JP4409996B2 - 低硫黄分接触分解ガソリンの製造方法 - Google Patents

低硫黄分接触分解ガソリンの製造方法 Download PDF

Info

Publication number
JP4409996B2
JP4409996B2 JP2004070812A JP2004070812A JP4409996B2 JP 4409996 B2 JP4409996 B2 JP 4409996B2 JP 2004070812 A JP2004070812 A JP 2004070812A JP 2004070812 A JP2004070812 A JP 2004070812A JP 4409996 B2 JP4409996 B2 JP 4409996B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
catalytic cracking
gasoline
sulfur content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004070812A
Other languages
English (en)
Other versions
JP2005015766A (ja
Inventor
俊夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2004070812A priority Critical patent/JP4409996B2/ja
Publication of JP2005015766A publication Critical patent/JP2005015766A/ja
Application granted granted Critical
Publication of JP4409996B2 publication Critical patent/JP4409996B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、低硫黄分流動接触分解(以下、流動接触分解をFCCと略記する。)ガソリンの製造方法の改良に関し、さらに詳しくは、重質油を、FCC装置により分解処理するに際し、特定の触媒を用いて、分解反応と脱硫反応を同時に行い、50質量ppm以下の低硫黄分接触分解ガソリンを効率よく製造する工業的に有利な方法に関する。
最近の環境問題の高まりに伴い、全世界的にガソリン中の硫黄分が規制されるようになってきた。日本においても、2005年にはガソリン中の硫黄分量が50質量ppm以下に規制され、その後、硫黄分規制が10質量ppm以下になることが予想されている。
一般にFCC装置で製造される接触分解ガソリンには、大気汚染物質である硫黄化合物が含まれており、したがって、この接触分解ガソリンから硫黄分を除去して環境に優しいガソリンを製造することは、石油精製会社にとって急務である。
ところで、減圧軽油を、ダビソン社製の脱硫機能を有するFCC触媒で処理している例が報告されている(例えば非特許文献1参照)。しかしながら、この場合、触媒の脱硫機能が十分でないため、得られる接触分解ガソリンの硫黄分が200〜400質量ppmと高い。重油や重質軽油においては、含まれている硫黄分が接触分解では除去されにくい構造を有しているために、それらを用いて硫黄分200質量ppm未満のFCCガソリンを製造することは困難である。さらに、原料油として水素化処理脱硫重油や水素化処理脱硫重質軽油を用いても、既存の脱硫機能を有するFCC触媒では、脱硫活性が十分でないため、硫黄分50質量ppm以下の接触分解ガソリンを製造することは難しい。
脱硫機能を有するFCC触媒を用いて低硫黄分の接触分解ガソリンを製造する技術について、これまでいくつかの提案がなされている。例えば酸化物マトリックス中に分散したゼオライト及びアルミナに、Ni、Cu、Zn、Al、Snなどの化合物から選ばれるルイス酸を1〜50質量%担持してなる触媒を用い、硫黄含有炭化水素を接触分解して、硫黄分を減少させた接触分解ガソリンを製造する方法が開示されている(例えば特許文献1参照)。しかしながら、この方法においては、得られる接触分解ガソリン中の硫黄分量は200〜300質量ppm以上と高く、該触媒の脱硫性能が十分ではない。
また、0よりも大きい酸化状態の(a)V、Zn及び(b)希土類元素をゼオライト内部の細孔構造の中に含む脱硫機能を有する触媒と、通常のFCC平衡触媒との混合触媒を用い、硫黄分を低減させた接触分解ガソリンを製造する方法が開示されている(例えば特許文献2参照)。しかしながら、この方法おいても得られた接触分解ガソリン中の硫黄分は600質量ppm程度と高い値である。さらに、硫黄分が0.071質量%と非常に低い原料油を用いた場合でも接触分解ガソリン中の硫黄分は79質量ppmと高く、該混合触媒の脱硫機能は十分ではない。
「Oil&Gas Journal」、Feb.12(2001年) 特開平6−277519号公報 特開2000−198989号公報
本発明は、このような状況下でなされたもので、重質油をFCC装置により接触分解させてガソリンを製造するに際し、該ガソリン中の硫黄分を、効率よく50質量ppm以下に低減させ得る工業的に有利な方法を提供することを目的とするものである。
本発明者は、前記目的を達成するために鋭意研究を重ねた結果、重質油をFCC装置により接触分解させてガソリンを製造するに際し、触媒として、特定の性状を有し、かつ脱硫機能を有するFCC触媒と、バナジウム及び/又はニッケルの蓄積量が特定の範囲にあるFCC平衡触媒とを、所定の割合で混合したものを使用し、分解反応と脱硫反応を同時に行うことにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)重質油をFCC装置で分解処理して接触分解ガソリンを製造するにあたり、(A)酸量20〜400マイクロモル/g、マクロ細孔表面積50〜150m2/g、バナジウム及び/又はニッケル担持量0.3〜1.5質量%の脱硫機能を有するFCC触媒(酸化亜鉛を含有しない)2〜30質量%と、(B)バナジウム及び/又はニッケル蓄積量500〜15,000質量ppmのFCC平衡触媒98〜70質量%とからなる混合触媒を用いることを特徴とする低硫黄分接触分解ガソリンの製造方法、
(2)バナジウム及び/又はニッケル蓄積量3,000〜15,000質量ppmの流動接触分解平衡触媒である上記(1)の低硫黄分接触分解ガソリンの製造方法、
(3)重質油が、水素化処理脱硫重油又は水素化処理脱硫重質軽油であって、硫黄分0.05〜0.7質量%を含むものである上記(1)又は(2)の低硫黄分接触分解ガソリンの製造方法、及び
(4)得られる低硫黄分接触分解ガソリンが沸点範囲C5〜210℃において硫黄分含有量50質量ppm以下のものである上記(1)〜(3)の低硫黄分接触分解ガソリンの製造方法、
を提供するものである。
本発明によれば、重質油を、FCC装置により分解処理するに際し、特定の触媒を用いて、分解反応と脱硫反応を同時に行わせることにより、50質量ppm以下の低硫黄分接触分解ガソリンを、効率よく、工業的に有利に製造することができる。
本発明の低硫黄分接触分解ガソリンの製造方法においては、FCC装置内で、原料油の分解反応と脱硫反応を同時に行わせる。原料油である重質油としては制限はなく、重質軽油、常圧残渣油、減圧軽油、減圧残渣油、脱れき油、熱分解油等の重質油が用いられるが、該FCC装置内で脱硫反応を容易に起こさせ、低硫黄分解接触分解ガソリンを得るためには、硫黄化合物が脱硫されやすい構造になっている水素化処理脱硫重油又は水素化処理脱硫重質軽油が好適に用いられる。
重油又は重質軽油の水素化脱硫方法としては特に制限はなく、従来重油や重質軽油の水素化脱硫処理に慣用されている方法を用いることができる。例えばMo、Wなどの周期律表第6族金属、Coなどの周期律表第9族金属及びNiなどの周期律表第10族金属の一種又は二種以上、具体的にはCo−Mo又はNi−Moをアルミナ、シリカ、ゼオライトあるいはこれらの混合物などの担体に担持させた触媒を用い、反応温度300〜450℃程度、水素分圧3〜20MPa・G程度、LHSV(液時空間速度)0.1〜2.0hr-1程度の条件で水素化脱硫処理する方法などが用いられる。
本発明においては、原料油である水素化処理脱硫重油又は水素化処理脱硫重質軽油として、硫黄分含有量が、通常0.05〜0.7質量%、好ましくは0.05〜0.5質量%の範囲にあるものが用いられる。
本発明の方法においては、FCC装置に用いる触媒として、(A)脱硫機能を有するFCC触媒と、(B)FCC平衡触媒とからなる混合触媒が使用される。
当該混合触媒における(A)成分の脱硫機能を有するFCC触媒としては、無機多孔質担体にバナジウム及び/又はニッケルを少なくとも担持させてなる触媒(酸化亜鉛を含有しない)が用いられる。該無機多孔質担体としては、例えばアルミナ、シリカ、シリカ・アルミナ、チタニア、アルミナ・チタニアなどの金属酸化物、カオリン、ベントナイトなどの粘土鉱物、各種ゼオライト、さらにはこれらから常法、例えばアルミナ、シリカ・アルミナ、希土類置換Y型ゼオライト、カオリンなどを用いてスプレードライなどの方法により調製されたFCC触媒などを挙げることができる。
本発明においては、担体として前記無機多孔質担体の中から、得られる脱硫機能を有するFCC触媒の酸量及びマクロ細孔表面積が以下に示す範囲になるように、一種又は二種以上適宣選択して用いる。
本発明においては、該(A)成分の脱硫機能を有するFCC触媒は、酸量が20〜400マイクロモル/gの範囲にあり、かつ、マクロ細孔表面積が50〜150m2/gの範囲にあることが必要である。上記酸量が20マイクロモル/g未満では硫黄化合物の分解、脱硫が不十分となり、一方400マイクロモル/gを超えると分解反応が進みすぎ、ガスやコークなどの目的外生成物の収率が高くなり、経済性が低下する。好ましい酸量は100〜350マイクロモル/gの範囲、さらには200〜300マイクロモル/gの範囲である。
また、上記マクロ細孔表面積が50m2/g未満では原料油の分解が十分ではないため、接触分解ガソリンの収率が低く、かつ脱硫も不十分となり、一方150m2/gを超えると大きな細孔が多くなりすぎ、分解活性が低下すると共に、脱硫も不十分となる。好ましいマクロ細孔表面積は、60〜120m2/gの範囲である。
なお、前記の酸量及びマクロ細孔表面積は、下記の方法で測定した値である。
<酸量>
触媒上の酸点に塩基性ガス(アンモニア、ピリジン)が強く吸着することを利用して、触媒の酸性質をアンモニア微分吸着熱測定法により測定する。吸着熱の大小で酸点の強度が評価でき、同時に吸着量から、酸量を求めることができる。吸着熱量は熱量計で直接測定し、吸着量は圧力変化から測定する。
<マクロ細孔表面積>
BET多点法において窒素の相対圧力(P/P0)=0.3で測定した表面積からt−プロットマイクロ表面積を差し引いた値である。
さらに、該脱硫機能を有するFCC触媒はバナジウム及び/又はニッケル担持量が、該触媒全量に対して0.3〜1.5質量%の範囲にあることが必要である。上記バナジウム及び/又はニッケル担持量が0.3質量%未満ではそれらを担持した効果が発揮されず、所望の脱硫性能が得られないし、1.5質量%を超えるとコークやガスなどの目的外生成物の収率が高くなり、経済性が低下する。
また、この脱硫機能を有するFCC触媒においては、触媒の安定性、特に水熱安定性を付与するためと分解活性を向上させるために、所望によりランタン、セリウムなどの希土類元素を0.5〜2.5質量%程度の割合で担持することができる。
無機多孔質担体に、前記の各金属を担持させる方法については特に制限はなく、従来公知の方法、例えば含浸法や共沈法などを採用することができる。担持方法の具体例としては、金属源としてナフテン酸バナジウム、ナフテン酸ニッケルなどの有機溶剤溶液を用いて、含浸法により担持させる方法、あるいはシュウ酸バナジルなどの水溶液を用い、さらにこれにポリエチレングリコール、水溶性セルロース、アラビアゴムなどの増粘剤を組み合わせて、含浸法により担持させる方法などが挙げられる。
このようにして、各金属化合物が担持された無機多孔質担体を、乾燥後、500〜900℃程度の温度で、酸素及び水蒸気の存在下にスチーミング処理及び焼成処理することにより、目的の脱硫機能を有するFCC触媒が得られる。
一方、当該混合触媒においては、(B)成分としてFCC平衡触媒が用いられる。一般にFCC装置においては、触媒の活性を一定に保つために適時新触媒を添加しており、この新触媒は装置内にある触媒と完全混合され、触媒の活性は平均化されることになる。しかしながら、このままでは装置内の触媒量が過剰になるので、一定量を常に抜き出している。FCC平衡触媒とは、このFCC装置の触媒活性が一定になった際に定期的に抜き出される触媒のことである。本発明においては、バナジウム及び/又はニッケル蓄積量が、該触媒全量に対して500〜15,000質量ppmの範囲にあるFCC平衡触媒が用いられる。上記バナジウム及び/又はニッケル蓄積量が500質量ppm未満では水素化能が低く、所望の低硫黄分接触分解ガソリンが得られにくく、また15,000質量ppmを超えるとバナジウムやニッケルにより触媒が被毒され、分解活性が不十分となる。好ましいバナジウム及び/又はニッケル蓄積量は3,000〜15,000質量ppmの範囲であり、より好ましくは3,000〜10,000質量ppmの範囲である。
本発明において使用されるFCC平衡触媒としては、例えばバナジウム及び/又はニッケル蓄積量が500〜15,000質量ppmの範囲にあるREUSY、USY、REYなどのゼオライト、アルミナ、シリカ・アルミナ、チタニア、アルミナ・チタニア及び粘土鉱物(カオリン、ハロイサイトなど)などからなるFCC平衡触媒を挙げることができる。
当該混合触媒においては、前記(A)成分の脱硫機能を有するFCC触媒と(B)成分のFCC平衡触媒の混合割合は、(A)成分が2〜30質量%で、(B)成分が98〜70質量%である。上記(A)成分の混合量が2質量%未満では脱硫性能が十分に発揮されず、本発明の目的が達せられないし、30質量%を超えると分解活性が高くなり、ガスやコーク収率が増加し、経済性が低下する。該(A)成分と(B)成分のより好ましい混合割合は、(A)成分が5〜20質量%で、(B)成分が95〜80質量%である。
本発明においては、このようにして調製された混合触媒を用い、水素化処理脱硫重油又は水素化処理脱硫重質軽油を、FCC装置により分解処理し、分解反応と共に脱硫反応を行い、低硫黄分接触分解ガソリンを製造する。
この際の処理条件としては、例えば、温度480〜650℃、好ましくは480〜550℃、反応圧力0.02〜5MPa・G、好ましくは0.02〜0.5MPa・Gである。処理温度が上記範囲内である場合は、触媒の分解活性及び生成ガソリン留分の脱硫率が高く、また、反応圧力が上記範囲内であれば、同様に、触媒の分解活性及び生成ガソリン留分の脱硫率が高く好ましい。なお、触媒再生温度は、通常600〜800℃程度である。
本発明においては、このようにして得られた分解処理油から、蒸留により沸点範囲がC5〜210℃程度の留分を分取することにより、目的の低硫黄分接触分解ガソリンを製造することができる。そして、該接触分解ガソリン中の硫黄分量を50質量ppm以下に低減させることができる。なお、接触分解ガソリン中の硫黄分は、下記の方法により測定した値であり、またここで沸点範囲がC5〜210℃程度の留分とは炭素数5の炭化水素留分から210℃程度の沸点を持つ炭化水素留分までの範囲をいう。
<接触分解ガソリン中の硫黄分>
試料の接触分解ガソリンを加熱した燃焼管に導入し、酸素と不活性ガス気流中で燃焼させる。燃焼生成した二酸化硫黄を電解液に吸収させて電量滴定し、この際消費された電気量から、硫黄分を求める。なお、試料中の硫黄分は、予め硫黄標準液を用いて求めておいた回収係数によって補正する。
本発明の方法によれば、接触分解ガソリン中の硫黄分量を50質量ppm以下に低減できるため、硫黄分規制値が50質量ppm以下の場合、直脱装置あるいは間脱装置での過酷な前処理及び接触分解ガソリンの水素化脱硫などの後処理が不要になり、経済性が向上する。また、硫黄分規制値が10質量ppm以下の場合、後処理装置の規模が小さくなり、水素消費量が減少すると共に、オクタン価の低下が少なくなるため、低硫黄分接触分解ガソリンを経済的に有利に製造することができる。
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例における諸特性は、以下に示す方法に従って測定した。
(1)原料油中の硫黄分量
JIS K 2541に準拠して測定した。
(2)接触分解ガソリン中の硫黄分量
明細書本文記載の方法に従って測定した。
(3)脱硫機能を有するFCC触媒の酸量及びマクロ細孔表面積
酸量及びマクロ細孔表面積は、明細書本文記載の方法に従って測定した。
(4)FCCガソリンの収率(質量%)
得られたC5+〜210℃留分の重量を原料油重量で除し、100を掛けた値である。
(5)コーク収率(質量%)
再生塔で得られたCO及びCO2量よりカーボン重量を求め、これを原料油重量で除し、100を掛けた値である。
(6)原料油転化率(質量%)
ガス収率、C3,C4留分収率、FCCガソリン収率及びコーク収率を加えた値である。
実施例1
(1)脱硫機能を有するFCC触媒の調製
最終触媒の質量基準で、径10nmの細孔を多く有する噴霧乾燥ベーマイトゲルアルミナ[ラロッシュ・ケミカルズ社製「VERSAL250」]が30質量%、USYゼオライト[東ソー(株)製「FSZ−330HUA」]が20質量%、粘土鉱物カオリン[土屋カオリン工業(株)製「ASP−170」]が15質量%及びシリカゾルが20質量%になるように、それぞれの成分をイオン交換水に加え、固形分15質量%のスラリーとした。
次いで、上記スラリーを、スプレードライヤーを用い温度250℃、ディスク回転速度9,000rpm、スラリー供給速度10cm3/minの条件で噴霧乾燥処理して、直径20〜120μmの球状接触分解触媒を得た。その後、この球状接触分解触媒を、硝酸ランタン5質量%イオン交換水溶液に浸漬させたのち、100℃で1時間乾燥処理後、電気焼成炉において、200℃で3時間焼成することにより、該触媒に最終触媒の質量基準で、ランタン2質量%を担持させた。
続いて、上記触媒320gを、温度770℃、スチーム濃度98体積%、空気濃度2体積%、イオン交換水供給量1.66g/minの条件にて、15時間スチーミング処理を行った。その後、この触媒250gにナフテン酸バナジウム及びナフテン酸ニッケルを、最終触媒の質量基準でVが2,800質量ppm、Niが1,400質量ppmになるように担持させたのち、温度720℃、スチーム濃度20体積%、空気濃度80体積%の条件で4時間、さらに温度850℃、スチーム濃度5体積%、空気濃度95体積%の条件で4時間処理を行い、脱硫機能を有するFCC触媒(最終触媒)を調製した。該触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した脱硫機能を有するFCC触媒200gと、V4,400質量ppm及びNi2,000質量ppmが蓄積されたFCC平衡触媒1,800gとを均一に混合した。この混合触媒を連続式流動床ベンチプラントに充填し、硫黄分含有量0.5質量%の水素化処理脱硫重油を、反応温度515℃、反応圧力0.18MPa・G、触媒再生温度730℃、触媒/原料油質量比6.5、原料油供給量550g/hの条件で、分解、脱硫反応させた。
生成油を15段蒸留装置にて、沸点C5〜210℃の留分を接触分解ガソリンとして分取し、その硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
実施例2
(1)脱硫機能を有するFCC触媒の調製
実施例1において、ナフテン酸バナジウム及びナフテン酸ニッケルを、最終触媒の質量基準でVが5,000質量ppm、Niが2,000質量ppmになるように担持させたこと以外は実施例1と同様に脱硫機能を有するFCC触媒(最終触媒)を調製した。該触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した脱硫機能を有するFCC触媒400gと、V500質量ppm及びNi300質量ppmが蓄積されたFCC平衡触媒1,600gとを均一に混合した。この混合触媒を連続式流動床ベンチプラントに充填し、硫黄含有量0.15質量%の水素化処理重質軽油を、反応温度535℃、反応圧力0.15MPa・G、触媒再生温度680℃、触媒/原料油質量比6.5、原料油供給量1,000g/hの条件で、分解、脱硫反応させた。
生成油を15段蒸留装置にて、沸点C5〜210℃の留分を接触分解ガソリンとして分取し、その硫黄分を測定した。反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例1
(1)触媒の調製
実施例1(1)において、V及びNiを担持しなかったこと以外は、実施例1(1)と同様にして触媒を調製した。この触媒の性状を第1表に示す。
(2)分解、脱硫反応
上記(1)で調製した触媒とV4400質量ppm及びNi2000質量ppmが蓄積されたFCC平衡触媒を用い、実施例1(2)と同様にして、水素化処理脱硫重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
比較例2
実施例1(2)において、脱硫機能を有するFCC触媒とFCC平衡触媒との混合触媒を用いる代わりに、FCC平衡触媒のみを用いた以外は、実施例1(2)と同様にして、水素化処理脱硫重油の分解、脱硫反応を行い、さらに蒸留により接触分解ガソリンを分取し、その中の硫黄分量を測定した。
反応の評価結果及び接触分解ガソリン中の硫黄分量を第1表に示す。
Figure 0004409996


Claims (3)

  1. 重質油を、流動接触分解装置で分解処理して接触分解ガソリンを製造するにあたり、(A)新たに調製された触媒であって、無機多孔質担体としてREUSYゼオライトを含み、酸量20〜400マイクロモル/g、マクロ細孔表面積50〜150m2/g、バナジウム及び/又はニッケル担持量0.3〜1.5質量%の流動接触分解触媒(酸化亜鉛を含有しない)2〜30質量%と、(B)流動接触分解装置の触媒活性が一定になった際に定期的に抜き出される触媒であって、バナジウム及び/又はニッケル蓄積量500〜15,000質量ppmの流動接触分解平衡触媒98〜70質量%とからなる混合触媒を用いることを特徴とする低硫黄分接触分解ガソリンの製造方法。
  2. バナジウム及び/又はニッケル蓄積量3,000〜15,000質量ppmの流動接触分解平衡触媒である請求項1記載の低硫黄分接触分解ガソリンの製造方法。
  3. 重質油が、硫黄分を0.05〜0.7質量%含む水素化処理脱硫重油又は水素化処理脱硫重質軽油であって、接触分解温度480〜650℃、接触分解圧力0.02〜5MPa・G、触媒再生温度600〜800℃の条件で接触分解処理後、得られる分解処理油を蒸留し、沸点範囲がC 5 〜210℃で、硫黄分含有量が50質量ppm以下のガソリンを得る請求項1又は2に記載の低硫黄分接触分解ガソリンの製造方法。
JP2004070812A 2003-06-02 2004-03-12 低硫黄分接触分解ガソリンの製造方法 Expired - Fee Related JP4409996B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070812A JP4409996B2 (ja) 2003-06-02 2004-03-12 低硫黄分接触分解ガソリンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003157132 2003-06-02
JP2004070812A JP4409996B2 (ja) 2003-06-02 2004-03-12 低硫黄分接触分解ガソリンの製造方法

Publications (2)

Publication Number Publication Date
JP2005015766A JP2005015766A (ja) 2005-01-20
JP4409996B2 true JP4409996B2 (ja) 2010-02-03

Family

ID=34196662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070812A Expired - Fee Related JP4409996B2 (ja) 2003-06-02 2004-03-12 低硫黄分接触分解ガソリンの製造方法

Country Status (1)

Country Link
JP (1) JP4409996B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI523688B (zh) * 2005-02-25 2016-03-01 W R 康格雷氏公司 減少觸媒裂解石油餾分之硫含量之方法及流體觸媒裂解程序
JP2007054753A (ja) * 2005-08-25 2007-03-08 Petroleum Energy Center 流動接触分解触媒及びその製造方法並びに低硫黄接触分解ガソリンの製造方法
JP5060045B2 (ja) * 2005-12-15 2012-10-31 一般財団法人石油エネルギー技術センター 触媒の製造方法、接触分解触媒及び低硫黄接触分解ガソリンの製造方法
JP5008666B2 (ja) * 2006-06-28 2012-08-22 出光興産株式会社 脱硫機能付加流動接触分解触媒及びその製造方法並びに該脱硫機能付加流動接触分解触媒を用いた低硫黄接触分解ガソリンの製造方法
CN101134905B (zh) * 2006-08-30 2012-01-11 中国石油天然气股份有限公司 一种提高催化裂化催化剂浆液固含量的方法
JP4906535B2 (ja) * 2007-02-23 2012-03-28 一般財団法人石油エネルギー技術センター 流動接触分解触媒及びその製造方法並びに低硫黄接触分解ガソリンの製造方法
JP5445780B2 (ja) * 2009-09-24 2014-03-19 一般財団法人石油エネルギー技術センター 炭化水素油の接触分解触媒及びその製造方法、並びに炭化水素油の接触分解方法

Also Published As

Publication number Publication date
JP2005015766A (ja) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4832871B2 (ja) 水素化精製方法
JP4878824B2 (ja) 環境低負荷型燃料の製造方法および環境低負荷型燃料
JP5496664B2 (ja) 水素化異性化触媒、炭化水素油の脱蝋方法、基油の製造方法及び潤滑油基油の製造方法
US9988585B2 (en) Method for producing base oil for lubricant oils
WO2009099111A1 (ja) 水素化異性化触媒及びその製造方法、炭化水素油の脱蝋方法、並びに潤滑油基油の製造方法
JP5330056B2 (ja) 1環芳香族炭化水素の製造方法
JP4643966B2 (ja) 水素化精製軽油の製造方法、水素化精製軽油及び軽油組成物
JP5060045B2 (ja) 触媒の製造方法、接触分解触媒及び低硫黄接触分解ガソリンの製造方法
JP4409996B2 (ja) 低硫黄分接触分解ガソリンの製造方法
US20220356404A1 (en) Catalyst and process for deoxygenation and conversion of bio-derived feedstocks
WO2017208497A1 (ja) 炭化水素液体燃料の製造方法
JP4914643B2 (ja) 水素化精製方法及び環境低負荷型ガソリン基材
JP5584252B2 (ja) 多機能触媒添加剤組成物およびその調製方法
WO2013147178A1 (ja) 潤滑油基油の製造方法
JP4914644B2 (ja) 水素化精製方法及び環境低負荷型ガソリン基材
JP5091401B2 (ja) 水素の製造方法、改質ガソリンの製造方法及び芳香族炭化水素の製造方法
JP2004083615A (ja) 低硫黄分接触分解ガソリンの製造方法
JP5498720B2 (ja) 1環芳香族炭化水素の製造方法
JP5537780B2 (ja) 軽油組成物
JP2014173025A (ja) 減圧軽油の水素化精製方法
JP2011116872A (ja) 1環芳香族炭化水素の製造方法
JP4410034B2 (ja) 低硫黄分接触分解ガソリンの製造方法
WO2019189482A1 (ja) 水素化触媒及び低芳香族溶剤の製造方法
JP2009242487A (ja) 常圧蒸留残渣油の分解方法
JP3990675B2 (ja) 軽油の水素化脱硫方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees