JP4408458B2 - Each manufacturing method of curable silicone resin and cured product - Google Patents

Each manufacturing method of curable silicone resin and cured product Download PDF

Info

Publication number
JP4408458B2
JP4408458B2 JP17415797A JP17415797A JP4408458B2 JP 4408458 B2 JP4408458 B2 JP 4408458B2 JP 17415797 A JP17415797 A JP 17415797A JP 17415797 A JP17415797 A JP 17415797A JP 4408458 B2 JP4408458 B2 JP 4408458B2
Authority
JP
Japan
Prior art keywords
silicone resin
curable silicone
reaction
producing
reaction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17415797A
Other languages
Japanese (ja)
Other versions
JPH1121353A (en
Inventor
真樹 伊藤
通孝 須藤
アレン ザンク グレッグ
章人 斉藤
照仁 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Priority to JP17415797A priority Critical patent/JP4408458B2/en
Publication of JPH1121353A publication Critical patent/JPH1121353A/en
Application granted granted Critical
Publication of JP4408458B2 publication Critical patent/JP4408458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物理的熱安定性に優れたシリコーンレジン硬化物を与える硬化性シリコーンレジンの製造方法、およびそのシリコーンレジン硬化物の製造方法に関する。
【0002】
【従来の技術】
本発明者らはWO 96/02292およびWO 96/02291で、含酸素有機溶媒、またはこれに50容量%以下の炭化水素溶媒を含む有機溶媒とハロシラン中のハロゲン原子1モルに対して、1.8グラム当量以下の水溶性無機塩基または緩衝能を有する弱酸の塩を含むかまたは含まない水との2相系において、メチルトリハロシランの加水分解および縮合を行う方法を開示した。この方法により、ゲル化を起こさずにポリメチルシルセスキオキサンを得ることができた。また、従来の方法によって得られるポリメチルシルセスキオキサンは、共通して硬いが脆いものであった。しかし、WO 96/02292およびWO 96/02291で開示したポリメチルシルセスキオキサの硬化物は、従来のポリメチルシルセスキオキサン硬化物では達成し難かった柔軟性と、熱安定性(熱分解開始温度が高いこと)を併せもつ特異な特徴をもったものであった。
【0003】
有機溶媒としてケトンを用い、水との2層系、すなわちこれらが上層と下層を形成し、その間に広い平面の界面を有する反応系での、オルガノトリクロロシランとこれに対し等モル量以下のジオルガノジクロロシランとの混合物の加水分解および縮合によるシリコーンレジンの合成反応は特開昭50−111198号公報に開示されている。しかし、生成物の水酸基量等は特定されておらず、本発明に述べるような硬化物の特定の性質を目的としたものではない。また、反応時に2層を保つように攪拌速度を調整しなければならないという操作性の悪さがあった。
【0004】
硅素上の有機基と硅素のモル比が1〜1.8であるシリコーンレジンの水酸基含量を規定している特許としては、カナダ特許No.0868996、英国特許No.1294196、特開昭48−101444号公報(米国特許No.3759867)、特開昭53−10700号公報(米国特許No.4056492)に3〜12重量%程度の水酸基を含むものが開示されているが、いずれもレジンの硬化速度を速めることを目的としており、硬化物の熱安定性などは目的となっていない。上記カナダ特許No.0868996、英国特許No.1294196、特開昭48−101444号公報(米国特許No.3759867)では水と水に不溶の有機溶媒の混合物に、アセトンを共溶媒として用いた系でハロシランを加水分解・縮合している。
【0005】
ポリオルガノシルセスキオキサンとジオルガノポリシロキサンとを成分とする重合体としては、特開平3−31325号公報に、ポリオルガノシルセスキオキサンと両末端に塩素基などの官能基を有するジオルガノポリシロキサンとを反応させることにより、当該ポリオルガノシルセスキオキサンのシラノールを封鎖するものが開示されている。これは、シラノール基の封鎖によりシラノール基の数を減らして保存安定性を向上させようとするものである。
【0006】
【発明が解決しようとする課題】
本発明の目的は、シリコーンレジン中のポリオルガノシルセスキオキサン構造にシラノール基を多量に含み、なおかつきわめて良好な貯蔵安定性を示し、かつ高温でも弾性率が低下しないシリコーンレジン硬化物を提供することである。
【0007】
WO 96/02292およびWO 96/02291では、特定の製造方法によりゲル化を起こさずにポリメチルシルセスキオキサンを得ることができ、また柔軟性のあるポリメチルシルセスキオキサンの硬化物を得ることができた。
【0008】
この明細書の比較例に示すように、炭化水素溶媒を主体とし、ゲル化を防ぐためにアルコールを共溶媒として用いた従来の反応系(例えば、特公昭55−46415号公報等)でメチルトリクロロシランとジメチルジクロロシラン混合物を加水分解および縮合させて合成したシリコーンレジンの硬化物は、物理的熱安定(高温でも良好な物性を保つこと)が劣るものである。
【0009】
【課題を解決するための手段】
本発明は、平均構造が次の一般式で示される硬化性シリコーンレジンを製造する方法である。
【0010】
〔R2 Si(OH)O1/2 a 〔R2 SiO2/2 b 〔RSi(OH)O2/2 c 〔RSiO3/2 d
【0011】
ここに、Rはそれぞれ独立に一価の炭化水素基の一種以上であって、メチル基、エチル基などのアルキル基、アルケニル基、フェニル基などの芳香族炭化水素基などが例示され、好ましくはメチル基である。
a,b,c及びdは次の各条件を満たすものである。
(1)a+b+c+d=1(但し、aは0または正の数で、b,c,dは正の数である。)
(2)0.001≦(a+b)/(c+d)≦1.0、及び
(3)0.12≦c/(c+d)≦0.35。
ここで(a+b)/(c+d)の値は本発明の硬化性シリコーンレジンにおける2官能性単位(ジオルガノシロキシ単位)の割合を表す。この値が上記(2)の範囲の下限を下回る場合は、本質的に2官能性単位(ジオルガノシロキシ単位)の存在しないポリオルガノシルセスキオキサンになってしまう。また、同単位が上記(2)の範囲の上限を上回る場合は屈曲性成分が多くなりすぎてゴム状に近くなってしまう。尚、この(a+b)/(c+d)の値は、硬化物の特性の観点からは、0.03〜1.0の範囲が推奨される。c/(c+d)の値、すなわちモノオルガノシロキシ単位(ポリオルガノシルセスキオキサン構造)におけるケイ素1モルに対するシラノールのモル量、は0.12〜0.35の範囲にある。シラノール量がこれより少ないと硬化性が低下したり、比較例に示すように硬化物の物理的熱安定に劣るレジンとなり得る。シラノール量がこれより多いとレジンの貯蔵安定性が低下する可能性がある。本発明の硬化性シリコーンレジンの分子量については格別な制限はない。通常は重量平均分子量で500〜100,000及び/又は数平均分子量で200〜200,000の範囲のものが選択されるが、これらに限定されるものではない。
【0012】
本発明の硬化性シリコーンレジンは、原料物質に含まれる不純物に起因して、設定した置換基R以外の置換基を有する単位や、1官能性(R3 SiO1/2 )、4官能性(SiO4/2 )単位等を若干含むことがあり得る。また該シリコーンレジンはシラノールを含むものであり、その構造は前記構造式で示されている通りであるが、極微量のレベルでこれ以外の構造にてシラノール基を有する単位が存在することも有り得る。本発明のシリコーンレジンは上記構造を有するものであるが、このような原因等で発生する構造単位については、該シリコーンレジンの特徴的性質を阻害しない範囲であれば、その存在を否定するものでない。
【0013】
本発明の硬化性シリコーンレジンは、下記(a)と(b)からなる2相反応系にて、下記(A),(B)を加水分解および縮合を行うことにより製造される。
(a)含酸素有機溶媒、またはこれに50容量部以下の炭化水素溶媒を混合してなる有機溶媒
(b)下記(A)及び(B)中のハロゲン原子1モルに対して、1.8グラム当量以下の水溶性無機塩基または緩衝能を有する弱酸の塩を含むかまたは含まない水
(A)式RSiX3 (Rは上記と同じ意味であり、Xはハロゲン原子である。)で示されるオルガノトリハロシラン、
(B)式Y(SiR2 O)e SiR2 Y(Yはハロゲン原子、水酸基、水素から選ばれる一種以上、eは0または300以下の正の整数であり、Rは上記と同じ意味である)で示される2官能性ジオルガノシランまたは両末端に官能基を有するジオルガノポリシロキサン。Yがハロゲン原子の場合、好適にはClが選択される。
【0014】
このような製造法の好適な例として次のものが挙げられる。
(1)上記(a)と(b)からなる2相反応系を形成させ、上記(A)と(B)の混合物、または上記(a)に(A)と(B)を溶解させた溶液を滴下して反応を行う方法。
(2)上記(b)の水相に、上記(a)に上記(A)と(B)を溶解させた溶液を滴下し、結果として生じる2相反応系にて反応を行う方法。
(3)上記(a)に上記(A)と(B)を溶解させた溶液と、上記(b)とを同時に反応容器に滴下し、結果として生じる2相反応系にて反応を行う方法。
(4)Yが水酸基、水素から選ばれる一種以上である(B)を溶解させた(a)と(b)との2相反応系を形成させ、上記(A)、または(a)に(A)を溶解させた溶液を滴下して反応を行う方法。
このほか、上記(1),(2),(3)の方法にて(A)のみを加水分解し、その後(B)を滴下して反応させてもよい。
【0015】
反応温度は室温(20℃)〜120℃の範囲内が適当であるが、40〜100℃程度が望ましい。
【0016】
水と有機溶媒が2相を形成するというのは、水と有機溶媒が混和せず、均一溶液とならない状態のことをいう。有機相と水相の存在の仕方としては、攪拌を低速にすることによりこれら2相が上層と下層を形成し、その間に広い平面の界面を有するという状態を保つようにしてもよいし(これを「2層を形成する」と表現する)、激しく攪拌して2層を保たない状態にしてもよい。ただし、実用的見地からは攪拌速度を丁寧にコントロールする必要のない後者が好ましい。
【0017】
ハロシラン(A)のXおよび出発物質(B)のYがハロゲン原子である場合のYは、好ましくは臭素、塩素、さらに好ましくは塩素である。(B)のeは0または300以下の正の数、すなわち2官能性ジオルガノシランまたは両末端に官能基を有するジオルガノポリシロキサンである。ジオルガノポリシロキサンである場合、工業的製法等において生じる範囲の分子量分布、分岐構造、環状化合物、あるいは側鎖官能基を有していてもよい。
【0018】
この製造方法において使用される有機溶媒は、(A)および(B)を溶解し、水に多少溶解してもよいが、水と2相を形成できる含酸素有機溶媒が用いられる。尚、この含酸素有機溶媒に代えて含酸素有機溶媒と炭化水素溶媒との混合溶媒(但し、容量比は該混合溶媒100容量部中、炭化水素溶媒が50容量部以下である)を用いることもできる。炭化水素溶媒の含量がこれより多いとゲルの生成量が増え、目的生成物の収率が減少し、実用的でなくなる場合がある。あるいは、炭化水素溶媒の含量が多い場合、目的とする硬化物の物性が得られなくなることがある。この有機溶媒は、水に無制限に溶解する溶媒であっても、水溶性無機塩基または緩衝能を有する弱酸の塩の水溶液と混和しないものは使用できる。
【0019】
含酸素有機溶媒としては、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン系溶媒、ジエチルエーテル、ジノルマルプロピルエーテル、ジオキサン、ジエチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル系溶媒、酢酸エチル、酢酸ブチル、プロピオン酸ブチル等のエステル系溶媒、n−ブタノール、ヘキサノール等のアルコール系溶媒などが挙げられるがこれらに限定されるものではない。しかし、目的とする硬化物の物理的熱安定性を得るためにはアルコール系溶媒でない方が好ましい。これら溶媒は二種以上混合して用いてもよい。炭化水素溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒、クロロホルム、トリクロロエチレン、四塩化炭素等のハロゲン化炭化水素溶媒などが挙げられるが、これらに限定されるものではない。また、有機溶剤の使用量は特に制限されないが、好ましくは(A)と(B)の総量100重量部に対して50〜2000重量部の範囲である。有機溶剤が(A)と(B)の総量100重量部に対して50重量部未満であると生成したシリコーンレジンを溶解させるには不十分であり、場合によりゲル化の原因となり、また2000重量部を超えると加水分解、縮合が速やかに進行せず、低分子量で貯蔵安定性の悪いシリコーンレジンが得られる。水の使用量も特に制限されないが、好ましくは(A)と(B)の総量100重量部に対して10〜3000重量部の範囲である。
【0020】
水相にはハロシランから生成するハロゲン化水素による酸性度を抑制する水溶性無機塩基または緩衝能を有する弱酸の塩を加えてもよいが、何も加えない水を用いても反応は可能である。
【0021】
前記水溶性無機塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の水溶性アルカリ等が挙げられ、緩衝能を有する弱酸の塩としては炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素塩、ビス(シュウ酸)三水素カリウム等のシュウ酸塩、フタル酸水素カリウム、酢酸ナトリウム等のカルボン酸塩、リン酸水素二ナトリウム、リン酸二水素カリウム等のリン酸塩、四ホウ酸ナトリウム等のホウ酸塩などが挙げられるが、これらに限定されるものではない。また、これらの量は、使用するハロシラン分子中のハロゲン及び(B)のYがハロゲンであるときのそのハロゲンの合計のハロゲン原子1モルに対して、1.8グラム当量以下が望ましい。即ち、ハロシランが完全に加水分解された場合に生じるハロゲン化水素をちょうど中和する量の1.8倍以下が望ましい。これら水溶性無機塩基または緩衝能を有する弱酸の塩は、上記の量的範囲内であれば二種以上混合して用いてもよい。
【0022】
本発明のシリコーンレジンの硬化は、加熱することにより、あるいは触媒もしくは架橋剤を使用して行われる。硬化反応は、シリコーンレジンをそのまま融解させて行ってもよいし、有機溶媒の溶液をキャストし、溶媒蒸発後加熱してもよい。
【0023】
本発明のシリコーンレジンを溶解する溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ブタノール、ヘキサノール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、クロロホルム、トリクロロエチレン、四塩化炭素等のハロゲン化炭化水素溶媒等が例示される。
【0024】
このようにして製造された硬化性シリコーンレジンは、加熱して、又は硬化触媒及び/もしくは架橋剤を用いて硬化させることができる。硬化温度は、硬化触媒及び/又は架橋剤を用いた場合には20℃以上350℃以下好ましくは20℃以上250℃以下である。20℃未満では反応が充分に進行しない。350℃以上であるとシロキサンの分解が起こるおそれがある。
加熱のみによる硬化の場合には温度は50℃以上350℃以下であり、好適には80℃以上250℃である。50℃未満では反応が充分に進行しない。350℃を超えるとシロキサンの分解が起こるおそれがある。
【0025】
前記硬化触媒としては、二酢酸錫、ジオクチル酸錫、ジラウリル酸錫、四酢酸錫、二酢酸ジブチル錫、ジオクチル酸ジブチル錫、ジラウリル酸ジブチル錫、ジオレイン酸ジブチル錫、ジメトキシジブチル錫、ジブチル錫オキサイド、ベンジルマレイン酸ジブチル錫、ビス(トリエトキシシロキシ)ジブチル錫、二酢酸ジフェニル錫などの錫化合物;テトラメトキシチタン、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトラ−i−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−i−ブトキシチタン、テトラキス(2−エチルヘキソキシ)チタン、ジ−i−プロポキシビス(エチルアセトアセテート)チタン、チタンジプロポキシビス(アセチルアセトナート)チタン、ジ−i−プロポキシビス(アセチルアセトナート)チタン、ジブトキシビス(アセチルアセトナート)チタン、トリ−i−プロポキシアリルアセテートチタン、チタニウムイソプロポキシオクチレングリコール、ビス(アセチルアセトナート)チタンオキサイド等のチタン化合物;二酢酸鉛、ビス(2−エチルヘキサン酸)鉛、ジネオデカン酸鉛、四酢酸鉛、テトラキス(n−プロピオン酸)鉛、二酢酸亜鉛、ビス(2−エチルヘキサン酸)亜鉛、ジオネデカン酸亜鉛、ジウンデセン酸亜鉛、ジメタクリル酸亜鉛、二酢酸鉄、テトラキス(2−エチルヘキサン酸)ジルコニウム、テトラキス(メタクリル酸)ジルコニウム、二酢酸コバルトなどの金属脂肪酸類;アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、テトラメチルグアニジン、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキサン)シラン、1,8−ジアザビジクロ〔5.4.0.〕−7−ウンデセン等のアミノ基含有化合物等が用いられる。通常、ポリメチルシルセスキオキサン100重量部に対して0.01〜10重量部、好ましくは0.1〜5重量部の範囲で用いられる。
【0026】
また、架橋剤としては以下に示す化合物が例示される。
【0027】
【化1】

Figure 0004408458
【0028】
【化2】
Figure 0004408458
【0029】
架橋剤は通常、シリコーンレジン100重量部に対して0.1〜80重量部、好ましくは1〜70重量部の範囲で用いられる。
【0030】
【実施例】
次に実施例、比較例により本発明をさらに詳しく説明するが、この発明はこれらの例によってなんら限定されるものではない。
【0031】
(実施例1)
還流冷却管、滴下ロート、及び攪拌器を備えた反応容器に、水160mLとメチルイソブチルケトン120mLを加え、二層を形成しないよう激しく攪拌し、氷浴中に入れた。反応容器内の混合物の温度が15℃となったところで、メチルトリクロロシラン51.6g(0.345モル)とジメチルジクロロシラン7.85g(0.0608モル)を40mLのメチルイソブチルケトンに溶解した溶液を滴下ロートからゆっくり滴下した。この際反応混合物の温度は28℃まで上昇した。滴下終了後、60℃の油浴上で、反応混合物を2時間加熱攪拌した。反応終了後、有機層を洗浄水が中性になるまで洗浄し、次いで有機層を乾燥剤を用いて乾燥した。乾燥剤を除去した後、溶媒を減圧で留去し、二昼夜真空乾燥を行ないシリコーンレジンを白色の固体として得た。このシリコーンレジンの分子量分布をGPC〔東ソー(株)製HLC−8020、カラムは東ソー製TSKgelGMHXL−L+G1000HXL(商標)を使用し、溶媒としてトルエンを用いた〕により測定したところ、標準ポリスチレン換算での重量平均分子量は4830であり、数平均分子量は1230であった。また29SiNMRスペクトル〔ブルカー製ACP−300により測定〕から求めたジオルガノシロキシ単位とモノオルガノシロキシ単位のモル比すなわち(a+b)/(c+d)の値は0.21、モノオルガノシロキシ単位(ポリオルガノシルセスキオキサン構造)におけるケイ素1モルに対するシラノールのモル量すなわちc/(c+d)の値は0.180であった。ジオルガノシロキシ単位におけるケイ素1モルに対するシラノールのモル量すなわちa/(a+b)の値は0.058であった。このシリコーンレジンは、室温で空気中、6カ月間放置しても分子量分布、溶解性に変化はなかった。
【0032】
このシリコーンレジン1gを、クロロホルム5gに溶解し、これに5mgのジオクチル酸錫を加え、得られた溶液をガラス板上に塗布し室温で2時間放置した。形成された透明フィルムをガラス板からはがし、試験片の大きさに切断後、100℃で1時間、200℃で2時間加熱架橋を行った。このようにして得られたフィルムについてJIS K6394に基づいて測定した試験振動数1Hzにおけるせん断弾性率を、温度3点について表1に示す。せん断弾性率はなだらかに減少したのみで、200℃以上の高温でも硬さが保たれた。
【0033】
(実施例2)
実施例1と同様の反応装置・条件で、水400mLとメチルイソブチルケトン300mLを攪拌しておき、メチルイソブチルケトン100mLに溶解したメチルトリクロロシラン106.4g(0.712モル)と両末端に水酸基を有する平均重合度4のポリジメチルシロキサン11.8gの混合物を滴下した。さらに55℃の油浴上で反応混合物を2時間加熱攪拌し、実施例1と同様の処理を行ってシリコーンレジンをワックス状の固体として得た。このようにして得たシリコーンレジンの29SiNMRスペクトルから求めた(a+b)/(c+d)の値は0.18,c/(c+d)の値は0.262であった。a/(a+b)の値は0であった。このシリコーンレジンは、室温で空気中、6カ月間放置しても分子量分布、溶解性に変化はなかった。
【0034】
このシリコーンレジンを実施例1と同様にして硬化させた。硬化フィルムの試験振動数1Hzにおけるせん断弾性率を表1に示す。ジオルガノシロキシ単位を長くしても弾性率が急激に減少する転移は見られず高温でも硬さが保たれた。
【0035】
(実施例3)
実施例2と同様にして、両末端に水酸基を有するポリジメチルシロキサンとして重合度13のものを用いて反応させ、シリコーンレジンをワックス状の固体として得た。得られたシリコーンレジンの29SiNMRスペクトルから求めた(a+b)/(c+d)の値は0.17,c/(c+d)の値は0.259であった。a/(a+b)の値は0であった。このシリコーンレジンは、室温で空気中、6カ月間放置しても分子量分布、溶解性に変化はなかった。
【0036】
このシリコーンレジンを実施例1と同様にして硬化させた。硬化フィルムの試験振動数1Hzにおけるせん断弾性率を表1に示す。ジオルガノシロキシ単位をさらに長くしても弾性率が急激に減少する転移は見られず高温でも硬さが保たれた。
【0037】
(実施例4)
実施例2と同様にして、両末端に水酸基を有するポリジメチルシロキサンとして重合度55のものを用いて反応させ、シリコーンレジンをワックス状の固体として得た。得られたシリコーンレジンのGPCから求めた標準ポリスチレン換算での重量平均分子量は6260であり、数平均分子量は850であった。29SiNMRスペクトルから求めた(a+b)/(c+d)の値は0.17,c/(c+d)の値は0.259であった。a/(a+b)の値は0であった。このシリコーンレジンは、室温で空気中、6カ月間放置しても分子量分布、溶解性に変化はなかった。
【0038】
このシリコーンレジンを実施例1と同様にして硬化させた。硬化フィルムの試験振動数1Hzにおけるせん断弾性率を表1に示す。ジオルガノシロキシ単位をさらに長くしても弾性率が急激に減少する転移は見られず高温でも硬さが保たれた。
【0039】
(実施例5)
実施例1と同様にして、メチルトリクロロシラン41.7g(0.279モル)とジメチルジクロロシラン15.6g(0.121モル)を用い、60℃の油浴上で1時間で反応させ、シリコーンレジンを高粘度の液体として得た。得られたシリコーンレジンのGPCから求めた標準ポリスチレン換算での重量平均分子量は1300であり、数平均分子量は520であった。29SiNMRスペクトルから求めた(a+b)/(c+d)の値は0.43,c/(c+d)の値は0.238,a/(a+b)の値は0.059であった。このシリコーンレジンは、室温で空気中、6カ月間放置しても分子量分布、溶解性に変化はなかった。
【0040】
このシリコーンレジンを実施例1と同様にして硬化させた。硬化フィルムの試験振動数1Hzにおけるせん断弾性率を表1に示す。ジオルガノシロキシ単位の量を多くしても弾性率が急激に減少する転移は見られず高温でも硬さが保たれた。
【0041】
(実施例6)
実施例2と同様にして、両末端に水酸基を有するポリジメチルシロキサンとして重合度12のものを用い、メチルトリクロロシラン106.4g(0.712モル)と両末端に水酸基を有する平均重合度12のポリジメチルシロキサン34gで反応させ、シリコーンレジンを高粘度の液体として得た。29SiNMRスペクトルから求めた(a+b)/(c+d)の値は0.56,c/(c+d)の値は0.280であった。a/(a+b)の値は0であった。このシリコーンレジンは、室温で空気中、6カ月間放置しても分子量分布、溶解性に変化はなかった。
【0042】
このシリコーンレジンを実施例1と同様にして硬化させた。硬化フィルムの試験振動数1Hzにおけるせん断弾性率を表1に示す。ジオルガノシロキシ単位をポリシロキサンとし、さらに量を多くしても弾性率が急激に減少する転移は見られず高温でも硬さが保たれた。
【0043】
(比較例1)
実施例1と同様にしてメチルトリクロロシラン50.5g(0.338モル)とジメチルジクロロシラン8.06g(0.0624モル)を用い、しかし有機溶媒としてメチルイソブチルケトンの代わりにトルエンとイソプロピルアルコールを用いた反応を行った。すなわちこれらのクロロシランを40mLのトルエンに溶解し、水160mL、トルエン90mL、イソプロピルアルコール30mLの2相反応系に滴下した。実施例1と同様の処理を行って得たシリコーンレジンは、実施例1と同様の組成であるにもかかわらず高粘度の液体であった。GPCから求めた標準ポリスチレン換算での重量平均分子量は12100であり、数平均分子量は1870であった。29SiNMRスペクトルから求めた(a+b)/(c+d)の値は0.18,a/(a+b)の値は0.064であったが、c/(c+d)の値は0.064と低かった。また、1 HNMRスペクトルでは2−プロポキシ基の存在がみとめられ、29SiNMRスペクトルから求めたシラノール量の約40%が2−プロポキシであると推定できた。
【0044】
このシリコーンレジンを実施例1と同様にして硬化させた。硬化フィルムの試験振動数1Hzにおけるせん断弾性率を表1に示す。出発原料および量が実施例1と同様であるにもかかわらず、弾性率は50℃から100℃の領域で2桁以上におよぶ急激な減少を示し、高温での硬さが保てなかった。
【0045】
Figure 0004408458
【0046】
【発明の効果】
本発明は、優れた特性を有するシリコーンレジン硬化物を製造するために不可欠な硬化性シリコーンレジンの製造方法を提供するものである。本発明で得られるシリコーンレジンの硬化物は、物理的熱安定性に優れている、すなわち、高温でも弾性率が低下しない。したがって、シリコーンレジンがもつ一般的性質である熱安定性(熱分解開始温度が高いこと)、電気絶縁性、耐炎性等の特性に加えて、高温でさらに硬さの要求される用途に広汎な応用が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a curable silicone resin that gives a cured silicone resin excellent in physical thermal stability, and a method for producing the cured silicone resin.
[0002]
[Prior art]
The present inventors have disclosed in WO 96/02292 and WO 96/02291 that an oxygen-containing organic solvent, or an organic solvent containing 50% by volume or less of a hydrocarbon solvent and 1 mol of a halogen atom in a halosilane is 1. Disclosed is a method for hydrolyzing and condensing methyltrihalosilane in a two-phase system with up to 8 grams equivalent of a water-soluble inorganic base or water with or without a buffered weak acid salt. By this method, polymethylsilsesquioxane could be obtained without causing gelation. In addition, polymethylsilsesquioxane obtained by the conventional method is commonly hard but brittle. However, the cured product of polymethylsilsesquioxa disclosed in WO 96/02292 and WO 96/02291 has the flexibility and thermal stability (starting of thermal decomposition) that were difficult to achieve with conventional cured polymethylsilsesquioxane. It has a unique feature that combines high temperature).
[0003]
In a two-layer system with water using ketone as an organic solvent, that is, a reaction system in which these form an upper layer and a lower layer and have a wide planar interface between them, organotrichlorosilane and di-or less than equimolar amount with respect to this. A synthesis reaction of a silicone resin by hydrolysis and condensation of a mixture with an organodichlorosilane is disclosed in JP-A-50-111198. However, the amount of hydroxyl group and the like of the product is not specified, and is not intended for the specific properties of the cured product as described in the present invention. In addition, there was a poor operability that the stirring speed had to be adjusted so as to maintain two layers during the reaction.
[0004]
Patents specifying the hydroxyl content of silicone resins having a molar ratio of organic groups to silicon on silicon of 1 to 1.8 include Canadian patent no. 0886996, British patent no. 1294196, JP-A-48-101444 (US Pat. No. 3,759,867) and JP-A-53-10700 (US Pat. No. 4,056,492) disclose those containing about 3 to 12% by weight of hydroxyl groups. However, all are aimed at increasing the curing speed of the resin, and the thermal stability of the cured product is not aimed. The above Canadian patent no. 0886996, British patent no. 1294196 and JP-A-48-101444 (US Pat. No. 3,759,867) hydrolyze and condense halosilane in a system using acetone as a co-solvent in a mixture of water and an organic solvent insoluble in water.
[0005]
As a polymer containing polyorganosilsesquioxane and diorganopolysiloxane as components, Japanese Patent Application Laid-Open No. 3-31325 discloses a polyorganosilsesquioxane and a diorgano having a functional group such as a chlorine group at both ends. The thing which blocks the silanol of the said polyorgano silsesquioxane by making it react with polysiloxane is disclosed. This is intended to improve the storage stability by reducing the number of silanol groups by blocking the silanol groups.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a cured silicone resin that contains a large amount of silanol groups in the polyorganosilsesquioxane structure in the silicone resin, exhibits extremely good storage stability, and does not decrease the elastic modulus even at high temperatures. That is.
[0007]
In WO 96/02292 and WO 96/02291, polymethylsilsesquioxane can be obtained without causing gelation by a specific production method, and a flexible cured product of polymethylsilsesquioxane is obtained. I was able to.
[0008]
As shown in the comparative example of this specification, methyltrichlorosilane in a conventional reaction system (for example, Japanese Patent Publication No. 55-46415) using a hydrocarbon solvent as a main component and alcohol as a cosolvent to prevent gelation. A cured product of silicone resin synthesized by hydrolyzing and condensing a mixture of dimethyldichlorosilane and dimethyldichlorosilane is inferior in physical thermal stability (maintaining good physical properties even at high temperatures).
[0009]
[Means for Solving the Problems]
The present invention is a method for producing a curable silicone resin having an average structure represented by the following general formula.
[0010]
[R2Si (OH) O1/2]a[R2SiO2/2]b[RSi (OH) O2/2]c[RSiO3/2]d
[0011]
Here, each R is independently one or more of monovalent hydrocarbon groups, and examples thereof include alkyl groups such as methyl groups and ethyl groups, and aromatic hydrocarbon groups such as alkenyl groups and phenyl groups. It is a methyl group.
a, b, c and d satisfy the following conditions.
(1) a + b + c + d = 1 (where a is 0 or a positive number, and b, c, d are positive numbers)
(2) 0.001 ≦ (a + b) / (c + d) ≦ 1.0, and
(3) 0.12 ≦ c / (c + d) ≦ 0.35.
Here, the value of (a + b) / (c + d) represents the ratio of bifunctional units (diorganosiloxy units) in the curable silicone resin of the present invention. When this value is below the lower limit of the range (2), it becomes a polyorganosilsesquioxane essentially free of bifunctional units (diorganosiloxy units). Moreover, when the same unit exceeds the upper limit of the range of (2), the amount of the flexural component increases so that it becomes almost rubbery. The value of (a + b) / (c + d) is recommended to be in the range of 0.03 to 1.0 from the viewpoint of the properties of the cured product. The value of c / (c + d), that is, the molar amount of silanol per 1 mol of silicon in the monoorganosiloxy unit (polyorganosilsesquioxane structure) is in the range of 0.12 to 0.35. If the amount of silanol is less than this, the curability may be lowered, or the resin may be inferior in the physical thermal stability of the cured product as shown in Comparative Examples. If the amount of silanol is larger than this, the storage stability of the resin may be lowered. There is no particular limitation on the molecular weight of the curable silicone resin of the present invention. Usually, a weight average molecular weight of 500 to 100,000 and / or a number average molecular weight of 200 to 200,000 is selected, but is not limited thereto.
[0012]
The curable silicone resin of the present invention is a unit having a substituent other than the set substituent R or monofunctional (R) due to impurities contained in the raw material.ThreeSiO1/2) Tetrafunctional (SiO4/2) It may contain some units. Further, the silicone resin contains silanol and the structure thereof is as shown in the structural formula. However, there may be a unit having a silanol group in other structures at a very small level. . The silicone resin of the present invention has the above-mentioned structure, but the structural unit generated due to such a cause does not deny the existence of the structural unit as long as it does not inhibit the characteristic properties of the silicone resin. .
[0013]
The curable silicone resin of the present invention is produced by subjecting the following (A) and (B) to hydrolysis and condensation in a two-phase reaction system consisting of the following (a) and (b).
(A) an oxygen-containing organic solvent or an organic solvent obtained by mixing this with a hydrocarbon solvent of 50 parts by volume or less
(B) Water containing or not containing 1.8 g equivalent or less of a water-soluble inorganic base or a salt of a weak acid having a buffer capacity with respect to 1 mol of the halogen atom in the following (A) and (B)
(A) Formula RSiXThree(R is as defined above and X is a halogen atom),
(B) Formula Y (SiR2O)eSiR2Bifunctional diorganosilane represented by Y (Y is one or more selected from halogen atom, hydroxyl group, hydrogen, e is a positive integer of 0 or 300 and R is as defined above) or both terminals A diorganopolysiloxane having a functional group. When Y is a halogen atom, Cl is preferably selected.
[0014]
The following is mentioned as a suitable example of such a manufacturing method.
(1) A two-phase reaction system composed of (a) and (b) above is formed, and a mixture of (A) and (B) above or a solution in which (A) and (B) are dissolved in (a) above A method of performing a reaction by adding dropwise.
(2) A method in which a solution obtained by dissolving (A) and (B) in (a) is dropped into the aqueous phase (b), and the reaction is performed in the resulting two-phase reaction system.
(3) A method in which the solution obtained by dissolving (A) and (B) in (a) above and (b) above are dropped simultaneously into a reaction vessel, and the reaction is performed in the resulting two-phase reaction system.
(4) A two-phase reaction system of (a) and (b) in which (B) in which Y is one or more selected from a hydroxyl group and hydrogen is dissolved is formed, and the above (A) or (a) is ( A method in which a reaction in which A) is dissolved is dropped to perform the reaction.
In addition, only (A) may be hydrolyzed by the above methods (1), (2), and (3), and then (B) may be dropped and reacted.
[0015]
The reaction temperature is suitably in the range of room temperature (20 ° C.) to 120 ° C., preferably about 40 to 100 ° C.
[0016]
The fact that water and an organic solvent form two phases means a state where water and an organic solvent are not mixed and a uniform solution is not obtained. The organic phase and the aqueous phase may be present by maintaining a state where these two phases form an upper layer and a lower layer and have a wide plane interface between them by slowing the stirring (this is May be expressed as “two layers are formed”), and the two layers may not be maintained by vigorous stirring. However, from the practical viewpoint, the latter, which does not require careful control of the stirring speed, is preferable.
[0017]
When X of halosilane (A) and Y of starting material (B) are halogen atoms, Y is preferably bromine, chlorine, more preferably chlorine. E in (B) is a positive number of 0 or 300 or less, that is, bifunctional diorganosilane or diorganopolysiloxane having functional groups at both ends. When it is a diorganopolysiloxane, it may have a molecular weight distribution, a branched structure, a cyclic compound, or a side chain functional group in a range that occurs in an industrial production method or the like.
[0018]
The organic solvent used in this production method dissolves (A) and (B) and may be dissolved somewhat in water, but an oxygen-containing organic solvent capable of forming two phases with water is used. Instead of this oxygen-containing organic solvent, a mixed solvent of an oxygen-containing organic solvent and a hydrocarbon solvent (however, the volume ratio is 100 parts by volume of the mixed solvent, and the hydrocarbon solvent is 50 parts by volume or less) is used. You can also. If the content of the hydrocarbon solvent is higher than this, the amount of gel produced increases, the yield of the target product decreases, and it may become impractical. Or when there is much content of a hydrocarbon solvent, the physical property of the target hardened | cured material may no longer be obtained. As the organic solvent, a solvent that is infinitely soluble in water can be used as long as it is not miscible with an aqueous solution of a water-soluble inorganic base or a salt of a weak acid having a buffering ability.
[0019]
Examples of the oxygen-containing organic solvent include ketone solvents such as methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone, ether solvents such as diethyl ether, dinormal propyl ether, dioxane, diethylene glycol dimethyl ether and tetrahydrofuran, ethyl acetate and butyl acetate. And ester solvents such as butyl propionate and alcohol solvents such as n-butanol and hexanol, but are not limited thereto. However, in order to obtain the physical thermal stability of the desired cured product, it is preferable that the solvent is not an alcohol solvent. Two or more of these solvents may be used in combination. Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene, aliphatic hydrocarbon solvents such as hexane and heptane, and halogenated hydrocarbon solvents such as chloroform, trichloroethylene and carbon tetrachloride. It is not limited to these. The amount of the organic solvent used is not particularly limited, but is preferably in the range of 50 to 2000 parts by weight with respect to 100 parts by weight of the total amount of (A) and (B). When the organic solvent is less than 50 parts by weight based on 100 parts by weight of the total amount of (A) and (B), it is insufficient to dissolve the produced silicone resin, possibly causing gelation, and 2000 weight. When the amount exceeds 50 parts, hydrolysis and condensation do not proceed rapidly, and a silicone resin having low molecular weight and poor storage stability can be obtained. The amount of water used is not particularly limited, but is preferably in the range of 10 to 3000 parts by weight with respect to 100 parts by weight of the total amount of (A) and (B).
[0020]
A water-soluble inorganic base that suppresses acidity due to hydrogen halide generated from halosilane or a salt of a weak acid having a buffering ability may be added to the aqueous phase, but the reaction is possible even with water to which nothing is added .
[0021]
Examples of the water-soluble inorganic base include water-soluble alkalis such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, and magnesium hydroxide, and salts of weak acids having buffering ability include sodium carbonate, carbonate Carbonates such as potassium, calcium carbonate and magnesium carbonate, bicarbonates such as sodium bicarbonate and potassium bicarbonate, oxalates such as potassium bis (oxalic acid) trihydrogen, carboxylic acids such as potassium hydrogen phthalate and sodium acetate Examples thereof include salts such as salts, phosphates such as disodium hydrogen phosphate and potassium dihydrogen phosphate, and borate salts such as sodium tetraborate, but are not limited thereto. These amounts are desirably 1.8 gram equivalents or less with respect to 1 mole of the halogen atom in total when the halogen in the halosilane molecule to be used and Y in (B) is halogen. That is, it is desirable that the amount of hydrogen halide generated when the halosilane is completely hydrolyzed is not more than 1.8 times the amount that just neutralizes the hydrogen halide. Two or more of these water-soluble inorganic bases or salts of weak acids having a buffering capacity may be used as long as they are within the above quantitative range.
[0022]
The silicone resin of the present invention is cured by heating or using a catalyst or a crosslinking agent. The curing reaction may be performed by melting the silicone resin as it is, or by casting a solution of an organic solvent and evaporating the solvent, followed by heating.
[0023]
Solvents for dissolving the silicone resin of the present invention include aromatic hydrocarbon solvents such as benzene, toluene and xylene, ether solvents such as diethyl ether and tetrahydrofuran, alcohol solvents such as butanol and hexanol, acetone, methyl ethyl ketone and methyl isobutyl. Examples include ketone solvents such as ketones, ester solvents such as ethyl acetate and butyl acetate, halogenated hydrocarbon solvents such as chloroform, trichloroethylene, and carbon tetrachloride.
[0024]
The curable silicone resin thus produced can be cured by heating or using a curing catalyst and / or a crosslinking agent. The curing temperature is 20 ° C. or higher and 350 ° C. or lower, preferably 20 ° C. or higher and 250 ° C. or lower when a curing catalyst and / or a crosslinking agent is used. If it is less than 20 degreeC, reaction will not fully advance. If it is 350 ° C. or higher, the siloxane may be decomposed.
In the case of curing by heating alone, the temperature is 50 ° C. or higher and 350 ° C. or lower, and preferably 80 ° C. or higher and 250 ° C. If it is less than 50 degreeC, reaction does not fully advance. If it exceeds 350 ° C., the siloxane may be decomposed.
[0025]
Examples of the curing catalyst include tin diacetate, tin dioctylate, tin dilaurate, tin tetraacetate, dibutyltin diacetate, dibutyltin dioctylate, dibutyltin dilaurate, dibutyltin dioleate, dimethoxydibutyltin, dibutyltin oxide, Tin compounds such as dibutyltin benzyl maleate, bis (triethoxysiloxy) dibutyltin, diphenyltin diacetate; tetramethoxytitanium, tetraethoxytitanium, tetra-n-propoxytitanium, tetra-i-propoxytitanium, tetra-n- Butoxytitanium, tetra-i-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, di-i-propoxybis (ethylacetoacetate) titanium, titanium dipropoxybis (acetylacetonato) titanium, di-i-propoxybis (acetyl) Acetoner ) Titanium compounds such as titanium, dibutoxybis (acetylacetonate) titanium, tri-i-propoxyallyl acetate titanium, titanium isopropoxyoctylene glycol, bis (acetylacetonato) titanium oxide; lead diacetate, bis (2-ethylhexane) Acid) lead, lead dineodecanoate, lead tetraacetate, lead tetrakis (n-propionate), zinc diacetate, zinc bis (2-ethylhexanoate), zinc dionedecanoate, zinc diundecenoate, zinc dimethacrylate, diacetic acid Metal fatty acids such as iron, tetrakis (2-ethylhexanoic acid) zirconium, tetrakis (methacrylic acid) zirconium, cobalt diacetate; aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane Tetramethylgua Jin, tetramethylguanidylpropyltrimethoxysilane trimethoxysilane, tetramethylguanidylpropyltrimethoxysilane propyl dimethoxy silane, tetramethylguanidylpropyltrimethoxysilane tris (trimethylsiloxy) silane, 1,8 Jiazabijikuro [5.4.0. An amino group-containing compound such as -7-undecene is used. Usually, it is used in the range of 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of polymethylsilsesquioxane.
[0026]
Moreover, the compound shown below is illustrated as a crosslinking agent.
[0027]
[Chemical 1]
Figure 0004408458
[0028]
[Chemical 2]
Figure 0004408458
[0029]
The crosslinking agent is usually used in an amount of 0.1 to 80 parts by weight, preferably 1 to 70 parts by weight, based on 100 parts by weight of the silicone resin.
[0030]
【Example】
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples.
[0031]
Example 1
To a reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer, 160 mL of water and 120 mL of methyl isobutyl ketone were added, vigorously stirred so as not to form two layers, and placed in an ice bath. When the temperature of the mixture in the reaction vessel reaches 15 ° C., a solution in which 51.6 g (0.345 mol) of methyltrichlorosilane and 7.85 g (0.0608 mol) of dimethyldichlorosilane are dissolved in 40 mL of methyl isobutyl ketone. Was slowly dropped from the dropping funnel. At this time, the temperature of the reaction mixture rose to 28 ° C. After completion of dropping, the reaction mixture was heated and stirred for 2 hours on an oil bath at 60 ° C. After completion of the reaction, the organic layer was washed until the washing water became neutral, and then the organic layer was dried using a desiccant. After removing the desiccant, the solvent was distilled off under reduced pressure and vacuum drying was performed for two days and nights to obtain a silicone resin as a white solid. The molecular weight distribution of this silicone resin is GPC [Tosoh Corporation HLC-8020, column is Tosoh TSKgelGMH.XL-L + G1000HXL(Trademark) was used, and toluene was used as a solvent]. The weight average molecular weight in terms of standard polystyrene was 4830, and the number average molecular weight was 1230. Also29The molar ratio of diorganosiloxy units to monoorganosiloxy units determined from Si NMR spectrum (measured by Bruker ACP-300), that is, the value of (a + b) / (c + d) is 0.21, monoorganosiloxy units (polyorganosilsesquiskies) The molar amount of silanol per mole of silicon in the oxane structure), that is, the value of c / (c + d) was 0.180. The molar amount of silanol per mole of silicon in the diorganosiloxy unit, that is, the value of a / (a + b) was 0.058. This silicone resin did not change in molecular weight distribution or solubility even when left for 6 months in air at room temperature.
[0032]
1 g of this silicone resin was dissolved in 5 g of chloroform, 5 mg of tin dioctylate was added thereto, and the resulting solution was applied on a glass plate and allowed to stand at room temperature for 2 hours. The formed transparent film was peeled off from the glass plate and cut to the size of the test piece, followed by heat crosslinking at 100 ° C. for 1 hour and at 200 ° C. for 2 hours. Table 1 shows the shear modulus at a test frequency of 1 Hz, measured according to JIS K6394 for the film thus obtained, at three temperatures. The shear modulus decreased only gently, and the hardness was maintained even at a high temperature of 200 ° C. or higher.
[0033]
(Example 2)
In the same reaction apparatus and conditions as in Example 1, 400 mL of water and 300 mL of methyl isobutyl ketone were stirred, 106.4 g (0.712 mol) of methyltrichlorosilane dissolved in 100 mL of methyl isobutyl ketone and hydroxyl groups at both ends. A mixture of 11.8 g of polydimethylsiloxane having an average polymerization degree of 4 was added dropwise. Furthermore, the reaction mixture was heated and stirred on an oil bath at 55 ° C. for 2 hours, and the same treatment as in Example 1 was performed to obtain a silicone resin as a waxy solid. The silicone resin thus obtained29The value of (a + b) / (c + d) determined from the SiNMR spectrum was 0.18, and the value of c / (c + d) was 0.262. The value of a / (a + b) was 0. This silicone resin did not change in molecular weight distribution or solubility even when left for 6 months in air at room temperature.
[0034]
This silicone resin was cured in the same manner as in Example 1. Table 1 shows the shear modulus of the cured film at a test frequency of 1 Hz. Even if the diorganosiloxy unit was lengthened, the transition in which the elastic modulus decreased rapidly was not observed, and the hardness was maintained even at high temperature.
[0035]
(Example 3)
In the same manner as in Example 2, a polydimethylsiloxane having hydroxyl groups at both ends was reacted using a polymer having a polymerization degree of 13 to obtain a silicone resin as a wax-like solid. Of the resulting silicone resin29The value of (a + b) / (c + d) determined from the SiNMR spectrum was 0.17, and the value of c / (c + d) was 0.259. The value of a / (a + b) was 0. This silicone resin did not change in molecular weight distribution or solubility even when left for 6 months in air at room temperature.
[0036]
This silicone resin was cured in the same manner as in Example 1. Table 1 shows the shear modulus of the cured film at a test frequency of 1 Hz. Even when the diorganosiloxy unit was further lengthened, the transition in which the elastic modulus decreased rapidly was not observed, and the hardness was maintained even at a high temperature.
[0037]
Example 4
In the same manner as in Example 2, the reaction was performed using polydimethylsiloxane having hydroxyl groups at both ends and having a polymerization degree of 55 to obtain a silicone resin as a wax-like solid. The weight average molecular weight in terms of standard polystyrene determined from GPC of the obtained silicone resin was 6260, and the number average molecular weight was 850.29The value of (a + b) / (c + d) determined from the SiNMR spectrum was 0.17, and the value of c / (c + d) was 0.259. The value of a / (a + b) was 0. This silicone resin did not change in molecular weight distribution or solubility even when left for 6 months in air at room temperature.
[0038]
This silicone resin was cured in the same manner as in Example 1. Table 1 shows the shear modulus of the cured film at a test frequency of 1 Hz. Even when the diorganosiloxy unit was further lengthened, the transition in which the elastic modulus decreased rapidly was not observed, and the hardness was maintained even at a high temperature.
[0039]
(Example 5)
In the same manner as in Example 1, 41.7 g (0.279 mol) of methyltrichlorosilane and 15.6 g (0.121 mol) of dimethyldichlorosilane were reacted in an oil bath at 60 ° C. for 1 hour. The resin was obtained as a high viscosity liquid. The weight average molecular weight in terms of standard polystyrene determined from GPC of the obtained silicone resin was 1300, and the number average molecular weight was 520.29The value of (a + b) / (c + d) determined from the SiNMR spectrum was 0.43, the value of c / (c + d) was 0.238, and the value of a / (a + b) was 0.059. This silicone resin did not change in molecular weight distribution or solubility even when left for 6 months in air at room temperature.
[0040]
This silicone resin was cured in the same manner as in Example 1. Table 1 shows the shear modulus of the cured film at a test frequency of 1 Hz. Even when the amount of the diorganosiloxy unit was increased, the elastic modulus decreased rapidly and no transition was observed, and the hardness was maintained even at high temperatures.
[0041]
(Example 6)
In the same manner as in Example 2, polydimethylsiloxane having hydroxyl groups at both ends was used with a polymerization degree of 12, and 106.4 g (0.712 mol) of methyltrichlorosilane and an average polymerization degree of 12 having hydroxyl groups at both ends were obtained. Reaction with 34 g of polydimethylsiloxane gave a silicone resin as a highly viscous liquid.29The value of (a + b) / (c + d) determined from the SiNMR spectrum was 0.56, and the value of c / (c + d) was 0.280. The value of a / (a + b) was 0. This silicone resin did not change in molecular weight distribution or solubility even when left for 6 months in air at room temperature.
[0042]
This silicone resin was cured in the same manner as in Example 1. Table 1 shows the shear modulus of the cured film at a test frequency of 1 Hz. The diorganosiloxy unit was polysiloxane, and even when the amount was increased, the elastic modulus decreased rapidly and no transition was observed, and the hardness was maintained even at high temperatures.
[0043]
(Comparative Example 1)
In the same manner as in Example 1, 50.5 g (0.338 mol) of methyltrichlorosilane and 8.06 g (0.0624 mol) of dimethyldichlorosilane were used, but toluene and isopropyl alcohol were used in place of methyl isobutyl ketone as the organic solvent. The reaction used was carried out. That is, these chlorosilanes were dissolved in 40 mL of toluene and dropped into a two-phase reaction system of 160 mL of water, 90 mL of toluene, and 30 mL of isopropyl alcohol. The silicone resin obtained by carrying out the same treatment as in Example 1 was a highly viscous liquid despite having the same composition as in Example 1. The weight average molecular weight in terms of standard polystyrene determined from GPC was 12100, and the number average molecular weight was 1870.29The value of (a + b) / (c + d) obtained from the SiNMR spectrum was 0.18, and the value of a / (a + b) was 0.064, but the value of c / (c + d) was as low as 0.064. Also,1The presence of 2-propoxy group is found in the HNMR spectrum,29It was estimated that about 40% of the amount of silanol determined from the Si NMR spectrum was 2-propoxy.
[0044]
This silicone resin was cured in the same manner as in Example 1. Table 1 shows the shear modulus of the cured film at a test frequency of 1 Hz. Although the starting materials and amounts were the same as in Example 1, the elastic modulus showed a rapid decrease of two orders of magnitude or more in the region from 50 ° C. to 100 ° C., and the hardness at high temperature could not be maintained.
[0045]
Figure 0004408458
[0046]
【The invention's effect】
The present invention provides a method for producing a curable silicone resin, which is indispensable for producing a cured silicone resin having excellent characteristics. The cured product of the silicone resin obtained in the present invention is excellent in physical thermal stability, that is, the elastic modulus does not decrease even at a high temperature. Therefore, in addition to properties such as thermal stability (high thermal decomposition start temperature), electrical insulation, and flame resistance, which are general properties of silicone resins, they are widely used in applications that require higher hardness at high temperatures. Application becomes possible.

Claims (7)

平均構造が一般式
〔R2 Si(OH)O1/2a 〔R2 SiO2/2b 〔RSi(OH)O2/2c 〔RSiO3/2d
〔Rはそれぞれ独立に一価の炭化水素基であり、a,b,c及びdは次の各条件を満たすものである。
(1)a+b+c+d=1(但し、aは0または正の数で、b,c,dは正の数である。)
(2)0.001≦(a+b)/(c+d)≦1.0
(3)0.12≦c/(c+d)≦0.35〕
で示される硬化性シリコーンレジンを、下記(a)と(b)からなる2相反応系にて、下記(A)と(B)の加水分解および縮合を行うことにより製造する方法。
(a)ケトン系溶媒、エーテル系溶媒またはエステル系溶媒
(b)水
(A)式RSiX3 (Rは上記と同じ意味であり、Xはハロゲン原子である。)で示されるオルガノトリハロシラン、
(B)式Y(SiR2 O)e SiR2 Y(Yはハロゲン原子、水酸基、水素から選ばれる一種以上、eは0または300以下の正の数であり、Rは上記と同じ意味である)で示される2官能性ジオルガノシランまたは両末端に官能基を有するジオルガノポリシロキサン。
The average structure is the general formula [R 2 Si (OH) O 1/2 ] a [R 2 SiO 2/2 ] b [RSi (OH) O 2/2 ] c [RSiO 3/2 ] d
[R is independently a monovalent hydrocarbon group, and a, b, c and d satisfy the following conditions.
(1) a + b + c + d = 1 (where a is 0 or a positive number, and b, c, d are positive numbers)
(2) 0.001 ≦ (a + b) / (c + d) ≦ 1.0
(3) 0.12 ≦ c / (c + d) ≦ 0.35]
How the curable silicone resin, the following (a) and at 2-phase reaction system consisting of (b), prepared by the hydrolysis and condensation of the following (A) and (B) THAT shown.
(A) ketone solvent, ether solvent or ester solvent ,
(B ) water ,
(A) an organotrihalosilane represented by the formula RSiX 3 (where R is as defined above and X is a halogen atom);
(B) Formula Y (SiR 2 O) e SiR 2 Y (Y is one or more selected from a halogen atom, a hydroxyl group and hydrogen, e is a positive number of 0 or 300 or less, and R has the same meaning as above. Or a diorganopolysiloxane having functional groups at both ends.
前記Rがメチル基である、請求項1記載の硬化性シリコーンレジンの製造方法。  The method for producing a curable silicone resin according to claim 1, wherein R is a methyl group. 前記(a)と(b)との2相反応系を形成させ、前記(A)と(B)の混合物、または上記(a)に(A)と(B)を溶解させた溶液を滴下して反応を行うことを特徴とする請求項1又は2に記載の硬化性シリコーンレジンの製造方法。  A two-phase reaction system of (a) and (b) is formed, and a mixture of (A) and (B) or a solution in which (A) and (B) are dissolved in (a) is added dropwise. The method for producing a curable silicone resin according to claim 1 or 2, wherein the reaction is carried out. 前記(b)の水相に、前記(a)に上記(A)と(B)を溶解させた溶液を滴下し、結果として生じる2相反応系にて反応を行うことを特徴とする請求項1又は2に記載の硬化性シリコーンレジンの製造方法。  A solution obtained by dissolving (A) and (B) in (a) is dropped into the aqueous phase (b), and the reaction is performed in the resulting two-phase reaction system. A method for producing a curable silicone resin according to 1 or 2. 前記(a)に前記(A)と(B)を溶解させた溶液と、上記(b)とを同時に反応容器に滴下し、結果として生じる2相反応系にて反応を行うことを特徴とする請求項1又は2に記載の硬化性シリコーンレジンの製造方法。  A solution in which (A) and (B) are dissolved in (a) and (b) above are dropped simultaneously into a reaction vessel, and the reaction is performed in a resulting two-phase reaction system. The manufacturing method of the curable silicone resin of Claim 1 or 2. 前記Yが水酸基、水素から選ばれる一種以上である(B)を溶解させた(a)と(b)との2相反応系を形成させ、上記(A)、または(a)に(A)を溶解させた溶液を滴下して反応を行うことを特徴とする請求項1又は2に記載の硬化性シリコーンレジンの製造方法。  A two-phase reaction system of (a) and (b) in which (B) in which Y is one or more selected from a hydroxyl group and hydrogen is dissolved is formed, and (A) or (a) is converted into (A) 3. The method for producing a curable silicone resin according to claim 1 or 2, wherein the reaction is carried out by dropping a solution in which is dissolved. 請求項1〜のいずれかの方法で製造された硬化性シリコーンレジンを50℃以上、350℃以下の温度で加熱して、あるいは20℃以上、350℃以下の温度で触媒または架橋剤を用いて硬化させるシリコーンレジン硬化物の製造方法。The curable silicone resin produced by the method according to any one of claims 1 to 6 is heated at a temperature of 50 ° C to 350 ° C, or a catalyst or a crosslinking agent is used at a temperature of 20 ° C to 350 ° C. A method for producing a cured silicone resin that is cured.
JP17415797A 1997-06-30 1997-06-30 Each manufacturing method of curable silicone resin and cured product Expired - Fee Related JP4408458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17415797A JP4408458B2 (en) 1997-06-30 1997-06-30 Each manufacturing method of curable silicone resin and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17415797A JP4408458B2 (en) 1997-06-30 1997-06-30 Each manufacturing method of curable silicone resin and cured product

Publications (2)

Publication Number Publication Date
JPH1121353A JPH1121353A (en) 1999-01-26
JP4408458B2 true JP4408458B2 (en) 2010-02-03

Family

ID=15973696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17415797A Expired - Fee Related JP4408458B2 (en) 1997-06-30 1997-06-30 Each manufacturing method of curable silicone resin and cured product

Country Status (1)

Country Link
JP (1) JP4408458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469330B1 (en) * 2011-12-07 2014-12-04 와커 헤미 아게 Production of high-molecular-weight silicone resins

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502364B2 (en) * 2006-08-22 2013-08-06 Mitsubishi Chemical Corporation Semiconductor device member, production method of semiconductor-device-member formation liquid and semiconductor device member, and semiconductor-device-member formation liquid, phosphor composition, semiconductor light-emitting device, lighting system and image display system using the same
WO2012040305A1 (en) 2010-09-22 2012-03-29 Dow Corning Corporation Resin-linear organosiloxane block copolymers
CN103189419B (en) 2010-09-22 2015-05-27 道康宁公司 High refractive index compositions containing resin-linear organosiloxane block copolymers
CN103189421B (en) 2010-09-22 2015-03-25 道康宁公司 Organosiloxane block copolymer
EP2619248B1 (en) 2010-09-22 2014-08-13 Dow Corning Corporation Thermally stable compositions containing resin-linear organosiloxane block copolymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469330B1 (en) * 2011-12-07 2014-12-04 와커 헤미 아게 Production of high-molecular-weight silicone resins

Also Published As

Publication number Publication date
JPH1121353A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
US3328481A (en) Organosilicon resins
JP3635180B2 (en) Silylated polymethylsilsesquioxane, process for producing the same, and composition using the same
JPH0623255B2 (en) Method for producing perfluoroalkyl group-containing organopolysiloxane
JPH04211428A (en) Manufacture of polydiorganosiloxane havind end blocked with alkoxysilethylene group
JPH08208840A (en) Silicone resin, composition containing the same and method for curing the same
JP4965033B2 (en) Liquid alkoxysilyl functional silicone resin, method for producing the same, and curable silicone resin composition
JPH05239165A (en) Heat stable acryiamide polysiloxane composition
JP3801208B2 (en) Curable polymethylsilsesquioxane composition
JP3652151B2 (en) Method for producing curable polymethylsilsesquioxane
JPS6241243B2 (en)
JP4408458B2 (en) Each manufacturing method of curable silicone resin and cured product
JPH0525906B2 (en)
US7388065B2 (en) Process for preparing siloxane compounds
JP3635171B2 (en) Polymer compatible polymethylsilsesquioxane
US6346593B1 (en) Polymerization of siloxanes
JP2518952B2 (en) Acrylamide polysiloxane composition having improved thermal stability
JP2003517072A (en) Process for producing polyorganosiloxanes by polymerization catalyzed by a catalyst system based on triflic acid or a triflic acid derivative
JP3635179B2 (en) Silylated polymethylsilsesquioxane, process for producing the same, and composition using the same
JPH03207718A (en) Silacyclobutane-functional polydiorganosiloxane copolymer, its preparation and composition containing same
JPH0713146B2 (en) Method for producing organopolysiloxane
US3318843A (en) Process for making equilibration of organopolysiloxanes using phos- phorous-containing catalysts
JP2008266301A (en) New silicone compound, and raw material thereof and method for producing the silicone compound
JPH1121510A (en) Silicone resin for forming water-repellent coating film and its composition
JPH06220328A (en) Room temperature-curing organopolysiloxane composition
JP3353608B2 (en) Method for producing polysilane-polysiloxane copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080708

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees