JP4427026B2 - Polarizer and polarization separation element - Google Patents

Polarizer and polarization separation element Download PDF

Info

Publication number
JP4427026B2
JP4427026B2 JP2005507340A JP2005507340A JP4427026B2 JP 4427026 B2 JP4427026 B2 JP 4427026B2 JP 2005507340 A JP2005507340 A JP 2005507340A JP 2005507340 A JP2005507340 A JP 2005507340A JP 4427026 B2 JP4427026 B2 JP 4427026B2
Authority
JP
Japan
Prior art keywords
axis direction
refractive index
polarization
period
separation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005507340A
Other languages
Japanese (ja)
Other versions
JPWO2004113974A1 (en
Inventor
彰二郎 川上
尚 佐藤
貴之 川嶋
理 石川
勉 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonic Lattice Inc
Original Assignee
Photonic Lattice Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonic Lattice Inc filed Critical Photonic Lattice Inc
Publication of JPWO2004113974A1 publication Critical patent/JPWO2004113974A1/en
Application granted granted Critical
Publication of JP4427026B2 publication Critical patent/JP4427026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Description

本発明は、光の偏光制御を利用した光学機器に用いられ、入射光の内特定方向の直線偏波成分のみを透過させる機能を与える偏光子、および入射光を2つの直交する直線偏波成分に分離する機能を与える偏光分離素子に関する。  The present invention is used in an optical apparatus that utilizes polarization control of light, and provides a function of transmitting only a linearly polarized component in a specific direction of incident light, and two orthogonal linearly polarized components of incident light. The present invention relates to a polarization separation element that provides a function of separating light.

偏光子は、不特定の方向に電磁界が振動する無偏光または楕円偏光を、ある特定方向の振動成分だけを透過させて直線偏光にするための素子である。これは光素子の中でも最も基本的なものの一つであって、光通信デバイス、光ディスクのピックアップ、液晶プロジェクタ、液晶ディスプレイ、光応用計測などに広く利用されている。偏光子は、動作形態によって、▲1▼不要な偏波を吸収させるもの、▲2▼同一の光路で入射する直交する二つの偏波成分を別々の光路に分けるもの、の二つに大別される。▲2▼は偏光分離素子としても利用される。ここでは両者をまとめて偏光子と呼ぶ。
現在実用に供されている偏光子で、上記▲1▼の動作をするものは高分子フィルムにヨウ素などの二色性分子を入れたもの、針状金属粒子を一方向に配置させたガラスなどがある。
他方、▲2▼の動作をする偏光分離素子としては、プリズムの斜面に多層膜を形成しブリュースター角を使った素子(いわゆるPBS)、方解石など複屈折結晶で作られた偏光プリズムなどがある。
最近、光記録やディスプレイ分野では、可視域で動作する偏光子が重要視されている。特に液晶プロジェクタではRGBそれぞれの液晶素子に直線偏波を入射するが、高輝度化、小型化のため高いパワー密度の光を扱うことが多く、上記の▲1▼のタイプでは不要偏波成分が吸収されるため、素子の発熱がある。これが信頼性を劣化させる要因となり問題となっている。▲2▼のタイプでは、PBSは立方体をしているため小型化に適していないこと、複屈折結晶のプリズムは材料が高価であること、から通常用いられていない。
ところで▲2▼に属する新しい偏光分離素子として、特許文献1(特開2001−83321号公報)によるフォトニック結晶偏光分離素子が提案されている。これは波状の薄膜を多層堆積した構造からなり、溝方向に平行な偏波成分と垂直な偏波成分とに分離することができる。無損失の材料を用いるため、内部における吸収はなく、高い光密度の光に対しても発熱の問題はない。
光通信波長域では、SiとSiOとを用いて構造を構成することにより実現できる。例えば、非特許文献1(T.Kawashima,et al.,“Photonic crystal polarization beam splitters and their applications,”Optical Fiber Communication Conference(OFC2003),Atlanta,USA,March 2003,paper ThI2.)によると、波長1.5μm付近において、透過損失0.2dB以下、透過消光非40dB以上が得られている。
一方、Siは波長1μm程度より短波長では吸収があり、使用するには適さない。このような波長域にはSiの代わりに、屈折率が高くて透明な誘電体材料Ta、Nb、TiO、ZrOなどを用いると良い。但し、これらの材料の屈折率は2から2.4であり、Siの3.5ほど大きくない。従って低屈折率材料と組み合わせた多層膜における遮断波長域が狭くなり、偏光子の動作帯域は狭くなってしまうことが問題となる。例えば、表示デバイスでは良く使われるR(赤)、G(緑)、B(青)それぞれの波長帯(例えば400nmから500nm、500nmから600nm、600nmから700nm)をカバーすることは難しい。また偏光子の面に斜めに光を入射にする場合には、さらに帯域は狭くなるため実用には適しているといえない。
The polarizer is an element for converting non-polarized light or elliptically polarized light whose electromagnetic field vibrates in an unspecified direction into linearly polarized light by transmitting only a vibration component in a specific direction. This is one of the most basic optical elements, and is widely used in optical communication devices, optical disk pickups, liquid crystal projectors, liquid crystal displays, optical applied measurements, and the like. Polarizers are roughly divided into two types, (1) those that absorb unnecessary polarization, and (2) those that split two orthogonal polarization components incident on the same optical path into separate optical paths. Is done. (2) is also used as a polarization separation element. Here, both are collectively referred to as a polarizer.
Polarizers currently in practical use that operate in the above (1) are those in which a dichroic molecule such as iodine is placed in a polymer film, glass in which needle-shaped metal particles are arranged in one direction, etc. There is.
On the other hand, as the polarization separation element that performs the operation (2), there are an element using a Brewster angle by forming a multilayer film on the slope of the prism (so-called PBS), a polarization prism made of birefringent crystals such as calcite, and the like. .
Recently, in the field of optical recording and display, a polarizer that operates in the visible range is regarded as important. In particular, in a liquid crystal projector, linearly polarized light is incident on each of the liquid crystal elements of RGB. However, in order to achieve high brightness and miniaturization, light of high power density is often handled. Since it is absorbed, the element generates heat. This is a problem that causes deterioration in reliability. In the type {circle around (2)}, PBS is not suitable for miniaturization because it has a cubic shape, and birefringent crystal prisms are not generally used because of their high cost.
By the way, as a new polarization separation element belonging to (2), a photonic crystal polarization separation element according to Patent Document 1 (Japanese Patent Laid-Open No. 2001-83321) has been proposed. This has a structure in which wavy thin films are stacked in multiple layers, and can be separated into a polarization component parallel to the groove direction and a polarization component perpendicular to the groove direction. Since a lossless material is used, there is no internal absorption, and there is no problem of heat generation even with high light density light.
In the optical communication wavelength region, this can be realized by configuring the structure using Si and SiO 2 . For example, Non-Patent Document 1 (T. Kawashima, et al., “Photonic crystal polarization beams and therir applications,” Optical Fiber Communication Confections, AFC3, OF200p. In the vicinity of 0.5 μm, a transmission loss of 0.2 dB or less and a transmission quenching non-40 dB or more are obtained.
On the other hand, Si absorbs at wavelengths shorter than about 1 μm and is not suitable for use. In such a wavelength region, a transparent dielectric material Ta 2 O 5 , Nb 2 O 5 , TiO 2 , ZrO 2 or the like having a high refractive index may be used instead of Si. However, the refractive index of these materials is 2 to 2.4, which is not as great as 3.5 of Si. Accordingly, there is a problem that the cutoff wavelength region in the multilayer film combined with the low refractive index material is narrowed, and the operating band of the polarizer is narrowed. For example, it is difficult to cover R (red), G (green), and B (blue) wavelength bands (for example, 400 nm to 500 nm, 500 nm to 600 nm, and 600 nm to 700 nm) that are often used in display devices. Further, when light is incident obliquely on the surface of the polarizer, the band is further narrowed, so it cannot be said that it is suitable for practical use.

本発明は上記の広帯域化の問題点を解決するためのものであり、本発明の目的は、積層膜厚を変化させる、あるいは周期の異なる複数の領域を設けることにより帯域を拡大させることにある。同時に、膜厚の変動による帯域ずれを抑えて製造トレランスを高くすること、入射角許容度を高くすることを目的とする。
はじめにフォトニック結晶偏光子について概略を説明する。図1のような周期的な溝列を形成した透明材料基板101上に、透明で高屈折率の媒質102と低屈折率の媒質103とを界面の形状を保存しながら、交互に積層する。各層はx方向に周期性があるが、y方向は一様であってもよいし、x軸方向より十分大きい長さの周期的または非周期的な構造を有していてもよい。z軸方向には周期的であってもよいが、本特許の思想のように図1に示されるように積層周期が徐々に変化あるいは、ステップ状に変化する複数の周期の組み合わせでもよい。
このような周期構造の形成技術は、特許文献2(特開平10−335758号公報)記載にある自己クローニング技術と呼ばれており、再現性、均一性が高く、工業的に微細な周期構造(フォトニック結晶)を作製する優れた手法である。
このようにして得られた周期構造体にxy面に垂直あるいは斜め方向から無偏波光または楕円偏光を入射すると、溝列と平行な偏波即ちy偏波と、それに直交するx偏波とに対して、それぞれTEモードとTMモードの光が周期構造体の内部に励起される。通常、多層膜では光が伝搬できる波長領域と、光が反射されて遮断される波長領域とをもつ。図1のような面内に凹凸周期を有する場合、その遮断領域に偏波依存性をもたせることができる。例えば、TM波が透過し、TE波が反射されるように設計することができる。
低屈折率媒質としてはSiOを主成分とする材料が最も一般的であり、透明波長領域が広く、化学的、熱的、機械的にも安定であり、成膜も容易に行なえる。しかしながらその他の光学ガラスでもよく、MgFのようにより屈折率の低い材料を用いてもよい。高屈折率材料としては、Si、Geなどの半導体や、Ta、TiO、Nb、HfO、Al、Siなどの酸化物や窒化物、あるいはそれらの混合物が使用でき、透明波長範囲が広く、可視光領域でも使用できる。一方、半導体は、近赤外域に限定されるが、屈折率が大きい利点がある。
図2(a)は偏光子の設計で用いられる分散曲線の例である。縦軸は波長の逆数を積層周期で規格化した値、横軸は1周期を伝搬したときの位相変化量をπで規格化した値である。白丸がTE波、黒丸がTM波を示す。ここで面内の周期をLx、積層周期をLとすると、(a)ではL/L=1である。斜線の帯域では、TE波はバンドギャップとなり反射され、TM波は伝搬域であるため透過され、従って偏光分離素子として動作する。
この動作波長域を制御するパラメータは、構成する材料の屈折率、充填率、溝列の周期L、積層方向の周期Lなどである。この内、Lは積層中に任意に変化させることができる。例えばLzを厚くすると、TE波を遮断する波長帯は長波長側にシフトする。図3はその概念を示している。実線301はLzが小さい周期構造のTE波の透過率であり、Aで示す波長域では透過が遮断されている。一方、破線302はLzが大きい周期構造のTE波の透過率であり、やや長波長側のBの領域で遮断されている。実線303は両方の構造のTM波の透過率を示している。従ってCで示す波長域では、TM波は積層方向の全てで伝搬域になり、TE波は少なくとも一部で遮断域に含まれていることになる。このように積層周期を変化させることにより、偏光子として動作する波長領域を拡大させることが可能になる。
The present invention is to solve the above-mentioned problem of widening the bandwidth, and an object of the present invention is to expand the band by changing the laminated film thickness or providing a plurality of regions having different periods. . At the same time, it is intended to increase the manufacturing tolerance and suppress the incident angle tolerance by suppressing the band shift due to the film thickness variation.
First, an outline of the photonic crystal polarizer will be described. A transparent high-refractive-index medium 102 and a low-refractive-index medium 103 are alternately stacked on a transparent material substrate 101 having a periodic groove array as shown in FIG. 1 while preserving the shape of the interface. Each layer has periodicity in the x direction, but the y direction may be uniform, or may have a periodic or aperiodic structure having a length sufficiently larger than the x-axis direction. Although it may be periodic in the z-axis direction, it may be a combination of a plurality of periods in which the stacking period gradually changes or changes stepwise as shown in FIG.
Such a technique for forming a periodic structure is called a self-cloning technique described in Patent Document 2 (Japanese Patent Laid-Open No. 10-335758), and has a high reproducibility and uniformity, and an industrially fine periodic structure ( This is an excellent method for producing a photonic crystal.
When non-polarized light or elliptically polarized light is incident on the periodic structure thus obtained perpendicularly or obliquely to the xy plane, the polarization is parallel to the groove row, that is, y-polarized light, and x-polarized light orthogonal thereto. On the other hand, TE mode light and TM mode light are excited inside the periodic structure. Usually, a multilayer film has a wavelength region in which light can propagate and a wavelength region in which light is reflected and blocked. In the case where there is an uneven period in the plane as shown in FIG. 1, the cutoff region can be polarized. For example, it can be designed such that TM waves are transmitted and TE waves are reflected.
As the low refractive index medium, a material mainly composed of SiO 2 is the most common, has a wide transparent wavelength region, is stable chemically, thermally and mechanically, and can be easily formed. However, other optical glass may be used, and a material having a lower refractive index such as MgF 2 may be used. High refractive index materials include semiconductors such as Si and Ge, oxides and nitrides such as Ta 2 O 5 , TiO 2 , Nb 2 O 5 , HfO 2 , Al 2 O 3 , and Si 3 N 4 , or those Can be used, has a wide transparent wavelength range, and can also be used in the visible light region. On the other hand, a semiconductor is limited to the near infrared region, but has an advantage of a large refractive index.
FIG. 2A is an example of a dispersion curve used in the design of a polarizer. The vertical axis represents the value obtained by normalizing the reciprocal of the wavelength by the lamination period, and the horizontal axis represents the value obtained by normalizing the phase change amount when propagating one period by π. White circles indicate TE waves and black circles indicate TM waves. Here, assuming that the in-plane period is Lx and the stacking period is L z , L z / L x = 1 in (a). In the hatched band, the TE wave is reflected as a band gap, and the TM wave is transmitted because it is a propagation band, and thus operates as a polarization separation element.
Parameters for controlling this operating wavelength range are the refractive index, filling factor, groove row cycle L x , stacking cycle cycle L z , and the like. Among these, L z can be arbitrarily changed during lamination. For example, when Lz is increased, the wavelength band for blocking the TE wave is shifted to the longer wavelength side. FIG. 3 shows the concept. A solid line 301 indicates the transmittance of a TE wave having a periodic structure with a small Lz, and the transmission is blocked in the wavelength region indicated by A. On the other hand, the broken line 302 is the transmittance of the TE wave having a periodic structure with a large Lz, and is blocked in the region B on the slightly longer wavelength side. A solid line 303 indicates the transmittance of TM waves of both structures. Therefore, in the wavelength region indicated by C, the TM wave is a propagation region in all the stacking directions, and the TE wave is at least partially included in the cutoff region. By changing the stacking period in this way, it is possible to expand the wavelength region that operates as a polarizer.

図1は、偏光分離素子の構造を示す図である。
図2は、周期構造を伝搬する光の分散関係を示す図である。
図3は、積層周期の多重化により遮断域の拡大の概念を示す図である。
図4は、偏光分離素子の断面構造を示す図である。
図5は、偏光子の透過スペクトルを示す図である。
図6は、偏光分離素子の断面構造を示す図である。
図7は、実施例の1つを示す図である。
図8は、実施例の1つを示す図である。
FIG. 1 is a diagram illustrating a structure of a polarization separation element.
FIG. 2 is a diagram illustrating a dispersion relation of light propagating through the periodic structure.
FIG. 3 is a diagram showing the concept of expansion of the cut-off area by multiplexing the stacking periods.
FIG. 4 is a diagram showing a cross-sectional structure of the polarization separation element.
FIG. 5 is a diagram showing a transmission spectrum of a polarizer.
FIG. 6 is a diagram showing a cross-sectional structure of the polarization beam splitting element.
FIG. 7 is a diagram illustrating one embodiment.
FIG. 8 is a diagram illustrating one of the embodiments.

図4は、本発明の実施例の構造を示す図である。この図において、符号401はアモルファスTaの層であり、符号402はSiOの層である。各層は波状の形をなしており、x軸方向の周期Lxは0.20μmである。z軸方向には交互に積層されている。基板直後には、周期0.20μmで積層し、その後、周期を徐々に増やし、多層膜の後半では周期0.22μmとする。周期の異なる多層膜を合わせることで、一つの周期でカバーする波長域を少しずつずらしながら合成できるため、素子全体の動作波長域を広げることができる。
作製方法を次に示す。まず、基板上に電子ビームリソグラフィとドライエッチングにより、図4に示すような周期的な溝を基板101上に作製する。その他のフォトリソグラフィや干渉露光、金型によるスタンピング技術を用いても良い。溝の断面形状は矩形であるが、三角形など他の形でも良い。ここでは基板には石英ガラスを用いた。溝の幅は0.1μm、溝の深さは0.1μmである。境界面での反射を防ぐために、反射防止膜403を付ける。この基板上に、TaおよびSiOターゲットを用い、スパッタデポジションとバイアススパッタリングを組み合わせて交互多層膜を積層する。このとき、各層のx軸方向に周期的な凹凸形状が保存されるように、バイアス条件を適切に設定することが肝要である。その条件は次の通りであった。Ta層の成膜では、ガス圧2mTorr、ターゲット印加高周波電力300W、SiO層の成膜では、ガス圧6mTorr、ターゲット印加高周波電力300W、スパッタエッチングはSiO層成膜後行ない、ガス圧2mTorr、基板印加高周波電力90Wである。Ta層とSiO層の厚さの比率は43:57とした。
偏光子の動作帯域を拡大させるために、積層方向の周期を変化させる。具体的には、基板の直後は周期0.20μmの周期で3周期積層し、その後2%づつ徐々に周期を増加させ、多層膜の中心部分では0.22μmとする。この周期で3周期を積層する。
図2(a)と(b)は積層方向に単純な繰り返し周期をもつ構造のバンド構造を示す(L=0.2μm、L=0.22μm)。計算はFDTD法を用いた。TE波(溝に平行な偏波)がストップバンドとなり、TM波(溝に垂直な偏波)がパスバンドとなる動作域は(a)では384nm〜408nm(L/λ=0.52〜0.49)、(b)では393〜433nmとなる(L/λ=0.51〜0.462)である。これらをあわせることで、波長383nmから433nmまでを偏光子の動作域とすることができる。今回の設計では動作波長域を広げることを目的とし、図4に示すように、積層周期を200nmから220nmまで線形的なチャーピングを持たせた。図5はFDTD法で計算したTE波、TM波それぞれの透過スペクトルである。波長390nm付近の伝搬モードが低減され実質的な帯域が広がっている。
構成する材料の屈折率、動作帯域、入射角などのパラメータにより、積層周期の変化の割合や変化の幅は上記以外の値も可能である。たとえば積層にしたがって膜厚を徐々に薄くすることでも同様の効果が実現できる。また、図6のように積層周期を厚くして、途中から薄くしても良い。また図7(a)のように厚く−薄く−厚くと変化させてもよく、図7(b)のようにステップ的に周期を変えてもよい。
積層周期を23周期として作製を行った(4mm角、積層厚5μm以下)。分光光度計で測定した偏光子の透過スペクトルは、波長350nmから418nmまでTE波が遮断されており偏光子として動作する。基板境界におけるフレネル反射を除いた透過帯域平坦部での挿入損失は約0.1dBであり、また波長400nmのレーザ光で測定したTE波の消光比は40dB以上であった。
FIG. 4 is a diagram showing the structure of the embodiment of the present invention. In this figure, reference numeral 401 is an amorphous Ta 2 O 5 layer, and reference numeral 402 is a SiO 2 layer. Each layer has a wave shape, and the period Lx in the x-axis direction is 0.20 μm. The layers are alternately stacked in the z-axis direction. Immediately after the substrate, the layers are stacked with a period of 0.20 μm, and then the period is gradually increased, and the period is 0.22 μm in the second half of the multilayer film. By combining multilayer films with different periods, the wavelength range covered by one period can be synthesized while being shifted little by little, so that the operating wavelength range of the entire element can be expanded.
The manufacturing method is as follows. First, periodic grooves as shown in FIG. 4 are formed on the substrate 101 by electron beam lithography and dry etching on the substrate. Other photolithography, interference exposure, and stamping techniques using a mold may be used. The cross-sectional shape of the groove is rectangular, but may be other shapes such as a triangle. Here, quartz glass was used for the substrate. The width of the groove is 0.1 μm, and the depth of the groove is 0.1 μm. In order to prevent reflection on the boundary surface, an antireflection film 403 is attached. On this substrate, Ta 2 O 5 and SiO 2 targets are used, and alternate multilayer films are laminated by combining sputtering deposition and bias sputtering. At this time, it is important to appropriately set the bias condition so that the periodic uneven shape of each layer is preserved in the x-axis direction. The conditions were as follows. In the film formation of the Ta 2 O 5 layer, the gas pressure is 2 mTorr, the target applied high frequency power 300 W, and in the film formation of the SiO 2 layer, the gas pressure 6 mTorr, the target applied high frequency power 300 W, sputter etching is performed after the SiO 2 layer is formed. The pressure is 2 mTorr and the substrate applied high frequency power is 90 W. The ratio of the thickness of the Ta 2 O 5 layer and the SiO 2 layer was 43:57.
In order to expand the operating band of the polarizer, the period in the stacking direction is changed. Specifically, immediately after the substrate, three cycles are stacked with a cycle of 0.20 μm, and thereafter the cycle is gradually increased by 2%, and the center portion of the multilayer film is 0.22 μm. Three cycles are stacked in this cycle.
FIGS. 2A and 2B show a band structure having a simple repetition period in the stacking direction (L x = 0.2 μm, L z = 0.22 μm). The calculation used the FDTD method. The operating range in which the TE wave (polarized wave parallel to the groove) becomes the stopband and the TM wave (polarized wave perpendicular to the groove) becomes the passband is 384 nm to 408 nm (L x /λ=0.52 in FIG. 0.49) and (b) are 393 to 433 nm (L x /λ=0.51 to 0.462). By combining these, the operating range of the polarizer can be from 383 nm to 433 nm. The purpose of this design was to extend the operating wavelength range, and as shown in FIG. 4, the stacking period was linearly chirped from 200 nm to 220 nm. FIG. 5 shows transmission spectra of TE and TM waves calculated by the FDTD method. The propagation mode near the wavelength of 390 nm is reduced and the substantial band is widened.
Depending on parameters such as the refractive index, the operating band, and the incident angle of the constituent materials, the rate of change of the stacking period and the width of the change can be other values. For example, the same effect can be realized by gradually reducing the film thickness according to the lamination. Further, as shown in FIG. 6, the stacking period may be increased and may be decreased from the middle. Moreover, it may be changed as thick-thin-thick as shown in FIG. 7A, or the period may be changed stepwise as shown in FIG. 7B.
Fabrication was performed with a lamination period of 23 periods (4 mm square, lamination thickness of 5 μm or less). In the transmission spectrum of the polarizer measured with the spectrophotometer, the TE wave is blocked from a wavelength of 350 nm to 418 nm, and operates as a polarizer. The insertion loss at the flat part of the transmission band excluding Fresnel reflection at the substrate boundary was about 0.1 dB, and the TE wave extinction ratio measured with a laser beam having a wavelength of 400 nm was 40 dB or more.

本発明の上記の他の実施例を図8に示す。斜め入射で動作する偏光子の一例として、光の入射角を基板平面に対し45度とした場合を示す。基板101上に形成する溝の方向は、紙面に対して垂直方向である。この場合、反射光はS波、透過光はP波となる。このような基板上に自己クローニング法で多層膜からなるフォトニック結晶偏光子801を形成する。成膜の方法は前記実施例と共通である。
積層膜の厚さは入射角に応じて設計が必要である。本構造では動作帯域は垂直入射の場合に比べ、長波長側にシフトする。例えば、波長490nmから520nmで動作するためには、基板の凹凸のピッチを0.2μmに、積層周期を0.20μmから0.22μmまでチャーピングする必要がある。上記の例の他、動作する波長域は材料が透明な範囲で任意に選ぶことができる。動作させたい波長に併せて、基板の凹凸のピッチと積層周期を設定する。例えば、波長1064nmに対して、基板の凹凸ピッチを560nm、積層周期を0.30μmから0.34μmに変調するものが設計の一例となる。
また、溝の方向を紙面に平行にする設計も可能である。この場合、反射光はP波、透過光はS波となる。その場合は入射角を変えたとき、帯域が狭くなるが、中心波長のシフトは小さいことが計算から分っている。
本実施例のように斜入射にすることにより、反射成分を入射光の軸から大きくずらすことができる。したがって、不要偏波成分を分離して別途設置した吸収体で除去することができる。あるいは2偏波に分離して両方の偏波成分を利用することも可能である。
Another embodiment of the present invention is shown in FIG. As an example of a polarizer operating at an oblique incidence, a case where the incident angle of light is 45 degrees with respect to the substrate plane is shown. The direction of the groove formed on the substrate 101 is perpendicular to the paper surface. In this case, the reflected light is an S wave and the transmitted light is a P wave. A photonic crystal polarizer 801 made of a multilayer film is formed on such a substrate by a self-cloning method. The film forming method is the same as that in the previous embodiment.
The thickness of the laminated film needs to be designed according to the incident angle. In this structure, the operating band shifts to the long wavelength side compared to the case of normal incidence. For example, in order to operate at a wavelength of 490 nm to 520 nm, it is necessary to chirp the pitch of the substrate unevenness to 0.2 μm and the stacking period from 0.20 μm to 0.22 μm. In addition to the above example, the operating wavelength range can be arbitrarily selected within the range where the material is transparent. In accordance with the wavelength to be operated, the pitch of the substrate unevenness and the lamination period are set. For example, for a wavelength of 1064 nm, an example of a design in which the uneven pitch of the substrate is modulated to 560 nm and the lamination period is changed from 0.30 μm to 0.34 μm.
Also, a design in which the direction of the groove is parallel to the paper surface is possible. In this case, the reflected light is a P wave and the transmitted light is an S wave. In this case, it is known from the calculation that when the incident angle is changed, the band is narrowed, but the shift of the center wavelength is small.
By using the oblique incidence as in this embodiment, the reflection component can be largely shifted from the axis of the incident light. Therefore, unnecessary polarization components can be separated and removed by an absorber that is separately installed. Alternatively, both polarization components can be used by separating them into two polarizations.

本発明の構造からなる偏光分離素子は、熱的にまた化学的に安定な無機材料薄膜からなり、可視紫外域から近赤外域に対応することができるものである。特に可視域で動作するため、高出力光を扱う液晶プロジェクタ、光ピックアップ、レーザプリンタなどの光学部分には有用である。また、本構造は自己クローニング法と呼ばれるバイアススパッタリング法を基盤とする技術により、量産にも適しており、従来の素子を置き換えることが可能である。  The polarization separation element having the structure of the present invention is made of an inorganic material thin film that is thermally and chemically stable, and can cope with the visible ultraviolet region to the near infrared region. In particular, since it operates in the visible range, it is useful for optical parts such as liquid crystal projectors, optical pickups, and laser printers that handle high output light. Further, this structure is suitable for mass production by a technique based on a bias sputtering method called a self-cloning method, and can replace a conventional element.

Claims (6)

3次元の直交座標x、y、zにおいて、透明で高屈折率の媒質からなる高屈折率媒質層と、透明で低屈折率の媒質からなる低屈折率媒質層がz軸方向に沿う積層方向に交互に積層された多層構造体であって、
前記各媒質層が、x軸方向には使用される光の波長以下の周期的な凹凸構造を有し、y軸方向には一様な構造、あるいはx軸方向より大きい長さの周期的または非周期的な凹凸構造を有し、
互いに隣接して積層された2つの媒質層で構成される交互層のz軸方向の積層周期が前記積層方向の少なくとも一部において異なり、
多層構造体のz軸方向表面からxy面に垂直または斜めに入射する光に対し、電界がy軸に直交する偏波あるいはx軸と直交する偏波のどちらか一方が、積層方向において周期の異なる全ての領域において共通に伝搬域に含まれ、他方の偏波は積層方向の少なくとも一部の領域では遮断域に含まれるように、x軸方向の周期的凹凸構造の周期およびz軸方向の積層周期がそれぞれ選択されたことを特徴とする偏光分離素子。
A stacking direction in which a high refractive index medium layer made of a transparent and high refractive index medium and a low refractive index medium layer made of a transparent and low refractive index medium in the three-dimensional orthogonal coordinates x, y, z are along the z-axis direction. A multi-layer structure alternately laminated to each other,
Each medium layer has a periodic concavo-convex structure having a wavelength equal to or less than the wavelength of light used in the x-axis direction, a uniform structure in the y-axis direction, or a periodic length longer than the x-axis direction. Has an aperiodic uneven structure,
The laminating period in the z-axis direction of the alternating layers composed of two medium layers laminated adjacent to each other is different in at least a part of the laminating direction,
For light that is incident on the xy plane perpendicularly or obliquely from the z-axis direction surface of the multilayer structure, either the polarization of the electric field orthogonal to the y-axis or the polarization orthogonal to the x-axis has a period in the stacking direction. The period of the periodic concavo-convex structure in the x-axis direction and the z-axis direction are included so that they are commonly included in the propagation region in all different regions, and the other polarization is included in the cutoff region in at least a part of the region in the stacking direction A polarization separation element, wherein a lamination period is selected.
前記高屈折率媒質層がSiまたはGeまたはTiOまたはTaまたはNbまたはHfOまたはAlまたはSiあるいはそれらの混合物からなり、前記低屈折率媒質層がSiOまたはMgFからなることを特徴とする請求項1記載の偏光分離素子。The high refractive index medium layer is made of Si, Ge, TiO 2, Ta 2 O 5, Nb 2 O 5, HfO 2, Al 2 O 3, Si 3 N 4 or a mixture thereof, and the low refractive index medium layer is The polarization separation element according to claim 1, wherein the polarization separation element is made of SiO 2 or MgF 2 . 可視紫外域から近赤外域で対応可能であることを特徴とする請求項1または2記載の偏光分離素子。  The polarized light separating element according to claim 1, wherein the polarization separating element can be used in a visible ultraviolet region to a near infrared region. 前記高屈折率媒質層がTiOまたはTaまたはNbまたはHfOまたはAlまたはSiあるいはそれらの混合物からなり、可視光領域で動作することを特徴とする請求項2記載の偏光分離素子。The high refractive index medium layer is made of TiO 2, Ta 2 O 5, Nb 2 O 5, HfO 2, Al 2 O 3, Si 3 N 4 or a mixture thereof, and operates in the visible light region. The polarization separation element according to claim 2. 光の入射角がxy面に対して45度もしくはそれ以下であることを特徴とする請求項1、2、3または4記載の偏光分離素子。  5. The polarization separation element according to claim 1, wherein an incident angle of light is 45 degrees or less with respect to the xy plane. 前記交互層の厚さを、前記空気側に向かうにつれて、厚くすることでまたは薄くすることで、前記交互層のz軸方向の積層周期が前記積層方向おいて異なるようにされていることを特徴とする請求項1、2、3、4、または5記載の偏光分離素子。  The thickness of the alternating layers is increased or decreased as it goes to the air side, so that the stacking period of the alternating layers in the z-axis direction is different in the stacking direction. The polarization separation element according to claim 1, 2, 3, 4, or 5.
JP2005507340A 2003-06-25 2004-06-24 Polarizer and polarization separation element Active JP4427026B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003180386 2003-06-25
JP2003180386 2003-06-25
PCT/JP2004/009305 WO2004113974A1 (en) 2003-06-25 2004-06-24 Polarizer and polarization separation element

Publications (2)

Publication Number Publication Date
JPWO2004113974A1 JPWO2004113974A1 (en) 2006-09-21
JP4427026B2 true JP4427026B2 (en) 2010-03-03

Family

ID=33535162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005507340A Active JP4427026B2 (en) 2003-06-25 2004-06-24 Polarizer and polarization separation element

Country Status (2)

Country Link
JP (1) JP4427026B2 (en)
WO (1) WO2004113974A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440294B2 (en) 2011-06-30 2013-05-14 Hamamatsu Photonics K.K. Structural color body
US8507079B2 (en) 2011-06-30 2013-08-13 Hamamatsu Photonics K.K. Structural color body
US8580374B2 (en) 2011-06-30 2013-11-12 Hamamatsu Photonics K.K. Resin molded body

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002743T5 (en) * 2007-10-18 2010-07-22 Mitsubishi Electric Corp. Optical extraction system and the same including optical head device
JP5171214B2 (en) * 2007-11-07 2013-03-27 リコー光学株式会社 Method for producing wave plate using photonic crystal
JP4975162B2 (en) * 2008-02-25 2012-07-11 株式会社フォトニックラティス Self-cloning photonic crystal for ultraviolet light
JP5115737B2 (en) * 2008-09-10 2013-01-09 綜研化学株式会社 Wavelength demultiplexing spectrometer
JP5741575B2 (en) * 2010-04-06 2015-07-01 日本電気株式会社 Wave plate, light emitting element, and image display apparatus using the light emitting element
WO2011145504A1 (en) * 2010-05-21 2011-11-24 日本電気株式会社 Light source unit and image display device
WO2011148465A1 (en) * 2010-05-25 2011-12-01 ソニーケミカル&インフォメーションデバイス株式会社 Wave plate and wave plate manufacturing method
JP5946052B2 (en) * 2011-03-03 2016-07-05 国立研究開発法人情報通信研究機構 Photodetection method using photonic crystal
JP2014232129A (en) * 2013-05-28 2014-12-11 国立大学法人京都大学 Polarization imaging filter and method of manufacturing the same
JP7186382B2 (en) 2017-10-31 2022-12-09 パナソニックIpマネジメント株式会社 Structural body and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3710664B2 (en) * 1999-05-28 2005-10-26 旭テクノグラス株式会社 Polarizing filter
JP3766844B2 (en) * 1999-09-25 2006-04-19 有限会社オートクローニング・テクノロジー Lattice modulation photonic crystal
JP2001083321A (en) * 2000-07-17 2001-03-30 Shojiro Kawakami Polarizer and method for its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440294B2 (en) 2011-06-30 2013-05-14 Hamamatsu Photonics K.K. Structural color body
US8507079B2 (en) 2011-06-30 2013-08-13 Hamamatsu Photonics K.K. Structural color body
US8580374B2 (en) 2011-06-30 2013-11-12 Hamamatsu Photonics K.K. Resin molded body

Also Published As

Publication number Publication date
JPWO2004113974A1 (en) 2006-09-21
WO2004113974A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US6665119B1 (en) Wire grid polarizer
JP4294264B2 (en) Integrated optical element
JP4843617B2 (en) Multilayer wire grid polarizer
JP4427026B2 (en) Polarizer and polarization separation element
JP3288976B2 (en) Polarizer and its manufacturing method
JP4814002B2 (en) Phase plate manufacturing method, optical element and image projection apparatus
US20080252799A1 (en) Wire grid polarizer having dual layer structure and method of fabricating the same
JP2005172844A (en) Wire grid polarizer
JP2006517307A (en) General-purpose broadband polarizer, device including the same, and manufacturing method thereof
US8830585B2 (en) Optical element, polarization filter, optical isolator, and optical apparatus
JP2008145457A (en) Optical element and image projection apparatus
JP5206029B2 (en) Liquid crystal display
JP2004139001A (en) Optical element, optical modulating element and image display apparatus
JP2009223074A (en) Polarization converting element
US20150130983A1 (en) Polarizer, optical apparatus, light source apparatus, and image pickup apparatus
JP2012189773A (en) Polarization element
JP2010156871A (en) Polarization control element, and image display device using the same
JP2001083321A (en) Polarizer and method for its production
JP4975162B2 (en) Self-cloning photonic crystal for ultraviolet light
JP2007114375A (en) Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP6999719B2 (en) Polarizing elements and LCD projectors
JP2018141994A (en) Polarization element, liquid crystal projector, and manufacturing method for polarization element
JP2004271828A (en) Optical element, and its manufacturing method
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4427026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250