使用することはあまり好ましくない。上記可塑剤としては特に限定されず、例えば、ジブチルフタレート、ジー2―エチルヘキシルフタレート、ジー2―エチルヘキシルアジペート等が挙げられる。   Further, a plasticizer may be added to the polyvinyl chloride resin, but it is not preferable to use a large amount because it may reduce the heat resistance and fire resistance of the molded product. The plasticizer is not particularly limited, and examples thereof include dibutyl phthalate, di-2-ethylhexyl phthalate, and di-2-ethylhexyl adipate.

上記熱可塑性エラストマーとしては特に限定されず、例えば、アクリルニトリル−ブタジエン共重合体(NBR)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−酢酸ビニル−一酸化炭素共重合体(EVACO)、塩化ビニル−酢酸ビニル共重合体や塩化ビニル−塩化ビニリデン共重合体等の塩化ビニル系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。これらの熱可塑性エラストマーは、単独で用いられても良いし、2種類以上が併用されても良い。   The thermoplastic elastomer is not particularly limited. For example, acrylonitrile-butadiene copolymer (NBR), ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl acetate-carbon monoxide copolymer (EVACO), Vinyl chloride-based thermoplastic elastomers such as vinyl chloride-vinyl acetate copolymer and vinyl chloride-vinylidene chloride copolymer, styrene-based thermoplastic elastomer, olefin-based thermoplastic elastomer, urethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, Examples thereof include polyamide-based thermoplastic elastomers. These thermoplastic elastomers may be used alone or in combination of two or more.

上記添加剤を上記ポリ塩化ビニル系樹脂に混合する方法としては特に限定されず、例えば、ホットブレンドによる方法、コールドブレンドによる方法等が挙げられる。   The method for mixing the additive with the polyvinyl chloride resin is not particularly limited, and examples thereof include a method using hot blending and a method using cold blending.

本発明の建築用配管材としては、例えば、耐火管や耐火管継手が挙げられる。また、本発明の建築用配管材は、一般的に用いられる押出成形機や射出成形機によって成形される。成形機の種類やスクリュー形状などは、特に限定されず、引張強度や衝撃を考慮して、十分に混練できるものであればよいが、連続成形可能な押出成形機が好ましい。   Examples of the building piping material of the present invention include fireproof pipes and fireproof pipe joints. Moreover, the building piping material of the present invention is molded by a generally used extrusion molding machine or injection molding machine. The type of the molding machine and the screw shape are not particularly limited as long as they can be sufficiently kneaded in consideration of tensile strength and impact, but an extrusion molding machine capable of continuous molding is preferable.

請求項1記載の発明の建築用配管材は、ポリ塩化ビニル系樹脂に熱膨張性黒鉛と無機充填剤とを含有させた耐火性樹脂組成物で構成されており、その配合比が、ポリ塩化ビニル系樹脂100重量部に対して、熱膨張性黒鉛が1〜10重量部、無機充填剤が1〜50重量部であるので、成形性に優れており、例えば、射出成形や押出成形などによって、高い寸法精度で連続的に生産できる。
また、ポリ塩化ビニル系樹脂は、自己消火性があるので、燃焼速度の遅延が効果的に行われ、燃焼時の火炎の伝播速度を抑えることができる上、燃焼初期に発泡するので、熱膨張性黒鉛が膨張しやすいという利点もある。
また、熱膨張性黒鉛は、それ自体が燃えにくく、かつ熱により膨張して断熱効果が発現するので、燃焼速度の遅延がさらに効果的に行われる。
さらに、無機充填剤が、燃焼時に骨材的な働きをするため、燃焼時の管壁を強固に保つことができ、残渣が脱落しにくいため、燃焼速度の遅延がさらに効果的に行われる。
したがって、本発明の建築用配管材は、それ自体が優れた耐火膨張性を備えており、燃焼時には配管材自体が膨張するとともに、燃焼速度の遅延効果を発揮して、区画貫通部で仕切られた他の側に火炎や煙が回るのを阻止することができ、従来のように、配管材の周囲に他の耐火部材を設ける必要がない。また、施工時の仮配管時に、位置確認のためにマーキングするなどの作業が不要となり、単に、区画貫通部に前記建築用配管材を挿通させるだけでよいので、作業を大幅に軽減でき、現場施工性を飛躍的に向上させることができる。さらに、本発明の建築用配管材は、塩化ビニル樹脂製パイプの外周に繊維強化モルタルを被覆した、いわゆる耐火二層管に比べて、管外径が大きくならないので、貫通口を複数設ける場合に、各貫通口の間隔を小さく取れる上、床下に配管する場合に、勾配がとりやすくなるなど、画期的に施工性が向上する。
Building piping material of the invention according to claim 1, port re is configured to vinyl chloride resin in refractory resin composition containing a heat expandable graphite and an inorganic filler, its mixing ratio, poly Since the heat-expandable graphite is 1 to 10 parts by weight and the inorganic filler is 1 to 50 parts by weight with respect to 100 parts by weight of the vinyl chloride resin, the moldability is excellent. For example, injection molding, extrusion molding, etc. Can be continuously produced with high dimensional accuracy.
In addition, the polyvinyl chloride resin is self-extinguishing, effectively delaying the combustion speed, suppressing the flame propagation speed during combustion, and foaming at the initial stage of combustion, so thermal expansion There is also an advantage that the conductive graphite easily expands.
Further, since the heat-expandable graphite itself is hard to burn and expands due to heat and exhibits a heat insulation effect, the combustion rate is more effectively delayed.
Further, since the inorganic filler functions as an aggregate during combustion, the tube wall during combustion can be kept strong, and the residue is not easily dropped off, so that the combustion rate is more effectively delayed.
Therefore, the building piping material of the present invention itself has excellent fire-expanding property, and the piping material itself expands at the time of combustion, and exhibits the effect of delaying the combustion speed, and is partitioned by the partition through portion. Further, it is possible to prevent the flame and smoke from turning to the other side, and there is no need to provide another refractory member around the piping material as in the prior art. In addition, work such as marking for position confirmation is not required during temporary piping during construction, and it is only necessary to insert the building piping material through the section penetrations, greatly reducing the work and Workability can be improved dramatically. Furthermore, the piping material for construction of the present invention has a pipe outer diameter that does not increase compared to a so-called fire-resistant double-layer pipe in which the outer periphery of a vinyl chloride resin pipe is coated with fiber reinforced mortar. In addition, the interval between the through holes can be made small, and when piping under the floor, it is easy to take a gradient and the workability is dramatically improved.

また、請求項2に記載の発明のように、請求項1に記載の発明において、ポリ塩化ビニル系樹脂100重量部に対して、無機充填剤が2〜5重量部の割合で配合されたものでは、成形性と耐火性の効果についてバランスの取れた配合範囲となり、請求項1に記載の発明の効果がより高く発現される。 Further, as in the invention according to claim 2, in the invention according to claim 1, an inorganic filler is blended in a proportion of 2 to 5 parts by weight with respect to 100 parts by weight of the polyvinyl chloride resin. Then, the blending range is balanced with respect to the effects of formability and fire resistance, and the effect of the invention of claim 1 is expressed more highly.

請求項記載の発明は、請求項1または請求項2に記載の建築用配管材の成形方法であって、熱膨張性黒鉛の膨張温度T1と、成形時の樹脂温度T2とが、T1≦240℃、かつ、(T2+10℃)≦T1≦(T2+60℃)の関係を満たしているので、成形された建築用配管材の燃焼時には、熱膨張性黒鉛が、ポリ塩化ビニル系樹脂が溶融し分解する温度とほぼ同じ温度で目に見えて膨張し、ポリ塩化ビニル系樹脂が分解発泡して生じた隙間を熱膨張性黒鉛によって埋めて、強固な炭化層を形成する。
また、建築用配管材の成形時に、熱膨張性黒鉛が膨張を開始してしまうのを効果的に抑制し、良好に成形できる。
すなわち、本発明の建築用配管材の成形方法によれば、配管材そのもので防火措置を行うことのできる耐火性に優れた建築用配管材を良好に成形することができる。
According to a third aspect of the invention, a method of forming a building piping material according to claim 1 or claim 2, the expansion temperature T1 of the heat expandable graphite, and resin temperature T2 at the time of molding, T1 ≦ Since it satisfies the relationship of 240 ° C and (T2 + 10 ° C) ≤ T1 ≤ (T2 + 60 ° C), the thermally expandable graphite melts and decomposes when the molded piping material for combustion melts. It expands visibly at substantially the same temperature as the temperature at which it is heated, and the space formed by the decomposition and foaming of the polyvinyl chloride resin is filled with thermally expandable graphite to form a strong carbonized layer.
Moreover, it can suppress effectively that a thermal expansible graphite starts expansion | swelling at the time of shaping | molding of the piping material for construction, and can shape | mold favorably.
That is, according to the method for forming a building piping material of the present invention, it is possible to satisfactorily form a building piping material having excellent fire resistance that can be fire-proofed by the piping material itself.

請求項に記載の発明の建築用配管材の成形方法は、請求項1または請求項2に記載の建築用配管材の成形方法であって、熱膨張性黒鉛の1.3倍膨張温度T3が180℃〜240℃であり、成形時の樹脂温度T2が、熱膨張性黒鉛の1.3倍膨張温度T3よりも5℃以上低く、かつ、170℃〜210℃であるので、成形された建築用配管材が燃焼する時には、まず、ポリ塩化ビニル系樹脂が軟化し、その状態で、熱膨張性黒鉛が膨張を開始する。つまり、ポリ塩化ビニル系樹脂が伸びながら熱膨張性黒鉛が膨張していく。そして、さらに加熱が続くと、ポリ塩化ビニル系樹脂の炭化が進み、ポリ塩化ビニル系樹脂と熱膨張性黒鉛とが強固に絡み合った炭化物が形成される。この炭化物は、燃焼側に落下することなく、その形状を保持するため、配管材の加熱側端部を確実に閉塞することができ、その結果、熱気が区画貫通部内に流入しにくく、優れた遮炎効果を発現できる。
また、建築用配管材の成形時に、熱膨張性黒鉛が膨張を開始してしまうのを効果的に抑制し、良好に成形できる。
すなわち、本発明の建築用配管材の成形方法によれば、配管材そのもので防火措置を行うことのできる耐火性に優れた建築用配管材を良好に成形することができる。
その上、熱膨張性黒鉛の1.3倍膨張温度T3と成形時の樹脂温度T2とをごく狭い温度範囲に限定して成形することにより、ポリ塩化ビニル系樹脂と熱膨張性黒鉛以外の物質、例えば、無機充填剤や難燃剤、成形助剤等の配合量を抑えることができ、配管材としての物性も良好となるという利点もある。
The method for forming a piping material for building according to claim 4 is the method for forming a piping material for building according to claim 1 or 2 , wherein the expansion temperature T3 is 1.3 times that of thermally expandable graphite. Was 180 ° C to 240 ° C, and the resin temperature T2 at the time of molding was 5 ° C lower than the 1.3 times expansion temperature T3 of the thermally expandable graphite and 170 ° C to 210 ° C. When the piping material for building burns, first, the polyvinyl chloride resin softens, and in this state, the thermally expandable graphite starts to expand. That is, the thermally expandable graphite expands while the polyvinyl chloride resin expands. When the heating continues further, carbonization of the polyvinyl chloride resin proceeds, and a carbide in which the polyvinyl chloride resin and the thermally expandable graphite are firmly intertwined is formed. Since this carbide retains its shape without falling to the combustion side, it is possible to reliably close the heating side end of the piping material, and as a result, the hot air is less likely to flow into the partition through portion, which is excellent. A flame shielding effect can be expressed.
Moreover, it can suppress effectively that a thermal expansible graphite starts expansion | swelling at the time of shaping | molding of the piping material for construction, and can shape | mold favorably.
That is, according to the method for forming a building piping material of the present invention, it is possible to satisfactorily form a building piping material having excellent fire resistance that can be fire-proofed by the piping material itself.
In addition, the material other than the polyvinyl chloride resin and the thermally expandable graphite can be formed by limiting the 1.3 times expansion temperature T3 of the thermally expandable graphite and the resin temperature T2 at the time of molding to a very narrow temperature range. For example, the amount of inorganic filler, flame retardant, molding aid and the like can be suppressed, and there is an advantage that physical properties as a piping material are also improved.

本実施形態の建築用配管材Pは、図1に示すように、単層管であり、長さ1200mm、外径114mm、厚さ6.6mm、呼び径100Aに作製されている。
以下、実施例を挙げて詳細に説明する。
As shown in FIG. 1, the construction piping material P of the present embodiment is a single-layer pipe, and is manufactured to have a length of 1200 mm, an outer diameter of 114 mm, a thickness of 6.6 mm, and a nominal diameter of 100A.
Hereinafter, an example is given and explained in detail.

(実施例1)〜(実施例14)については、塩化ビニル樹脂(大洋塩ビ社製、品番TH1000)100重量部に、熱膨張性黒鉛(東ソー社製、品番GREP-EG)と、無機充填剤としての炭酸カルシウム(白石カルシウム社製、品番ホワイトンSB)とを、(表1)〜(表3)に示した割合で配合し、内容積200リットルのヘンシェルミキサー(川田工業社製)で攪拌混合し、耐火性樹脂組成物を得た。
いずれの配合においても、押出成形するために、安定剤(堺化学株式会社製 商品名SL-1000)2部と滑剤(三井化学株式会社製 商品名ハイワックス4202E)0.5部を加えた。
そして、得られた樹脂組成物を一般的に用いられる押出成形機によって押出成形して、耐火性評価に用いる建築用配管材Pを作製した。また、この建築用配管材Pから性能評価に用いる試験片を作製した。試験片は、前記建築用配管材Pの管壁の一部を切り出した後、荷重200kgf、190℃で3分間プレス成形して得られた厚さ3mmのプレス板より作製した。
For (Example 1) to (Example 14), 100 parts by weight of vinyl chloride resin (manufactured by Taiyo PVC Co., product number TH1000), thermally expandable graphite (manufactured by Tosoh Corp., product number GREP-EG), and inorganic filler Calcium carbonate (manufactured by Shiraishi Calcium Co., Part No. Whiteon SB) is blended in the proportions shown in (Table 1) to (Table 3), and stirred with a 200 liter Henschel mixer (manufactured by Kawada Kogyo Co., Ltd.). It mixed and the fireproof resin composition was obtained.
In any formulation, 2 parts of a stabilizer (trade name SL-1000 manufactured by Sakai Chemical Co., Ltd.) and 0.5 part of a lubricant (trade name High Wax 4202E manufactured by Mitsui Chemicals, Inc.) were added for extrusion molding.
And the obtained resin composition was extrusion-molded with the extruder generally used, and the piping material P for construction used for fire resistance evaluation was produced. Moreover, the test piece used for performance evaluation from this piping material P for construction was produced. The test piece was prepared from a 3 mm thick press plate obtained by cutting out a part of the pipe wall of the building piping material P and then press-molding at a load of 200 kgf and 190 ° C. for 3 minutes.

(比較例1)〜(比較例8)については、塩化ビニル樹脂(大洋塩ビ社製、品番TH1000)100重量部に、熱膨張性黒鉛(東ソー社製、品番GREP-EG)と、無機充填剤としての炭酸カルシウム(白石カルシウム社製、品番ホワイトンSB)とを、(表1)〜(表3)に示した割合で配合し、溶融混練して得られた樹脂組成物で構成した。
いずれの配合においても、押出成形するために、安定剤(堺化学株式会社製 商品名SL-1000)2部と滑剤(三井化学株式会社製 商品名ハイワックス4202E)0.5部を加えた。
そして、上記実施例と同様に、得られた樹脂組成物から建築用配管材Pと試験片とを作製した。
For (Comparative Example 1) to (Comparative Example 8), 100 parts by weight of vinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., product number TH1000), thermally expandable graphite (manufactured by Tosoh Corp., product number GREP-EG), and inorganic filler As a carbonate composition (manufactured by Shiraishi Calcium Co., Ltd., product number Whiteon SB) at a ratio shown in (Table 1) to (Table 3) and melt-kneaded to form a resin composition.
In any formulation, 2 parts of a stabilizer (trade name SL-1000 manufactured by Sakai Chemical Co., Ltd.) and 0.5 part of a lubricant (trade name High Wax 4202E manufactured by Mitsui Chemicals, Inc.) were added for extrusion molding.
And the piping material P for construction and the test piece were produced from the obtained resin composition similarly to the said Example.

(耐火性評価)
図2に示す耐火試験炉Xにより、耐火試験(平成12年6月1日に施行された改正建築基準法の耐火性能試験の評価方法 ISO834-1に従う)を実施した。
床材Yは、100mm厚さのPC(プレキャストコンクリート)パネルを用いた。建築用配管材Pは、床材Yに設けられた区画貫通部Rに貫通させ、加熱室Z内に300mm露出させ、床材Yの外部に800mm露出させた。
なお、加熱室Zの側壁にはバーナーV,Vが設置されている。また、建築用配管材Pの先端部近傍に温度測定用の熱電対Qが設置されている。
加熱開始後、区画貫通部Rと建築用配管材Pとの隙間から煙が出るまでの時間(発煙時間)を測定した。消防法の令8区画の判定基準に従って、発煙時間が130分以上の場合を◎(優秀)、120分以上の場合を○(合格)、120分未満の場合を×(不合格)とした。
(Fire resistance evaluation)
A fire resistance test (according to ISO 834-1, an evaluation method for the fire resistance performance test of the revised Building Standard Law, which was enforced on June 1, 2000) was performed by the fire resistance test furnace X shown in FIG.
As the flooring Y, a PC (precast concrete) panel having a thickness of 100 mm was used. The piping material P for construction was penetrated through the partition penetration portion R provided in the floor material Y, exposed in the heating chamber Z by 300 mm, and exposed to the outside of the floor material Y by 800 mm.
Burners V and V are installed on the side wall of the heating chamber Z. Further, a thermocouple Q for temperature measurement is installed in the vicinity of the tip of the building piping material P.
After heating was started, the time (smoke generation time) until smoke was emitted from the gap between the partition through portion R and the building piping material P was measured. According to the criteria of the 8th division of the Fire Service Law, ◎ (excellent) when smoke generation time was 130 minutes or more, ○ (pass) when 120 minutes or more, and × (fail) when it was less than 120 minutes.

(性能評価)
得られた試験片について、JISK7113に規定される引張試験(評価温度23℃)を行った。なお、管としての実用的な性能を満たしているかを判定するため、23℃で引張強度が45(MPa)以上のものを◎(優秀)、30(MPa)以上のものを○(合格)、30(MPa)未満のものを×(不合格)とした。
また、成形性については、押出成形ができ、かつ、目視による外観観察においてパイプ外観が良好であったものを○(合格)とし、押出成形できないものや、パイプ外観に異変が見られたものを×(不合格)とした。
(Performance evaluation)
About the obtained test piece, the tension test (evaluation temperature 23 degreeC) prescribed | regulated to JISK7113 was done. In addition, in order to determine whether or not the practical performance as a tube is satisfied, the one having a tensile strength of 45 (MPa) or more at 23 ° C. is ◎ (excellent), the one having 30 (MPa) or more is ○ (pass), Those less than 30 (MPa) were evaluated as x (failed).
As for moldability, those that can be extruded and the pipe appearance was good in the visual appearance observation are marked as ◯ (accepted), and those that cannot be extruded or those that have an unusual appearance in the pipe appearance. X (failed).

Figure 0004440287
Figure 0004440287

Figure 0004440287
Figure 0004440287

Figure 0004440287
Figure 0004440287

(実験結果)
(表1)に示すように、(比較例1)(比較例3)は、熱膨張性黒鉛を配合しなかったため、発煙時間が早く、(耐火性評価)は不合格であった。また、(比較例2)は、熱膨張性黒鉛の配合割合が大きすぎたため、発煙時間が早く、(耐火性評価)は不合格であった。
また、(表2)に示すように、(比較例4)は、無機充填剤を配合しなかったため、発煙時間が120分未満であり、(耐火性評価)が不合格であった。(比較例5)(比較例6)は、無機充填剤の配合割合が大きすぎたため、引張強度が30MPa未満であり、(性能評価)が不合格であった。さらに、(比較例6)については、配管材を押出成形できなかった。
また、(表3)に示すように、(比較例7)(比較例8)は、熱膨張性黒鉛の配合割合が不適当であったため、発煙時間が120分未満であり、(耐火性評価)が不合格であった。
したがって、(耐火性評価)、(性能評価)および(成形性)のすべてを満足する建築用配管材を得るためには、塩化ビニル樹脂100重量部に対して、熱膨張性黒鉛1〜10重量部、および無機充填剤1〜50重量部の範囲で含有させる必要があることがよくわかった。
さらに、(表2)の(実施例4)(実施例5)は、耐火性と引張強度の点で、(実施例3)(実施例6)〜(実施例10)よりもさらに優れている。したがって、塩化ビニル樹脂100重量部に対して、無機充填剤2〜5重量部の範囲で含有させたとき、より一層、耐火性、引張強度、成形性のいずれの点においてもバランスの取れた管が得られることがわかった。
なお、熱膨張性黒鉛が10重量部を超えると、図3に示すように、加熱により組織が熱膨張しすぎて、その形状を保持できずに残渣2が脱落してしまった。
(Experimental result)
As shown in (Table 1), since (Comparative Example 1) and (Comparative Example 3) did not contain thermally expandable graphite, the smoke generation time was early and the (fire resistance evaluation) was rejected. Further, in (Comparative Example 2), since the blending ratio of the heat-expandable graphite was too large, the smoke generation time was early, and (fire resistance evaluation) was rejected.
Moreover, as shown in (Table 2), since (Comparative Example 4) did not contain an inorganic filler, the smoke generation time was less than 120 minutes, and the (fire resistance evaluation) was rejected. (Comparative Example 5) (Comparative Example 6) had an excessively large blending ratio of the inorganic filler, so that the tensile strength was less than 30 MPa and (performance evaluation) was unacceptable. Further, for (Comparative Example 6), the piping material could not be extruded.
Further, as shown in (Table 3), in (Comparative Example 7) (Comparative Example 8), since the blending ratio of the thermally expandable graphite was inappropriate, the smoke generation time was less than 120 minutes. ) Was rejected.
Therefore, in order to obtain a piping material for construction satisfying all of (fire resistance evaluation), (performance evaluation) and (formability), 1 to 10 weight parts of thermally expandable graphite with respect to 100 parts by weight of vinyl chloride resin. It was well understood that it was necessary to contain in the range of 1 part by weight and 50 parts by weight of the inorganic filler.
Furthermore, (Example 4) and (Example 5) in (Table 2) are further superior to (Example 3) (Example 6) to (Example 10) in terms of fire resistance and tensile strength. . Therefore, when it is contained in the range of 2 to 5 parts by weight of the inorganic filler with respect to 100 parts by weight of the vinyl chloride resin, the tube is further balanced in any of fire resistance, tensile strength and moldability. Was found to be obtained.
When the heat-expandable graphite exceeds 10 parts by weight, as shown in FIG. 3, the structure excessively expands due to heating, and the shape cannot be maintained, and the residue 2 falls off.

(実施例15)〜(実施例18)については、塩化ビニル樹脂(大洋塩ビ社製、品番TH1000)100重量部に、(表4)に示す膨張温度T1の熱膨張性黒鉛を(表4)に示した割合で配合し、内容積200リットルのヘンシェルミキサー(川田工業社製)で攪拌混合し、耐火性樹脂組成物を得た後、一般的に用いられる押出成形機によって押出成形して、耐火性評価に用いる建築用配管材Pを作製した。また、この建築用配管材Pから性能評価に用いる試験片を作製した。試験片は、前記建築用配管材Pの管壁の一部を切り出した後、荷重200kgf、190℃で3分間プレス成形して得られた厚さ3mmのプレス板より作製した。   For (Example 15) to (Example 18), 100 parts by weight of vinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., product number TH1000) was subjected to thermal expansion graphite having an expansion temperature T1 shown in (Table 4) (Table 4). After mixing with a Henshell mixer (made by Kawada Kogyo Co., Ltd.) with an internal volume of 200 liters to obtain a refractory resin composition, it is extruded with a generally used extruder, A construction piping material P used for fire resistance evaluation was prepared. Moreover, the test piece used for performance evaluation from this piping material P for construction was produced. The test piece was prepared from a 3 mm thick press plate obtained by cutting out a part of the pipe wall of the building piping material P and then press-molding at a load of 200 kgf and 190 ° C. for 3 minutes.

(比較例9)〜(比較例13)については、塩化ビニル樹脂(大洋塩ビ社製、品番TH1000)100重量部に、(表4)に示す膨張温度T1の熱膨張性黒鉛を(表4)に示した割合で配合し、溶融混練して得られた樹脂組成物で構成した。そして、上記実施例と同様に、得られた樹脂組成物から建築用配管材Pと試験片とを作製した。   For (Comparative Example 9) to (Comparative Example 13), 100 parts by weight of vinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., product number TH1000) is thermally expanded graphite having an expansion temperature T1 shown in (Table 4) (Table 4). The resin composition obtained by blending and melting and kneading at the ratio shown in FIG. And the piping material P for construction and the test piece were produced from the obtained resin composition similarly to the said Example.

なお、実施例、比較例とも、押出成形するために、安定剤(堺化学株式会社製 商品名SL-1000)2部と滑剤(三井化学株式会社製 商品名ハイワックス4202E)0.5部を加えた。
また、実施例、比較例とも、成形時の樹脂温度T2は、180℃であった。
また、熱膨張性黒鉛の膨張温度T1の測定には、セイコーインスツル株式会社製の熱重量分析装置「TG/DTA 320」を使用した。
In both examples and comparative examples, 2 parts of a stabilizer (trade name SL-1000 manufactured by Sakai Chemical Co., Ltd.) and 0.5 part of a lubricant (trade name High Wax 4202E manufactured by Mitsui Chemical Co., Ltd.) were added for extrusion molding. added.
Moreover, the resin temperature T2 at the time of shaping | molding was 180 degreeC in the Example and the comparative example.
Further, a thermogravimetric analyzer “TG / DTA 320” manufactured by Seiko Instruments Inc. was used to measure the expansion temperature T1 of the thermally expandable graphite.

(耐火性評価)
図2に示す耐火試験炉Xにより、耐火試験(平成12年6月1日に施行された改正建築基準法の耐火性能試験の評価方法 ISO834-1に従う)を実施した。
床材Yは、100mm厚さのPC(プレキャストコンクリート)パネルを用いた。建築用配管材Pは、床材Yに設けられた区画貫通部Rに貫通させ、加熱室Z内に300mm露出させ、床材Yの外部に800mm露出させた。
なお、加熱室Zの側壁にはバーナーV,Vが設置されている。また、建築用配管材Pの先端部近傍に温度測定用の熱電対Qが設置されている。
加熱開始後、区画貫通部Rと建築用配管材Pとの隙間から煙が出るまでの時間(発煙時間)を測定し、消防法の令8区画の判定基準に従って、発煙時間が130分以上の場合を◎(優秀)120分以上の場合を○(合格)、120分未満の場合を×(不合格)とした。
(Fire resistance evaluation)
A fire resistance test (according to ISO 834-1, an evaluation method for the fire resistance performance test of the revised Building Standard Law, which was enforced on June 1, 2000) was performed by the fire resistance test furnace X shown in FIG.
As the flooring Y, a PC (precast concrete) panel having a thickness of 100 mm was used. The piping material P for construction was penetrated through the partition penetration portion R provided in the floor material Y, exposed in the heating chamber Z by 300 mm, and exposed to the outside of the floor material Y by 800 mm.
Burners V and V are installed on the side wall of the heating chamber Z. Further, a thermocouple Q for temperature measurement is installed in the vicinity of the tip of the building piping material P.
After starting the heating, measure the time (smoke generation time) until smoke is emitted from the gap between the section penetration part R and the building piping material P, and the smoke generation time is 130 minutes or more according to the judgment criteria of Ordinance 8 Section of the Fire Service Act The case was evaluated as ◎ (excellent) for 120 minutes or more, and ○ (passed) for less than 120 minutes.

(性能評価)
得られた試験片について、JISK7113に規定される引張試験(評価温度23℃)を行った。なお、管としての実用的な性能を満たしているかを判定するため、23℃で引張強度が45(MPa)以上のものを◎(優秀)、30(MPa)以上のものを○(合格)、30(MPa)未満のものを×(不合格)とした。
また、成形性については、押出成形ができ、かつ、目視による外観観察においてパイプ外観が良好であったものを○(合格)とし、押出成形できないものや、パイプ外観に異変が見られたものを×(不合格)とした。
(Performance evaluation)
About the obtained test piece, the tension test (evaluation temperature 23 degreeC) prescribed | regulated to JISK7113 was done. In addition, in order to determine whether or not the practical performance as a tube is satisfied, the one having a tensile strength of 45 (MPa) or more at 23 ° C. is ◎ (excellent), the one having 30 (MPa) or more is ○ (pass), Those less than 30 (MPa) were evaluated as x (failed).
As for moldability, those that can be extruded and the pipe appearance was good in the visual appearance observation are marked as ◯ (accepted), and those that cannot be extruded or those that have an unusual appearance in the pipe appearance. X (failed).

Figure 0004440287
Figure 0004440287

(実験結果)
(表4)に示すように、(実施例17)は、熱膨張性黒鉛の膨張温度T1が190℃で、成形時の樹脂温度T2よりも10℃高い場合であり、すべての評価項目で良好であった。
これに比べて、(比較例11)は、熱膨張性黒鉛の膨張温度T1が180℃で、膨張温度T1と押出成形時の樹脂温度T2とが同じ温度の場合であり、成形時に、ポリ塩化ビニルの分解による管表面の発泡が見られたため、成形性の面で不合格であった。
また、(実施例18)は、熱膨張性黒鉛の膨張温度T1が240℃で、成形時の樹脂温度T2よりも60℃高い場合であり、すべての評価項目で良好であった。これに比べて、(比較例12)は、熱膨張性黒鉛の膨張温度T1が250℃で、成形時の樹脂温度T2よりも70℃高い場合であり、(耐火性評価)が不合格であった。また、(比較例13)は、熱膨張性黒鉛の膨張温度T1が300℃であり、(耐火性評価)が不合格であった。
したがって、熱膨張性黒鉛の膨張温度T1と成形時の樹脂温度T2とが、T1≦240℃、かつ、(T2+10℃)≦T1≦(T2+60℃)である必要があることがよくわかった。
(Experimental result)
As shown in (Table 4), (Example 17) is a case where the expansion temperature T1 of the thermally expandable graphite is 190 ° C., which is 10 ° C. higher than the resin temperature T2 at the time of molding, and is good in all evaluation items. Met.
In comparison, (Comparative Example 11) is a case where the expansion temperature T1 of the thermally expandable graphite is 180 ° C., and the expansion temperature T1 and the resin temperature T2 at the time of extrusion molding are the same temperature. Since foaming of the tube surface due to the decomposition of vinyl was observed, it was rejected in terms of moldability.
Further, (Example 18) was a case where the expansion temperature T1 of the thermally expandable graphite was 240 ° C., which was 60 ° C. higher than the resin temperature T2 at the time of molding, and was good in all evaluation items. In comparison, (Comparative Example 12) is a case where the expansion temperature T1 of the thermally expandable graphite is 250 ° C., which is 70 ° C. higher than the resin temperature T2 at the time of molding, and the (fire resistance evaluation) was not acceptable. It was. Further, in (Comparative Example 13), the expansion temperature T1 of the thermally expandable graphite was 300 ° C., and (fire resistance evaluation) was unacceptable.
Therefore, it was well understood that the expansion temperature T1 of the thermally expandable graphite and the resin temperature T2 at the time of molding need to satisfy T1 ≦ 240 ° C. and (T2 + 10 ° C.) ≦ T1 ≦ (T2 + 60 ° C.).

(実施例19)〜(実施例23)については、塩化ビニル樹脂(大洋塩ビ社製、品番TH1000)100重量部に、(表5)に示す1.3倍膨張温度T3の熱膨張性黒鉛を(表5)に示した割合で配合し、内容積200リットルのヘンシェルミキサー(川田工業社製)で攪拌混合し、耐火性樹脂組成物を得た。   For (Example 19) to (Example 23), 100 parts by weight of vinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., product number TH1000) was mixed with thermally expandable graphite having a 1.3 times expansion temperature T3 shown in (Table 5). It mix | blended in the ratio shown in (Table 5), and it stirred and mixed with the Henschel mixer (made by Kawada Kogyo Co., Ltd.) with an internal volume of 200 liters, and obtained the fireproof resin composition.

そして、得られた樹脂組成物を一般的に用いられる押出成形機によって、(表5)に示す成形時の樹脂温度T2で押出成形して、耐火性評価に用いる建築用配管材Pを作製した。また、この建築用配管材Pから性能評価に用いる試験片を作製した。試験片は、前記建築用配管材Pの管壁の一部を切り出した後、荷重200kgf、190℃で3分間プレス成形して得られた厚さ3mmのプレス板より作製した。   And the obtained resin composition was extrusion-molded at a resin temperature T2 at the time of molding shown in (Table 5) by an extruder generally used, and a piping material P for construction used for fire resistance evaluation was produced. . Moreover, the test piece used for performance evaluation from this piping material P for construction was produced. The test piece was prepared from a 3 mm thick press plate obtained by cutting out a part of the pipe wall of the building piping material P and then press-molding at a load of 200 kgf and 190 ° C. for 3 minutes.

(比較例14)〜(比較例17)については、塩化ビニル樹脂(大洋塩ビ社製、品番TH1000)100重量部に、(表5)に示す1.3倍膨張温度T3の熱膨張性黒鉛を(表5)に示した割合で配合し、溶融混練して得られた樹脂組成物で構成した。
そして、上記実施例と同様に、得られた樹脂組成物を(表5)に示す成形時の樹脂温度T2で押出成形して、建築用配管材Pと試験片とを作製した。
For (Comparative Example 14) to (Comparative Example 17), 100 parts by weight of vinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., product number TH1000) was mixed with thermally expandable graphite having a 1.3 times expansion temperature T3 shown in (Table 5). The resin composition was blended at the ratio shown in Table 5 and obtained by melt-kneading.
And similarly to the said Example, the obtained resin composition was extrusion-molded by the resin temperature T2 at the time of shaping | molding shown in (Table 5), and the piping material P for construction and the test piece were produced.

なお、実施例、比較例とも、押出成形するために、安定剤(堺化学株式会社製 商品名SL-1000)2部と滑剤(三井化学株式会社製 商品名ハイワックス4202E)0.5部を加えた。   In both examples and comparative examples, 2 parts of a stabilizer (trade name SL-1000 manufactured by Sakai Chemical Co., Ltd.) and 0.5 part of a lubricant (trade name High Wax 4202E manufactured by Mitsui Chemical Co., Ltd.) were added for extrusion molding. added.

(耐火性評価)
図2に示す耐火試験炉Xにより、耐火試験(平成12年6月1日に施行された改正建築基準法の耐火性能試験の評価方法 ISO834-1に従う)を実施した。
床材Yは、100mm厚さのPC(プレキャストコンクリート)パネルを用いた。建築用配管材Pは、床材Yに設けられた区画貫通部Rに貫通させ、加熱室Z内に300mm露出させ、床材Yの外部に800mm露出させた。
なお、加熱室Zの側壁にはバーナーV,Vが設置されている。また、建築用配管材Pの先端部近傍に温度測定用の熱電対Qが設置されている。
加熱開始後、区画貫通部Rと建築用配管材Pとの隙間から煙が出るまでの時間(発煙時間)を測定し、消防法の令8区画の判定基準に従って、発煙時間が130分以上の場合を◎(優秀)120分以上の場合を○(合格)、120分未満の場合を×(不合格)とした。
(Fire resistance evaluation)
A fire resistance test (according to ISO 834-1, an evaluation method for the fire resistance performance test of the revised Building Standard Law, which was enforced on June 1, 2000) was performed by the fire resistance test furnace X shown in FIG.
As the flooring Y, a PC (precast concrete) panel having a thickness of 100 mm was used. The piping material P for construction was penetrated through the partition penetration portion R provided in the floor material Y, exposed in the heating chamber Z by 300 mm, and exposed to the outside of the floor material Y by 800 mm.
Burners V and V are installed on the side wall of the heating chamber Z. Further, a thermocouple Q for temperature measurement is installed in the vicinity of the tip of the building piping material P.
After starting the heating, measure the time (smoke generation time) until smoke is emitted from the gap between the section penetration part R and the building piping material P, and the smoke generation time is 130 minutes or more according to the judgment criteria of Ordinance 8 Section of the Fire Service Act The case was evaluated as ◎ (excellent) for 120 minutes or more, and ○ (passed) for less than 120 minutes.

(性能評価)
得られた試験片について、JISK7113に規定される引張試験(評価温度23℃)を行った。なお、管としての実用的な性能を満たしているかを判定するため、23℃で引張強度が45(MPa)以上のものを◎(優秀)、30(MPa)以上のものを○(合格)、30(MPa)未満のものを×(不合格)とした。
また、成形性については、押出成形ができ、かつ、目視による外観観察においてパイプ外観が良好であったものを○(合格)とし、押出成形できないものや、パイプ外観に異変が見られたものを×(不合格)とした。
(Performance evaluation)
About the obtained test piece, the tension test (evaluation temperature 23 degreeC) prescribed | regulated to JISK7113 was done. In addition, in order to determine whether or not the practical performance as a tube is satisfied, the one having a tensile strength of 45 (MPa) or more at 23 ° C. is ◎ (excellent), the one having 30 (MPa) or more is ○ (pass), Those less than 30 (MPa) were evaluated as x (failed).
As for moldability, those that can be extruded and the pipe appearance was good in the visual appearance observation are marked as ◯ (accepted), and those that cannot be extruded or those that have an unusual appearance in the pipe appearance. X (failed).

Figure 0004440287
Figure 0004440287

(実験結果)
(比較例16)は、押出成形時の樹脂温度T2が、熱膨張性黒鉛の1.3倍膨張温度T3よりも10℃高く、成形途中で熱膨張性黒鉛が膨張してしまったため、全ての項目で不合格であった。なお、(比較例16)と(実施例21)とを比較してみると、成形時の樹脂温度T2に問題がないことが分かる。
また、(比較例17)は、熱膨張性黒鉛の1.3倍膨張温度T3が高すぎて、燃焼中に区画貫通部内の樹脂が膨張に耐え切れずに崩落してしまったため、(耐火性評価)が不合格であった。すなわち、(比較例17)は、加熱によって、塩化ビニル樹脂の分解反応が起こり、発泡と炭化が進んだ後に、熱膨張性黒鉛が膨張したことにより、組織が膨張に耐え切れずに崩壊してしまった。その結果、区画貫通部内の樹脂が崩落して、配管材の加熱側端部を閉塞できなくなり、燃焼室内の熱気が、区画貫通部内に流入してしまったのである。
したがって、熱膨張性黒鉛の1.3倍膨張温度T3は、180℃〜240℃であることが必要であり、成形時の樹脂温度T2は、熱膨張性黒鉛の1.3倍膨張温度T3よりも5℃以上低く、かつ、170℃〜210℃である必要があることがよくわかった。
(Experimental result)
In Comparative Example 16, the resin temperature T2 at the time of extrusion molding was 10 ° C. higher than the 1.3 times expansion temperature T3 of the thermally expandable graphite, and the thermally expandable graphite expanded during the molding. The item was rejected. Note that comparing (Comparative Example 16) and (Example 21) shows that there is no problem in the resin temperature T2 during molding.
In addition, (Comparative Example 17) has a 1.3 times expansion temperature T3 of the thermally expandable graphite, and the resin in the partition penetrating part collapses without being able to withstand expansion during combustion. Evaluation) was rejected. That is, in (Comparative Example 17), the decomposition reaction of the vinyl chloride resin occurred by heating, and after the expansion of foaming and carbonization, the thermally expandable graphite expanded, so that the tissue collapsed without being able to withstand the expansion. Oops. As a result, the resin in the compartment penetrating portion collapses, the heating side end of the piping material cannot be closed, and the hot air in the combustion chamber flows into the compartment penetrating portion.
Accordingly, the 1.3 times expansion temperature T3 of the thermally expandable graphite needs to be 180 ° C. to 240 ° C., and the resin temperature T2 at the time of molding is higher than the 1.3 times expansion temperature T3 of the thermally expandable graphite. It was well understood that it was necessary to be lower than 5 ° C. and 170 to 210 ° C.

(結論)
以上、実施例を提示して詳述したとおり、本実施形態の建築用配管材Pは、成形性、管としての機械的強度、耐火性のいずれの面においても優れており、燃焼時には、耐火性樹脂組成物で構成された層が膨張して、図4に示すように、建築用配管材Pと区画貫通部Rとの隙間を残渣2で閉塞することができ、床材Yで仕切られた他の側に火炎や煙が回るのを阻止することができる。
また、従来の耐火膨張性のシート状被覆材で区画貫通部にだけ耐火処置した配管構造と違って、本発明では、配管全体に耐火性を付与することができる。
今回の耐火性評価は、耐火炉内に配管材の一端部を300mm突出させた状態で加熱する代用評価法によって耐火性を比較したが、本発明の配管材を建物内の各階のスラブ間あるいは建物内の各フロアの仕切壁間を貫通させて配管させる実施工状態で火災になった場合には、さらに耐火性の差が顕著になるものと思われる。
すなわち、本発明の配管材は、燃焼時には、区画貫通部を迅速かつ確実に閉塞する上、管全体が長時間の燃焼に耐えることができる。万一、燃焼中に配管材の一部が脱落しても、配管材の開口部分が速やかに閉塞し、その形状を保持するため、燃焼室外に炎や煙が回りにくく、類焼を効果的に阻止できると思われる。
(Conclusion)
As described above, the construction piping material P of the present embodiment is excellent in all aspects of formability, mechanical strength as a pipe, and fire resistance, as shown in detail by presenting examples. As shown in FIG. 4, the layer composed of the conductive resin composition expands, and the gap between the building piping material P and the partition through portion R can be closed with the residue 2 and partitioned by the floor material Y. It can prevent the flame and smoke from turning to the other side.
In addition, unlike the conventional piping structure in which fireproofing is performed only on the partition penetration portion with a fireproof and expandable sheet-shaped coating material, the present invention can impart fireproofing to the entire piping.
In this fire resistance evaluation, the fire resistance was compared by a substitute evaluation method in which one end of the piping material was heated by 300 mm in the refractory furnace, but the piping material of the present invention was applied between slabs on each floor in the building or In the case of a fire in the state of construction where pipes are made by penetrating between the partition walls of each floor in the building, the difference in fire resistance seems to be even more pronounced.
That is, the piping material of the present invention can quickly and reliably close the partition through portion during combustion, and the entire tube can withstand long-time combustion. Even if part of the piping material falls off during combustion, the opening of the piping material closes quickly and maintains its shape, making it difficult for flames and smoke to flow outside the combustion chamber, effectively reducing burning It seems to be able to stop.

なお、本発明は、上記の実施例に限定されるものではない。例えば、上記の実施例では、建築用配管材Pの呼び径は100Aであったが、他の径であってももちろん構わない。   In addition, this invention is not limited to said Example. For example, in the above-described embodiment, the nominal diameter of the building piping material P is 100 A, but other diameters may of course be used.

本発明の一実施形態にかかる建築用配管材Pの断面図である。It is sectional drawing of the piping material P for construction concerning one Embodiment of this invention. 耐火性試験に使用する耐火試験炉Xの構造を簡単に示す説明図である。It is explanatory drawing which shows simply the structure of the fireproof test furnace X used for a fireproof test. 建築用配管材Pが加熱により熱膨張した後、その形状を保持できずに残渣が脱落する様子を示す説明図である。It is explanatory drawing which shows a mode that a residue falls, without being able to hold | maintain the shape, after the piping material P for construction thermally expands by heating. 図1に示す建築用配管材Pにおいて、加熱により熱膨張した後、その形状を保持して耐火性を維持している様子を示す説明図である。In the building piping material P shown in FIG. 1, after thermally expanding by heating, it is explanatory drawing which shows a mode that the shape is hold | maintained and fire resistance is maintained.

P 建築用配管材 P Plumbing materials for construction

Claims (4)

ポリ塩化ビニル系樹脂に熱膨張性黒鉛と無機充填剤とを含有させた耐火性樹脂組成物で構成されており、
その配合比が、ポリ塩化ビニル系樹脂100重量部に対して、熱膨張性黒鉛が1〜10重量部、無機充填剤が1〜50重量部であることを特徴とする建築用配管材。
It consists of a refractory resin composition containing polyvinyl chloride resin containing thermally expandable graphite and an inorganic filler,
The building piping material characterized in that the mixing ratio is 1 to 10 parts by weight of thermally expandable graphite and 1 to 50 parts by weight of the inorganic filler with respect to 100 parts by weight of the polyvinyl chloride resin.
ポリ塩化ビニル系樹脂100重量部に対して、無機充填剤が2〜5重量部の割合で配合されていることを特徴とする請求項1に記載の建築用配管材。 Against polyvinyl chloride resin 100 parts by weight, building piping material according to claim 1 in which the inorganic filler is characterized in that it is blended in an amount of 2-5 parts by weight. 熱膨張性黒鉛の膨張温度T1と成形時の樹脂温度T2とが、
T1≦240℃ かつ
(T2+10℃)≦T1≦(T2+60℃)
であることを特徴とする請求項1または請求項2に記載の建築用配管材の成形方法。
The expansion temperature T1 of the thermally expandable graphite and the resin temperature T2 at the time of molding are
T1 ≦ 240 ° C. and (T2 + 10 ° C.) ≦ T1 ≦ (T2 + 60 ° C.)
The method for forming a piping material for building according to claim 1 or 2 , wherein the method is a building material.
熱膨張性黒鉛の1.3倍膨張温度T3が180℃〜240℃であり、成形時の樹脂温度T2が、熱膨張性黒鉛の1.3倍膨張温度T3よりも5℃以上低く、かつ、170℃〜210℃であることを特徴とする請求項1または請求項2に記載の建築用配管材の成形方法。 The 1.3 times expansion temperature T3 of the thermally expandable graphite is 180 ° C. to 240 ° C., the resin temperature T2 at the time of molding is 5 ° C. or more lower than the 1.3 times expansion temperature T3 of the thermally expandable graphite, and It is 170 to 210 degreeC, The shaping | molding method of the piping material for buildings of Claim 1 or Claim 2 characterized by the above-mentioned.
JP2007168867A 2006-08-04 2007-06-27 Plumbing material for building and method for molding this piping material for building Active JP4440287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168867A JP4440287B2 (en) 2006-08-04 2007-06-27 Plumbing material for building and method for molding this piping material for building

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006213262 2006-08-04
JP2006354031 2006-12-28
JP2007168867A JP4440287B2 (en) 2006-08-04 2007-06-27 Plumbing material for building and method for molding this piping material for building

Publications (2)

Publication Number Publication Date
JP2008180068A JP2008180068A (en) 2008-08-07
JP4440287B2 true JP4440287B2 (en) 2010-03-24

Family

ID=39724166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168867A Active JP4440287B2 (en) 2006-08-04 2007-06-27 Plumbing material for building and method for molding this piping material for building

Country Status (1)

Country Link
JP (1) JP4440287B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121842A1 (en) 2010-04-27 2012-05-17 Mitsubishi Plastics, Inc. Fire-resistant piping material
CN104066784B (en) * 2011-11-29 2016-05-04 积水化学工业株式会社 Building materials thermal expansivity multi-layer gasket
KR20180072839A (en) * 2011-11-29 2018-06-29 도쿠야마 세키스이 고교 가부시키가이샤 Chlorinated vinyl chloride resin composition for extrusion molding
JP6147101B2 (en) * 2013-01-22 2017-06-14 積水化学工業株式会社 Thermally expandable refractory resin composition
JP6809773B2 (en) * 2013-12-06 2021-01-06 積水化学工業株式会社 Thermal expansion material with added design
AU2015309842A1 (en) * 2014-08-27 2017-03-09 Sekisui Chemical Co., Ltd. Resin composition
JP6825959B2 (en) * 2017-03-29 2021-02-03 未来工業株式会社 Fireproof structure of through sleeve and through hole
JP7048297B2 (en) * 2017-12-15 2022-04-05 積水化学工業株式会社 Pipe material
JP7020929B2 (en) * 2018-01-22 2022-02-16 東日本旅客鉄道株式会社 Fire resistant cable trough
JP2020026445A (en) * 2018-08-09 2020-02-20 堺化学工業株式会社 Chlorine-containing resin composition
JP7378714B2 (en) * 2019-05-28 2023-11-14 株式会社レグルス Method for producing thermally expandable products and heat-treated expandable graphite

Also Published As

Publication number Publication date
JP2008180068A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4440287B2 (en) Plumbing material for building and method for molding this piping material for building
JP4960806B2 (en) Multi-layer fireproof piping material and manufacturing method thereof
KR101227794B1 (en) Fire-resistant piping material
JP5351727B2 (en) Fireproof sound insulation pipe
JP4886632B2 (en) Drainage joint
JP4829847B2 (en) In-building piping
JP6918464B2 (en) Plumbing material
JP5483937B2 (en) Refractory drainage joint
JP5175505B2 (en) Leg joint
WO2011136245A1 (en) Fire-resistant piping material
JP5767859B2 (en) Fireproof piping system and piping structure
JP5508048B2 (en) Refractory drainage joint
JP2009057995A (en) Resin lining steel pipe and drain pipe structure using resin lining steel pipe
JP2022008555A (en) Piping structural body and manufacturing method of pipe joint
JP5802427B2 (en) Fireproof piping materials
JP4440290B2 (en) Piping materials for construction
JP4833267B2 (en) Piping material for water supply and drainage
JP2011226581A (en) Fireproofing pipe joint
JP4440288B2 (en) Piping materials for construction
JP5150170B2 (en) Drainage pipe fitting
JP5238383B2 (en) Drainage piping structure
JP7449201B2 (en) multilayer pipe
JP7449202B2 (en) multilayer pipe
JP2011247412A (en) Fire-resistant piping material
JP2011247414A (en) Fire-resistant piping material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090821

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4440287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4