JP4424496B2 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP4424496B2
JP4424496B2 JP2005028264A JP2005028264A JP4424496B2 JP 4424496 B2 JP4424496 B2 JP 4424496B2 JP 2005028264 A JP2005028264 A JP 2005028264A JP 2005028264 A JP2005028264 A JP 2005028264A JP 4424496 B2 JP4424496 B2 JP 4424496B2
Authority
JP
Japan
Prior art keywords
glass tube
rare gas
external electrode
light source
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005028264A
Other languages
Japanese (ja)
Other versions
JP2006216391A (en
Inventor
茂義 松本
佳久 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2005028264A priority Critical patent/JP4424496B2/en
Priority to TW094138442A priority patent/TW200628923A/en
Priority to KR1020050114653A priority patent/KR100876504B1/en
Publication of JP2006216391A publication Critical patent/JP2006216391A/en
Application granted granted Critical
Publication of JP4424496B2 publication Critical patent/JP4424496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B31/00Electric arc lamps
    • H05B31/02Details
    • H05B31/30Starting; Igniting
    • H05B31/305Ignition devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0001Electrodes and electrode systems suitable for discharge tubes or lamps
    • H01J2893/0002Construction arrangements of electrode systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)

Description

本発明は、光源装置に係わり、特に、液晶表示装置のバックライト等に使用される希ガス蛍光ランプを用いた光源装置に関する。   The present invention relates to a light source device, and more particularly, to a light source device using a rare gas fluorescent lamp used for a backlight or the like of a liquid crystal display device.

従来、液晶テレビ等のバックライト用光源には、主としてガラス管内に電極を対向配置した冷陰極蛍光ランプが用いられている。
通常、冷陰極蛍光ランプの内部には微量の水銀が含まれている。近年、環境保護の配慮の観点から、冷陰極蛍光ランプに替わる水銀を含まない新しいバックライト用光源の開発が進められている。その1つの方法として、特開平11−249603号公報に示されるような希ガス放電による紫外線発光により蛍光体を発光させる希ガス蛍光ランプの応用が検討されている。
2. Description of the Related Art Conventionally, a cold cathode fluorescent lamp in which electrodes are disposed opposite to each other in a glass tube is used as a backlight light source such as a liquid crystal television.
Usually, a small amount of mercury is contained in the cold cathode fluorescent lamp. In recent years, from the viewpoint of consideration of environmental protection, development of a new light source for backlight that does not contain mercury is being promoted instead of a cold cathode fluorescent lamp. As one of the methods, application of a rare gas fluorescent lamp that emits a phosphor by ultraviolet light emission by rare gas discharge as disclosed in JP-A-11-249603 has been studied.

しかし、希ガス蛍光ランプの発光効率は冷陰極蛍光ランプに比べて低く、液晶テレビ等のバックライトとして用いた場合、消費電力を増加させる問題があり、発光効率をできるだけ大きくすることが課題となっている。従来知られている希ガス蛍光ランプとしては、OA機器の読み取り用光源として使用される蛍光ランプがある。   However, the luminous efficiency of rare gas fluorescent lamps is lower than that of cold cathode fluorescent lamps, and when used as a backlight for liquid crystal televisions, there is a problem of increasing power consumption. ing. As a conventionally known rare gas fluorescent lamp, there is a fluorescent lamp used as a reading light source for OA equipment.

図1は、このようなキセノンガスを含む希ガスが封入されたガラス管の外表面に1対の外部電極を配設した希ガス蛍光ランプを示す図であり、図1(a)は希ガス蛍光ランプのガラス管の管軸と直角方向の断面を示す断面図、図1(b)は希ガス蛍光ランプの斜視図である。
これらの図において、1は希ガス蛍光ランプ、2ガラス管、3,3’はガラス管2の外表面に設けられた1対の外部電極、4はガラス管2の内表面に塗布された蛍光物質、5は外部電極3,3間に高周波電圧を印加する点灯回路である。
FIG. 1 is a view showing a rare gas fluorescent lamp in which a pair of external electrodes are arranged on the outer surface of a glass tube filled with such a rare gas containing xenon gas, and FIG. FIG. 1B is a perspective view of a rare gas fluorescent lamp, and FIG. 1B is a cross-sectional view showing a cross section perpendicular to the tube axis of the glass tube of the fluorescent lamp.
In these figures, 1 is a rare gas fluorescent lamp, 2 glass tubes, 3 and 3 ′ are a pair of external electrodes provided on the outer surface of the glass tube 2, and 4 is a fluorescence applied to the inner surface of the glass tube 2. A substance 5 is a lighting circuit for applying a high-frequency voltage between the external electrodes 3 and 3.

なお、特開平6−163006号公報には、希ガス蛍光ランプを矩形波電圧で点灯すると、発光効率が向上することが示されている。   Japanese Patent Application Laid-Open No. 6-163006 shows that luminous efficiency is improved when a rare gas fluorescent lamp is lit with a rectangular wave voltage.

図2は、従来技術に係る希ガス蛍光ランプを用いた光源装置の一例を示す図である。
同図において、6は点灯回路5の出力トランス、Ceは出力トランス6や配線等の浮遊容量、希ガス蛍光ランプ1の点線で囲まれる範囲は希ガス蛍光ランプ1の等価回路を表し、Cgは外部電極3,3’間のガラス管2の静電容量、Cdはガラス管2内の放電ギャップの静電容量、Rdは放電プラズマの抵抗であり、その大きさは点灯周期内で周期的に変化する。
FIG. 2 is a diagram showing an example of a light source device using a rare gas fluorescent lamp according to the prior art.
In the figure, 6 is an output transformer of the lighting circuit 5, Ce is a stray capacitance of the output transformer 6 and wiring, the range surrounded by a dotted line of the rare gas fluorescent lamp 1 is an equivalent circuit of the rare gas fluorescent lamp 1, and Cg is The capacitance of the glass tube 2 between the external electrodes 3 and 3 ′, Cd is the capacitance of the discharge gap in the glass tube 2, Rd is the resistance of the discharge plasma, and the magnitude thereof is periodically within the lighting cycle. Change.

特開平11−249603号公報JP-A-11-249603 特開平6−163006号公報JP-A-6-163006

ところで、図1に示すような希ガス蛍光ランプ1においては、ガラス管2からの有効発光面積の割合を上げるためには、外部電極3,3’の電極を細くすることが考えられる。しかし、外部電極3,3’の電極面積を細くして矩形波点灯すると、希ガス蛍光ランプ1の管軸方向で部分的に不点灯となり、配光分布が不均一になる問題が生じる。   Incidentally, in the rare gas fluorescent lamp 1 as shown in FIG. 1, in order to increase the ratio of the effective light emission area from the glass tube 2, it is conceivable to make the electrodes of the external electrodes 3 and 3 'thinner. However, when the rectangular electrodes are lit by reducing the electrode area of the external electrodes 3 and 3 ′, there is a problem in that the light distribution is not uniform due to partial non-lighting in the tube axis direction of the rare gas fluorescent lamp 1.

図3及び図4は、それぞれ図2に示すような希ガス蛍光ランプの光源装置において、希ガス蛍光ランプ1に印加される矩形波電圧を示す図である。
外部電極3,3’の電極面積を細くしていくと、図3に示すように、矩形波電圧波形の垂れ下がり(サグ)aが大きくなる。図3中のbに示す電圧波形部分は、点灯回路5の出力トランス6のインダクタンスや浮遊容量Ce、静電容量Cg、静電容量Cdによる共振波形の一部と考えられる。共振波形の共振周波数がランプの点灯周波数に比べて充分小さい場合は、図4の実線に示すように波形dになるが、ランプの静電容量Cg、Cdが小さく、共振波形が共振周波数の点灯周波数に近い場合は、図4の点線のような波形eとなり、サグが大きくなる。
3 and 4 are diagrams showing rectangular wave voltages applied to the rare gas fluorescent lamp 1 in the light source device of the rare gas fluorescent lamp as shown in FIG.
As the electrode areas of the external electrodes 3 and 3 ′ are reduced, the sag a of the rectangular wave voltage waveform increases as shown in FIG. The voltage waveform portion indicated by b in FIG. 3 is considered to be a part of the resonance waveform due to the inductance, stray capacitance Ce, capacitance Cg, and capacitance Cd of the output transformer 6 of the lighting circuit 5. When the resonance frequency of the resonance waveform is sufficiently smaller than the lighting frequency of the lamp, the waveform becomes d as shown by the solid line in FIG. 4, but the lamp capacitances Cg and Cd are small, and the resonance waveform is turned on at the resonance frequency. When the frequency is close, the waveform e is as shown by the dotted line in FIG. 4 and the sag is increased.

図3において、矩形波点灯波形の急峻な電圧変化量の大きさcは、ランプ入力電力、放電安定性に関係しており、サグが大きくなると、この急峻な電圧変化量の大きさcが小さくなり、ランプ入力電力が減り、放電が不安定になり、部分点灯が生じる。   In FIG. 3, the magnitude c of the steep voltage change of the rectangular wave lighting waveform is related to the lamp input power and the discharge stability. As the sag increases, the magnitude c of the steep voltage change decreases. Therefore, the lamp input power is reduced, the discharge becomes unstable, and partial lighting occurs.

このように、ガラス管2の外表面に配設された外部電極3,3’は光を遮り、光出力を低下させるために、外部電極3,3’の面積をできるだけ小さくすることが望まれるが、外部電極3,3’の面積の縮小化に比例して静電容量Cg、Cdの大きさが小さくなり、その結果として、上述のごとく、サグが大きくなり、部分点灯が生じる。   As described above, it is desirable that the external electrodes 3 and 3 ′ disposed on the outer surface of the glass tube 2 block light and reduce the area of the external electrodes 3 and 3 ′ as much as possible in order to reduce the light output. However, the capacitances Cg and Cd are reduced in proportion to the reduction in the area of the external electrodes 3 and 3 ′. As a result, as described above, the sag is increased and partial lighting occurs.

具体的には、発光長(外部電極長)が800mmの希ガス蛍光ランプで、ガラス管の外表面に配設された1対の外部電極3,3’のうち、片側の外部電極3(又は3’)の面積がガラス管外表面積の8%以上の大きさでは正常に点灯したが、それを下回ると放電が不安定になり、部分的に不点灯を生じた。   Specifically, in a rare gas fluorescent lamp having a light emission length (external electrode length) of 800 mm, out of a pair of external electrodes 3, 3 ′ disposed on the outer surface of the glass tube, one external electrode 3 (or one) When the area of 3 ′) was 8% or more of the surface area outside the glass tube, it was normally lit, but when the area was less than that, the discharge became unstable and partial lighting did not occur.

本発明の目的は、上記の問題点に鑑み、液晶テレビ等のバックライトとして使用される希ガス蛍光ランプの発光効率を改善し、バックライトとして使用した場合の消費電力の低減化を図ることを可能にした光源装置を提供することにある。   In view of the above problems, an object of the present invention is to improve the light emission efficiency of a rare gas fluorescent lamp used as a backlight of a liquid crystal television or the like, and to reduce power consumption when used as a backlight. An object of the present invention is to provide a light source device that is made possible.

本発明は、上記の課題を解決するために、次のような手段を採用した。
第1の手段は、希ガスを内部に封入した直管状のガラス管と、該ガラス管の外面の管軸方向に伸びる1対の外部電極と、前記ガラス管の内面に塗布された蛍光物質と、を具備した希ガス蛍光ランプに矩形波電圧を印加して点灯する光源装置において、少なくとも1個の出力トランスに対し複数本の前記希ガス蛍光ランプを並列配置し、前記外部電極の管軸方向の全長で前記ガラス管の全周に亘る前記ガラス管の外表面積に対する前記1つの外部電極の表面積の占める割合をW(%)とし、前記外部電極の管軸方向の全長をL(m)とし、並列本数をN(本)としたとき、(0.8/L)×(8/N)≦W<(0.8/L)×8の関係を満たすことを特徴とする光源装置である。
The present invention employs the following means in order to solve the above problems.
The first means includes a straight glass tube enclosing a rare gas therein, a pair of external electrodes extending in the tube axis direction on the outer surface of the glass tube, and a fluorescent material applied to the inner surface of the glass tube. In a light source device that is lit by applying a rectangular wave voltage to a rare gas fluorescent lamp comprising: a plurality of the rare gas fluorescent lamps are arranged in parallel with respect to at least one output transformer , and the tube axis direction of the external electrode The ratio of the surface area of the one external electrode to the external surface area of the glass tube over the entire circumference of the glass tube is W (%), and the total length of the external electrode in the tube axis direction is L (m) The light source device satisfies the relationship of (0.8 / L) × (8 / N) ≦ W <(0.8 / L) × 8, where N is the number of parallel lines. .

の手段は、第1の手段において、前記ガラス管内部に封入される希ガスのうち、キセノンの分圧が6.6kPa乃至31.9kPaであることを特徴とする光源装置である。 Second means, Oite the first hand stage, among the rare gas sealed inside the glass tube, with a light source and wherein the partial pressure of xenon is 6.6kPa to 31.9kPa is there.

請求項1に記載の発明によれば、希ガスを内部に封入した直管状のガラス管と、該ガラス管の外面の管軸方向に伸びる1対の外部電極と、前記ガラス管の内面に塗布された蛍光物質と、を具備した希ガス蛍光ランプに矩形波電圧を印加して点灯する光源装置において、少なくとも1個の出力トランスに対し複数本の前記希ガス蛍光ランプを並列配置し、前記外部電極の管軸方向の全長で前記ガラス管の全周に亘る前記ガラス管の外表面積に対する前記1つの外部電極の表面積の占める割合をW(%)とし、前記外部電極の管軸方向の全長をL(m)とし、並列本数をN(本)としたとき、(0.8/L)×(8/N)≦W<(0.8/L)×8の関係を満たすようにしたので、希ガス蛍光ランプの管軸方向の部分不点灯を引き起こすことなく、外部電極の面積を縮小化することが可能となり、外部電極に遮られる光束が減少し、発光効率を増加させることができる。さらに希ガス蛍光ランプの並列本数が増えるに従って始動特性の改善も図ることができる。 According to the first aspect of the present invention, a straight glass tube enclosing a rare gas therein, a pair of external electrodes extending in the tube axis direction on the outer surface of the glass tube, and coating on the inner surface of the glass tube A plurality of rare gas fluorescent lamps arranged in parallel with respect to at least one output transformer in a light source device that is lit by applying a rectangular wave voltage to a rare gas fluorescent lamp comprising The ratio of the surface area of the one external electrode to the external surface area of the glass tube over the entire circumference of the glass tube in the total length in the tube axis direction of the electrode is W (%), and the total length of the external electrode in the tube axis direction is Since L (m) and N (lines) in parallel, the relationship of (0.8 / L) × (8 / N) ≦ W <(0.8 / L) × 8 is satisfied . Without causing partial lighting of the rare gas fluorescent lamp in the tube axis direction, The area of the external electrode can be reduced, the light beam blocked by the external electrode is reduced, and the light emission efficiency can be increased. Furthermore, the starting characteristics can be improved as the number of parallel rare gas fluorescent lamps increases.

請求項に記載の発明によれば、前記ガラス管内部に封入される希ガスのうち、キセノンの分圧を6.6kPa乃至31.9kPaの範囲に設定したので、液晶のバックライトとして明るさが十分得られるとともに、発光効率の良い光源装置が得られる。 According to the second aspect of the present invention, since the partial pressure of xenon is set in the range of 6.6 kPa to 31.9 kPa among the rare gases sealed inside the glass tube, the brightness as the backlight of the liquid crystal Can be obtained sufficiently, and a light source device with good luminous efficiency can be obtained.

本発明の一実施形態を図1及び図5を用いて説明する。
図5は、本実施形態の発明に係る光源装置の概要を示す図である。
同図において、1・・・Nは点灯回路5の少なくとも1個の出力トランス6に対して並列接続された複数個の希ガス蛍光ランプであり、その他の構成は図2に示した同符号の構成に対応するので説明を省略する。
An embodiment of the present invention will be described with reference to FIGS. 1 and 5.
FIG. 5 is a diagram showing an outline of the light source device according to the invention of the present embodiment.
In the figure, 1... N is a plurality of rare gas fluorescent lamps connected in parallel to at least one output transformer 6 of the lighting circuit 5, and the other configurations are denoted by the same reference numerals shown in FIG. Since it corresponds to the configuration, the description is omitted.

本実施形態の光源装置は、図1及び図5において、希ガスを内部に封入した直管状のガラス管2と、ガラス管2の外面の管軸方向に伸びる1対の外部電極3,3’と、ガラス管2の内面に塗布された蛍光物質4とを具備した希ガス蛍光ランプ1・・・Nに矩形波電圧を印加して点灯するものであり、点灯回路5の少なくとも1個の出力トランス6に対して複数本の希ガス蛍光ランプ1・・・Nを並列配置し、ガラス管2の1対の外部電極3,3’が配設されている領域に対応する外面の表面積に対する1つの外部電極3(又は3’)の表面積の占める割合を、希ガス蛍光ランプの並列本数が増えるに従って、単一本で使用したときを基準として漸次減少させることにある。   1 and 5, the light source device of the present embodiment includes a straight glass tube 2 in which a rare gas is enclosed, and a pair of external electrodes 3 and 3 ′ extending in the tube axis direction of the outer surface of the glass tube 2. And a noble gas fluorescent lamp 1... N having a fluorescent material 4 applied to the inner surface of the glass tube 2 to be lit by applying a rectangular wave voltage, and at least one output of the lighting circuit 5 A plurality of rare gas fluorescent lamps 1... N are arranged in parallel with respect to the transformer 6, and the surface area of the outer surface corresponding to the region where the pair of external electrodes 3, 3 ′ of the glass tube 2 is disposed is 1. The ratio of the surface area of the two external electrodes 3 (or 3 ′) is to be gradually decreased with respect to the case where a single lamp is used as the number of rare gas fluorescent lamps in parallel increases.

これは、1個の出力トランス6に対して複数本の希ガス蛍光ランプ1・・・Nを接続して点灯する場合、複数本のガラス管全体の面積に対する複数の個々の希ガス蛍光ランプの一方の外部電極の面積の積算分の割合を所定の範囲に規定すると、安定な放電が得られる領域があることを見出したことによるものである。   This is because, when a plurality of rare gas fluorescent lamps 1... N are connected to one output transformer 6, a plurality of individual rare gas fluorescent lamps with respect to the entire area of the plurality of glass tubes. This is because it has been found that there is a region where stable discharge can be obtained when the ratio of the integrated area of one external electrode is defined within a predetermined range.

具体的には、ガラス管2の1対の外部電極3,3’が配設されてい領域に対応する外表面の面積に対する1つの外部電極3(又は3’)の表面積の占める割合をW(%)としたとき、(8/N)≦W<8の関係を満たすとよい。   Specifically, the ratio of the surface area of one external electrode 3 (or 3 ′) to the area of the outer surface corresponding to the region where the pair of external electrodes 3 and 3 ′ of the glass tube 2 are disposed is W ( %), The relationship of (8 / N) ≦ W <8 is preferably satisfied.

すなわち、1本の希ガス蛍光ランプにおいて、ガラス管2の外表面に配設された1対の外部電極3,3’のうち、片側の外部電極3(又は3’)の面積がガラス管2の外表面積の8%以上の大きさであれば、正常点灯が可能になる。換言すると、図5に示す光源装置において、静電容量Cg、Cdの大きさはN倍になるから、片側の外部電極3(又は3’)がガラス管の外表面積の8/N%以上の大きさであれば正常点灯が可能となる。   That is, in one rare gas fluorescent lamp, the area of the external electrode 3 (or 3 ′) on one side of the pair of external electrodes 3 and 3 ′ disposed on the outer surface of the glass tube 2 is the glass tube 2. If it is 8% or more of the outer surface area, normal lighting is possible. In other words, in the light source device shown in FIG. 5, the capacitances Cg and Cd are N times larger, so that the external electrode 3 (or 3 ′) on one side is 8 / N% or more of the outer surface area of the glass tube. If it is large, normal lighting is possible.

次に、本発明の実施例を図1及び図6乃至図14を用いて説明する。
ここで用いられる希ガス蛍光ランプの構成は図1に示すものと同じであり、ガラス管径はφ6.2、φ8.0、φ10.0の3種類のものを用い、封入ガスはXe:Ne=8:2の混合ガス、Xe分圧は26.6kPaである。外部電極3,3’は幅が1mm以上のアルミテープで、1mm未満のものはスクリーン印刷した銀ペーストを用いた。ランプ発光長(外部電極長)は800mmである。
Next, an embodiment of the present invention will be described with reference to FIG. 1 and FIGS.
The configuration of the rare gas fluorescent lamp used here is the same as that shown in FIG. 1. Three types of glass tube diameters of φ6.2, φ8.0, and φ10.0 are used, and the sealed gas is Xe: Ne. = 8: 2 mixed gas, Xe partial pressure is 26.6 kPa. The external electrodes 3 and 3 ′ were aluminum tapes having a width of 1 mm or more, and screen pastes were used for those having a width of less than 1 mm. The lamp emission length (external electrode length) is 800 mm.

図6は、本実施例で用いた光源装置の構成を示す図である。
同図において、7はスイッチング素子、8はスイッチング素子駆動回路、9はDC電源である。なお、その他の構成は図5に示した同符号の構成に対応する。
この光源装置は、N本の希ガス蛍光ランプを矩形波電圧を出力する点灯回路5に設けられる少なくとも1個の出力トランス6に並列接続したものであり、DC電源9より電力を供給し、スイッチング素子駆動回路8でFET等のスイッチング素子7を周期的にスイッチング動作させることにより、出力トランス6を介して各希ガス蛍光ランプ1・・・Nに矩形波電圧を印加するものである。出力トランス6の出力側のインダクタンスは大凡200mHである。出力トランス6のインダクタンスを大きくすることによっても、電圧波形のサグを抑制し、放電を安定させることが可能であるが、出力トランス6のサイズが大きくなり実装が困難となり、現実的ではない。
FIG. 6 is a diagram showing the configuration of the light source device used in this embodiment.
In the figure, 7 is a switching element, 8 is a switching element drive circuit, and 9 is a DC power source. Other configurations correspond to the configurations of the same reference numerals shown in FIG.
In this light source device, N rare gas fluorescent lamps are connected in parallel to at least one output transformer 6 provided in a lighting circuit 5 that outputs a rectangular wave voltage, and power is supplied from a DC power source 9 for switching. A rectangular wave voltage is applied to each rare gas fluorescent lamp 1... N via the output transformer 6 by periodically switching the switching element 7 such as an FET in the element driving circuit 8. The output-side inductance of the output transformer 6 is approximately 200 mH. Increasing the inductance of the output transformer 6 can also suppress the sag of the voltage waveform and stabilize the discharge, but the size of the output transformer 6 becomes large and mounting becomes difficult, which is not realistic.

図7は、希ガス蛍光ランプに印加される矩形波電圧波形の種類を示す図であり、図7(a)は半周期毎に正負の矩形波電圧を繰り返す矩形波電圧波形であり、本実施例の光源装置に用いられるものである。その他に図7(b)に示すような正負の矩形波電圧間に休止期間を有する矩形波電圧波形、図7(c)に示すような正の矩形波電圧で構成される矩形波電圧波形、図7(d)に示すようなは正負の矩形波電圧後毎に休止期間を有する矩形波電圧波形を用いることも可能である。これらの矩形波電圧を希ガス蛍光ランプ1・・・Nに印加することにより点灯させることが可能である。   FIG. 7 is a diagram showing types of rectangular wave voltage waveforms applied to the rare gas fluorescent lamp. FIG. 7A is a rectangular wave voltage waveform in which positive and negative rectangular wave voltages are repeated every half cycle. It is used for the light source device of the example. In addition, a rectangular wave voltage waveform having a pause period between positive and negative rectangular wave voltages as shown in FIG. 7 (b), a rectangular wave voltage waveform composed of positive rectangular wave voltages as shown in FIG. 7 (c), As shown in FIG. 7D, it is also possible to use a rectangular wave voltage waveform having a pause period after every positive and negative rectangular wave voltage. It is possible to turn on the lamp by applying these rectangular wave voltages to the rare gas fluorescent lamps 1.

図8は、ガラス管径φ8.0の場合における、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積との関係及び点灯状態を示す図である。なお、ここでガラス管外表面積とは、ガラス管の1対の外部電極が配設されている領域に対応する外表面積をいい、換言すれば、外部電極の管軸方向の全長でガラス管の全周に亘る外表面積のことである。○は正常点灯する条件、×は部分不点灯になる条件である。
同図に示すように、ランプ並列本数N が大きい程、外部電極面積を小さくしても正常点灯が可能であることがわかる。図中の実線は、外部電極面積割合が8
/ N % とした場合の点を結んだ線である。外部電極の面積割合がこの実線で表される大きさ以上であれば正常点灯が可能であることが分かる。
FIG. 8 is a diagram showing the relationship between the one-side external electrode / surface area outside the glass tube and the lighting state with respect to the number N of lamps in parallel when the glass tube diameter is 8.0. Here, the outer surface area of the glass tube refers to the outer surface area corresponding to the region where the pair of external electrodes of the glass tube is disposed, in other words, the total length of the glass tube in the tube axis direction of the external electrode. It is the outer surface area over the entire circumference. ○ is a condition for normal lighting, and x is a condition for partial non-lighting.
As shown in the figure, it can be seen that as the number of parallel lamps N 1 is increased, normal lighting is possible even when the external electrode area is reduced. The solid line in the figure indicates that the external electrode area ratio is 8
/ N% is a line connecting points. It can be seen that normal lighting is possible when the area ratio of the external electrodes is equal to or larger than the size represented by the solid line.

図9は、ガラス管径φ6.2の場合における、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積との関係及び点灯状態を示す図である。なお、図8の場合と同様に、ガラス管外表面積とは、ガラス管の1対の外部電極が配設されている領域に対応する外表面の面積をいう。○は正常点灯する条件、×は部分不点灯になる条件である。
同図に示すように、ランプ並列本数Nが大きい程、外部電極面積を小さくしても正常点灯が可能であることがわかる。図中の実線は、外部電極面積割合が8/N%とした場合の点を結んだ線である。外部電極の面積割合がこの実線で表される大きさ以上であれば正常点灯が可能であることが分かる。
FIG. 9 is a diagram showing the relationship between the one-side external electrode / surface area outside the glass tube and the lighting state with respect to the lamp parallel number N in the case of the glass tube diameter φ6.2. As in the case of FIG. 8, the glass tube outer surface area refers to the area of the outer surface corresponding to the region where the pair of external electrodes of the glass tube is disposed. ○ is a condition for normal lighting, and x is a condition for partial non-lighting.
As shown in the figure, it can be seen that as the number N of lamps in parallel increases, normal lighting is possible even when the external electrode area is reduced. The solid line in the figure is a line connecting points when the external electrode area ratio is 8 / N%. It can be seen that normal lighting is possible when the area ratio of the external electrodes is equal to or larger than the size represented by the solid line.

図10は、ガラス管径φ10.0の場合における、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積との関係及び点灯状態を示す図である。なお、図8の場合と同様に、ガラス管外表面積とは、ガラス管の1対の外部電極が配設されている領域に対応する外表面の面積をいう。○は正常点灯する条件、×は部分不点灯になる条件である。
同図に示すように、ランプ並列本数Nが大きい程、外部電極面積を小さくしても正常点灯が可能であることがわかる。図中の実線は、外部電極面積割合が8/N%とした場合の点を結んだ線である。外部電極の面積割合がこの実線で表される大きさ以上であれば正常点灯が可能であることが分かる。
FIG. 10 is a diagram showing the relationship between the one-side external electrode / glass tube outer surface area with respect to the lamp parallel number N and the lighting state in the case of the glass tube diameter φ10.0. As in the case of FIG. 8, the glass tube outer surface area refers to the area of the outer surface corresponding to the region where the pair of external electrodes of the glass tube is disposed. ○ is a condition for normal lighting, and x is a condition for partial non-lighting.
As shown in the figure, it can be seen that as the number N of lamps in parallel increases, normal lighting is possible even when the external electrode area is reduced. The solid line in the figure is a line connecting points when the external electrode area ratio is 8 / N%. It can be seen that normal lighting is possible when the area ratio of the external electrodes is equal to or larger than the size represented by the solid line.

図11は、片側外部電極/ガラス管外表面積の大きさを2.0%、4.0%、8.0%とした場合のランプ並列本数Nに対する相対始動電圧との関係を示す図である。ここで、ランプ並列本数が5本とした場合の始動電圧を100%とし、ガラス管外径はφ8.0である。
同図に示すように、ランプ並列本数Nが大きい程始動電圧が低下する傾向にあり、このことからランプ並列本数Nを大きくすることは、部分不点灯を抑制するだけでなく、始動性を改善する効果もあることがわかる。
FIG. 11 is a graph showing the relationship between the number of parallel lamps N and the relative starting voltage when the size of the external surface area on one side / glass tube is 2.0%, 4.0%, and 8.0%. . Here, when the number of lamps in parallel is 5, the starting voltage is 100%, and the glass tube outer diameter is φ8.0.
As shown in the figure, the larger the lamp parallel number N, the more the starting voltage tends to decrease. Therefore, increasing the lamp parallel number N not only suppresses partial non-lighting but also improves startability. It can be seen that there is also an effect.

図12は、Xe分圧に対する相対発光効率との関係を示す図である。ここで、片側外部電極/ガラス管外表面積の大きさを8.0%、ガラス管外径はφ8.0、ランプ並列本数は5本とし、発光効率は全光束/入力電力とし、26.6kPaの場合の発光効率を100%とする。
同図に示すように、Xe分圧が大きい程、発光効率が大きくなる傾向にあるが、31.9kPa以降は飽和傾向にある。Xe分圧が大きい程、ランプ始動性に悪影響を及ぼすため、Xe分圧を必要以上に大きくすることは無意味である。従って、Xe分圧の大きさは31.9kPaを上限とするのが望ましい。また、Xe分圧の下限は6.6kPaであり、これ以下であると液晶のバックライトとして明るさが不十分となる。
FIG. 12 is a diagram showing a relationship between relative luminous efficiency with respect to Xe partial pressure. Here, the size of the external surface area on one side / glass tube is 8.0%, the outer diameter of the glass tube is φ8.0, the number of parallel lamps is 5, the luminous efficiency is the total luminous flux / input power, and 26.6 kPa. In this case, the luminous efficiency is set to 100%.
As shown in the figure, the light emission efficiency tends to increase as the Xe partial pressure increases, but it tends to be saturated after 31.9 kPa. As the Xe partial pressure increases, the lamp startability is adversely affected. Therefore, it is meaningless to increase the Xe partial pressure more than necessary. Therefore, it is desirable that the Xe partial pressure has an upper limit of 31.9 kPa. Further, the lower limit of the Xe partial pressure is 6.6 kPa, and if it is less than that, the brightness becomes insufficient as the backlight of the liquid crystal.

図13は、外部電極の管軸方向の長さを0.5mとした場合の、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積及び点灯状態の関係を示す図である。ここで、ガラス管径はφ8.0である。
同図に示すように、外部電極の管軸方向の長さを0.5mとした場合は、図8の外部電極の管軸方向の長さ0.8mの場合と比べて、部分不点灯(×)となる外部電極面積の割合が大きくなっており、外部電極の管軸方向の長さ0.8mの場合の正常点灯下限値である8/N%の大きさ(図中の点線)を上回る。これは、ランプの静電容量が外部電極の管軸方向の長さと比例関係にあり、外部電極の管軸方向の長さ0.8mの場合と比べて静電容量が大凡0.5/0.8倍に減少するためと考えられる。図中の実線は、外部電極の管軸方向の長さ0.8mの場合の正常点灯時における下限値8/N%に、外部電極の管軸方向の長さが変わることによる静電容量の変化率の逆数(0.8/0.5)を乗じた長さ補正を施したものである。
FIG. 13 is a diagram showing the relationship between the one-side external electrode / outside surface area of the glass tube and the lighting state with respect to the number N of lamps in parallel when the length of the external electrode in the tube axis direction is 0.5 m. Here, the glass tube diameter is φ8.0.
As shown in the figure, when the length of the external electrode in the tube axis direction is 0.5 m, compared with the case where the length of the external electrode in the tube axis direction of FIG. X) The ratio of the external electrode area is large, and the magnitude of 8 / N%, which is the lower limit of normal lighting when the length of the external electrode in the tube axis direction is 0.8 m (dotted line in the figure) It exceeds. This is because the capacitance of the lamp is proportional to the length of the external electrode in the tube axis direction, and the capacitance is approximately 0.5 / 0 compared to the case where the length of the external electrode in the tube axis direction is 0.8 m. This is thought to be due to a reduction of 8 times. The solid line in the figure shows the capacitance due to the change of the length of the external electrode in the tube axis direction to the lower limit of 8 / N% during normal lighting when the length of the external electrode in the tube axis direction is 0.8 m. The length is corrected by multiplying the reciprocal of the rate of change (0.8 / 0.5).

同図から明らかなように、外部電極面積の割合が実線で表される大きさ以上であれば正常点灯が可能であることがわかる。このように長さ補正を施すことにより、外部電極の管軸方向の長さが0.8mと異なる場合においても、ガラス管の1対の外部電極が配設されている領域に対応する外表面積に対する1つの外部電極の表面積の占める割合をW(%)とし、希ガス蛍光ランプの全長をL(m)とし、並列本数をN(本)としたとき、閾値は(0.8/L)×(8/N)≦W<(0.8/L)×8の関係で表すことができる。   As can be seen from the figure, normal lighting is possible when the ratio of the area of the external electrode is not less than the size represented by the solid line. By performing the length correction in this way, even when the length of the external electrode in the tube axis direction is different from 0.8 m, the outer surface area corresponding to the region where the pair of external electrodes of the glass tube is disposed. When the ratio of the surface area of one external electrode to W is% (%), the total length of the rare gas fluorescent lamp is L (m), and the parallel number is N (lines), the threshold is (0.8 / L) X (8 / N) ≦ W <(0.8 / L) × 8.

図14は、外部電極面積割合を小さくすることによる明るさの改善効果を説明するための図である。
同図において、10は管軸が紙面と垂直方向に並列に配置された希ガス蛍光ランプ、11は反射ミラー、12は拡散板である。
同図に示すように、希ガス蛍光ランプ10を8本配置し、図示していない点灯回路を2系統用い、各々4本の希ガス蛍光ランプ10を並列接続する。片側外部電極/ガラス管外表面積の大きさは8%と4%の2種類とし、ランプ管径はφ8.0で外部電極の管軸方向の長さは0.8mの条件とする。同じ電力で点灯して拡散板12面上の輝度を比較した結果、片側外部電極/ガラス管外表面積の大きさが8%の場合に比べて、4%の場合の方が7%程度明るいことを確認した。
FIG. 14 is a diagram for explaining the effect of improving brightness by reducing the external electrode area ratio.
In the figure, reference numeral 10 denotes a rare gas fluorescent lamp whose tube axis is arranged in parallel in the direction perpendicular to the paper surface, 11 is a reflection mirror, and 12 is a diffusion plate.
As shown in the figure, eight rare gas fluorescent lamps 10 are arranged, two lighting circuits (not shown) are used, and four rare gas fluorescent lamps 10 are connected in parallel. The outer surface area on one side / glass tube is 8% and 4%, the lamp tube diameter is φ8.0, and the length of the external electrode in the tube axis direction is 0.8m. As a result of comparing the brightness on the surface of the diffusion plate 12 with the same power, the 4% is brighter by 7% than the 8% external electrode / glass tube surface area. It was confirmed.

ガラス管の外表面に1対の外部電極を配設した希ガス蛍光ランプを示す図である。It is a figure which shows the noble gas fluorescent lamp which provided a pair of external electrode on the outer surface of a glass tube. 従来技術に係る希ガス蛍光ランプを用いた光源装置の一例を示す図である。It is a figure which shows an example of the light source device using the noble gas fluorescent lamp concerning a prior art. 図2に示すような希ガス蛍光ランプの光源装置において、希ガス蛍光ランプに印加される矩形波電圧を示す図である。It is a figure which shows the rectangular wave voltage applied to a noble gas fluorescent lamp in the light source device of the noble gas fluorescent lamp as shown in FIG. 図2に示すような希ガス蛍光ランプの光源装置において、希ガス蛍光ランプに印加される矩形波電圧を示す図である。It is a figure which shows the rectangular wave voltage applied to a noble gas fluorescent lamp in the light source device of the noble gas fluorescent lamp as shown in FIG. 本発明に係る光源装置の概要を示す図である。It is a figure which shows the outline | summary of the light source device which concerns on this invention. 実施例で用いた光源装置の構成を示す図である。It is a figure which shows the structure of the light source device used in the Example. 希ガス蛍光ランプに印加される矩形波電圧波形の種類を示す図である。It is a figure which shows the kind of rectangular wave voltage waveform applied to a noble gas fluorescent lamp. ガラス管径φ8.0の場合における、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積との関係及び点灯状態を示す図である。It is a figure which shows the relationship and lighting state of the one side external electrode / glass tube external surface area with respect to the lamp parallel number N in the case of glass tube diameter φ8.0. ガラス管径φ6.2の場合における、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積との関係及び点灯状態を示す図である。It is a figure which shows the relationship between the one side external electrode / glass tube external surface area with respect to the lamp parallel number N, and a lighting state in the case of glass tube diameter (phi) 6.2. ガラス管径φ10.0の場合における、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積との関係及び点灯状態を示す図である。It is a figure which shows the relationship and lighting state of the one side external electrode / glass tube external surface area with respect to the lamp parallel number N in the case of glass tube diameter φ10.0. 片側外部電極/ガラス管外表面積の大きさを2.0%、4.0%、8.0%とした場合のランプ並列本数Nに対する相対始動電圧との関係を示す図である。It is a figure which shows the relationship with the relative starting voltage with respect to the lamp parallel number N when the magnitude | size of the one-side external electrode / glass tube outer surface area is 2.0%, 4.0%, and 8.0%. Xe分圧に対する相対発光効率との関係を示す図である。It is a figure which shows the relationship with the relative luminous efficiency with respect to Xe partial pressure. 外部電極の管軸方向の長さを0.5mとした場合の、ランプ並列本数Nに対する片側外部電極/ガラス管外表面積及び点灯状態の関係を示す図である。It is a figure which shows the relationship between the one side external electrode / glass-tube outer surface area and a lighting state with respect to the number N of lamp parallel, when the length of the external electrode in the tube axis direction is 0.5 m. 外部電極面積割合を小さくすることによる明るさの改善効果を説明するための図である。It is a figure for demonstrating the improvement effect of the brightness by making an external electrode area ratio small.

符号の説明Explanation of symbols

1 希ガス蛍光ランプ
1・・・N 希ガス蛍光ランプ
2 ガラス管
3,3’ 外部電極
4 蛍光物質
5 点灯回路
6 出力トランス
7 スイッチング素子
8 スイッチング素子駆動回路
9 DC電源
10 希ガス蛍光ランプ
11 反射ミラー
12 拡散板
Ce 出力トランスや配線等の浮遊容量
Cg 外部電極間のガラス管の静電容量
Cd ガラス管内の放電ギャップの静電容量
Rd 放電プラズマの抵抗
DESCRIPTION OF SYMBOLS 1 Noble gas fluorescent lamp 1 ... N Noble gas fluorescent lamp 2 Glass tube 3, 3 'External electrode 4 Fluorescent substance 5 Lighting circuit 6 Output transformer 7 Switching element 8 Switching element drive circuit 9 DC power supply 10 Noble gas fluorescent lamp 11 Reflection Mirror 12 Diffusion plate Ce Floating capacitance Cg of output transformer, wiring, etc. Capacitance of glass tube between external electrodes Cd Capacitance of discharge gap in glass tube Rd Resistance of discharge plasma

Claims (2)

希ガスを内部に封入した直管状のガラス管と、該ガラス管の外面の管軸方向に伸びる1対の外部電極と、前記ガラス管の内面に塗布された蛍光物質と、を具備した希ガス蛍光ランプに矩形波電圧を印加して点灯する光源装置において、
少なくとも1個の出力トランスに対し複数本の前記希ガス蛍光ランプを並列配置し、前記外部電極の管軸方向の全長で前記ガラス管の全周に亘る前記ガラス管の外表面積に対する前記1つの外部電極の表面積の占める割合をW(%)とし、前記外部電極の管軸方向の全長をL(m)とし、並列本数をN(本)としたとき、(0.8/L)×(8/N)≦W<(0.8/L)×8の関係を満たすことを特徴とする光源装置。
A rare gas comprising: a straight tubular glass tube filled with a rare gas; a pair of external electrodes extending in the tube axis direction on the outer surface of the glass tube; and a fluorescent material applied to the inner surface of the glass tube. In a light source device that is lit by applying a rectangular wave voltage to a fluorescent lamp,
A plurality of the rare gas fluorescent lamps are arranged in parallel with respect to at least one output transformer, and the one external portion with respect to the outer surface area of the glass tube over the entire circumference of the glass tube in the entire length in the tube axis direction of the external electrode. When the ratio of the surface area of the electrode is W (%), the total length of the external electrode in the tube axis direction is L (m), and the parallel number is N (number), (0.8 / L) × (8 /N)≦W<(0.8/L)×8 satisfying the relationship .
前記ガラス管内部に封入される希ガスのうち、キセノンの分圧が6.6kPa乃至31.9kPaであることを特徴とする請求項1に記載の光源装置。 2. The light source device according to claim 1 , wherein a partial pressure of xenon is 6.6 kPa to 31.9 kPa among rare gases sealed in the glass tube .
JP2005028264A 2005-02-03 2005-02-03 Light source device Expired - Fee Related JP4424496B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005028264A JP4424496B2 (en) 2005-02-03 2005-02-03 Light source device
TW094138442A TW200628923A (en) 2005-02-03 2005-11-02 Light source device
KR1020050114653A KR100876504B1 (en) 2005-02-03 2005-11-29 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028264A JP4424496B2 (en) 2005-02-03 2005-02-03 Light source device

Publications (2)

Publication Number Publication Date
JP2006216391A JP2006216391A (en) 2006-08-17
JP4424496B2 true JP4424496B2 (en) 2010-03-03

Family

ID=36979427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028264A Expired - Fee Related JP4424496B2 (en) 2005-02-03 2005-02-03 Light source device

Country Status (3)

Country Link
JP (1) JP4424496B2 (en)
KR (1) KR100876504B1 (en)
TW (1) TW200628923A (en)

Also Published As

Publication number Publication date
TW200628923A (en) 2006-08-16
KR100876504B1 (en) 2008-12-31
KR20060089130A (en) 2006-08-08
JP2006216391A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4129049B2 (en) Dielectric barrier discharge lamp device and liquid crystal backlight
JPH09199285A (en) Discharge lamp lighting device
JPH0529085A (en) Rare gas discharge lamp device
JP3184427B2 (en) Driving method of discharge device
KR20070050970A (en) Mercury-free lamp and lamp apparatus
JP4424496B2 (en) Light source device
JP2005056853A (en) Lamp assembly, back light assembly having the same, and display device having the same
US6903518B2 (en) Discharge lamp device and backlight using the same
KR20060083897A (en) Lighting device
JP4280660B2 (en) Lighting device
KR100519557B1 (en) Multi-tube electrode fluorescent lamp
JP4041159B2 (en) Dielectric barrier discharge lamp, backlight device, and liquid crystal display device
JPH11111226A (en) Short arc type extra-high pressure discharge lamp
JP5035002B2 (en) Noble gas fluorescent lamp lighting device
JP2004127540A (en) Lighting method of fluorescent lamp, and lighting device of fluorescent lamp
JP4209937B2 (en) Dielectric barrier discharge lamp lighting device and lighting method
JP2006338897A (en) Lighting device and lighting method of dielectric barrier discharge lamp
JP2004281367A (en) Light source device and liquid crystal display using it
Heo et al. Effects of driving waveform on discharge characteristics in Hg-free backlight unit
JP2005183218A (en) Cold cathode fluorescent lamp and backlight unit using it
JP3716500B2 (en) Driving method of discharge device
JP2005183268A (en) Fluorescent lamp
JP2008243521A (en) Dielectric barrier discharge lamp
JPH0393196A (en) Rare gas discharge fluorescent lamp device
JP2003347081A (en) Lighting circuit for dielectric barrier discharge lamp and illuminating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees