JP4384310B2 - Membrane cleaning method - Google Patents

Membrane cleaning method Download PDF

Info

Publication number
JP4384310B2
JP4384310B2 JP30033299A JP30033299A JP4384310B2 JP 4384310 B2 JP4384310 B2 JP 4384310B2 JP 30033299 A JP30033299 A JP 30033299A JP 30033299 A JP30033299 A JP 30033299A JP 4384310 B2 JP4384310 B2 JP 4384310B2
Authority
JP
Japan
Prior art keywords
membrane
cleaning
water side
chemical solution
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30033299A
Other languages
Japanese (ja)
Other versions
JP2001120963A (en
Inventor
新志郎 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP30033299A priority Critical patent/JP4384310B2/en
Publication of JP2001120963A publication Critical patent/JP2001120963A/en
Application granted granted Critical
Publication of JP4384310B2 publication Critical patent/JP4384310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、精密膜ろ過装置または限外膜ろ過装置等の膜ろ過装置に用いられている膜の洗浄方法に関するものである。
【0002】
【従来の技術】
上記のような膜ろ過装置においては、運転に伴い膜面に付着する物質により膜が次第に閉塞してくる。もちろん運転期間中は逆圧洗浄を行ったり、膜面に高流束の水を流したりして膜面に付着した物質を除去しているが、長期的に見ると膜のろ過能力の低下を避けることはできない。したがって長期間にわたり安定した運転を行うためには、薬品を用いた洗浄を行うことにより、定期的に膜能力を回復させることが必要である。
【0003】
図3は従来の膜の洗浄方法を概念的に示す図である。図中、1は精密ろ過膜、限外ろ過膜等の膜であり、2は薬品洗浄水槽、3は薬品洗浄ポンプである。図示のように、膜1の原水側に薬品洗浄ポンプ3により洗浄用の薬液を供給して循環させることにより、この薬液が膜1を透過してろ過水側にまで達するようにし、ろ過水側配管4により薬液を薬品洗浄水槽2に回収している。このようにして洗浄を行った後、加圧空気によりろ過水側の薬液を原水側に押し戻して排水したうえ、希釈洗浄用の水で膜ろ過装置の全体を満たし、薬液を希釈洗浄する。このように従来法の洗浄法によれば、膜ろ過装置の全体を薬液で満たした状態で洗浄を行うため、優れた洗浄効果を得ることができる。
【0004】
しかしこの従来法には次のような問題があった。
▲1▼ 膜ろ過装置の全体を薬液で満たした状態で洗浄を行うため、大量の薬液を必要とし、経済的ではない。
▲2▼ 薬液を希釈洗浄するためにも大量の水(希釈洗浄水)を必要とし、結果として大量の洗浄廃液が発生する。そのためその処理コストがかかる。
▲3▼ 原水側からろ過水側へ薬液が流れるため、洗浄時に汚れた薬液が膜の内部を汚染する可能性がある。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、薬液及び希釈洗浄水の使用量を大幅に削減することができ、洗浄時の汚れた薬液による膜全体の汚損もなく、しかも従来と同様に膜のろ過能力を回復させることができる膜の洗浄方法を提供するためになされたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の膜の洗浄方法は、精密膜ろ過装置または限外膜ろ過装置の膜を洗浄する方法であって、膜のろ過水側を0.1〜5.0×10Paの気体で加圧して膜の洗浄範囲を制御しながら、原水側に大気圧下で洗浄用薬液を循環させる第1工程と、膜のろ過水側を0.1〜5.0×10Paの気体で加圧して膜の洗浄範囲を制御しながら、原水側に大気圧下で薬液希釈洗浄水を循環させる第2工程とからなり、前記第2工程において、ろ過水側の気体の圧力を前記加圧の範囲内で上昇させ、膜内部へ浸出した薬液希釈洗浄水の一部を膜外に排出し、次にろ過水側の気体の圧力を前記加圧の範囲内で低下させ、再び薬液希釈洗浄水を膜内に浸出させる操作を繰り返し加えることを特徴とするものである。
【0007】
本発明によれば、膜のろ過水側を気体で加圧しながら原水側に洗浄用の薬液を循環させることにより、ろ過性能を低下させる原因となる物質が付着している膜の表層部分だけに薬液を接触させて洗浄を行うことができる。このため、薬液及び希釈洗浄水の使用量を大幅に削減することができ、薬液は原水側からろ過水側へ流れないので洗浄時の汚れた薬液による膜全体の汚損もない。
【0008】
【発明の実施の形態】
以下に、本発明の好ましい実施形態を示す。
図1は本発明の実施形態を示す図であるが、従来と同様に、1は精密ろ過膜、限外ろ過膜等のセラミック質の膜、2は薬品洗浄水槽、3は薬品洗浄ポンプである。しかし本発明においては従来とは異なり、膜1のろ過水側を加圧空気等の気体で加圧しながら、膜1の原水側に薬品洗浄ポンプ3により洗浄用の薬液を循環させる。( 第1工程)
【0009】
図2に拡大して示したように精密ろ過膜、限外ろ過膜等のセラミック質の膜1は層状構造を有した非対称膜であり、孔径が最も小さい表層部5においてろ過が行われ、その背後は孔径の大きい多孔質の支持層6を構成している。通常運転中は膜1の支持層6は(A)のようにろ液で満たされているが、膜1のろ過水側を空気等の気体で加圧すると、(B)のように多孔質の支持層6内のろ液は表層部5に向かって押し戻される。この状態で膜1の原水側に薬液を循環させると、薬液はろ過性能を低下させる原因となる物質7が付着している膜1の表層部分だけに接触し、この付着している物質7を溶解させ、原水側の循環流に乗せて膜外に排出させる。なお、本発明は層状構造を有しない対称膜にも適用可能である。
【0010】
薬液としては、次亜塩素酸、クエン酸、蓚酸、水酸化ナトリウム、硫酸等が使用される。その濃度は膜1の汚れの程度、除去対象物によって、1ppm から3 %程度までの範囲内で適宜決定すればよい。また循環方向は上向流でも下向流でもよく、流速は0.01〜3m/sec程度が好ましい。気体の圧力は、0.1 〜5.0 ×105Pa 程度の範囲が適当であり、その圧力によって膜1の洗浄範囲を制御することができる。すなわち、気体の圧力が高いと薬液は表層部5のみにしか浸入できないために膜1の表層部5のみが洗浄され、逆に圧力が低いと薬液は表層部5から多孔質の支持層6の内部にまで浸入し、洗浄範囲が多くなる。なお、孔径が0.1 μm の膜1の表層部5を洗浄したい場合には、1.0 〜1.7 ×105Pa が適当である。また、膜の汚れの度合いによっては、ろ過水側を加圧した状態で、薬液の循環を停止し、膜の表層部5を薬液に接触させ放置する工程を加えることも有効である。このときも、循環時と同様に、加圧する圧力によって薬液と膜1の接触範囲を制御することができる。
【0011】
また、薬液循環中、薬液接触放置中、ろ過水側圧力を上げ、膜内部へ浸出した薬液の一部を膜外に排出し、次に圧力を下げ、再び膜内に薬液を浸出させる操作を繰り返し加えることにより、膜内における薬液移動速度を上げることができ、さらに洗浄の効率を高めることが可能である。本操作はろ過水側の圧力の調整によっても行うことが可能である。
【0012】
上記した第1工程の終了後、原水側の薬液を排出し、薬液希釈洗浄工程(第2工程)に入る。第1工程で使用した薬液は膜1の表層部分にのみ残留しているために、その部分のみを希釈洗浄すればよい。従ってこの第2工程でも、膜1のろ過水側を同様に気体で加圧しながら原水側に薬液希釈洗浄用の水を循環させる。この第2工程は循環水を交換しながら複数回繰り返し、残留薬液濃度が十分に低くなるまで実施する。この第2工程でも膜1のろ過水側は加圧されているため、薬液希釈洗浄用の水を膜1の表層部分だけに接触させることができ、水の使用量を削減することができる。
【0013】
また、希釈洗浄水循環中、ろ過圧力を上げ、膜内部へ浸出した希釈洗浄水の一部を膜外に排出し、次に圧力を下げ、再び希釈洗浄水を膜内に浸出させる操作を繰り返し加えることにより、膜内における希釈洗浄水の移動速度を上げることができ、希釈洗浄の効率を高めることが可能である。本操作はろ過水側の圧力の調整によっても行うことが可能である。なお、第2工程開始前にろ過水側の圧力を、第1工程、第2工程で加えるよりも高い圧力にすることで膜表層部に含まれる液体を押し出し排水し、薬液の残留量を減らし、第2工程の希釈洗浄効率を上げることができる。
【0014】
このように、本発明によれば薬液および薬液希釈洗浄用の水の使用量を従来よりも大幅に削減することができ、薬液のコストのみならず洗浄廃液の処理コストも削減することができる。しかも膜1の表層部5に付着している物質7は確実に除去することができるため、従来と同様に膜1のろ過能力を回復させることが可能である。
【0015】
【実施例】
次に本発明の実施例を示す。
直径180mm 、長さ1000mm、孔径が0.1 μm のセラミックス質の内圧式モノリス膜を河川水を原水として3ヵ月使用したところ、使用開始時は27m3/(m2・日・98.1kPa)(at 25℃) であった補正流束が、4.8 m3/(m2・日・98.1kPa)にまで低下した。そこでこのろ過能力の低下した膜を図1に示す装置にて下記の手順で洗浄した。なおこの実施例では、膜面に付着した有機成分を溶解させるための次亜塩素酸による洗浄と、膜面に付着した金属成分を溶解させるためのクエン酸による洗浄とを実施した。
【0016】
(次亜塩素酸による洗浄)
まず通常の逆洗、ブロー工程の終了後、膜のろ過水側を1×105Pa の加圧空気で満たし、ろ過水側を完全に排水した。そしてこの加圧状態を維持したまま、原水側に3000ppm の次亜塩素酸を膜面流速5cm/secで3時間循環させ、膜面の付着物を洗浄した。その後、循環を停止させ、ろ過水側の圧力を2.0 ×105Pa に高めながら原水側を排水した。次にろ過水側の圧力を再び1×105Pa に下げ、原水側に純水を循環させて残留している次亜塩素酸を希釈洗浄し、希釈洗浄に使用した水を排水した。この希釈洗浄工程を2回繰り返して、次亜塩素酸の濃度を1ppm 以下とした。
【0017】
(クエン酸による洗浄)
次に、膜のろ過水側を1×105Pa の加圧空気で満たし、原水側に1%のクエン酸を膜面流速5cm/secで3時間循環させた。その後、循環を停止させ、ろ過水側の圧力を2.0 ×105Pa に高めながら原水側を排水した。次に、ろ過水側の圧力を再び1×105Pa に下げ、原水側に純水を循環させて残留しているクエン酸を希釈洗浄し、希釈洗浄に使用した水を排水した。この希釈洗浄工程を2回繰り返してpHが6以上になるまで希釈洗浄した。
【0018】
上記の洗浄の結果、洗浄前に4.8m3/(m2 ・日・98.1kPa)であった膜の補正流束は27m3/(m2・日・98.1kPa) にまで回復した。このとき使用した薬液量は次亜塩素酸、クエン酸あわせて50リットル、希釈洗浄水量は150 リットルであった。一方、従来の洗浄法により次亜塩素酸による洗浄とクエン酸による洗浄とを行ったところ、洗浄前に3m3/(m2・日・98.1kPa)であった膜の流束を25m3/(m2・日・98.1kPa)にまで回復させることができたが、使用した薬液量は次亜塩素酸、クエン酸あわせて100 リットル、希釈洗浄水量は300 リットルであった。このように、本発明の方法により使用した薬液量を半分にできた。
【0019】
【発明の効果】
以上に説明したように、本発明の膜の洗浄法によれば、膜のろ過水側を気体で加圧しながら原水側に洗浄用の薬液や薬液希釈洗浄用の水を循環させるようにしたので、必要部分のみを効率よく洗浄することができ、洗浄効果を低下させることなく、薬液および薬液希釈洗浄用の水の使用量を従来よりも大幅に削減することができる。従って、薬液のコストのみならず希釈洗浄廃液の処理コストも削減することができる。また薬液および薬液希釈洗浄用の水は膜の表層部分に浸入するのみであるから、ろ過水中に薬液が混入するおそれがなくなり、汚れた薬液と接触することにより膜全体が汚染されるおそれもない。
【図面の簡単な説明】
【図1】本発明の実施形態を示す概念的な断面図である。
【図2】本発明の作用を説明する膜の拡大断面図である。
【図3】従来法を示す概念的な断面図である。
【符号の説明】
1 膜、2 薬品洗浄水槽、3 薬品洗浄ポンプ、4 ろ過水側配管、5 表層部、6 支持層、7 ろ過性能を低下させる原因となる物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cleaning a membrane used in a membrane filtration device such as a precision membrane filtration device or an ultramembrane filtration device.
[0002]
[Prior art]
In the membrane filtration apparatus as described above, the membrane is gradually clogged with substances adhering to the membrane surface during operation. Of course, during the operation period, backwashing is performed or high flux water is flowed on the membrane surface to remove substances adhering to the membrane surface. It cannot be avoided. Therefore, in order to perform a stable operation over a long period of time, it is necessary to periodically restore the membrane capacity by performing cleaning with chemicals.
[0003]
FIG. 3 conceptually shows a conventional film cleaning method. In the figure, 1 is a membrane such as a microfiltration membrane or an ultrafiltration membrane, 2 is a chemical cleaning water tank, and 3 is a chemical cleaning pump. As shown in the figure, a chemical solution for cleaning is supplied to the raw water side of the membrane 1 by the chemical washing pump 3 and circulated so that the chemical solution passes through the membrane 1 and reaches the filtrate water side. The chemical solution is collected in the chemical cleaning water tank 2 by the pipe 4. After washing in this way, the chemical solution on the filtered water side is pushed back to the raw water side with pressurized air and drained, and the membrane filtration apparatus is filled with diluted washing water to dilute and wash the chemical solution. As described above, according to the conventional cleaning method, since the entire membrane filtration device is cleaned with the chemical solution, an excellent cleaning effect can be obtained.
[0004]
However, this conventional method has the following problems.
(1) Cleaning is performed in a state where the entire membrane filtration apparatus is filled with a chemical solution, which requires a large amount of chemical solution and is not economical.
(2) A large amount of water (diluted cleaning water) is required to dilute and wash the chemical solution, and as a result, a large amount of washing waste liquid is generated. Therefore, the processing cost is high.
(3) Since the chemical solution flows from the raw water side to the filtered water side, there is a possibility that the chemical solution contaminated during cleaning may contaminate the inside of the membrane.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-described conventional problems, can greatly reduce the amount of chemical solution and diluted cleaning water used, and does not cause contamination of the entire membrane due to a dirty chemical solution during cleaning. The present invention has been made in order to provide a membrane cleaning method that can restore the filtration ability of the membrane.
[0006]
[Means for Solving the Problems]
The membrane cleaning method of the present invention made to solve the above-mentioned problems is a method for cleaning a membrane of a precision membrane filtration device or an ultrafiltration membrane filtration device, wherein the filtration water side of the membrane is 0.1-5. A first step of circulating a cleaning chemical solution under atmospheric pressure to the raw water side while controlling the membrane cleaning range by pressurizing with a gas of 0.0 × 10 5 Pa, and 0.1 to 5 for the filtered water side of the membrane A second step of circulating the chemical-diluted cleaning water under atmospheric pressure to the raw water side while controlling the membrane cleaning range by pressurizing with a gas of 0.0 × 10 5 Pa . In the second step, filtered water The pressure of the gas on the side is increased within the range of pressurization, and a part of the chemical-diluted washing water leached into the membrane is discharged out of the membrane, and then the pressure of the gas on the filtered water side is within the range of pressurization. lowering the inner, it is characterized in adding Repeat to leach again chemical dilution wash water in the membrane
[0007]
According to the present invention, by circulating a chemical solution for cleaning on the raw water side while pressurizing the filtered water side of the membrane with gas, only on the surface layer portion of the membrane to which a substance causing a reduction in filtration performance is adhered. Cleaning can be performed by contacting the chemical solution. For this reason, the usage-amount of a chemical | medical solution and dilution washing | cleaning water can be reduced significantly, and since a chemical | medical solution does not flow from the raw | natural water side to the filtrate water side, there is no contamination of the whole film | membrane by the chemical | medical solution which became dirty at the time of washing | cleaning.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiments of the present invention are shown below.
FIG. 1 is a diagram showing an embodiment of the present invention. As in the prior art, 1 is a ceramic membrane such as a microfiltration membrane and an ultrafiltration membrane, 2 is a chemical cleaning water tank, and 3 is a chemical cleaning pump. . However, in the present invention, unlike the prior art, a chemical solution for cleaning is circulated by the chemical cleaning pump 3 on the raw water side of the membrane 1 while pressurizing the filtered water side of the membrane 1 with a gas such as pressurized air. (First step)
[0009]
As shown in FIG. 2, the ceramic membrane 1 such as a microfiltration membrane and an ultrafiltration membrane is an asymmetric membrane having a layered structure, and filtration is performed in the surface layer portion 5 having the smallest pore diameter. The back constitutes a porous support layer 6 having a large pore diameter. During normal operation, the support layer 6 of the membrane 1 is filled with the filtrate as shown in (A), but when the filtered water side of the membrane 1 is pressurized with a gas such as air, it becomes porous as shown in (B). The filtrate in the support layer 6 is pushed back toward the surface layer portion 5. When the chemical solution is circulated to the raw water side of the membrane 1 in this state, the chemical solution contacts only the surface layer portion of the membrane 1 to which the substance 7 that causes a reduction in filtration performance is attached, and the attached substance 7 is removed. Dissolve it and put it on the circulating stream on the raw water side to discharge it from the membrane. Note that the present invention can also be applied to a symmetric film having no layered structure.
[0010]
As the chemical solution, hypochlorous acid, citric acid, oxalic acid, sodium hydroxide, sulfuric acid and the like are used. The concentration may be appropriately determined within the range of 1 ppm to 3% depending on the degree of contamination of the film 1 and the object to be removed. The direction of circulation may be upward or downward, and the flow rate is preferably about 0.01 to 3 m / sec. The gas pressure is suitably in the range of about 0.1 to 5.0 × 10 5 Pa, and the cleaning range of the membrane 1 can be controlled by the pressure. That is, when the gas pressure is high, the chemical solution can only enter the surface layer portion 5, so that only the surface layer portion 5 of the membrane 1 is washed. Conversely, when the pressure is low, the chemical solution is removed from the surface layer portion 5 to the porous support layer 6. It penetrates into the interior, increasing the cleaning range. If the surface layer 5 of the membrane 1 having a pore diameter of 0.1 μm is to be cleaned, 1.0 to 1.7 × 10 5 Pa is appropriate. In addition, depending on the degree of contamination of the membrane, it is also effective to add a step of stopping the circulation of the chemical solution while the filtered water side is pressurized and leaving the membrane surface layer portion 5 in contact with the chemical solution. At this time, as in the circulation, the contact range between the chemical solution and the membrane 1 can be controlled by the pressure applied.
[0011]
In addition, while the chemical solution is circulating or left in contact with the chemical solution, raise the pressure on the filtered water side, discharge part of the chemical solution that has leached into the membrane, then lower the pressure, and leaching the chemical solution into the membrane again. By repeatedly adding, the moving speed of the chemical solution in the membrane can be increased, and the cleaning efficiency can be further increased. This operation can also be performed by adjusting the pressure on the filtered water side.
[0012]
After the completion of the first step, the chemical solution on the raw water side is discharged, and the chemical solution dilution cleaning step (second step) is started. Since the chemical solution used in the first step remains only in the surface layer portion of the membrane 1, only that portion needs to be diluted and cleaned. Accordingly, also in the second step, the chemical solution dilution cleaning water is circulated to the raw water side while the filtered water side of the membrane 1 is similarly pressurized with gas. This second step is repeated a plurality of times while exchanging the circulating water, and is carried out until the residual chemical concentration becomes sufficiently low. Even in this second step, the filtered water side of the membrane 1 is pressurized, so that the water for chemical dilution cleaning can be brought into contact with only the surface layer portion of the membrane 1 and the amount of water used can be reduced.
[0013]
Also, during the circulation of the diluted cleaning water, increase the filtration pressure, discharge a part of the diluted cleaning water leached out of the membrane to the outside of the membrane, then lower the pressure and repeat the operation of leaching the diluted cleaning water into the membrane again. As a result, the moving speed of the diluted cleaning water in the membrane can be increased, and the efficiency of the diluted cleaning can be increased. This operation can also be performed by adjusting the pressure on the filtered water side. Before starting the second step, the pressure on the filtered water side is set to a pressure higher than that applied in the first step and the second step, thereby pushing out and draining the liquid contained in the membrane surface layer, thereby reducing the residual amount of the chemical solution. The efficiency of dilution cleaning in the second step can be increased.
[0014]
As described above, according to the present invention, the amount of the chemical solution and the water used for diluting and cleaning the chemical solution can be greatly reduced as compared with the conventional case, and not only the cost of the chemical solution but also the processing cost of the cleaning waste liquid can be reduced. Moreover, since the substance 7 adhering to the surface layer portion 5 of the membrane 1 can be surely removed, the filtration ability of the membrane 1 can be recovered as in the conventional case.
[0015]
【Example】
Next, examples of the present invention will be described.
A ceramic internal pressure monolithic membrane with a diameter of 180 mm, a length of 1000 mm, and a pore diameter of 0.1 μm was used for 3 months using river water as raw water. At the beginning of use, 27 m 3 / (m 2 · day · 98.1 kPa) (at 25 ° C) was reduced to 4.8 m 3 / (m 2 · day · 98.1 kPa). Therefore, the membrane having the reduced filtration ability was washed by the following procedure using the apparatus shown in FIG. In this example, cleaning with hypochlorous acid for dissolving the organic component adhering to the film surface and cleaning with citric acid for dissolving the metal component adhering to the film surface were performed.
[0016]
(Cleaning with hypochlorous acid)
First, after the normal backwashing and blowing processes were completed, the filtered water side of the membrane was filled with 1 × 10 5 Pa of pressurized air, and the filtered water side was completely drained. While maintaining this pressurized state, 3000 ppm of hypochlorous acid was circulated on the raw water side at a membrane surface flow rate of 5 cm / sec for 3 hours to wash the deposits on the membrane surface. Thereafter, the circulation was stopped, and the raw water side was drained while increasing the pressure on the filtrate side to 2.0 × 10 5 Pa. Next, the pressure on the filtrate side was again lowered to 1 × 10 5 Pa, pure water was circulated on the raw water side to dilute and wash remaining hypochlorous acid, and the water used for the dilution washing was drained. This dilution washing step was repeated twice to make the concentration of hypochlorous acid 1 ppm or less.
[0017]
(Washing with citric acid)
Next, the filtered water side of the membrane was filled with 1 × 10 5 Pa of pressurized air, and 1% citric acid was circulated on the raw water side at a membrane surface flow rate of 5 cm / sec for 3 hours. Thereafter, the circulation was stopped, and the raw water side was drained while increasing the pressure on the filtrate side to 2.0 × 10 5 Pa. Next, the pressure on the filtrate water side was lowered to 1 × 10 5 Pa again, pure water was circulated to the raw water side to dilute and wash the remaining citric acid, and the water used for the dilution washing was drained. This dilution washing step was repeated twice and diluted and washed until the pH reached 6 or more.
[0018]
As a result of the above washing, the corrected flux of the film, which was 4.8 m 3 / (m 2 · day · 98.1 kPa) before washing, was restored to 27 m 3 / (m 2 · day · 98.1 kPa). The amount of the chemical solution used at this time was 50 liters including hypochlorous acid and citric acid, and the amount of diluted washing water was 150 liters. On the other hand, when cleaning with hypochlorous acid and citric acid was performed by the conventional cleaning method, the membrane flux that was 3 m 3 / (m 2 · day · 98.1 kPa) before cleaning was reduced to 25 m 3 / (m 2 · day · 98.1 kPa), the amount of chemicals used was 100 liters including hypochlorous acid and citric acid, and the diluted washing water amount was 300 liters. Thus, the amount of the chemical used by the method of the present invention was halved.
[0019]
【The invention's effect】
As explained above, according to the membrane cleaning method of the present invention, the chemical solution for cleaning and the water for chemical solution dilution cleaning are circulated to the raw water side while pressurizing the filtered water side of the membrane with gas. Only the necessary part can be efficiently cleaned, and the amount of water used for the chemical solution and the chemical solution diluted cleaning can be greatly reduced as compared with the prior art without deteriorating the cleaning effect. Therefore, not only the cost of the chemical solution but also the processing cost of the diluted cleaning waste liquid can be reduced. In addition, since the chemical solution and water for chemical solution cleaning only enter the surface layer of the membrane, there is no risk of the chemical solution entering the filtered water, and there is no risk of contamination of the entire membrane by contact with the contaminated chemical solution. .
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view showing an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a film for explaining the operation of the present invention.
FIG. 3 is a conceptual cross-sectional view showing a conventional method.
[Explanation of symbols]
1 Membrane, 2 Chemical Washing Water Tank, 3 Chemical Washing Pump, 4 Filtration Water Side Piping, 5 Surface Layer, 6 Support Layer, 7 Substances that Cause Filtration Performance to be Reduced

Claims (2)

精密膜ろ過装置または限外膜ろ過装置の膜を洗浄する方法であって、
膜のろ過水側を0.1〜5.0×10Paの気体で加圧して膜の洗浄範囲を制御しながら、原水側に大気圧下で洗浄用薬液を循環させる第1工程と、
膜のろ過水側を0.1〜5.0×10Paの気体で加圧して膜の洗浄範囲を制御しながら、原水側に大気圧下で薬液希釈洗浄水を循環させる第2工程とからなり、
前記第2工程において、ろ過水側の気体の圧力を前記加圧の範囲内で上昇させ、膜内部へ浸出した薬液希釈洗浄水の一部を膜外に排出し、次にろ過水側の気体の圧力を前記加圧の範囲内で低下させ、再び薬液希釈洗浄水を膜内に浸出させる操作を繰り返し加えることを特徴とする膜の洗浄方法。
A method of cleaning a membrane of a precision membrane filtration device or an ultramembrane filtration device,
A first step of circulating a cleaning chemical at atmospheric pressure to the raw water side while pressurizing the filtered water side of the membrane with a gas of 0.1 to 5.0 × 10 5 Pa and controlling the cleaning range of the membrane;
A second step of circulating the chemical-diluted cleaning water under atmospheric pressure to the raw water side while pressurizing the filtered water side of the membrane with a gas of 0.1 to 5.0 × 10 5 Pa and controlling the cleaning range of the membrane; Consists of
In the second step, the pressure of the filtered water side gas is raised within the range of the pressurization, and a part of the chemical-diluted washing water leached into the membrane is discharged out of the membrane, and then the filtered water side gas The membrane cleaning method is characterized in that an operation of lowering the pressure in the range of the pressurization and repeatedly leaching the chemical diluted cleaning water into the membrane is repeated .
第1工程の終了後、第2工程を複数回繰り返す請求項1記載の膜の洗浄方法。The film cleaning method according to claim 1, wherein the second step is repeated a plurality of times after completion of the first step.
JP30033299A 1999-10-22 1999-10-22 Membrane cleaning method Expired - Fee Related JP4384310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30033299A JP4384310B2 (en) 1999-10-22 1999-10-22 Membrane cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30033299A JP4384310B2 (en) 1999-10-22 1999-10-22 Membrane cleaning method

Publications (2)

Publication Number Publication Date
JP2001120963A JP2001120963A (en) 2001-05-08
JP4384310B2 true JP4384310B2 (en) 2009-12-16

Family

ID=17883507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30033299A Expired - Fee Related JP4384310B2 (en) 1999-10-22 1999-10-22 Membrane cleaning method

Country Status (1)

Country Link
JP (1) JP4384310B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR421501A0 (en) 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
AUPR692401A0 (en) 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
JP4560701B2 (en) * 2002-03-05 2010-10-13 東洋紡績株式会社 Cleaning method for membrane filter module
AUPS300602A0 (en) 2002-06-18 2002-07-11 U.S. Filter Wastewater Group, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
JP4611982B2 (en) 2003-08-29 2011-01-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Backwash method
KR20070003783A (en) 2003-11-14 2007-01-05 유.에스. 필터 웨이스트워터 그룹, 인크. Improved module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
NZ553742A (en) 2004-09-14 2010-09-30 Siemens Water Tech Corp Methods and apparatus for removing solids from a membrane module
CA2579894A1 (en) 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
EP2394731A1 (en) * 2004-12-24 2011-12-14 Siemens Industry, Inc. Cleaning in membrane filtration systems
WO2006066350A1 (en) 2004-12-24 2006-06-29 Siemens Water Technologies Corp. Simple gas scouring method and apparatus
CA2605757A1 (en) 2005-04-29 2006-11-09 Siemens Water Technologies Corp. Chemical clean for membrane filter
JP4882518B2 (en) * 2005-05-31 2012-02-22 東レ株式会社 Method for manufacturing medical separation membrane and medical separation membrane module
CN101287538B (en) 2005-08-22 2013-03-06 西门子工业公司 An assembly for water filtration using a tube manifold to minimise backwash
WO2008051546A2 (en) 2006-10-24 2008-05-02 Siemens Water Technologies Corp. Infiltration/inflow control for membrane bioreactor
EP2091633B1 (en) * 2006-11-06 2013-01-09 NGK Insulators, Ltd. Method for manufacturing a separation membrane-porous material composite
EP2129629A1 (en) 2007-04-02 2009-12-09 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
KR101239780B1 (en) 2007-05-29 2013-03-06 지멘스 인더스트리 인코포레이티드 Membrane cleaning with pulsed airlift pump
WO2010009518A1 (en) 2008-07-24 2010-01-28 Siemens Water Technologies Corp. Frame system for membrane filtration modules
JP5251472B2 (en) * 2008-12-09 2013-07-31 東レ株式会社 Membrane module cleaning method
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
WO2011136888A1 (en) 2010-04-30 2011-11-03 Siemens Industry, Inc Fluid flow distribution device
EP2618916A4 (en) 2010-09-24 2016-08-17 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
KR20140097140A (en) 2011-09-30 2014-08-06 에보쿠아 워터 테크놀로지스 엘엘씨 Isolation valve
EP2866922B1 (en) 2012-06-28 2018-03-07 Evoqua Water Technologies LLC A potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
GB2520871B (en) 2012-09-26 2020-08-19 Evoqua Water Tech Llc Membrane securement device
AU2013323934A1 (en) 2012-09-27 2015-02-26 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
HUE061765T2 (en) 2013-10-02 2023-08-28 Rohm & Haas Electronic Mat Singapore Pte Ltd Device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JP2001120963A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP4384310B2 (en) Membrane cleaning method
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
JP2945894B2 (en) How to remove cleaning chemicals
JP3702419B2 (en) Membrane filtration module cleaning method and membrane filtration apparatus
JP2006281022A (en) Method and apparatus for cleaning of separation membrane module
JP4840285B2 (en) Cleaning method for submerged membrane module
JP2012120936A (en) Washing method of membrane filter, and cleaning equipment for the same
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP2015020081A (en) Membrane module cleaning method and membrane module cleaning apparatus
JP4631287B2 (en) Permeation membrane cleaning method
JP3569605B2 (en) Water recovery method from wastewater containing colloidal silica
JP3856376B2 (en) Water treatment device and its operation method
JP2006314973A (en) Washing method of filter membrane
JP2013034938A (en) Method for washing membrane module
JP3775778B2 (en) Membrane filtration device backwashing method
JP2004130307A (en) Method for filtration of hollow fiber membrane
JP4156984B2 (en) Cleaning method for separation membrane module
JP2007014829A (en) On-line washing method
JP5251472B2 (en) Membrane module cleaning method
JP2006198531A (en) Operating method of hollow fiber membrane module
JPH10118469A (en) Method of cleaning immersion filtration membrane with chemical
JP2004130211A (en) Filtration unit, filter, and method for controlling the filter
CN115916384B (en) Method for cleaning separation membrane
JP2006043655A (en) Water treating apparatus and operation method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4384310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees