JP4407106B2 - Ion-conducting membrane by organic-inorganic hybrid - Google Patents
Ion-conducting membrane by organic-inorganic hybrid Download PDFInfo
- Publication number
- JP4407106B2 JP4407106B2 JP2002275822A JP2002275822A JP4407106B2 JP 4407106 B2 JP4407106 B2 JP 4407106B2 JP 2002275822 A JP2002275822 A JP 2002275822A JP 2002275822 A JP2002275822 A JP 2002275822A JP 4407106 B2 JP4407106 B2 JP 4407106B2
- Authority
- JP
- Japan
- Prior art keywords
- silane compound
- group
- carbon atoms
- atoms
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Conductive Materials (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Silicon Polymers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、特定の組合せのポリオルガノシロキサンからなる複合材料、及びこれを用いたイオン伝導体及び高分子固体電解質に関する。
【0002】
【従来の技術】
イオン伝導体及び高分子固体電解質よりなる膜として、パールフルオロアルキルスルホン酸膜等が使用されているが、それらの膜には、耐熱性が不十分であるという問題がある。耐熱性を向上させたイオン伝導膜及び高分子固体電解質膜を得るために、有機−無機複合材料の適用が模索されているが、イオン伝導膜又は高分子固体電解質膜として適した有機−無機複合材料は、未だ開発されていない。
【0003】
すなわち、有機−無機複合材料による高分子固体電解質膜として、例えば、メチルハイドロジェンシリコーンに、メタクリル酸ポリエチレンオキシドをグラフト重合させた反応物と無機イオン塩とからなるものが知られている(特許文献1参照。)。また、オルガノポリシロキサンの存在下、(メタ)アクリル酸アルキルエステル等を重合することによって得られる重合体に、リチウム電解質塩を含有する有機電解液を含浸させてなるものが知られている(特許文献2参照。)。しかしながら、これらの有機−無機複合材料は、有機成分と無機成分との相溶性が悪く、そのため、製造が困難であるという問題を有するものであった。
【0004】
【特許文献1】
特開昭63−55810号公報
【特許文献2】
特開平11−232925号公報
【0005】
【発明が解決しようとする課題】
上記背景の下で、本発明は、イオン性置換基を有するポリオルガノシロキサン複合材料であって、製造が容易であり、且つイオン伝導性、耐熱性、耐水性に優れたイオン伝導性材料を、更には、膜形成が容易であるイオン伝導性材料を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は、特定のシラン化合物を加水分解及び重縮合反応に付しつつ、メルカプト基を有するアルコキシシランを加え、これらの化合物の加水分解及び重縮合を続行させることにより、各成分が均一に混合したゾル溶液を得ることができ、得られたゾル溶液を乾燥させて固化させることにより得られる固化物のメルカプト基をスルホン酸基へと酸化することにより得られる複合材料が、イオン伝導性、耐熱性及び耐水性に優れたイオン伝導膜とでき、更に、膜形成を容易化することもできることを見出し、これらの知見に基づき本発明を完成させた。
【0007】
すなわち本発明は、
(1)式:RmSi(OR’)4-m(式中、R,R’は炭素数1〜3のアルキル基を、及び、mは0〜2の整数を表す。)で示されるシラン化合物Aに水を加えることにより、該シラン化合物Aの加水分解及び重縮合反応を進行させるステップと、該反応の途中において、反応混合物に式:HS−Y−Si(OR”’)pR””3-p(式中、Yは炭素数1〜5のアルキレン基を、R”’及びR””は炭素数1〜3のアルキル基を、及びpは2又は3を表す。)で示されるメルカプト基を有するシラン化合物C及び水を加えて混合することにより、該シラン化合物Aのその後の加水分解及び重縮合反応と共に該シラン化合物Cの加水分解及び重縮合を進行させるステップと、これにより得られたゾル溶液を乾燥させて固化させるステップと、得られた固化物のメルカプト基をスルホン酸基へと酸化するステップとを含む方法により得られる、共重合ポリオルガノシロキサンよりなる複合材料、
(2)式:RmSi(OR’)4-m(式中、R,R’は炭素数1〜3のアルキル基を、及び、mは0〜2の整数を表す。)で示されるシラン化合物Aに水を加えることにより、該シラン化合物Aの加水分解及び重縮合反応を進行させるステップと、該反応の途中において、反応混合物に式:XnSi(OR”)4-n(式中、Xはフェニル基を、R”は炭素数1〜3のアルキル基を、及びnは1又は2を表す。)で示されるシラン化合物Bを加えて混合することにより該シラン化合物Bの加水分解及び重縮合反応をも同時に行わせつつ、更に式:HS−Y−Si(OR”’)pR””3-p(式中、Yは炭素数1〜5のアルキレン基を、R”’及びR””は炭素数1〜3のアルキル基を、及びpは2又は3を表す。)で示されるメルカプト基を有するシラン化合物C及び水を加えて混合することにより、該シラン化合物A及び該シラン化合物Bのその後の加水分解及び重縮合反応と共に該シラン化合物Cの加水分解及び重縮合を進行させるステップと、これにより得られたゾル溶液を乾燥させて固化させるステップと、得られた固化物のメルカプト基をスルホン酸基へと酸化するステップとを含む方法により得られる、共重合ポリオルガノシロキサンよりなる複合材料、
(3)該スルホン酸基中の水素を、Na+、Li+、K+又はNH4 +で置換するステップを更に含むものである、上記(1)又は(2)の方法により得られる、−Y−SO3M基(式中、Yは炭素数1〜5のアルキレン基を、Mは、Na、Li、K又はNH4を表す。)を担持する共重合ポリオルガノシロキサンよりなる複合材料、
(4)該シラン化合物Aの10重量部に対して、該シラン化合物Cの使用量が1〜10重量部である、上記(1)ないし(3)の何れかの複合材料、
(5)該シラン化合物Aの10重量部に対して、該シラン化合物Bの使用量が0〜20重量部、該シラン化合物Cの使用量が1〜10重量部である、上記(1)ないし(4)の何れかの複合材料、
(6)−Y−SO3M基(式中、Yは炭素数1〜5のアルキレン基を、Mは、H、Na、Li、K又はNH4を表す。)をSi原子に結合して有する繰り返し単位(C)を含んでなるポリオルガノシロキサンが、Si原子あたり0〜2個の炭素数1〜3のアルキル基をSi原子に結合して有する繰り返し単位(A)を含んでなるポリオルガノシロキサン中に均一に分散されてなる、複合材料、
(7)−Y−SO3M基(式中、Yは炭素数1〜5のアルキレン基を、Mは、H、Na、Li、K又はNH4を表す。)をSi原子に結合して有する繰り返し単位(C)を含んでなるポリオルガノシロキサンが、Si原子あたり1個又は2個のフェニル基をSi原子に結合して有する繰り返し単位(B)と、Si原子あたり0〜2個の炭素数1〜3のアルキル基をSi原子に結合して有する繰り返し単位(A)とを含んでなる共重合ポリオルガノシロキサン中に均一に分散されてなる、複合材料、
(8)ポリオルガノシロキサンを構成するSi原子の数に対する−Y−SO3M基(式中、Yは炭素数1〜5のアルキレン基を、Mは、H、Na、Li、K又はNH4を表す。)の数の比率が1〜50モル%である、上記(6)又は(7)の複合材料、
(9)ポリオルガノシロキサンを構成するSi原子の数に対する、−Y−SO3M基(式中、Yは炭素数1〜5のアルキレン基を、Mは、H、Na、Li、K又はNH4を表す。)をSi原子に結合して有する繰り返し単位(C)の数の比率が1〜50モル%、Si原子あたり1個又は2個のフェニル基をSi原子に結合して有する繰り返し単位(B)の数の比率が0〜50モル%、Si原子あたり0〜2個の炭素数1〜3のアルキル基をSi原子に結合して有する繰り返し単位(A)の数の比率が30〜85モル%である、上記(6)又は(7)の複合材料、及び
(10)温度25℃、相対湿度60%において1,000Hzで測定した電気伝導度が1×10-5S/cm以上である、請求項1ないし9の何れかの複合材料、
を提供する。
【0008】
【作用】
上記構成になる本発明の複合材料及びこれからなるイオン伝導膜は、ポリオルガノシロキサンのマトリックス中に−SH基の酸化により生成したイオン性置換基−SO3H基(又はその塩)を有するポリオルガノシロキサンが伝導パスを形成しており、その結果、優れたイオン伝導性が得られる。しかも、該材料及び該イオン伝導膜は、ポリオルガノシロキサンに基づくものであることから、耐熱性及び耐水性に優れる。また、該複合材料及びイオン伝導膜は、強度に優れ、膜形態での使用に特に適したものとなる。
【0009】
【発明の実施の形態】
本発明の複合材料は次のようにして製造することができる。すなわち、式:RmSi(OR’)4-m(式中、R,R’は炭素数1〜3のアルキル基を、及び、mは0〜2の整数を表す。)で示されるシラン化合物Aに水を加えて加水分解及び重縮合を先ず進行させておき、反応の途中で、反応混合物に式:XnSi(OR”)4-n(式中、Xはフェニル基を、R”は炭素数1〜3のアルキル基を、及びnは1又は2を表す。)で示されるシラン化合物Bを加えて混合することにより該シラン化合物Bの加水分解及び重縮合をも同時に進行させつつ、式:HS−Y−Si(OR”’)pR””3-p(式中、Yは炭素数1〜5のアルキレン基を、R”’及びR””は炭素数1〜3のアルキル基を、及びpは2又は3を表す。)で示されるメルカプト基を有するシラン化合物Cを加えて加水分解及び重縮合させることによってゾル溶液とし、これを乾燥させて固化させ、得られた固化物のメルカプト基を適宜の酸化剤により酸化してスルホン酸基に変換する。こうして得られた複合材料はまた、Na+、Li+、K+又はNH4 +を含有する溶液に浸漬することにより、該−SO3H基中のHを、Na+、Li+、K+又はNH4 +その他で置換してもよい。
【0010】
また、式:XnSi(OR”)4-n(式中、Xはフェニル基を、R”は炭素数1〜3のアルキル基を、及びnは1又は2を表す。)で示されるシラン化合物Bをも用いる場合には、シラン化合物Aに水を加えて加水分解及び重縮合を先ず進行させておき、反応の途中で、反応混合物にシラン化合物Bを加えて混合することにより該シラン化合物Bの加水分解及び重縮合をも同時に進行させつつ、更に、シラン化合物C及び水を加えればよく、その他の操作はシラン化合物A及びシラン化合物Cのみを用いる場合と同様である。
【0011】
上記の製造工程において、シラン化合物Aへの水の添加により、加水分解によるシラノール化合物の生成と、生成したシラノール化合物同士の重縮合が開始される。シラン化合物A:RmSi(OR’)4-mにおいて、その−OR’基1個を−OH基及びHOR’へと加水分解するためには、1個のH2O分子が必要である。また、2個のシラノール化合物の−OH基各1個同士の間での重縮合が起こりSi−O−Si結合が形成すると、1個のH2Oが放出される(すなわちシラノール1分子あたりH2O分子1/2個)。従って、シラン化合物Aの有する−OR’基1個が加水分解され次いで重縮合に与るためには、1/2個のH2O分子を要する。シラン化合物Aは−OR’基を4−m個(m=0〜2)有することから、シラン化合物Aの1モルが加水分解され次いで完全に重縮合するときに消費される正味のH2Oのモル数は、(4−m)/2モルである。例えば、シラン化合物AがテトラエトキシシランSi(OEt)4(分子量=208.3)の場合、1モル(208.3g)の加水分解及び重縮合が完全に行われる場合に消費されるH2O量は、2モル(36.0g)である。但し、シラン化合物Aの加水分解と重縮合とは、完全にリンクして同時並行的に進行・完結するわけではないから、1モルのシラン化合物Aについて、反応を完了させるに要するH2O量は、上記(4−m)/2モルと、シラン化合物Aの全ての−OR’基が先ず完全に加水分解するに必要な量である(4−m)モルとの、中間の値となり、そのような値より水の量が少ないときは、加水分解及び重縮合の反応は完結しない。
【0012】
上記の製造工程において、シラン化合物Aに水を加えて加水分解及び重縮合反応を開始させた後、重縮合反応が完結するより十分に早い、途中の段階で次のステップであるシラン化合物C(又はB及びC)等の添加を行うためには、例えばシラン化合物Aに反応を完結させるに十分量の水を加えた上で、不十分な反応時間の後に次のステップに移ることにより行ってもよく、またシラン化合物Aに最初に加える水の量を、完全な加水分解と重縮合に理論上不可欠な水量より少なくすることによってもよい。これは、そのような理論上必要な量の、例えば、40〜95%、より好ましくは50〜70%等とすることによって容易に行うことができる。また、反応時間と水の量との双方を適宜調節してもよい。シラン化合物Aの加水分解及び重縮合反応中の任意の時点における重合の進行状況は、反応混合物をサンプリングし、ゲル濾過クロマトグラフィーによって生成物の分子量分布をみることによって知ることができる。従って、反応時間の調節をする場合には、一定の条件下の反応の進行状況を経時的にゲル濾過クロマトグラフィーにより確認しておけば、同一条件下での以後の反応時間は、それらの結果に基づいて設定することができる。
本発明の複合材料の製造にシラン化合物Bを用いる場合には、シラン化合物C及び水の添加は、シラン化合物Bの添加後直ちに行ってもよく、シラン化合物Bの添加後所定時間(例えば30分間)撹拌した後に行ってもよい。
【0013】
シラン化合物Aの代表例としては、メチルトリエトキシシラン、メチルトリメトキシシラン、テトラエトキシシラン、テトラメトキシシランが挙げられる。これらのうち、テトラエトキシシランが特に好ましい。
【0014】
シラン化合物Bの代表例としては、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジメトキシシランが挙げられる。これらのうち、フェニルトリエトキシシラン及びフェニルトリメトキシシランが特に好ましい。該シラン化合物B中のフェニル基は、本発明の目的に反しない限り、置換基を有していてもよい。
【0015】
メルカプト基を有するシラン化合物Cの例としては、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトエチルメチルジメトキシシラン、γ−メルカプトメチルメチルジメトキシシラン、γ−メルカプトプロピルエチルジエトキシシラン、γ−メルカプトエチルエチルジエトキシシラン、γ−メルカプトメチルエチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトペンチルトリエトキシシラン、γ−メルカプトペンチルトリメトキシシラン等が挙げられるが、これらのうち、γ−メルカプトプロピルトリメトキシシランは特に好ましい一例である。
【0016】
本発明において、シラン化合物は、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール又はこれらの混合物等のような、親水性有機溶媒に溶解させたものを反応に使用するのが好ましい。特に好ましい一例は、水の添加量を少なくでき、例えば成膜する場合に乾燥を早めることができること等から、メチルアルコールである。
【0017】
本発明において、シラン化合物の加水分解及び重縮合は、水を用いて行われるが、好ましくは、塩酸、硝酸、硫酸等のような無機酸、又は酢酸、モノクロロ酢酸、p−トルエンスルホン酸等のような有機酸等の酸触媒、又は、アセチルアセトナトアルミニウム等の金属βジケトン錯体を更に添加して行ってよい。
【0018】
本発明において、メルカプト基のスルホン酸基への酸化は、ゾル溶液から膜等の固化物を製造した後、これを酸化剤を含有した水溶液に浸漬することにより行うことができる。使用する酸化剤としては、メルカプト基をスルホン酸基へ酸化することのできるものであれば特に制限はなく、適宜選択してよい。特に好ましい酸化剤の例として、過酸化水素又は硝酸等のオキソ酸が挙げられる。
【0019】
本発明の複合材料の製造における各成分の使用比率は、式:RmSi(OR’)4-m(式中、R,R’は炭素数1〜3のアルキル基を、及び、mは0〜2の整数を表す。)で示されるシラン化合物Aの10重量部に対して、式:XnSi(OR”)4-n(式中、Xはフェニル基を、R”は炭素数1〜3のアルキル基を、及びnは1又は2を表す。)で示されるシラン化合物Bは、好ましくは0〜約20重量部であり、この範囲であれば、均一で安定なゾルの調製が容易で、均一で良質なイオン伝導体が得やすい。また、シラン化合物Aの10重量部に対してシラン化合物Bが0〜約10重量部であれば、均一で安定なゾルの調製が一層容易となるため更に好ましく、シラン化合物Bが約1〜約5重量部では、耐水性、耐熱性と成膜性、膜の柔軟性に特に優れるため尚更有利である。
【0020】
シラン化合物Aの10重量部に対して、式:HS−Y−Si(OR”’)pR””3-p(式中、Yは炭素数1〜5のアルキレン基を、R”’及びR””は炭素数1〜3のアルキル基を、及びpは2又は3を表す。)で示されるメルカプト基を有するシラン化合物Cは好ましくは約1〜約10重量部であり、この範囲であれば、均一で安定なゾルの調整が容易で、均一で電気伝導度も高いイオン伝導体が得やすい。また、シラン化合物Aの10重量部に対して、シラン化合物Cが約1〜約8重量部であれば、均一で安定なゾルの調製が一層容易となり、耐水性と耐熱性が高まるため更に好ましく、シラン化合物Cが約1.5〜6重量部の範囲では耐水性と耐熱性が特に高まり且つ十分に高い電気伝導度が得られ、尚更好ましい。
【0021】
シラン化合物Aの10重量部に対して、水の量は特に限定はされないが、操作の簡便さを考慮すれば、好ましくは約0.5〜約5重量部である。
【0022】
本発明の有機−無機複合材料よりなるイオン伝導膜を作製する場合、その成膜方法は特に限定されないが、例えば、反応で得られたゾル溶液をドクターブレード等を用いてテフロン(登録商標)シート、ポリエチレンテレフタレートフィルム、ガラス板その他、適宜な支持体の上に塗布するか、又はそのような材質からなる浅い型に薄く流し込み、室温で風乾させるか又は穏かに加温(例えば40℃)して乾燥させればよい。
【0023】
本発明の複合材料において、ポリオルガノシロキサンを構成するSi原子の数に対する−Y−SO3M基(式中、Yは炭素数1〜5のアルキレン基を、Mは、H、Na、Li、K又はNH4を表す。)の数の比率が約1〜約50モル%であば、十分な電気伝導度を得ることができ、この比率が約5〜50モル%であれば更に好ましく、約10〜50モル%であれば尚更好ましい。この比率の測定は例えば、蛍光X線分析によりSi及びSを定量することにより行うことができる。
【0024】
また、本発明の複合材料において、ポリオルガノシロキサンを構成するSi原子に基く繰り返し単位のうち、Si原子あたり1個又は2個のフェニル基をSi原子に結合して有する繰り返し単位(B)の数の比率が約0〜50モル%であれば、成膜性と膜の柔軟性が良好であり、優れた耐水性、耐熱性が確保でき好ましい。またこの比率が約5モル%の以上の範囲では、耐水性に特に優れているため更に好ましい。この比率が5〜40モル%であれば耐水性、耐熱性の両面でなお好ましく、5〜30モル%であれば尚更好ましい。
この比率の測定は、例えば、1HNMR又は29SiNMRにより定量することにより行うことができる。あるいは、エトキシシラン化法により生成したエトキシシラン化合物を、ガスクロマトグラム測定し定量することにより行うことができる。
【0025】
また、本発明の複合材料において、ポリオルガノシロキサンを構成するSi原子に基づく繰り返し単位のうち、Si原子あたり0〜2個の炭素数1〜3のアルキル基をSi原子に結合して有する繰り返し単位の数の比率の測定は、例えば、1HNMR又は29SiNMRにより定量することにより行うことができる。あるいは、エトキシシラン化法により生成したエトキシシラン化合物を、ガスクロマトグラム測定し定量することにより行うことができる。
【0026】
本発明による複合材料の電気伝導度は、LCRメーターなどを用い、例えば25℃、相対湿度60%、周波数120〜10,000Hzで測定すればよい。
【0027】
【実施例】
以下、代表的な実施例を挙げて本発明を更に具体的に説明するが、本発明がそれらの実施例に限定されることは意図しない。なお、実施例中、「部」は重量部を表す。
【0028】
(参考例1)
テトラエトキシシラン(信越化学(株))89部とメタノール48部を混合した。これに水8部及び1M硝酸0.2部を加え、室温にて1時間撹拌した。次いで、フェニルトリエトキシシラン(信越化学(株))38部とメタノール66部を混合して加え、約30分撹拌した。次いでγ−メルカプトプロピルトリメトキシシラン(信越化学(株))38部及びメタノール110部及び水27部を混合して加えて数分間撹拌し、液が透明化してから更に1時間撹拌した。得られた溶液を、水平に置いた内径5cmのテフロン(登録商標)製シャーレに5g注入することによりシャーレ内に均一に広げ、40℃で12時間乾燥させて固化させ、厚さ約360μmの膜を得た(水分含量4.0%)。
【0029】
この膜の物性を確認するため、膜の1枚を120℃で1時間乾燥させ、底部に水を満たした密閉可能なテフロン(登録商標)製の分解容器内に吊るして密閉し、容器を乾燥機に入れて100℃で約1日保持した後、膜の重量変化を測定した。また、膜の他の1枚の電気伝導度をLCRメーターにより、温度25℃、相対湿度60℃、周波数1,000Hzで測定した。結果を表1に示す。また、膜の別の1枚の熱特性をTGにより測定したところ、分解温度は320℃であった。
【0030】
(参考例2)
テトラエトキシシラン(信越化学(株))89部とメタノール80部を混合した。これに水10部及び1M硝酸1.3部を加え、室温にて1時間撹拌した。次いでγ−メルカプトプロピルトリメトキシシラン(信越化学(株))27部及びメタノール77部を混合して加え、1時間半撹拌した。得られた溶液を、水平に置いた内径5cmのテフロン(登録商標)製シャーレに5g注入することによりシャーレ内に均一に広げ、40℃で12時間乾燥させて固化させ、厚さ約280μmの膜を得た(水分含量4.3%)。
【0031】
この膜の物性を確認するため、膜の1枚を120℃で1時間乾燥させ、底部に水を満たした密閉可能なテフロン(登録商標)製分解容器中に吊るして密閉し、容器を乾燥器に入れて100℃で約1日保持した後、膜の重量変化を測定した。また、膜の他の1枚の電気伝導度をLCRメーターにより、温度25℃、相対湿度60%、周波数1,000Hzで測定した。結果を表1に示す。
【0032】
(実施例1)
参考例1で得た膜を120℃で1時間乾燥させ、15%過酸化水素水に14時間浸漬し、水洗後1日間風乾した。この膜の電気伝導度をLCRメーターにより、温度25℃、相対湿度60%、周波数1,000Hzで測定した。結果を表1に示す。
【0033】
(実施例2)
参考例2で得た膜を120℃で1時間乾燥させ、15%過酸化水素水に1日間浸漬し、水洗後1日間風乾した。この膜の電気伝導度をLCRメーターにより、温度25℃、相対湿度60%、周波数1,000Hzで測定した。結果を表1に示す。
【0034】
(実施例3)
テトラエトキシシラン(信越化学(株))89部とメタノール48部を混合した。これに水8.8部及び1M硝酸0.2部を加え、室温にて1時間撹拌した。次いでフェニルトリエトキシシラン(信越化学(株))38部とメタノール66部を混合して加え、約30分間撹拌した。次いでγ−メルカプトプロピルトリメトキシシラン(信越化学(株))38部及びメタノール110部及び水5.2部を混合して加えて数分間撹拌し、液が透明化してから更に1時間撹拌した。得られた溶液を、水平に置いた内径5cmのテフロン(登録商標)製シャーレに5g注入することによりシャーレ内に均一に広げ、40℃で12時間乾燥させて固化させ、厚さ約360μmの膜を得た(水分含量3.9%)。得られた膜を120℃で1時間乾燥させ、15%過酸化水素水に1日間浸漬し、水洗後1日間風乾した後、この膜の電気伝導度をLCRメーターにより、温度25℃、相対湿度60%、周波数1,000Hzで測定した。結果を表1に示す。
【0035】
【表1】
【0036】
【発明の効果】
本発明により得られる複合材料は、イオン伝導性に優れ且つ耐熱性及び耐水性に優れたイオン伝導膜材料であり、膜形成も容易で、種々の固体イオン伝導体として、特にイオン伝導膜として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite material composed of a specific combination of polyorganosiloxanes, an ionic conductor using the same, and a polymer solid electrolyte.
[0002]
[Prior art]
A pearl fluoroalkylsulfonic acid film or the like is used as a film made of an ionic conductor and a polymer solid electrolyte. However, these films have a problem of insufficient heat resistance. In order to obtain an ion conductive membrane and a polymer solid electrolyte membrane with improved heat resistance, application of an organic-inorganic composite material has been sought, but an organic-inorganic composite suitable as an ion conductive membrane or a polymer solid electrolyte membrane is being sought. The material has not been developed yet.
[0003]
That is, a polymer solid electrolyte membrane made of an organic-inorganic composite material is known, for example, comprising a reaction product obtained by graft-polymerizing polyethylene oxide methacrylate to methyl hydrogen silicone and an inorganic ion salt (Patent Literature). 1). In addition, a polymer obtained by polymerizing a (meth) acrylic acid alkyl ester or the like in the presence of an organopolysiloxane is impregnated with an organic electrolytic solution containing a lithium electrolyte salt (patent) Reference 2). However, these organic-inorganic composite materials have a problem that the compatibility between the organic component and the inorganic component is poor, and therefore, the production is difficult.
[0004]
[Patent Document 1]
JP-A 63-55810 [Patent Document 2]
Japanese Patent Application Laid-Open No. 11-232925
[Problems to be solved by the invention]
Under the above background, the present invention is a polyorganosiloxane composite material having an ionic substituent, which is easy to manufacture and has an ion conductive material excellent in ion conductivity, heat resistance and water resistance. Furthermore, it aims at providing the ion conductive material which film | membrane formation is easy.
[0006]
[Means for Solving the Problems]
The present inventors added alkoxysilanes having mercapto groups while subjecting specific silane compounds to hydrolysis and polycondensation reactions, and by continuing hydrolysis and polycondensation of these compounds, each component was made uniform. A composite material obtained by oxidizing the mercapto group of the solidified product to a sulfonic acid group by drying and solidifying the obtained sol solution is an ion conductive material. The present inventors have found that an ion conductive film excellent in heat resistance and water resistance can be obtained, and that film formation can be facilitated, and the present invention has been completed based on these findings.
[0007]
That is, the present invention
(1) Formula: R m Si (OR ′) 4-m (wherein R and R ′ represent an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 2). In the course of the hydrolysis and polycondensation reaction of the silane compound A by adding water to the silane compound A, and in the middle of the reaction, the reaction mixture is represented by the formula: HS—Y—Si (OR ″ ′) p R "" 3-p (wherein Y represents an alkylene group having 1 to 5 carbon atoms, R "'and R""represent an alkyl group having 1 to 3 carbon atoms, and p represents 2 or 3). A step of proceeding hydrolysis and polycondensation of the silane compound C together with a subsequent hydrolysis and polycondensation reaction of the silane compound A by adding and mixing the silane compound C having a mercapto group shown and water, The step of drying and solidifying the sol solution obtained by Is obtained by a method comprising the steps of oxidizing the mercapto group of the compound to the sulfonic acid group, a composite material consisting of copolymerized polyorganosiloxane,
(2): '(wherein, R, R 4-m represents an alkyl group having 1 to 3 carbon atoms, and, m is an integer of 0~2.) R m Si (OR )' represented by In the course of the hydrolysis and polycondensation reaction of the silane compound A by adding water to the silane compound A, and in the middle of the reaction, the reaction mixture is expressed by the formula: X n Si (OR ″) 4-n (formula In which X is a phenyl group, R ″ is an alkyl group having 1 to 3 carbon atoms, and n is 1 or 2.) and the silane compound B is added to and mixed with the silane compound B. While simultaneously carrying out the decomposition and polycondensation reaction, the formula: HS—Y—Si (OR ″ ′) p R ″ ″ 3-p (wherein Y represents an alkylene group having 1 to 5 carbon atoms, R ″ 'And R "" are alkyl groups having 1 to 3 carbon atoms, and p represents 2 or 3. Adding and mixing water compound C and water to proceed with hydrolysis and polycondensation of silane compound C together with subsequent hydrolysis and polycondensation reaction of silane compound A and silane compound B; A composite material comprising a copolymerized polyorganosiloxane obtained by a method comprising a step of drying and solidifying the obtained sol solution and a step of oxidizing a mercapto group of the obtained solidified product to a sulfonic acid group;
(3) -Y- obtained by the method of (1) or (2) above, further comprising the step of replacing hydrogen in the sulfonic acid group with Na + , Li + , K + or NH 4 + A composite material comprising a copolymerized polyorganosiloxane carrying SO 3 M groups (wherein Y represents an alkylene group having 1 to 5 carbon atoms, and M represents Na, Li, K or NH 4 ),
(4) The composite material according to any one of (1) to (3) above, wherein the amount of the silane compound C used is 1 to 10 parts by weight with respect to 10 parts by weight of the silane compound A.
(5) Said (1) thru | or the usage-amount of this silane compound B being 0-20 weight part with respect to 10 weight part of this silane compound A, and the usage-amount of this silane compound C being 1-10 weight part. (4) any composite material,
(6) A —Y—SO 3 M group (wherein Y represents an alkylene group having 1 to 5 carbon atoms, M represents H, Na, Li, K, or NH 4 ) bonded to a Si atom; A polyorganosiloxane comprising a repeating unit (C) having a repeating unit (A) having 0 to 2 C 1-3 alkyl groups per Si atom bonded to Si atoms A composite material uniformly dispersed in siloxane;
(7) A —Y—SO 3 M group (wherein Y represents an alkylene group having 1 to 5 carbon atoms, M represents H, Na, Li, K, or NH 4 ) bonded to a Si atom; A polyorganosiloxane comprising a repeating unit (C) having a repeating unit (B) having 1 or 2 phenyl groups bonded to Si atoms per Si atom, and 0 to 2 carbons per Si atom; A composite material uniformly dispersed in a copolymerized polyorganosiloxane comprising a repeating unit (A) having a C 1-3 alkyl group bonded to a Si atom,
(8) -Y-SO 3 M group (wherein to the number of Si atoms constituting the polyorganosiloxane, Y is an alkylene group having 1 to 5 carbon atoms, M is, H, Na, Li, K or NH 4 The composite material of (6) or (7) above, wherein the ratio of the number of
(9) to the number of Si atoms constituting the polyorganosiloxane, in -Y-SO 3 M group (wherein, Y is an alkylene group having 1 to 5 carbon atoms, M is, H, Na, Li, K or NH 4 represents a repeating unit having a number of repeating units (C) bonded to Si atoms of 1 to 50 mol%, and having one or two phenyl groups bonded to Si atoms per Si atom The ratio of the number of (B) is 0 to 50 mol%, and the ratio of the number of repeating units (A) having 0 to 2 C 1-3 alkyl groups per Si atom bonded to Si atoms is 30 to 30%. 85 mol% of the composite material of (6) or (7) above, and (10) electrical conductivity measured at 1,000 Hz at a temperature of 25 ° C and a relative humidity of 60% is 1 x 10-5 S / cm or more The composite material according to any one of claims 1 to 9,
I will provide a.
[0008]
[Action]
The composite material of the present invention having the above-described structure and the ion conductive membrane comprising the same are polyorgano having an ionic substituent —SO 3 H group (or a salt thereof) generated by oxidation of —SH groups in a polyorganosiloxane matrix. Siloxane forms a conductive path, resulting in excellent ionic conductivity. Moreover, since the material and the ion conductive film are based on polyorganosiloxane, they are excellent in heat resistance and water resistance. Further, the composite material and the ion conductive membrane are excellent in strength and are particularly suitable for use in a membrane form.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The composite material of the present invention can be produced as follows. In other words, the formula: silane '(wherein, R, R 4-m is an alkyl group having 1 to 3 carbon atoms, and, m is an integer of 0~2.) R m Si (OR )' represented by Hydrolysis and polycondensation are first proceeded by adding water to compound A, and in the middle of the reaction, the reaction mixture is added with the formula: X n Si (OR ″) 4-n (wherein X represents a phenyl group, R "" Represents an alkyl group having 1 to 3 carbon atoms, and n represents 1 or 2.) By adding and mixing the silane compound B represented by the formula (1), hydrolysis and polycondensation of the silane compound B proceed simultaneously. However, the formula: HS-Y-Si (OR "') pR "" 3-p (wherein Y is an alkylene group having 1 to 5 carbon atoms, R"' and R "" are 1 to 3 carbon atoms) Hydrolysis and polycondensation by adding a silane compound C having a mercapto group represented by the following formula: To obtain a sol solution, which is dried and solidified, and the mercapto group of the obtained solidified product is oxidized with an appropriate oxidizing agent to be converted into a sulfonic acid group. The composite material thus obtained is also immersed in a solution containing Na + , Li + , K + or NH 4 + to convert H in the —SO 3 H group into Na + , Li + , K +. or NH 4 + Elsewhere may be substituted.
[0010]
And represented by the formula: X n Si (OR ″) 4-n (wherein X represents a phenyl group, R ″ represents an alkyl group having 1 to 3 carbon atoms, and n represents 1 or 2). When the silane compound B is also used, water is added to the silane compound A to cause hydrolysis and polycondensation to proceed first, and the silane compound B is added to and mixed with the reaction mixture in the middle of the reaction. The silane compound C and water may be added while the hydrolysis and polycondensation of the compound B proceed simultaneously, and other operations are the same as when only the silane compound A and the silane compound C are used.
[0011]
In the production process described above, the addition of water to the silane compound A starts the production of a silanol compound by hydrolysis and the polycondensation between the produced silanol compounds. In the silane compound A: R m Si (OR ′) 4-m , one H 2 O molecule is required to hydrolyze one —OR ′ group into an —OH group and HOR ′. . In addition, when polycondensation occurs between each —OH group of two silanol compounds to form a Si—O—Si bond, one H 2 O is released (that is, H per molecule of silanol). 1/2 or 2 O molecules). Accordingly, in order for one —OR ′ group of the silane compound A to be hydrolyzed and then subjected to polycondensation, ½ H 2 O molecules are required. Since silane compound A has 4-m′-m ′ groups (m = 0 to 2), net H 2 O consumed when 1 mol of silane compound A is hydrolyzed and then completely polycondensed. The number of moles is (4-m) / 2 moles. For example, when the silane compound A is tetraethoxysilane Si (OEt) 4 (molecular weight = 208.3), the amount of H 2 O consumed when 1 mol (208.3 g) of hydrolysis and polycondensation is completely performed is 2 moles (36.0 g). However, since the hydrolysis and polycondensation of silane compound A are not completely linked and proceed and complete in parallel, the amount of H 2 O required to complete the reaction for 1 mol of silane compound A Is an intermediate value between the above (4-m) / 2 mole and (4-m) mole, which is the amount necessary for all -OR 'groups of the silane compound A to be completely hydrolyzed first, When the amount of water is less than such a value, the hydrolysis and polycondensation reactions are not completed.
[0012]
In the above production process, after adding water to the silane compound A to start hydrolysis and polycondensation reaction, the silane compound C (which is the next step at an intermediate stage, sufficiently earlier than the polycondensation reaction is completed) Alternatively, for example, B and C) may be added by adding a sufficient amount of water to the silane compound A to complete the reaction and then moving to the next step after an insufficient reaction time. Alternatively, the amount of water initially added to the silane compound A may be less than that theoretically essential for complete hydrolysis and polycondensation. This can be easily carried out by setting the amount as theoretically necessary, for example, 40 to 95%, more preferably 50 to 70%. Moreover, you may adjust both reaction time and the quantity of water suitably. The progress of polymerization at any point during the hydrolysis and polycondensation reaction of silane compound A can be determined by sampling the reaction mixture and examining the molecular weight distribution of the product by gel filtration chromatography. Therefore, when adjusting the reaction time, if the progress of the reaction under certain conditions is confirmed by gel filtration chromatography over time, the subsequent reaction time under the same conditions will be the result of those results. Can be set based on.
When the silane compound B is used in the production of the composite material of the present invention, the silane compound C and water may be added immediately after the addition of the silane compound B, and a predetermined time (for example, 30 minutes) after the addition of the silane compound B. ) It may be performed after stirring.
[0013]
Typical examples of the silane compound A include methyltriethoxysilane, methyltrimethoxysilane, tetraethoxysilane, and tetramethoxysilane. Of these, tetraethoxysilane is particularly preferred.
[0014]
Representative examples of the silane compound B include phenyltriethoxysilane, phenyltrimethoxysilane, diphenyldiethoxysilane, and diphenyldimethoxysilane. Of these, phenyltriethoxysilane and phenyltrimethoxysilane are particularly preferred. The phenyl group in the silane compound B may have a substituent unless it is contrary to the object of the present invention.
[0015]
Examples of the silane compound C having a mercapto group include γ-mercaptopropylmethyldimethoxysilane, γ-mercaptoethylmethyldimethoxysilane, γ-mercaptomethylmethyldimethoxysilane, γ-mercaptopropylethyldiethoxysilane, and γ-mercaptoethylethyl. Examples include diethoxysilane, γ-mercaptomethylethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopentyltriethoxysilane, and γ-mercaptopentyltrimethoxysilane. Of these, γ-mercaptopropyltrimethoxysilane is a particularly preferred example.
[0016]
In the present invention, it is preferable to use a silane compound dissolved in a hydrophilic organic solvent such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol or a mixture thereof in the reaction. A particularly preferred example is methyl alcohol because the amount of water added can be reduced, for example, drying can be accelerated when forming a film.
[0017]
In the present invention, hydrolysis and polycondensation of the silane compound are carried out using water. Preferably, inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, or acetic acid, monochloroacetic acid, p-toluenesulfonic acid and the like are used. An acid catalyst such as an organic acid or a metal β-diketone complex such as acetylacetonatoaluminum may be further added.
[0018]
In the present invention, oxidation of a mercapto group to a sulfonic acid group can be performed by producing a solidified product such as a membrane from a sol solution and then immersing it in an aqueous solution containing an oxidizing agent. The oxidizing agent to be used is not particularly limited as long as it can oxidize a mercapto group to a sulfonic acid group, and may be appropriately selected. Examples of particularly preferred oxidizing agents include oxo acids such as hydrogen peroxide or nitric acid.
[0019]
The ratio of each component used in the production of the composite material of the present invention is represented by the formula: R m Si (OR ′) 4-m (wherein R and R ′ are alkyl groups having 1 to 3 carbon atoms, and m is The formula: X n Si (OR ″) 4-n (wherein X represents a phenyl group and R ″ represents the number of carbon atoms) with respect to 10 parts by weight of the silane compound A represented by 0-2. The silane compound B represented by 1 to 3 alkyl groups and n represents 1 or 2) is preferably 0 to about 20 parts by weight, and within this range, a uniform and stable sol is prepared. It is easy to obtain a uniform and good quality ion conductor. Further, if the silane compound B is 0 to about 10 parts by weight with respect to 10 parts by weight of the silane compound A, it is more preferable because preparation of a uniform and stable sol becomes easier, and the silane compound B is about 1 to about 5 parts by weight is even more advantageous because it is particularly excellent in water resistance, heat resistance and film-forming properties, and film flexibility.
[0020]
With respect to 10 parts by weight of the silane compound A, the formula: HS—Y—Si (OR ″ ′) p R ″ ″ 3-p (wherein Y represents an alkylene group having 1 to 5 carbon atoms, R ″ ′ and R ″ ″ represents an alkyl group having 1 to 3 carbon atoms, and p represents 2 or 3.) The silane compound C having a mercapto group represented by the formula (1) is preferably about 1 to about 10 parts by weight. If so, it is easy to prepare a uniform and stable sol, and it is easy to obtain an ion conductor having a uniform and high electric conductivity. Further, if the silane compound C is about 1 to about 8 parts by weight with respect to 10 parts by weight of the silane compound A, it is more preferable because preparation of a uniform and stable sol becomes easier and water resistance and heat resistance increase. When the silane compound C is in the range of about 1.5 to 6 parts by weight, the water resistance and heat resistance are particularly enhanced, and a sufficiently high electric conductivity can be obtained.
[0021]
Although the amount of water is not particularly limited with respect to 10 parts by weight of the silane compound A, it is preferably about 0.5 to about 5 parts by weight considering the ease of operation.
[0022]
In the case of producing an ion conductive film made of the organic-inorganic composite material of the present invention, the film forming method is not particularly limited. , Polyethylene terephthalate film, glass plate, etc., coated on a suitable support, or thinly poured into a shallow mold made of such a material, air-dried at room temperature or gently warmed (eg 40 ° C.) And dry.
[0023]
In the composite material of the present invention, in -Y-SO 3 M group (wherein to the number of Si atoms constituting the polyorganosiloxane, Y is an alkylene group having 1 to 5 carbon atoms, M is, H, Na, Li, A ratio of the number of K or NH 4 ) of about 1 to about 50 mol%, sufficient electrical conductivity can be obtained, and more preferably about 5 to 50 mol%. Even more preferred is about 10-50 mole percent. This ratio can be measured, for example, by quantifying Si and S by fluorescent X-ray analysis.
[0024]
In the composite material of the present invention, among the repeating units based on Si atoms constituting the polyorganosiloxane, the number of repeating units (B) having one or two phenyl groups per Si atom bonded to Si atoms. If the ratio is about 0 to 50 mol%, the film formability and film flexibility are good, and excellent water resistance and heat resistance can be secured. Further, when the ratio is in the range of about 5 mol% or more, the water resistance is particularly excellent, which is more preferable. If this ratio is 5-40 mol%, it is still more preferable in both water resistance and heat resistance, and if it is 5-30 mol%, it is still more preferable.
This ratio can be measured, for example, by quantification by 1 HNMR or 29 SiNMR. Alternatively, the ethoxysilane compound produced by the ethoxysilanization method can be measured by gas chromatogram measurement and quantification.
[0025]
In the composite material of the present invention, among the repeating units based on Si atoms constituting the polyorganosiloxane, repeating units having 0 to 2 alkyl groups having 1 to 3 carbon atoms per Si atom bonded to Si atoms The ratio of the number can be measured, for example, by quantification by 1 HNMR or 29 SiNMR. Alternatively, the ethoxysilane compound produced by the ethoxysilanization method can be measured by gas chromatogram measurement and quantification.
[0026]
The electrical conductivity of the composite material according to the present invention may be measured using an LCR meter or the like, for example, at 25 ° C., a relative humidity of 60%, and a frequency of 120 to 10,000 Hz.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to representative examples. However, the present invention is not intended to be limited to these examples. In the examples, “parts” represents parts by weight.
[0028]
(Reference Example 1)
89 parts of tetraethoxysilane (Shin-Etsu Chemical Co., Ltd.) and 48 parts of methanol were mixed. To this, 8 parts of water and 0.2 part of 1M nitric acid were added and stirred at room temperature for 1 hour. Next, 38 parts of phenyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.) and 66 parts of methanol were mixed and added, and stirred for about 30 minutes. Next, 38 parts of γ-mercaptopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.), 110 parts of methanol, and 27 parts of water were mixed and stirred for several minutes. After the liquid became clear, the mixture was further stirred for 1 hour. 5 g of the obtained solution was poured into a horizontally placed Teflon (registered trademark) petri dish having an inner diameter of 5 cm, and the resulting solution was uniformly spread in the petri dish, dried at 40 ° C. for 12 hours and solidified, and a film having a thickness of about 360 μm (Water content 4.0%) was obtained.
[0029]
In order to confirm the physical properties of this membrane, one of the membranes was dried at 120 ° C. for 1 hour, hung in a sealable Teflon (registered trademark) decomposition container filled with water at the bottom, and the container was dried. After being put in the machine and kept at 100 ° C. for about 1 day, the weight change of the membrane was measured. The electrical conductivity of the other one of the films was measured with an LCR meter at a temperature of 25 ° C., a relative humidity of 60 ° C., and a frequency of 1,000 Hz. The results are shown in Table 1. Moreover, when the thermal characteristic of another one sheet | seat of a film | membrane was measured by TG, the decomposition temperature was 320 degreeC.
[0030]
(Reference Example 2)
89 parts of tetraethoxysilane (Shin-Etsu Chemical Co., Ltd.) and 80 parts of methanol were mixed. To this, 10 parts of water and 1.3 parts of 1M nitric acid were added and stirred at room temperature for 1 hour. Next, 27 parts of γ-mercaptopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.) and 77 parts of methanol were mixed and added, and stirred for 1.5 hours. 5 g of the obtained solution is poured into a horizontally placed Teflon (registered trademark) petri dish with an inner diameter of 5 cm, and is uniformly spread in the petri dish, dried at 40 ° C. for 12 hours to solidify, and a film having a thickness of about 280 μm. (Water content 4.3%) was obtained.
[0031]
In order to confirm the physical properties of the membrane, one of the membranes was dried at 120 ° C. for 1 hour, sealed in a Teflon (registered trademark) decomposition vessel filled with water at the bottom and sealed. And kept at 100 ° C. for about 1 day, and the weight change of the membrane was measured. The electrical conductivity of the other one of the films was measured with an LCR meter at a temperature of 25 ° C., a relative humidity of 60%, and a frequency of 1,000 Hz. The results are shown in Table 1.
[0032]
Example 1
The film obtained in Reference Example 1 was dried at 120 ° C. for 1 hour, immersed in 15% aqueous hydrogen peroxide for 14 hours, washed with water and air-dried for 1 day. The electrical conductivity of this film was measured with an LCR meter at a temperature of 25 ° C., a relative humidity of 60%, and a frequency of 1,000 Hz. The results are shown in Table 1.
[0033]
(Example 2)
The film obtained in Reference Example 2 was dried at 120 ° C. for 1 hour, immersed in 15% hydrogen peroxide solution for 1 day, washed with water and air-dried for 1 day. The electrical conductivity of this film was measured with an LCR meter at a temperature of 25 ° C., a relative humidity of 60%, and a frequency of 1,000 Hz. The results are shown in Table 1.
[0034]
(Example 3)
89 parts of tetraethoxysilane (Shin-Etsu Chemical Co., Ltd.) and 48 parts of methanol were mixed. To this, 8.8 parts of water and 0.2 part of 1M nitric acid were added and stirred at room temperature for 1 hour. Next, 38 parts of phenyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.) and 66 parts of methanol were mixed and added, and stirred for about 30 minutes. Next, 38 parts of γ-mercaptopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.), 110 parts of methanol and 5.2 parts of water were mixed and stirred for several minutes. After the liquid became clear, the mixture was further stirred for 1 hour. 5 g of the obtained solution was poured into a horizontally placed Teflon (registered trademark) petri dish having an inner diameter of 5 cm, and the resulting solution was uniformly spread in the petri dish, dried at 40 ° C. for 12 hours and solidified, and a film having a thickness of about 360 μm (Water content 3.9%) was obtained. The obtained film was dried at 120 ° C. for 1 hour, dipped in 15% hydrogen peroxide solution for 1 day, washed with water and air-dried for 1 day, and then the electrical conductivity of this film was measured at a temperature of 25 ° C. and relative humidity using an LCR meter. Measurement was performed at 60% and a frequency of 1,000 Hz. The results are shown in Table 1.
[0035]
[Table 1]
[0036]
【The invention's effect】
The composite material obtained by the present invention is an ion conductive membrane material having excellent ion conductivity and excellent heat resistance and water resistance, easy to form a film, and useful as various solid ion conductors, particularly as an ion conductive membrane. It is.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002275822A JP4407106B2 (en) | 2002-09-20 | 2002-09-20 | Ion-conducting membrane by organic-inorganic hybrid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002275822A JP4407106B2 (en) | 2002-09-20 | 2002-09-20 | Ion-conducting membrane by organic-inorganic hybrid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004107597A JP2004107597A (en) | 2004-04-08 |
JP4407106B2 true JP4407106B2 (en) | 2010-02-03 |
Family
ID=32271906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002275822A Expired - Lifetime JP4407106B2 (en) | 2002-09-20 | 2002-09-20 | Ion-conducting membrane by organic-inorganic hybrid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4407106B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4317005B2 (en) * | 2003-03-25 | 2009-08-19 | 富士フイルム株式会社 | Silica gel composition, proton exchange membrane electrode membrane composite, and fuel cell |
JP2006114277A (en) * | 2004-10-13 | 2006-04-27 | Toyota Motor Corp | Proton conducting material, solid polymer electrolyte membrane, and fuel cell |
JP2006117873A (en) * | 2004-10-25 | 2006-05-11 | Sony Corp | Mesoporous silica polymer, method for producing the same, and proton conductive material |
KR101193164B1 (en) * | 2006-02-21 | 2012-10-19 | 삼성에스디아이 주식회사 | Organic polymer siloxane compounds containing sulfonic acid group and fuel cell comprising the same |
JP5245233B2 (en) * | 2006-09-22 | 2013-07-24 | 信越化学工業株式会社 | Silicone rubber composition for polymer electrolyte and proton conductive polymer electrolyte membrane |
-
2002
- 2002-09-20 JP JP2002275822A patent/JP4407106B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004107597A (en) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0536441A (en) | Lithium battery | |
CN103554503A (en) | A preparation method of nano-TiO2/silicone resin hybrid transparent composite material | |
JP4407106B2 (en) | Ion-conducting membrane by organic-inorganic hybrid | |
JP2000090946A (en) | High temperature area proton conductive thin film using organic and inorganic composite material, and manufacture thereof | |
CN102061095B (en) | Hybrid film containing fluorosilicone/silicon rubber, and preparation method and application thereof | |
JP4321686B2 (en) | Organic-inorganic composite and method for producing porous silicon oxide | |
Tsukada et al. | Ethylene-bridged polysilsesquioxane/hollow silica particle hybrid film for thermal insulation material | |
JPS6115808A (en) | Addition bridgeable composition | |
JP4645196B2 (en) | Organic-inorganic composite ion conducting membrane | |
JPH09194729A (en) | Hydrosilylation of unsaturated monomer | |
EP0492828A1 (en) | Mixture of adhesion additives useful in UV curable compositions and compositions containing same | |
JPS5959725A (en) | Curing of silicone rubber molding | |
JP5245233B2 (en) | Silicone rubber composition for polymer electrolyte and proton conductive polymer electrolyte membrane | |
JP2011515378A (en) | Sulfone hybrid precursor, synthesis method thereof and use thereof | |
JPS60190458A (en) | Silicone composition for mold releasant | |
JP4606557B2 (en) | Electrolyte for electrochemical device and method for producing the same | |
JP4099699B2 (en) | Proton conducting material | |
CN103524752A (en) | Fluorosiloxane-POSS acrylate block copolymers, blood-compatible coating thereof and preparation method of the fluorosiloxane-POSS acrylate block copolymers | |
JP4722698B2 (en) | Silicone rubber composition for polymer electrolyte, polymer electrolyte membrane and method for producing the same | |
JP5616324B2 (en) | Superconducting electrolytic hybrid material and method for producing and using the same | |
US6156236A (en) | Conductive organopolysiloxane composition | |
CN117089657B (en) | Preparation and application of fluorosilane modified raw material based on amine-alkene addition synthesis | |
WO2005111114A1 (en) | Proton-conductive cross-linked polysiloxane with heteroatom-containing functional groups in the side chain, proton-conductive membrane and method for the production thereof | |
JP2003331645A (en) | Proton conductive material | |
RU2791684C1 (en) | Phenyl-containing nanogels and process for production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4407106 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |