JP4375493B2 - Method for producing porous glass base material - Google Patents

Method for producing porous glass base material Download PDF

Info

Publication number
JP4375493B2
JP4375493B2 JP2008305866A JP2008305866A JP4375493B2 JP 4375493 B2 JP4375493 B2 JP 4375493B2 JP 2008305866 A JP2008305866 A JP 2008305866A JP 2008305866 A JP2008305866 A JP 2008305866A JP 4375493 B2 JP4375493 B2 JP 4375493B2
Authority
JP
Japan
Prior art keywords
burner
glass
reciprocating
movement
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008305866A
Other languages
Japanese (ja)
Other versions
JP2009057280A (en
Inventor
敏弘 大石
元宣 中村
朋浩 石原
達郎 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008305866A priority Critical patent/JP4375493B2/en
Publication of JP2009057280A publication Critical patent/JP2009057280A/en
Application granted granted Critical
Publication of JP4375493B2 publication Critical patent/JP4375493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass preform capable of reducing a tapered portion formed at the end part of a glass particle deposit without increasing the number of burners. <P>SOLUTION: The method of manufacturing the glass preform comprises continuously depositing glass particles on the surface of a starting rod by: disposing a plurality of burners for synthesizing the glass particles so as to face the rotating starting rod; reciprocating relatively the starting rod and the burners; moving a returning position of the reciprocal movement in a certain direction; and repeating an operation of reversely moving the returning position when the returning position is moved to a predetermined position, wherein a moving distance for one reciprocating is less than two times a distance between the burners. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、出発ロッドとガラス微粒子合成用バーナとを相対移動(往復移動)させながら、出発ロッド上に径方向にガラス微粒子を堆積させる多孔質ガラス母材(ガラス微粒子堆積体)の製造方法に関し、特に両端に形成されるテーパ部が少ない多孔質ガラス母材が得られる多孔質ガラス母材の製造方法に関する。   The present invention relates to a method for producing a porous glass base material (glass particulate deposit) in which glass particulates are deposited in a radial direction on a starting rod while relatively moving (reciprocating) a starting rod and a glass particulate synthesis burner. In particular, the present invention relates to a method for manufacturing a porous glass base material from which a porous glass base material with few tapered portions formed at both ends is obtained.

大型の多孔質ガラス母材を高速で製造する方法として、図7に示すように容器4内の出発ロッド1に対向させて複数のガラス微粒子合成用バーナ7を一定間隔で配置し、回転する出発ロッド1と前記バーナ7の列を相対的に往復移動させ(図には出発ロッド1を上下に往復移動させる例を示した)、出発ロッド1の表面にガラス微粒子を層状に堆積させて多孔質ガラス母材(ガラス微粒子堆積体)6を得る方法(多層付け法)がある。
このような多孔質ガラス母材の製造方法においては、品質向上の観点から多孔質ガラス母材の長手方向にわたって外径変動を少なくすること、生産性の観点から多孔質ガラス母材の端部に形成されるテーパ部(非有効部)の長さをできるだけ短くすること、などが主要な課題であり、これらの課題を解決するための種々の方法が提案されている。
As a method for producing a large porous glass base material at high speed, as shown in FIG. 7, a plurality of glass fine particle synthesis burners 7 are arranged at regular intervals so as to face a starting rod 1 in a container 4 and start rotating. The rod 1 and the row of the burners 7 are reciprocally moved relative to each other (in the figure, the starting rod 1 is reciprocated up and down), and glass fine particles are deposited in layers on the surface of the starting rod 1 to be porous. There is a method (multi-layering method) for obtaining a glass base material (glass fine particle deposit) 6.
In such a method for producing a porous glass base material, it is possible to reduce fluctuations in the outer diameter over the longitudinal direction of the porous glass base material from the viewpoint of quality improvement, and at the end of the porous glass base material from the viewpoint of productivity. Making the length of the formed tapered portion (ineffective portion) as short as possible is a major problem, and various methods for solving these problems have been proposed.

例えば、往復移動の片道の移動距離をバーナの間隔分とし、往復移動ごとに往復移動の開始位置を移動させていき、所定の位置まで移動した後は逆方向へ移動させて最初の往復移動開始位置に戻すことで実質的に堆積時間が長くなっている往復移動の端部をガラス微粒子堆積体全体に分散し、ガラス微粒子堆積体全体の実質ガラス微粒子の堆積時間やバーナ火炎等のガラス微粒子堆積体への当たり方の変動を平均的に一致させることでガラス微粒子の堆積量を長手方向に等しくし、外径変動を低減する方法が提案されている(特許文献1参照)。   For example, the one-way travel distance of the reciprocating movement is set to the burner interval, the start position of the reciprocating movement is moved every reciprocating movement, and after moving to a predetermined position, the reciprocating movement is started in the reverse direction to start the first reciprocating movement. The end of the reciprocating movement, which has substantially increased the deposition time by returning to the position, is dispersed throughout the glass particulate deposit, and the glass particulate deposition time of the entire glass particulate deposit and the deposition of glass particulates such as burner flames. A method has been proposed in which the amount of deposition of glass fine particles is made equal in the longitudinal direction by making the fluctuations in contact with the body equal to each other, thereby reducing fluctuations in the outer diameter (see Patent Document 1).

同じく外径変動を低減する方法として、特許文献1記載の方法をベースとし、ガラス微粒子堆積体全域をモニタできるCCDカメラと中央情報処理装置を用いてガラス微粒子堆積体全体の外径変動を測定し、ガラス微粒子堆積体全域を単独でトラバースできる補助バーナによってガラス微粒子の堆積量の少ない部分のガラス微粒子の堆積を補うことで外径変動の低減を行う方法も提案されている(特許文献2参照)。
また、トラバースの開始位置を移動させながらガラス微粒子の堆積を行う際に、ガラス微粒子堆積体全体に長手方向に垂直にクリーンエアを供給し、ガラス微粒子堆積体長手方向の堆積時温度勾配を低減するようにする方法がある(特許文献3参照)。
Similarly, as a method of reducing the outer diameter fluctuation, based on the method described in Patent Document 1, the outer diameter fluctuation of the entire glass fine particle deposit is measured using a CCD camera and a central information processing device that can monitor the entire area of the glass fine particle deposit. Further, there has been proposed a method of reducing fluctuations in the outer diameter by supplementing the deposition of glass particles in a portion where the amount of accumulated glass particles is small by an auxiliary burner capable of traversing the entire glass particle deposit body alone (see Patent Document 2). .
In addition, when depositing glass particles while moving the traverse start position, clean air is supplied vertically to the entire glass particle deposit to reduce the temperature gradient during deposition in the longitudinal direction of the glass particle deposit. There is a method to do so (see Patent Document 3).

さらに、往復移動の折り返し位置の移動を円滑に行わせる方法として、バーナ列を第1移動軸上に設置して往復移動させ、前記第1移動軸を第2移動軸上に設置して、各移動軸の往復移動を一定間隔の単純往復移動としつつ各移動軸の往復距離、往復移動速度、又は距離と速度の両方を異ならせることで折り返し位置の移動を行わせる方法が提案されており(特許文献4、特許文献5参照)、この方法によれば、簡単な機械的方法のみでバーナ列の往復移動の折り返し位置を移動させることができるとしている。   Further, as a method for smoothly moving the turn-back position of the reciprocating movement, the burner row is installed on the first moving shaft and moved back and forth, and the first moving shaft is installed on the second moving shaft, A method has been proposed in which the reciprocating movement of the moving shaft is changed to a simple reciprocating movement at a constant interval, and the reciprocating distance of each moving shaft, the reciprocating moving speed, or both the distance and speed are made different to move the folding position ( According to this method, the folding position of the reciprocating movement of the burner row can be moved only by a simple mechanical method.

特開平3−228845号公報JP-A-3-228845 特開平10−158025号公報Japanese Patent Laid-Open No. 10-158025 特開平4−260618号公報JP-A-4-260618 特開2001−19441号公報Japanese Patent Laid-Open No. 2001-19441 特開2001−31431号公報JP 2001-31431 A

特許文献1に示されるようなトラバースの折り返し位置を移動させる方法の場合、出発ロッドとバーナとの相対位置、堆積層数の1例を示すと図8のようになり、ガラス微粒子堆積体の両端に位置するバーナにより堆積するガラス微粒子の堆積形状がテーパ状となる(端部ほど堆積層数が少なくなる)。
図8はバーナ列の1番外側の外側バーナ2と2番目のバーナ3の部分を示したもので(反対側の外側バーナとその内側のバーナについても同様の状況となる)、右側の数値は折り返し位置が始めの位置に戻るまでの一連の往復移動(1セットの往復移動)の間に出発ロッド1上に形成されるガラス微粒子の堆積層数を示している。図8の例は1セットの往復移動間に10往復する例であり、堆積層数は最大20層である。図の20層より下の部分は3番目以降のバーナによる堆積があるため、下端部を除いて一定の20層となる。原理的には端のバーナによるガラス微粒子が堆積する部分のみ堆積層数が少なくなるが、ガラス微粒子堆積体の端部ではガラス微粒子がテーパ状に堆積するので端から2番目に位置するバーナによるガラス微粒子も外側に流れて該ガラス微粒子の多くがテーパ状に堆積し、非有効部であるテーパ部が増大する結果となる。同じ往復移動方式を採用している特許文献2や特許文献3の方法でも同形状のテーパ部が形成される。
In the case of the method for moving the folding position of the traverse as shown in Patent Document 1, FIG. 8 shows an example of the relative position of the starting rod and the burner and the number of deposited layers, as shown in FIG. The deposition shape of the glass fine particles deposited by the burner located in the position is tapered (the number of deposited layers decreases toward the end).
FIG. 8 shows the outermost burner 2 and the second burner 3 on the outermost side of the burner row (the same situation applies to the outer and inner burners on the opposite side). The number of deposited layers of glass particles formed on the starting rod 1 during a series of reciprocating movements (one set of reciprocating movements) until the folding position returns to the initial position is shown. The example of FIG. 8 is an example in which 10 reciprocations are performed during one set of reciprocating movements, and the maximum number of deposited layers is 20. In the portion below the 20th layer in the figure, since there is deposition by the third and subsequent burners, there are 20 constant layers except for the lower end. In principle, the number of deposited layers is reduced only in the portion where the glass fine particles are deposited by the burner at the end, but the glass by the burner located second from the end because the glass fine particles are deposited in a tapered shape at the end of the glass fine particle deposit. The fine particles also flow to the outside, so that most of the glass fine particles accumulate in a tapered shape, resulting in an increase in the tapered portion that is an ineffective portion. The taper portion having the same shape is also formed by the methods of Patent Document 2 and Patent Document 3 that employ the same reciprocating movement method.

また、ガラス微粒子堆積工程を終了させる時期は、定常部の堆積層数が均一になる瞬間が最適である。しかし、折り返し位置を密に分散させると堆積層数が均一になるまでに堆積する層数が増加するので、ガラス微粒子堆積量の調整が難しくなる。そのため前記特許文献1には、堆積量が目標重量に近くなったところで折り返し位置の分散間隔を大きくし、ガラス微粒子堆積量の調整を行うことが開示されているが、この方法は折り返し位置の分散による外径安定化効果を低下させることになる。   In addition, the time when the glass fine particle deposition step is completed is optimal at the moment when the number of deposited layers in the steady portion becomes uniform. However, if the turn-back positions are dispersed densely, the number of deposited layers increases until the number of deposited layers becomes uniform, and it becomes difficult to adjust the amount of deposited glass particles. Therefore, Patent Document 1 discloses that when the deposition amount approaches the target weight, the folding position dispersion interval is increased to adjust the glass particle deposition amount. This will reduce the effect of stabilizing the outer diameter.

特許文献1〜3の方法とはガラス微粒子の堆積形態が異なる特許文献4及び5の方法では、2つの移動軸によりバーナを移動させるため、制御系が複雑になる。また、定常部の堆積層数は2つの移動軸の移動距離と移動速度の差によって異なるが、堆積層数は均一とはならず、堆積層数が異なる部分が交互に出現するか、これに加えてさらに堆積層数が異なる部分が出現する形となる。この方法では、例えば、第1及び第2移動軸の移動距離をバーナ間隔の整数倍とすれば堆積層数が異なる部分が交互に出現する形となり、交互に出現する間隔を細かくとれば外径安定化が可能である。しかしながらこの方法でも前記特許文献1の方法と同様に両端部にはバーナ間隔の整数倍の長さの非有効部が形成される。   In the methods of Patent Documents 4 and 5, which are different from the methods of Patent Documents 1 to 3, in which the deposition form of the glass fine particles is different, the burner is moved by two moving axes, so that the control system becomes complicated. In addition, the number of deposited layers in the stationary part varies depending on the difference between the moving distance and the moving speed of the two moving axes, but the number of deposited layers is not uniform, and the parts with different deposited layers appear alternately. In addition, a portion with a different number of deposited layers appears. In this method, for example, if the moving distance of the first and second moving axes is an integral multiple of the burner interval, the portions with different numbers of deposited layers appear alternately, and if the alternately appearing interval is fine, the outer diameter Stabilization is possible. However, even in this method, as in the method of Patent Document 1, ineffective portions having a length that is an integral multiple of the burner interval are formed at both ends.

このテーパ部の増大という問題を解決する方法の1つとしてバーナ間隔を狭め、その分バーナの本数を増やすことが考えられる。このようにすれば外側のバーナ及び2番目のバーナによるガラス微粒子の堆積間隔が小さくなり、テーパ部の低減が可能である。しかし、バーナ間隔を小さくすると同じ長さの有効部を持つガラス微粒子堆積体を製造するためにはバーナ本数を増やすことが必要となる。そのため、ガスの供給系を増やすことになり、設備コストを増加させることになる。
さらに、バーナ火炎どうしの干渉が発生すると各バーナの堆積効率が不安定になり、外径変動を発生するため、バーナ間隔を短くするのにも限界があり、飛躍的なテーパ部削減効果は望めない。
As one method for solving the problem of an increase in the tapered portion, it is conceivable to narrow the burner interval and increase the number of burners accordingly. By doing so, the deposition interval of the glass particles by the outer burner and the second burner is reduced, and the taper portion can be reduced. However, if the burner interval is reduced, it is necessary to increase the number of burners in order to produce a glass particulate deposit having an effective portion of the same length. Therefore, the gas supply system is increased, and the equipment cost is increased.
In addition, if the burner flames interfere with each other, the deposition efficiency of each burner becomes unstable and the outer diameter fluctuates, so there is a limit to shortening the burner interval, and a dramatic taper reduction effect can be expected. Absent.

本発明は、このような従来技術における問題点を解決し、バーナ本数を増やすことなく、ガラス微粒子堆積体の端部に形成されるテーパ部分を低減できる多孔質ガラス母材の製造方法を提供することを目的とする。   The present invention solves such problems in the prior art and provides a method for producing a porous glass base material that can reduce the taper portion formed at the end of the glass particulate deposit without increasing the number of burners. For the purpose.

本発明は上記課題を解決する手段として、次の(1)〜(10)に示す構成を採るものである。
(1)回転する出発ロッドに対向させて複数本のガラス微粒子合成用バーナを等間隔に配置し、前記出発ロッドとガラス微粒子合成用バーナとを平行に相対的に復路から往路の折り返し位置が初期の位置を超えないように往復運動させ、往復運動の往路から復路の折り返し位置を一定方向に移動させ、前記往路から復路の折り返し位置が所定の位置に移動したところで逆方向に移動させるようにし、各バーナが前記初期の位置に戻るまでの操作を1セットとし、順次この操作を繰り返してバーナで合成されるガラス微粒子を出発ロッドの表面に順次堆積させて多孔質ガラス母材を製造する方法において、1セットの平均往復移動距離をバーナ間隔の2倍未満とし、1セットの中の各バーナが初期の位置に戻った時点で、定常部の堆積層数が長さ方向で均一となるように設定することを特徴とする、多孔質ガラス母材の製造方法。
The present invention employs the following configurations (1) to (10) as means for solving the above-described problems.
(1) A plurality of glass particle synthesizing burners are arranged at equal intervals so as to face the rotating starting rod, and the starting rod and the glass particle synthesizing burner are relatively parallel to each other in the initial position of the return path from the return path. Reciprocating so as not to exceed the position, moving the return position of the return path from the forward path of the reciprocating movement in a certain direction, and moving the return position of the return path from the forward path to a predetermined position to move in the reverse direction, In a method of manufacturing a porous glass base material by setting the operation until each burner returns to the initial position as one set and sequentially repeating this operation to deposit glass fine particles synthesized by the burner sequentially on the surface of the starting rod. The average reciprocating distance of one set is less than twice the burner interval, and when each burner in the set returns to the initial position, the number of deposited layers in the stationary part is long. And setting to be uniform in direction, a manufacturing method of a porous glass preform.

(2)往復運動の往路から復路の折り返し位置の1回毎の移動距離を等間隔とすることを特徴とする前記(1)の多孔質ガラス母材の製造方法。
(3)往復運動の往路から復路の折り返し位置が所定の位置まで移動したとき、次の移動で各バーナを初期の位置まで戻す操作を1セットとすることを特徴とする前記(1)の多孔質ガラス母材の製造方法。
(4)最初の移動で各バーナを所定の位置まで移動させて折り返し、以後は往復運動の往路から復路の折り返し位置を各バーナの初期の位置の方向に移動させるようにし、各バーナが初期の位置に戻るまでの操作を1セットとすることを特徴とする前記(1)の多孔質ガラス母材の製造方法。
(5)1セットの中で往復運動の往路から復路の折り返し位置の移動距離を変化させることを特徴とする前記(1)の多孔質ガラス母材の製造方法。
(2) The method for producing a porous glass base material according to the above (1), wherein the distance traveled each time from the forward path of the reciprocating motion to the return position of the return path is equal.
(3) When the return position of the return path from the forward path of the reciprocating movement has moved to a predetermined position, the operation of returning each burner to the initial position by the next movement is set as one set. Method for producing a glass base material.
(4) In the first movement, each burner is moved to a predetermined position and turned back. Thereafter, the return position of the return path is moved from the return path to the initial position of each burner. The method for producing a porous glass base material according to (1) above, wherein the operation until returning to the position is set as one set.
(5) The method for producing a porous glass base material according to (1), wherein the moving distance of the return position of the return path from the forward path of the reciprocating motion is changed in one set.

(6)往復運動の往路から復路の折り返し位置の移動範囲がバーナ間隔のn倍(nは1〜3の整数)であることを特徴とする前記(1)又は(2)の多孔質ガラス母材の製造方法。
(7)往復運動の往路から復路の折り返し位置の移動範囲がバーナ間隔のn倍(nは1〜3の整数)よりも1セットにおける折り返し位置の最小移動距離分短い距離であることを特徴とする前記(1)、(3)〜(5)のいずれか1つの多孔質ガラス母材の製造方法。
(8)1セットにおける往復運動の往路から復路の折り返し位置の1回の平均移動距離がバーナ間隔の(m+1)分の一(mは自然数)の長さであることを特徴とする前記(1)〜(7)のいずれか1つの多孔質ガラス母材の製造方法。
(6) The porous glass mother according to (1) or (2) above, wherein the range of movement from the reciprocating forward path to the return path folding position is n times the burner interval (n is an integer of 1 to 3). A method of manufacturing the material.
(7) The moving range of the return position from the forward path to the return path of the reciprocating motion is shorter than the burner interval by n times (n is an integer of 1 to 3) by the minimum moving distance of the return position in one set. The method for producing a porous glass base material according to any one of (1) and (3) to (5).
(8) The above-described (1), wherein the average moving distance of one turn from the forward path of the reciprocating motion to the return path in one set is a length of (m + 1) times the burner interval (m is a natural number). )-(7) The manufacturing method of any one porous glass base material.

(9)前記1セットにおける往復運動の往路から復路の折り返し位置の1回の平均移動距離をAmmとし、1セットの平均往復移動距離をDmmとし、Aが5〜60mmの範囲内にあり、かつ、Dが4×A≦D≦240の範囲内にあることを特徴とする前記(8)の多孔質ガラス母材の製造方法。
(10)往復運動の速度とガラス微粒子堆積終了までの間に堆積するガラス微粒子の重量との関係から、前記ガラス微粒子堆積終了時期で目標とするガラス微粒子堆積量を達成できる往復移動速度を決定し、その速度でガラス微粒子の堆積を行うことによって、前記ガラス微粒子堆積終了時期で目標堆積量が達成できるようにすることを特徴とする前記(1)〜(9)のいずれかひとつの多孔質ガラス母材の製造方法。
(9) The average moving distance of one time of the return position of the reciprocating movement from the reciprocating movement in the one set is Amm, the average reciprocating movement distance of one set is Dmm, and A is in the range of 5 to 60 mm, and , D is in the range of 4 × A ≦ D ≦ 240. (8) The method for producing a porous glass base material according to (8) above.
(10) From the relationship between the speed of the reciprocating motion and the weight of the glass fine particles deposited until the end of the glass fine particle deposition, the reciprocating speed capable of achieving the target glass fine particle deposition amount at the end of the glass fine particle deposition is determined The porous glass according to any one of (1) to (9), wherein the target deposition amount can be achieved at the completion time of the glass particulate deposition by depositing the glass particulates at that speed. A manufacturing method of a base material.

本発明者らはテーパ状部分の長さをできるだけ短くするため、往復移動の方式について種々検討を行い、1セットの平均往復移動距離をバーナ間隔の2倍未満とし、好ましくは往復移動の折り返し位置の移動距離をAmm、1セットの平均往復移動距離をDmmとしたときに、Aが5〜60mmの範囲にあり、かつDが4×A≦D≦240の範囲となるようにすることにより、効率的にテーパ部分の少ない多孔質ガラス母材が製造できることを見出した。
ここで1セットの平均往復移動距離とは、1セットのトータル移動距離を1セットの往復回数で割った平均的な往復移動の距離である。
また、往復移動の折り返し位置とは、往路(バーナが初期の位置から離れる方向へ相対移動する)から復路(バーナが初期の位置の方向へ相対移動する)へ折り返す位置である。
なお、本発明の方法においては1セットの平均往復移動距離をバーナ間隔の2倍未満とし、かつ、1回の往復移動毎に折り返し位置を移動させるようにしているので、1セット中の往復移動において、往路及び復路の移動距離がバーナ間隔の整数倍となることはない。
In order to shorten the length of the tapered portion as much as possible, the present inventors have made various studies on the reciprocating method, and set the average reciprocating distance of one set to less than twice the burner interval, and preferably the reciprocating position of the reciprocating movement. By setting A to be in the range of 5 to 60 mm and D being in the range of 4 × A ≦ D ≦ 240, where Amm is the moving distance of Amm and the average reciprocating distance of one set is Dmm, It has been found that a porous glass base material having a small taper portion can be produced efficiently.
Here, one set of average reciprocation distance is an average reciprocation distance obtained by dividing one set of total movement distances by the number of reciprocations of one set.
The return position of the reciprocating movement is a position where the return path (the burner moves relatively in the direction of the initial position) from the forward path (the burner moves relatively in the direction away from the initial position).
In the method of the present invention, the average reciprocating distance of one set is less than twice the burner interval, and the folding position is moved for each reciprocating movement. In this case, the travel distance of the forward path and the return path does not become an integral multiple of the burner interval.

前記の従来技術では基本的に平均往復移動距離はバーナ間隔の2倍としている。これらの従来技術に比較して本発明の方法には次のような利点がある。
先ず、母材全長に折り返し点を同じ間隔で分散する1セットの揺動往復移動で定常部に堆積する層の総数は本発明の方が常に少ない(目標重量の達成精度が向上する)。また、母材両端にできる非有効部の長さは、本発明の方が常に短い(堆積効率向上が可能)。さらに、従来技術ではバーナ間隔に比例して母材両端の非有効部は長くなるが、本発明の最適な実施態様では、バーナ間隔の距離に依存せず、非有効部長を最小にすることが可能である(バーナ間隔を長くし、母材を大型化しても非有効部長を最小にすることが可能)。
In the above-described prior art, the average reciprocating distance is basically twice the burner interval. Compared to these prior arts, the method of the present invention has the following advantages.
First, the total number of layers deposited on the stationary part by one set of swinging reciprocating movements in which the turning points are dispersed at the same interval over the entire length of the base material is always smaller in the present invention (the accuracy of achieving the target weight is improved). In addition, the length of the ineffective portion formed at both ends of the base material is always shorter in the present invention (deposition efficiency can be improved). Further, in the prior art, the ineffective portions at both ends of the base metal are lengthened in proportion to the burner interval, but in the optimal embodiment of the present invention, the ineffective portion length can be minimized without depending on the distance of the burner interval. Yes (even if the burner interval is increased and the base material is enlarged, the ineffective portion length can be minimized).

本発明の方法における往復移動の基本的な方式としては、次の1〜4の移動形態がある。第1の移動形態は往復移動の折り返し位置の1回毎の移動距離を略等間隔とする方式である。第2の移動形態は往復移動を繰り返して往復移動の折り返し位置が所定の位置まで移動したときに、次の移動で各バーナを初期の位置まで戻すようにする操作を1セットとする方式であり、第3の移動形態はこれとは逆に最初の移動で各バーナを所定の位置まで移動させて折り返し、以後は往復移動の折り返し位置を各バーナの初期の位置の方向に移動させるようにし、各バーナが初期の位置に戻るまでの操作を1セットとする方式である。また、第4の移動形態は1セット中で往復移動の折り返し位置の移動距離を変化させる方式である。   The basic methods of reciprocation in the method of the present invention include the following movement modes 1 to 4. The first movement mode is a system in which the movement distance for each turn of the return position of the reciprocating movement is approximately equal. The second movement mode is a system in which a set of operations for returning each burner to the initial position by the next movement when the return position of the reciprocation moves to a predetermined position by repeating the reciprocation. In the third movement mode, on the contrary, each burner is moved to a predetermined position by the first movement and turned back. Thereafter, the turn-back position of the reciprocating movement is moved in the direction of the initial position of each burner. This is a system in which the operation until each burner returns to the initial position is set as one set. The fourth movement mode is a method in which the movement distance of the return position of the reciprocating movement is changed in one set.

前記第1の移動形態では、1セットの中で折り返し位置が所定の位置まで移動した時点と各バーナが初期の位置に戻った時点の2点で定常部の堆積層数が長さ方向で略均一となる。
この第1の移動形態において最適な実施形態は、往復移動を往路2×A、復路をAとし、折り返し位置の移動を同方向に繰返し、バーナ間隔折り返し位置が移動したら往復移動の往路は2×Aのままとし、復路のみ3×Aとし、逆方向に折り返し位置を移動していき一番初めの位置に戻るまでの往復移動を1セットとし、これを繰り返しながらガラス微粒子の堆積を行うことである(往復移動片道の平均距離2×A、1回の折り返し位置の移動距離はAmm)。このようにすれば堆積層数が足りない部分の長さは、多孔質ガラス母材の両端に各2×Aずつ存在するだけであり、最もテーパが短くなる。この原理的に最も短いテーパ長を原理テーパ長という。この場合は原理テーパ長が2×Aである。ただし、現実的には、テーパの形状に沿ってガラス微粒子が流れるため、テーパ形状は2×Aより大きくなる。往路3×A、復路2×A、バーナ間隔折り返し位置移動後、往路3×A、復路4×A(往復移動片道の平均距離3×A)とすると堆積層数が足りない部分は、多孔質ガラス母材の両端各3×Aとなる(原理テーパ長3×A)。しかし、原理テーパ長が120mm程度以下では、テーパの傾斜に沿ってガラス微粒子が流れ、堆積効率が悪くなる影響の方が支配的であり、実際のテーパ長は、原理テーパ長が2Aのときと3Aのときではほとんど変化しない。
In the first movement mode, the number of deposited layers in the stationary part is approximately in the length direction at two points when the folding position moves to a predetermined position in one set and when each burner returns to the initial position. It becomes uniform.
In this first movement mode, the optimum embodiment is that the reciprocating movement is the forward path 2 × A, the return path is A, the return position movement is repeated in the same direction, and the reciprocating movement forward path is 2 × when the burner interval folding position is moved. A is set to 3xA for the return path only, and the return position is moved in the opposite direction and the reciprocating movement until returning to the very first position is set as one set, and this is repeated to deposit the glass particles. Yes (average distance 2 × A for one-way reciprocating movement, moving distance for one turn-back position is Amm). In this way, the length of the portion where the number of deposited layers is insufficient is only 2 × A at both ends of the porous glass base material, and the taper is the shortest. This theoretically shortest taper length is called the principle taper length. In this case, the principle taper length is 2 × A. However, in reality, since the glass particles flow along the taper shape, the taper shape is larger than 2 × A. When the forward path 3 × A, the backward path 2 × A, and the burner interval turn-back position movement, the forward path 3 × A and the backward path 4 × A (average distance 3 × A of the reciprocating one-way movement) are used. Both ends of the glass base material are 3 × A (principle taper length 3 × A). However, when the principle taper length is about 120 mm or less, glass particles flow along the inclination of the taper, and the influence of the deterioration of the deposition efficiency is more dominant. The actual taper length is the same as when the principle taper length is 2A. Almost no change at 3A.

ただし、往復移動片道の平均距離を4×A、5×A、・・・と増やせば、原理テーパ長も4×A、5×A、・・・と増加していく。実際に堆積層数が足りない部分の長さが増加することで、テーパに沿ってガラス微粒子が流れる影響以上にテーパ長が長くなり始めるのは原理テーパ長がある程度長くなったときであり、折り返し位置の移動距離をAmmとし、往復移動片道の平均距離を示す係数をBとしたときに(B+1)×A=Cmm(B=1、2、3・・・)を定義すれば、テーパ長増加が顕著になり始めるCが存在すると考えられる。   However, if the average distance of the reciprocating one-way is increased to 4 × A, 5 × A,..., The principle taper length also increases to 4 × A, 5 × A,. When the length of the part where the number of deposited layers is actually increased, the taper length starts to increase beyond the influence of the flow of glass particles along the taper when the taper length becomes longer to some extent. The taper length increases if (B + 1) × A = Cmm (B = 1, 2, 3...) Is defined when the moving distance of the position is Amm and the coefficient indicating the average distance of the reciprocating one-way is B. It is considered that there is C that starts to become noticeable.

このCは、バーナの形状などにより、多少変化すると考えられるが、少なくとも120mm程度以内にしておけば、著しくテーパ長が長くなるのを抑えることができる。このことから望ましい範囲は、折り返し位置での外径変動を抑えるために5mm≦A≦60mmであり、2×A≦(B+1)×A≦120の範囲が最適と考えられる。ここで下限2×Aは、原理的な下限である。また、外径変動を抑えるために更に好適なAは、5≦A≦40である。往復移動の平均距離Dは、D=2×(B+1)×Amm(B=1、2、・・・)なので(B+1)×A=D÷2となり、上記した望ましい範囲2×A≦(B+1)×A≦120に代入し、この不等式を往復移動の平均距離に整理すると4×A≦D≦240となる。   This C is considered to change somewhat depending on the shape of the burner, etc., but if it is within at least about 120 mm, it is possible to prevent the taper length from becoming significantly long. Therefore, a desirable range is 5 mm ≦ A ≦ 60 mm in order to suppress the outer diameter fluctuation at the turn-back position, and a range of 2 × A ≦ (B + 1) × A ≦ 120 is considered optimal. Here, the lower limit 2 × A is a theoretical lower limit. Further, A more suitable for suppressing fluctuations in the outer diameter is 5 ≦ A ≦ 40. Since the average distance D of the reciprocating movement is D = 2 × (B + 1) × Amm (B = 1, 2,...), It is (B + 1) × A = D ÷ 2, and the above desired range 2 × A ≦ (B + 1) ) × A ≦ 120 and substituting this inequality into the average distance of reciprocating movement results in 4 × A ≦ D ≦ 240.

第2の移動形態において最適な形態は、往復移動を往路2×A、復路をAとし、折り返し位置の移動を同方向に繰返し、バーナ間隔よりAmm遠い位置まで折り返し位置が移動したら往復移動の復路をバーナ間隔+Aとして一番初めの位置に戻すまでの往復移動を1セットとし、これを繰り返しながらガラス微粒子の堆積を行うことである(往復移動片道の平均距離2×A、バーナ間隔よりもAmm遠い位置まで折り返し位置が移動するまでは折り返し位置の1回の移動距離がAmm)。
第3の移動形態において最適な形態は、最初の移動でバーナ間隔よりAmm遠い位置まで移動させ、以後は復路を2×A、往路をA、折り返し位置の1回の移動距離をAmmとして往復移動を繰り返し一番初めの位置に戻すまでの往復移動を1セットとし、これを繰り返しながらガラス微粒子の堆積を行う形態である(往復移動片道の平均距離2×A)。
また、第4の移動形態における最適な実施形態は、往路を2×A、復路をA、折り返し位置の1回の移動距離をAmmとし、折り返し位置がバーナ間隔よりAmm短い位置まで移動した後は往路をA、復路を2×A、折り返し位置の1回の移動距離をAmmとする往復移動を基本とし、1セットの中で折り返し位置の1回の移動距離がAよりも大きくなる移動を含む形態である(往復移動片道の平均距離2×A)。
In the second movement form, the optimum form is that the reciprocating movement is the forward path 2 × A, the return path is A, the movement of the folding position is repeated in the same direction, and when the folding position moves to a position that is A mm farther than the burner interval, the return path of the reciprocating movement Is a set of reciprocating movements until the first position is returned to the first position as burner interval + A, and this is repeated to deposit glass particles (average distance 2 × A of reciprocating one-way, Amm over burner interval) Until the folding position moves to a far position, the distance of one movement of the folding position is Amm).
In the third movement form, the optimum form is to move to a position that is Amm farther than the burner interval in the first movement, and thereafter reciprocate with 2xA for the return path, A for the forward path, and Amm as the single movement distance at the return position. This is a form in which the reciprocating movement until the first position is repeatedly returned is set as one set, and the glass particles are deposited while repeating this (average distance 2 × A of the one-way reciprocating movement).
Further, in the fourth movement mode, the optimum embodiment is that the forward path is 2 × A, the return path is A, the one-time movement distance of the folding position is Amm, and the folding position is moved to a position shorter by A mm than the burner interval. Based on a reciprocating movement where the forward path is A, the return path is 2 × A, and the one-time movement distance of the folding position is Amm, including movement in which one movement distance of the folding position is larger than A in one set. It is a form (average distance 2 * A of a one-way reciprocation).

前記第2〜4の最適移動形態においては、堆積層数の足りない部分の長さは多孔質ガラス母材の両端に各Aずつ存在するだけであり(原理テーパ長A)、テーパ長を最も短くすることができる。ただし、現実的にはテーパ形状はAよりも大きくなる。前記第1の移動形態と同様に原理テーパ長が2A、3Aのように短いときには実際のテーパ長はほとんど変化しない。
また、往復移動片道の平均移動距離を示す係数をBとしたときに(B+1)×A=Cmm(B=1、2、3・・・)を定義すれば、テーパ長増加が顕著になり始めるCが存在する。
第1の移動形態同様、Cは120mm程度以内が望ましく、外径安定化のための5≦A≦60mmを考慮すれば、往復移動の平均距離Dの望ましい範囲は、第1のパターンと同様に導出され、4×A≦D≦240となる。
In the second to fourth optimum movement modes, the length of the portion where the number of deposited layers is insufficient is only A at each end of the porous glass base material (principle taper length A), and the taper length is the most. Can be shortened. However, in reality, the taper shape is larger than A. Similar to the first movement mode, when the principle taper length is as short as 2A or 3A, the actual taper length hardly changes.
Further, when the coefficient indicating the average moving distance of the one-way reciprocating movement is defined as B, if (B + 1) × A = Cmm (B = 1, 2, 3,...) Is defined, an increase in taper length starts to become remarkable. C exists.
As in the first movement mode, C is preferably within about 120 mm. If 5 ≦ A ≦ 60 mm for stabilizing the outer diameter is taken into consideration, the desirable range of the average distance D for reciprocation is the same as in the first pattern. And 4 × A ≦ D ≦ 240.

前記特許文献1以降の発明においては、往復移動距離(片道)は略バーナ間隔が下限とされている。これは多層付け法が1回の往復移動毎に有効部長の全範囲にガラス層を形成しなければならないとの考え方に基づいていることを示している。しかし、本発明では1回の往復移動によって有効部長の全範囲にガラス層を形成させなくても堆積厚さの差が顕著になる前に均一化がなされればよいとの発想の転換を行い、折り返し位置の移動を行う1セット中に少なくとも1回以上均一厚のガラス微粒子堆積層が形成されるようにしている。この考え方の違いによる効果が、低減が難しいと考えられ、発明開示がされていなかった、非有効部(テーパ状部)の大幅な低減を可能とした。   In the inventions of Patent Document 1 and subsequent documents, the reciprocating distance (one way) has a substantially lower burner interval as the lower limit. This indicates that the multi-layering method is based on the idea that a glass layer must be formed over the entire range of the effective length for each reciprocation. However, in the present invention, the idea is changed that it is only necessary to make uniform before the difference in deposition thickness becomes significant without forming a glass layer in the entire range of the effective part length by one reciprocating movement. In addition, a glass fine particle deposition layer having a uniform thickness is formed at least once or more in one set for moving the folding position. The effect due to the difference in the concept makes it possible to significantly reduce the ineffective portion (tapered portion), which is considered difficult to reduce and has not been disclosed.

本発明の方法においては、往復移動の折り返し位置を初期のバーナの位置に最も近い位置から最も遠くなる位置(所定の位置)までの間で往復移動毎に段階的に移動させる。定常部(有効部)の平滑化のためには、この折り返し位置を移動させる所定の距離(初期のバーナの位置に最も近い折り返し位置と最も遠い折り返し位置との間の距離)を、前記第1の移動形態においてはバーナ間隔の略n倍(nは1〜3の整数)、また、前記第2〜第4の移動形態においてはバーナ間隔の略n倍(nは1〜3の整数)よりも1セットにおける最小移動距離分短くするのが好ましく、特にnが1の場合が最も非有効部の長さを短くすることができ、堆積効率がよく好ましい。なお、前記第2又は第3の移動形態のように、バーナが初期の位置と最も遠い位置との間を1回の動作で移動するパターンを含む場合には、その折り返し位置では1つのバーナで加熱された後、隣接するバーナで加熱されるまでの時間が短くなり、その部分の温度が高くなり嵩密度が大きくなる可能性があるが、nが1の場合に比べてnが2又は3の場合にはその影響が緩和され平滑性が向上する効果がある。   In the method of the present invention, the return position of the reciprocating movement is moved stepwise for each reciprocating movement from the position closest to the initial burner position to the position farthest (predetermined position). In order to smooth the stationary portion (effective portion), a predetermined distance (a distance between the folding position closest to the initial burner position and the farthest folding position) for moving the folding position is set as the first distance. In the movement mode, approximately n times the burner interval (n is an integer of 1 to 3), and in the second to fourth movement modes, approximately n times the burner interval (n is an integer of 1 to 3). Also, it is preferable to shorten the distance by the minimum moving distance in one set. Particularly, when n is 1, the length of the ineffective portion can be shortened most, and the deposition efficiency is preferable. When the burner includes a pattern in which the burner moves between the initial position and the farthest position in one operation as in the second or third movement mode, one burner is used at the folded position. After being heated, the time until it is heated by the adjacent burner is shortened, and the temperature of the portion may be increased and the bulk density may be increased. However, n is 2 or 3 as compared with the case where n is 1. In this case, the influence is alleviated and the smoothness is improved.

従来技術と同様にnを大きくすると有効部の平滑性が向上するが非有効部の長さは長くなり堆積効率が低下する。しかし、本発明では従来技術と同じ整数倍を選択して平滑性を従来技術と同程度に保っても、従来技術に比較して非有効部の長さは略バーナ間隔分短くなり、堆積効率の低下は少ない。
平均往復移動距離をバーナ間隔の2倍とする従来技術では、折り返し位置を移動させる所定の距離がバーナ間隔のn倍の場合、非有効部の長さはバーナ間隔のn倍となるが、平均往復移動距離がバーナ間隔の2倍未満である本発明の場合は、非有効部の長さはn=1の場合はバーナ間隔より小さくなり、n=2又は3の場合はそれぞれ略バーナ間隔又はバーナ間隔の2倍よりも若干大きくなるだけであり、従来技術のバーナ間隔のn倍に比較して短くなっている。nは2以下が好ましく、n=2では従来技術の2倍と同じ平滑性を保ちつつ、非有効部の長さは略バーナ間隔程度となる。さらにnが1のときは従来技術では実現できなかったバーナ間隔以下の非有効部長となり、非有効部を最も短くすることができるので最も好ましい。
As in the prior art, when n is increased, the smoothness of the effective portion is improved, but the length of the ineffective portion is increased and the deposition efficiency is lowered. However, in the present invention, even if the same integer multiple as in the prior art is selected and the smoothness is maintained at the same level as that in the prior art, the length of the ineffective portion is shortened by about the burner interval compared to the prior art, and the deposition efficiency There is little decline.
In the conventional technique in which the average reciprocating distance is twice the burner interval, when the predetermined distance for moving the folding position is n times the burner interval, the length of the ineffective portion is n times the burner interval. In the case of the present invention in which the reciprocating distance is less than twice the burner interval, the length of the ineffective portion is smaller than the burner interval when n = 1, and is approximately equal to the burner interval when n = 2 or 3, respectively. It is only slightly larger than twice the burner interval and is shorter than n times the prior art burner interval. n is preferably 2 or less, and when n = 2, while maintaining the same smoothness as twice that of the prior art, the length of the ineffective portion is about the burner interval. Further, when n is 1, the ineffective portion length is less than the burner interval that could not be realized by the prior art, and the ineffective portion can be shortened to the shortest, which is most preferable.

前記第1の移動形態における出発ロッドとバーナとの相対位置の経時変化の状況の1例を図1に示す。図1は従来技術の例を示す図8との比較が容易なようにバーナ間隔内を5区画に分割した例について、バーナ列の1番外側の外側バーナ2と2番目のバーナ3の部分を示したもので(反対側の外側バーナとその内側のバーナについても同様の状況となる)、右側の数値は折り返し位置が始めの位置に戻るまでの一連の往復移動(1セットの往復移動)の間に出発ロッド1上に形成されるガラス微粒子の堆積層数を示している。   FIG. 1 shows an example of a situation of a change with time of the relative position between the starting rod and the burner in the first movement form. FIG. 1 shows an example in which the inside of the burner interval is divided into five sections so that the comparison with FIG. 8 showing the prior art example is easy, and the outer burner 2 on the outermost side and the second burner 3 on the outermost side of the burner row are shown. (The same situation applies to the outer and inner burners on the opposite side.) The value on the right is a series of reciprocating movements (one set of reciprocating movements) until the return position returns to the starting position. The number of deposited layers of glass fine particles formed on the starting rod 1 in the meantime is shown.

図1の例では、1セットの往復移動の前半においては1方向へ2区画分移動して1区画戻し、後半においては1方向へ移動は2区画分のままとし、3区画分戻すようにして初期の相対位置に戻るようにしている。この場合の堆積層数は図の右側に示したように2,6,8,8,8・・・となっており、有効部の堆積層数より少ない部分は、母材端部のバーナ間隔内のわずかに2区画のみである。
この折り返し方式の場合は、さらに分散効果を高めるためにバーナ間隔内の分割数を増やしていっても、堆積層数が少ない部分は母材の端に位置する2区画のみしか存在しない。すなわち、分割数を増やすと堆積層数の少ない部分の長さはさらに短くなっていく。
In the example of FIG. 1, in the first half of one set of reciprocating movements, it moves by two sections in one direction and returns one section, and in the second half, the movement in one direction remains as two sections and returns by three sections. It returns to the initial relative position. In this case, the number of deposited layers is 2, 6, 8, 8, 8... As shown on the right side of the figure, and the portion smaller than the number of deposited layers in the effective portion is the burner interval at the end of the base material. There are only 2 sections.
In the case of this folding method, even if the number of divisions within the burner interval is increased in order to further enhance the dispersion effect, there are only two sections located at the end of the base material where the number of deposited layers is small. That is, when the number of divisions is increased, the length of the portion having a small number of deposited layers is further shortened.

例えば、200mmのバーナ間隔に対し、40mmずつ折り返し位置を移動しているのが図1の分割数5区間(200mm÷40mm=5区間)に相当する。この場合、堆積層数が足りない部分の長さは40mm×2区間=80mmとなるが、より分散効果を向上させるために折り返し位置が20mm間隔で分散されるようにすると、200mmのバーナ間隔内は10区間(200mm÷20mm=10区間)に分割されることになり、堆積層数が足りない部分の長さは20mm×2区間=40mmとなる。1回ごとの1方向への移動距離がほぼバーナ間隔である従来技術では、200mmの全間隔において堆積層数が足りなかったのに対し、この方法によれば堆積層数が足りない部分の長さはわずかに40mmである。この堆積層数が足りない部分の長さを減少させる効果は、バーナ間隔が長くなるほど大きくなる。   For example, moving the folding position by 40 mm with respect to the burner interval of 200 mm corresponds to the division number of 5 sections (200 mm ÷ 40 mm = 5 sections) in FIG. In this case, the length of the portion where the number of deposited layers is insufficient is 40 mm × 2 sections = 80 mm. However, if the folding positions are dispersed at intervals of 20 mm in order to further improve the dispersion effect, the length within the 200 mm burner interval. Is divided into 10 sections (200 mm ÷ 20 mm = 10 sections), and the length of the portion where the number of deposited layers is insufficient is 20 mm × 2 sections = 40 mm. In the conventional technique in which the movement distance in one direction at each time is almost the burner interval, the number of deposited layers is insufficient at the entire interval of 200 mm, but according to this method, the length of the portion where the number of deposited layers is insufficient. The height is only 40 mm. The effect of reducing the length of the portion where the number of deposited layers is insufficient becomes larger as the burner interval becomes longer.

さらに第1の移動形態によれば、往復移動の折り返し位置を母材全長に分散させるための一連の往復移動の1セットにかかる堆積層数が少ないという効果がある。すなわち、図8の従来技術では1セットの間に有効部の層数で20層ガラス微粒子を堆積させるのに対し、図1の本発明の方法では8層しか堆積しない。
図1の方式では1セットでの有効部での堆積層数は常に8層である。これに対し従来の製法では分散効果を高めるために折り返し位置の移動距離を短くしたり、バーナ間隔を長くしたりすると、1セットに要する有効部の堆積層数が増加していく。例えば5区画の場合で20層、6区画の場合で24層、7区画の場合で28層と増加していく。
平均往復移動距離がバーナ間隔の2倍である従来技術とこの第1の移動形態では、半セット毎に折り返し位置の分散と有効部の堆積層数が均一となる時点があり、この時点でガラス微粒子堆積工程を終了させるのが好ましい。このときの従来技術と比較した堆積層数(≒堆積ガラス重量)の差(第1の移動形態の堆積層数÷従来技術の堆積層数)は、5区画の場合で2/5、6区画の場合で1/3、7区画の場合で2/7となり、第1の移動形態では外径安定化のために折り返し位置の分散数を増やしてもガラス微粒子堆積量を細かく調整することができる。
Furthermore, according to the first movement mode, there is an effect that the number of deposited layers required for one set of a series of reciprocating movements for dispersing the return position of the reciprocating movements over the entire length of the base material is small. That is, in the prior art of FIG. 8, 20 glass particles are deposited with the number of effective portions in one set, whereas in the method of the present invention of FIG. 1, only 8 layers are deposited.
In the method of FIG. 1, the number of deposited layers in the effective portion in one set is always 8 layers. On the other hand, in the conventional manufacturing method, if the moving distance of the folding position is shortened or the burner interval is lengthened in order to enhance the dispersion effect, the number of deposited layers of effective portions required for one set increases. For example, it increases to 20 layers in the case of 5 sections, 24 layers in the case of 6 sections, and 28 layers in the case of 7 sections.
In the conventional technique in which the average reciprocation distance is twice the burner interval and this first movement mode, there are times when the dispersion of the folding position and the number of deposited layers of the effective portion become uniform every half set. It is preferable to end the fine particle deposition step. In this case, the difference in the number of deposited layers (≈deposited glass weight) compared to the prior art (number of deposited layers in the first moving form ÷ number of deposited layers in the prior art) is 2/5 and 6 compartments in the case of 5 compartments. In the case of 1/3, it becomes 2/7 in the case of 7 sections, and in the first moving form, the amount of deposited glass fine particles can be finely adjusted even if the number of dispersion at the folding position is increased in order to stabilize the outer diameter. .

次に前記第2の移動形態における出発ロッドとバーナとの相対位置の経時変化の状況の1例を図2に示す。図2は従来技術の例を示す図8との比較が容易なようにバーナ間隔内を5区画に分割した例について、バーナ列の1番外側の外側バーナ2と2番目のバーナ3の部分を示したもので(反対側の外側バーナとその内側のバーナについても同様の状況となる)、右側の数値は折り返し位置が始めの位置に戻るまでの一連の往復移動(1セットの往復移動)の間に出発ロッド1上に形成されるガラス微粒子の堆積層数を示している。   Next, FIG. 2 shows an example of the change over time of the relative position between the starting rod and the burner in the second movement mode. 2 shows an example in which the burner interval is divided into five sections so that the comparison with FIG. 8 showing the prior art example is easy. (The same situation applies to the outer and inner burners on the opposite side.) The value on the right is a series of reciprocating movements (one set of reciprocating movements) until the return position returns to the starting position. The number of deposited layers of glass fine particles formed on the starting rod 1 in the meantime is shown.

図2の例では、1セットの往復移動の前半においては1方向へ2区画分移動して1区画戻し、往復移動の折り返し位置がバーナ間隔分より1区画遠い位置まで移動した後、次の移動で初期の相対位置に戻るようにしている。バーナ間隔分よりも1区画遠い所定の位置まで、往復移動の折り返し位置は1区画ずつ移動する。この場合の堆積層数は図の右側に示したように2,4,4,4,4・・・となっており、有効部の堆積層数より少ない部分は、母材端部のバーナ間隔内のわずかに1区画のみである。
この折り返し方式においても、第1の移動形態と同様にさらに分散効果を高めるためにバーナ間隔内の分割数を増やしていっても、堆積層数が少ない部分は母材の端に位置する1区画のみしか存在しない。すなわち、分割数を増やすと堆積層数の少ない部分の長さはさらに短くなっていく。
In the example of FIG. 2, in the first half of one set of reciprocating movements, they move in two directions in one direction and return one section, and the return position of the reciprocating movement moves to a position one section farther than the burner interval, and then the next movement To return to the initial relative position. The turn-back position of the reciprocating movement moves by one section to a predetermined position that is one section away from the burner interval. The number of deposited layers in this case is 2, 4, 4, 4, 4... As shown on the right side of the figure, and the portion less than the number of deposited layers in the effective portion is the burner interval at the end of the base material. There is only one section.
In this folding method as well, even if the number of divisions within the burner interval is increased in order to further increase the dispersion effect, as in the first moving mode, the portion where the number of deposited layers is small is one section located at the end of the base material. Only exists. That is, when the number of divisions is increased, the length of the portion having a small number of deposited layers is further shortened.

例えば、200mmのバーナ間隔に対し、40mmずつ折り返し位置を移動しているのが図2の分割数5区間(200mm÷40mm=5区間)に相当する。この場合、堆積層数が足りない部分の長さは40mm×1区間=40mmとなるが、より分散効果を向上させるために折り返し位置が20mm間隔で分散されるようにすると、200mmのバーナ間隔内は10区間(200mm÷20mm=10区間)に分割されることになり、堆積層数が足りない部分の長さは20mm×1区間=20mmとなる。
さらに、図2に示した第2の移動形態も第1の移動形態と同様、折り返し位置の分散数を増やしても1セット中に堆積する有効部の堆積層数は増加することはなく常に4層であり、第1の移動形態と同様にガラス微粒子堆積量を細かく調整することが可能である。
For example, shifting the folding position by 40 mm with respect to the burner interval of 200 mm corresponds to the division number of 5 sections (200 mm ÷ 40 mm = 5 sections) in FIG. 2. In this case, the length of the portion where the number of deposited layers is insufficient is 40 mm × 1 section = 40 mm. However, if the folding positions are dispersed at intervals of 20 mm in order to further improve the dispersion effect, the length within the 200 mm burner interval. Is divided into 10 sections (200 mm ÷ 20 mm = 10 sections), and the length of the portion where the number of deposited layers is insufficient is 20 mm × 1 section = 20 mm.
Further, in the second movement form shown in FIG. 2, as in the first movement form, the number of effective layers deposited in one set does not increase even if the number of dispersions at the folding position is increased, and always 4. It is a layer, and it is possible to finely adjust the glass particle deposition amount as in the first movement mode.

次に前記第3の移動形態における出発ロッドとバーナとの相対位置の経時変化の状況の1例を図3に示す。図3は従来技術の例を示す図8との比較が容易なようにバーナ間隔内を5区画に分割した例について、バーナ列の1番外側の外側バーナ2と2番目のバーナ3の部分を示したもので(反対側の外側バーナとその内側のバーナについても同様の状況となる)、右側の数値は折り返し位置が始めの位置に戻るまでの一連の往復移動(1セットの往復移動)の間に出発ロッド1上に形成されるガラス微粒子の堆積層数を示している。   Next, FIG. 3 shows an example of the change with time of the relative position between the starting rod and the burner in the third movement mode. FIG. 3 shows an example in which the inside of the burner interval is divided into five sections so that the comparison with FIG. 8 showing an example of the prior art is easy. The outermost burner 2 and the second burner 3 on the outermost side of the burner row are shown. (The same situation applies to the outer and inner burners on the opposite side.) The value on the right is a series of reciprocating movements (one set of reciprocating movements) until the return position returns to the starting position. The number of deposited layers of glass fine particles formed on the starting rod 1 in the meantime is shown.

図3の例では、1セットの最初の移動でバーナ間隔分より1区画遠い位置まで移動させた後、折り返して2区画分移動させ、以後1区画分移動して2区画戻す操作を繰り返して初期の相対位置に戻るようにしている。最初の移動で各バーナが所定の位置まで移動して折り返し、以後は往復移動の折り返し位置が各バーナの初期の位置の方向に1区画ずつ移動する。この場合の堆積層数は図の右側に示したように2,4,4,4,4・・・となっており、有効部の堆積層数より少ない部分は、母材端部のバーナ間隔内のわずかに1区画のみである。
この折り返し方式においても、第1、第2の移動形態と同様にさらに分散効果を高めるためにバーナ間隔内の分割数を増やしていっても、堆積層数が少ない部分は母材の端に位置する1区画のみしか存在しない。すなわち、分割数を増やすと堆積層数の少ない部分の長さはさらに短くなっていく。
図3に示した第3の移動形態も第1、第2の移動形態と同様、折り返し位置の分散数を増やしても1セット中に堆積する有効部の堆積層数は増加することはなく常に4層であり、第1、第2の移動形態と同様にガラス微粒子堆積量を細かく調整することが可能である。
In the example of FIG. 3, the first movement of one set is moved to a position one block farther than the burner interval, then it is folded and moved by two blocks, and after that, the operation of moving one block and then returning two blocks is repeated to initialize It returns to the relative position. In the first movement, each burner moves to a predetermined position and turns back. Thereafter, the turn-back position of the reciprocating movement moves by one section in the direction of the initial position of each burner. The number of deposited layers in this case is 2, 4, 4, 4, 4... As shown on the right side of the figure, and the portion less than the number of deposited layers in the effective portion is the burner interval at the end of the base material. There is only one section.
Even in this folding method, even if the number of divisions in the burner interval is increased in order to further increase the dispersion effect as in the first and second movement modes, the portion with a small number of deposited layers is positioned at the end of the base material. There is only one section. That is, when the number of divisions is increased, the length of the portion having a small number of deposited layers is further shortened.
As in the first and second movement forms, the third movement form shown in FIG. 3 does not always increase the number of deposited layers of the effective portion deposited in one set even if the number of dispersions at the folding position is increased. There are four layers, and it is possible to finely adjust the amount of deposited glass fine particles as in the first and second moving modes.

次に前記第4の移動形態における出発ロッドとバーナとの相対位置の経時変化の状況の例を図4(a)及び(b)に示す。図4は従来技術の例を示す図8との比較が容易なようにバーナ間隔内を5区画に分割した例について、バーナ列の1番外側の外側バーナ2と2番目のバーナ3の部分を示したもので(反対側の外側バーナとその内側のバーナについても同様の状況となる)、右側の数値は折り返し位置が始めの位置に戻るまでの一連の往復移動(1セットの往復移動)の間に出発ロッド1上に形成されるガラス微粒子の堆積層数を示している。   Next, FIGS. 4A and 4B show an example of the change over time of the relative position between the starting rod and the burner in the fourth movement mode. 4 shows an example in which the inside of the burner interval is divided into five sections so that the comparison with FIG. 8 showing an example of the prior art is easy, and the outer burner 2 and the second burner 3 on the outermost side of the burner row are shown. (The same situation applies to the outer and inner burners on the opposite side.) The value on the right is a series of reciprocating movements (one set of reciprocating movements) until the return position returns to the starting position. The number of deposited layers of glass fine particles formed on the starting rod 1 in the meantime is shown.

図4(a)の例では、1セットの往復移動の前半においては1方向へ2区画分移動して1区画戻す操作を2回繰り返した後、4区画移動させて往復移動の折り返し位置がバーナ間隔分より1区画遠い位置まで移動するようにし、後半においては復路2区画、往路1区画の往復移動を2回繰り返した後、次の移動で4区画戻すことにより初期の相対位置に戻るようにしている。往復移動の折り返し位置の移動距離は、1セットの間に1区画、3区画、1区画、3区画と変化する。この場合の堆積層数は図の右側に示したように2,4,4,4,4・・・となっており、有効部の堆積層数より少ない部分は、母材端部のバーナ間隔内のわずかに1区画のみである。図4(b)の例は折り返し位置の移動距離を変化させるパターンが異なるだけで堆積層の形成状態は同じである。
この折り返し方式においても、第1〜第3の移動形態と同様にさらに分散効果を高めるためにバーナ間隔内の分割数を増やしていっても、堆積層数が少ない部分は母材の端に位置する1区画のみしか存在しない。すなわち、分割数を増やすと堆積層数の少ない部分の長さはさらに短くなっていく。
図4に示した第4の移動形態も第1〜3の移動形態と同様、折り返し位置の分散数を増やしても1セット中に堆積する有効部の堆積層数は増加することはなく常に4層であり、第1〜3の移動形態と同様にガラス微粒子堆積量を細かく調整することが可能である。
In the example of FIG. 4 (a), in the first half of one set of reciprocating movements, the operation of moving two sections in one direction and returning one section is repeated twice, then moving four sections and the return position of the reciprocating movement is the burner. Move to a position one section farther than the interval, and in the second half, repeat the reciprocating movement of two sections on the return path and one section on the outbound path, and then return to the initial relative position by returning four sections on the next movement. ing. The moving distance of the turn-back position of the reciprocating movement changes as 1 section, 3 sections, 1 section, and 3 sections during one set. The number of deposited layers in this case is 2, 4, 4, 4, 4... As shown on the right side of the figure, and the portion less than the number of deposited layers in the effective portion is the burner interval at the end of the base material. There is only one section. In the example of FIG. 4B, the formation state of the deposited layer is the same except that the pattern for changing the moving distance of the folding position is different.
Even in this folding method, even if the number of divisions in the burner interval is increased in order to further increase the dispersion effect as in the first to third movement modes, the portion with a small number of deposited layers is located at the end of the base material. There is only one section. That is, when the number of divisions is increased, the length of the portion having a small number of deposited layers is further shortened.
In the fourth movement form shown in FIG. 4, as in the first to third movement forms, the number of effective layers deposited in one set does not increase even if the dispersion number of the folding position is increased. It is a layer, and it is possible to finely adjust the glass particle deposition amount as in the first to third moving modes.

本発明の方法においては、1セットにおける往復移動の折り返し位置の1回の平均移動距離がバーナ間隔の略(m+1)分の一(mは自然数)の長さとなるようにするのが好ましい。こうすることによって往復移動の1セットを初期の往復移動開始位置で終了させることができ、テーパ部分の長さを最も短くすることができる。1回毎の移動距離がバーナ間隔の略(m+1)分の一(mは自然数)の長さを大きく外れると、隣接バーナとの重なり部分で堆積層数が変わることになるので好ましくない。ここでバーナ間隔の略(m+1)分の一(mは自然数)としたのは、「バーナ間隔±バーナ太さ」の(m+1)分の一(mは自然数)を意味する。
なお、この往復移動の折り返し位置の移動間隔は5〜60mmの範囲となるようにするのが好ましく、さらに好ましくは5〜40mmの範囲である。バーナの折り返し位置の移動間隔が5mm未満では、折り返し位置の分散効果が発現する前に外径変動が生じ、60mmを超えると折り返し位置の分散効果が小さくなる。
In the method of the present invention, it is preferable that the average moving distance of one turn of the reciprocating position of the reciprocating movement in one set is approximately 1 / (m + 1) (m is a natural number) of the burner interval. By doing so, one set of reciprocation can be terminated at the initial reciprocation start position, and the length of the tapered portion can be minimized. It is not preferable that the moving distance for each time greatly deviates from the length of about (m + 1) (m is a natural number) of the burner interval, because the number of deposited layers changes at the overlapping portion with the adjacent burner. Here, approximately one (m + 1) of the burner interval (m is a natural number) means one (m + 1) (m is a natural number) of “burner interval ± burner thickness”.
In addition, it is preferable that the movement interval of the turn-back position of the reciprocating movement is in the range of 5 to 60 mm, and more preferably in the range of 5 to 40 mm. If the movement interval of the folding position of the burner is less than 5 mm, the outer diameter fluctuates before the folding effect of the folding position appears, and if it exceeds 60 mm, the dispersion effect of the folding position becomes small.

さらに外径変動を小さくするために、最も分散効果を得られていると考えられる1セット中に存在する有効部の堆積層数と折り返し位置の分散密度が均一な時点で、ガラス微粒子堆積工程を終了させるのが望ましい。この堆積終了最適時点は従来技術及び第1の移動形態では1セット中に2回存在し、第2〜4の移動形態では1回存在する。すなわち、ガラス微粒子堆積終了時期を、第1の移動形態においては1セット中に2回存在する有効部の堆積層数と折り返し位置の分散が均一となる時点が望ましく、第2〜4の移動形態においては前記往復移動が整数セット終了した時点に設定するのが望ましい。このように設定しても、本発明の方法では有効部の堆積層数と折り返し位置の分散が均一となる時点から次の有効部の堆積層数と折り返し位置の分散が均一となる時点までの間に堆積されるガラス微粒子の層数が従来法に比べて少ないので、ガラス微粒子堆積量を細かく制御することが可能である。   Furthermore, in order to reduce the fluctuation of the outer diameter, the glass fine particle deposition step is performed when the number of effective layer deposition layers present in one set considered to have the most dispersion effect and the dispersion density at the turn-back position are uniform. It is desirable to terminate. This optimum point in time for the end of deposition exists twice in one set in the conventional technique and the first movement form, and once in the second to fourth movement forms. That is, it is desirable that the glass fine particle deposition end timing is the time when the number of effective layers deposited twice in one set and the distribution of the folding positions are uniform in the first movement mode. It is desirable to set at the time when the reciprocating movement is finished with the integer set. Even with this setting, in the method of the present invention, from the time when the number of deposited layers of the effective portion and the distribution of the folding positions becomes uniform, the time from when the distribution of the number of the deposited layers of the next effective portion and the folding positions becomes uniform. Since the number of glass fine particles deposited in between is smaller than that of the conventional method, it is possible to finely control the amount of glass fine particles deposited.

一方、従来の製法では、分散効果を高めるために折り返し位置の移動距離を短くすると母材全長への分散に要するガラス微粒子の堆積層数が増加する。往復移動の折り返し点を均一に分散させる移動方式において、ガラス微粒子の堆積を終了させる時期は1セット中に存在する有効部のガラス微粒子堆積層数と折り返し位置の分散密度が均一となる時点とするのが最適である。この終了に最適な時点から次の終了最適時点までの間に堆積されるガラス微粒子の重量をMkgとするとガラス微粒子の堆積が終了した時点のガラス微粒子堆積体の重量はMkgきざみでしか調整できない。従来の製法ではこの終了最適時点の間の堆積層数が増えるほどMを小さくするのが難しくなるので、所望する重量のガラス微粒子の堆積体を得ることが難しい。本発明ではMを小さくでき所望する重量のガラス微粒子堆積体を得ることができる。   On the other hand, in the conventional manufacturing method, if the moving distance of the folding position is shortened in order to enhance the dispersion effect, the number of deposited layers of glass particles required for dispersion over the entire length of the base material increases. In the moving system in which the turning points of the reciprocating movement are uniformly dispersed, the timing for ending the deposition of the glass fine particles is the time when the number of the fine particle deposited layers in the effective portion existing in one set and the dispersion density of the turning positions are uniform. Is the best. Assuming that the weight of the glass fine particles deposited from the optimal time for the end to the next optimal optimal time is Mkg, the weight of the glass fine particle deposit at the time when the deposition of the glass fine particles is completed can be adjusted only in increments of Mkg. In the conventional manufacturing method, it becomes more difficult to reduce M as the number of deposited layers increases during the optimal time point of completion, so that it is difficult to obtain a glass particle deposit having a desired weight. In the present invention, M can be reduced, and a glass particulate deposit with a desired weight can be obtained.

さらに、往復移動の速度とガラス微粒子堆積終了までの間に堆積するガラス微粒子の重量との関係から、前記ガラス微粒子堆積終了時期で目標とするガラス微粒子堆積量を達成できる往復移動速度を決定し、その速度でガラス微粒子の堆積を行うことによって、前記ガラス微粒子堆積終了時点で目標堆積量が達成できるようになり、より効果的なガラス微粒子堆積量制御が可能となる。   Furthermore, from the relationship between the speed of the reciprocating movement and the weight of the glass fine particles deposited before the end of the glass fine particle deposition, the reciprocating speed at which the target glass fine particle deposition amount can be achieved at the end of the glass fine particle deposition is determined, By depositing the glass particulates at that speed, the target deposition amount can be achieved at the end of the glass particulate deposition, and the glass particulate deposition amount can be controlled more effectively.

なお、本発明は上記実施形態に限定されるものではない。実施形態の説明では往路を上から下への移動としたが逆方向としてもよい。
また、ガラス微粒子合成用バーナとは、必ずしもガラス原料ガスを火炎中で化学反応を利用してガラス微粒子を発生させるものを意味しない。あくまでもガラス微粒子を出発ロッドに供給し、かつ、堆積結合させる機能を有する機構の総称として用いている。
The present invention is not limited to the above embodiment. In the description of the embodiment, the forward path is the movement from the top to the bottom, but it may be the reverse direction.
The glass fine particle synthesizing burner does not necessarily mean a glass raw material gas that generates glass fine particles using a chemical reaction in a flame. It is used as a general term for mechanisms having the function of supplying glass particles to the starting rod and depositing and bonding them.

(実施例)
以下、実施例により本発明の方法をさらに具体的に説明するが、本発明はこれに限定されるものではない。
(比較例1)
出発ロッドに対向させて4本のバーナを200mm間隔で1列に配置した縦型のガラス微粒子堆積装置を使用し、出発ロッドを上下に往復移動させる方式でガラス微粒子の堆積を行った。直径36mmの出発ロッドを使用し、往復移動は図8のパターンとし、出発ロッド1を下向きに200mm移動した後、上向き180mm移動させ、往復移動の折り返し位置が下方向に20mmずつ移動していくようにした。折り返し位置がバーナ間隔分下に移動した後は、下向きへの移動距離は200mmのままとし、上向きへの移動距離を220mmとして折り返し位置が上向きに20mmずつ移動していくようにし、初めの位置に戻るまでを1セットとし、40セットを繰り返してガラス微粒子堆積を行った。
(Example)
Hereinafter, the method of the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
(Comparative Example 1)
Using a vertical glass fine particle deposition apparatus in which four burners were arranged in a row at 200 mm intervals so as to face the starting rod, glass fine particles were deposited by reciprocating the starting rod up and down. A starting rod with a diameter of 36 mm is used, and the reciprocating movement is the pattern shown in FIG. 8. The starting rod 1 is moved 200 mm downward, then moved upward 180 mm, and the return position of the reciprocating movement is moved downward by 20 mm. I made it. After the folding position has moved down by the burner interval, the downward movement distance remains 200 mm, the upward movement distance is 220 mm, and the folding position is moved upward by 20 mm to the initial position. The set until returning was one set, and 40 sets were repeated to deposit glass particles.

得られたガラス微粒子堆積体(多孔質ガラス母材)は、全長1100mm、外径240mmで、有効部(外径が一定の部分)の長さは500mmであり、両端部にできたテーパ部の長さはそれぞれ300mmであった。原理的には両端にできるテーパ部の長さは200mmであるが、実際にはテーパに沿って外側にガラス微粒子が流れていくため、有効部となるべき部分(600mm)の内側まで(この場合は両端に50mmずつ)テーパ部となることがわかる。   The obtained glass fine particle deposit (porous glass base material) has a total length of 1100 mm, an outer diameter of 240 mm, an effective portion (a portion having a constant outer diameter) is 500 mm, and has tapered portions formed at both ends. Each length was 300 mm. In principle, the length of the tapered portion that can be formed at both ends is 200 mm. However, since the glass particles actually flow along the taper to the outside, the inside of the portion (600 mm) that should be the effective portion (in this case) Can be seen to be tapered (50 mm at both ends).

(実施例1)
比較例1で使用したものと同じ出発ロッド及びガラス微粒子体積装置を使用し、往復移動は図1のパターンとし、出発ロッド1を下向きに40mm移動した後、上向き20mm移動させ、往復移動の折り返し位置が下方向に20mmずつ移動していくようにした。折り返し位置がバーナ間隔分下に移動した後は、下向きへの移動距離は40mmのままとし、上向きへの移動距離を60mmとして折り返し位置が上向きに20mmずつ移動していくようにし、初めの位置に戻るまでを1セットとし、200セットを繰り返し、その他の条件は比較例1と同じにしてガラス微粒子堆積を行った。得られたガラス微粒子堆積体(多孔質ガラス母材)は全長900mm、外径240mmで、有効部の長さは500mmであり、両端部にできたテーパ部の長さはそれぞれ200mmであった。比較例1に比較して有効部の長さは変わっていないが、非有効部(テーパ部)の長さはそれぞれ100mmずつ短くすることができた。
Example 1
The same starting rod and glass fine particle volume device as those used in Comparative Example 1 were used, and the reciprocating movement was the pattern shown in FIG. 1. The starting rod 1 was moved 40 mm downward, then moved 20 mm upward, and the return position of the reciprocating movement was reached. Moved downward by 20 mm. After the folding position has moved down by the burner interval, the downward moving distance remains 40 mm, the upward moving distance is set to 60 mm, and the folding position is moved upward by 20 mm to the initial position. One set was set until the return, and 200 sets were repeated. The other conditions were the same as those in Comparative Example 1, and glass fine particles were deposited. The obtained glass fine particle deposit (porous glass base material) had a total length of 900 mm, an outer diameter of 240 mm, an effective portion length of 500 mm, and a tapered portion formed at both ends, each having a length of 200 mm. The length of the effective portion is not changed as compared with Comparative Example 1, but the length of the ineffective portion (tapered portion) can be shortened by 100 mm.

(実施例2)
実施例1と同じ条件で比較例1とほぼ同じ長さのガラス微粒子堆積体が得られるようにバーナ間隔を260mmとしてガラス微粒子の堆積を行った。実施例1と同様に、出発ロッド1を下向きに40mm移動した後、上向き20mm移動させ、往復移動の折り返し位置が下方向に20mmずつ移動していくようにした。折り返し位置がバーナ間隔分下に移動した後は、下向きへの移動距離は40mmのままとし、上向きへの移動距離を60mmとして折り返し位置が上向きに20mmずつ移動していくようにし、初めの位置に戻るまでを1セットとし、200セットを繰り返した。得られたガラス微粒子堆積体は全長1140mmで、両端のテーパ部の長さは実施例1と同じく各200mmとなり、有効部の長さは740mmであった。同じバーナ本数で同じ長さのガラス微粒子堆積体が得られるようにバーナ間隔を調整すると、本発明の方法の方が有効部の長さを長くできることがわかる。
(Example 2)
Glass particulates were deposited with a burner spacing of 260 mm under the same conditions as in Example 1 so that a glass particulate deposit having substantially the same length as Comparative Example 1 was obtained. In the same manner as in Example 1, the starting rod 1 was moved downward by 40 mm and then moved upward by 20 mm so that the return position of the reciprocating movement was moved downward by 20 mm. After the folding position has moved down by the burner interval, the downward moving distance remains 40 mm, the upward moving distance is set to 60 mm, and the folding position is moved upward by 20 mm to the initial position. The set until returning was one set, and 200 sets were repeated. The obtained glass fine particle deposit had a total length of 1140 mm, the lengths of the taper portions at both ends were 200 mm as in Example 1, and the length of the effective portion was 740 mm. It can be seen that the length of the effective portion can be increased by the method of the present invention by adjusting the burner interval so that the same number of burners and the same length of glass fine particle deposits can be obtained.

(実施例3)
折り返し位置の移動距離をAmmとし、往路(B+1)×A、復路B×Aの往復移動を繰返し、折り返し位置がバーナ間隔分移動した後、往路(B+1)×A、復路(B+2)×Aとし、折り返し位置の移動を逆方向に行うようにし、一番初めの位置に折り返し位置が戻るまでの一連の往復移動を1セットとし、これを繰返しながらガラス微粒子の堆積を行う。このときの平均往復距離Dは、D=2×(B+1)×Ammである(B=1、2、3、・・・)。A=20mmとし、その他の条件(バーナ間隔、出発ロッド径等)は、実施例1と同じにし、母材外径が240mmとなる多孔質ガラス母材を作成する。このときのBの変化と非有効部の長さの関係は次のようになる。すなわち、B=1、2、3、4、5、6、7、8、9としたときの平均往復距離は、D=80、120、160、200、240、280、320、360、400mmとなり、このときの非有効部の長さは、200、202、207、205、210、238、262、278、300mmとなる。この状況を図5に示す。
ここでB=9、D=400は、従来技術と同じ場合を示しており、従来技術で最も非有効部長が短くなるポイントである。B=9より小さい範囲B=1〜8のいずれにおいても従来技術の最も短い非有効部長より、短い非有効部が実現され、また、より好ましい範囲では、ほぼ200mm前後に収束する(このときD≦240である)。
(Example 3)
The travel distance of the return position is Amm, and the reciprocation of the forward path (B + 1) × A and the return path B × A is repeated. After the return position moves by the burner interval, the forward path (B + 1) × A and the return path (B + 2) × A are obtained. The folding position is moved in the opposite direction, and a series of reciprocating movements until the folding position returns to the first position is set as one set, and the glass particles are deposited while repeating this. The average round-trip distance D at this time is D = 2 × (B + 1) × A mm (B = 1, 2, 3,...). A = 20 mm, other conditions (burner spacing, starting rod diameter, etc.) are the same as in Example 1, and a porous glass base material having a base material outer diameter of 240 mm is prepared. The relationship between the change in B and the length of the ineffective portion at this time is as follows. That is, when B = 1, 2, 3, 4, 5, 6, 7, 8, 9, the average reciprocating distance is D = 80, 120, 160, 200, 240, 280, 320, 360, 400 mm. In this case, the lengths of the ineffective portions are 200, 202, 207, 205, 210, 238, 262, 278, and 300 mm. This situation is shown in FIG.
Here, B = 9 and D = 400 indicate the same case as in the prior art, and are the points where the ineffective portion length becomes the shortest in the prior art. In any of the ranges B = 1 to 8 smaller than B = 9, a shorter ineffective portion than the shortest ineffective portion length of the prior art is realized, and in a more preferable range, it converges to about 200 mm (at this time D ≦ 240).

(実施例4)
折り返し位置の移動距離をAmmとし、往路(B+1)×A、復路B×Aの往復移動を繰返し、折り返し位置がバーナ間隔よりAだけ短い位置まで移動した後、次の移動でバーナが一番初めの位置に戻る一連の往復移動を1セットとし、これを繰返しながらガラス微粒子の堆積を行う。このときの平均往復距離Dは、D=2×(B+1)×Ammである(B=1、2、3、・・・)。A=20mmとし、その他の条件(バーナ間隔、出発ロッド径等)は、実施例1と同じにし、母材外径が240mmとなる多孔質ガラス母材を作成する。このときのBの変化と非有効部の長さの関係は次のようになる。すなわち、B=1、2、3、4、5、6、7、8、9としたときの平均往復距離は、D=80、120、160、200、240、280、320、360、400mmとなり、このときの非有効部の長さは、195、199、202、206、207、223、245、260、280mmとなる。この状況を図6に示す。
実施例3よりも非有効部の削減効果が大きいのは、同じ平均移動距離に対し原理テーパ長がAmm短くなっている効果である。より好ましい範囲ではほぼ200mm前後に収束する(このときD≦240である)。
(Example 4)
The travel distance of the return position is Amm, and the reciprocation of the forward path (B + 1) × A and the return path B × A is repeated. After the return position moves to a position shorter than the burner interval by A, the burner is the first in the next movement A series of reciprocating movements returning to the position of (1) is taken as one set, and glass particles are deposited while repeating this. The average round-trip distance D at this time is D = 2 × (B + 1) × A mm (B = 1, 2, 3,...). A = 20 mm, other conditions (burner spacing, starting rod diameter, etc.) are the same as in Example 1, and a porous glass base material having a base material outer diameter of 240 mm is prepared. The relationship between the change in B and the length of the ineffective portion at this time is as follows. That is, when B = 1, 2, 3, 4, 5, 6, 7, 8, 9, the average reciprocating distance is D = 80, 120, 160, 200, 240, 280, 320, 360, 400 mm. The length of the ineffective portion at this time is 195, 199, 202, 206, 207, 223, 245, 260, 280 mm. This situation is shown in FIG.
The effect of reducing the ineffective portion is greater than that of Example 3 because the principle taper length is shorter by A mm for the same average moving distance. In a more preferable range, it converges to about 200 mm (D ≦ 240 at this time).

本発明によれば、バーナ本数を増やすことなく、ガラス微粒子堆積体の端部に形成されるテーパ部分を低減することができる。また、ガラス微粒子堆積体の重量の調整も容易である。   According to the present invention, it is possible to reduce the taper portion formed at the end of the glass fine particle deposit without increasing the number of burners. In addition, the weight of the glass particulate deposit can be easily adjusted.

本発明の方法における出発ロッドとバーナとの相対移動の状況の1例を示す説明図。Explanatory drawing which shows an example of the condition of the relative movement of the starting rod and burner in the method of this invention. 本発明の方法における出発ロッドとバーナとの相対移動の状況の他の1例を示す説明図。Explanatory drawing which shows another example of the condition of the relative movement of the starting rod and burner in the method of this invention. 本発明の方法における出発ロッドとバーナとの相対移動の状況の他の1例を示す説明図。Explanatory drawing which shows another example of the condition of the relative movement of the starting rod and burner in the method of this invention. 本発明の方法における出発ロッドとバーナとの相対移動の状況の他の1例を示す説明図。Explanatory drawing which shows another example of the condition of the relative movement of the starting rod and burner in the method of this invention. 実施例3における平均往復移動距離と非有効部長さとの関係を示すグラフ。10 is a graph showing the relationship between the average reciprocal movement distance and the ineffective portion length in Example 3. 実施例4における平均往復移動距離と非有効部長さとの関係を示すグラフ。10 is a graph showing the relationship between the average reciprocal movement distance and the ineffective portion length in Example 4. ガラス微粒子の堆積によるガラス微粒子堆積体製造の概要を示す説明図。Explanatory drawing which shows the outline | summary of glass particulate deposit body manufacture by deposition of glass particulates. 従来法での出発ロッドとバーナとの相対移動の状況の1例を示す説明図。Explanatory drawing which shows one example of the condition of the relative movement of the starting rod and burner by the conventional method.

符号の説明Explanation of symbols

1 出発ロッド
2 外側バーナ
3 2番目のバーナ
4 容器
5 排気口
6 ガラス微粒子堆積体
7 バーナ
DESCRIPTION OF SYMBOLS 1 Starting rod 2 Outer burner 3 Second burner 4 Container 5 Exhaust port 6 Glass particulate deposit 7 Burner

Claims (6)

回転する出発ロッドに対向させて複数本のガラス微粒子合成用バーナを等間隔に配置し、前記出発ロッドとガラス微粒子合成用バーナとを平行に相対的に復路から往路の折り返し位置が初期の位置を超えないように往復運動させ、往復運動の往路から復路の折り返し位置を一定方向に移動させ、前記往路から復路の折り返し位置が所定の位置に移動したところで逆方向に移動させるようにし、各バーナが前記初期の位置に戻るまでの操作を1セットとし、順次この操作を繰り返してバーナで合成されるガラス微粒子を出発ロッドの表面に順次堆積させて多孔質ガラス母材を製造する方法において、往路(B+1)×A、復路B×Aの往復運動を繰返し(A:折り返し位置の1回の移動距離、B:自然数(1、2、3、・・・))、前記折り返し位置が前記所定の位置まで移動した後、次の移動で一番初めの位置に戻る一連の往復運動を1セットとし、1セットの平均往復移動距離D=2×(B+1)×Aをバーナ間隔の2倍未満とし、1セットの中の各バーナが初期の位置に戻った時点で、定常部の堆積層数が長さ方向で均一となるように設定することを特徴とする、多孔質ガラス母材の製造方法。   A plurality of glass particle synthesis burners are arranged at equal intervals so as to face the rotating starting rod, and the return position of the return path from the return path is set to the initial position relatively in parallel with the starting rod and the glass particle synthesis burner. The reciprocating movement is performed so as not to exceed, the return position of the return path from the forward path of the reciprocating movement is moved in a certain direction, and when the return position of the return path from the forward path is moved to a predetermined position, the burner is moved in the reverse direction. In the method of manufacturing a porous glass base material by setting the operations until returning to the initial position as one set and sequentially depositing the glass fine particles synthesized by the burner on the surface of the starting rod by sequentially repeating this operation. B + 1) × A, reciprocating movement of return path B × A is repeated (A: one-time movement distance of the folding position, B: natural number (1, 2, 3,...)), The folding. A series of reciprocating motions in which the position moves to the predetermined position and then returns to the first position in the next movement is one set, and one set of average reciprocating movement distance D = 2 × (B + 1) × A is the burner interval. Porous glass, wherein the number of deposited layers in the stationary part is set to be uniform in the length direction when each burner in one set returns to the initial position. A manufacturing method of a base material. 回転する出発ロッドに対向させて複数本のガラス微粒子合成用バーナを等間隔に配置し、前記出発ロッドとガラス微粒子合成用バーナとを平行に相対的に復路から往路の折り返し位置が初期の位置を超えないように往復運動させ、往復運動の往路から復路の折り返し位置を一定方向に移動させ、前記往路から復路の折り返し位置が所定の位置に移動したところで逆方向に移動させるようにし、各バーナが前記初期の位置に戻るまでの操作を1セットとし、順次この操作を繰り返してバーナで合成されるガラス微粒子を出発ロッドの表面に順次堆積させて多孔質ガラス母材を製造する方法において、最初の移動で前記所定の位置まで移動させ、以後は復路を(B+1)×A、往路B×Aの往復運動を繰返し(A:折り返し位置の1回の移動距離、B:自然数(1、2、3、・・・))、一番初めの位置に戻る一連の往復運動を1セットとし、1セットの平均往復移動距離D=2×(B+1)×Aをバーナ間隔の2倍未満とし、1セットの中の各バーナが初期の位置に戻った時点で、定常部の堆積層数が長さ方向で均一となるように設定することを特徴とする、多孔質ガラス母材の製造方法。   A plurality of glass particle synthesis burners are arranged at equal intervals so as to face the rotating starting rod, and the return position of the return path from the return path is set to the initial position relatively in parallel with the starting rod and the glass particle synthesis burner. The reciprocating movement is performed so as not to exceed, the return position of the return path from the forward path of the reciprocating movement is moved in a certain direction, and when the return position of the return path from the forward path is moved to a predetermined position, the burner is moved in the reverse direction. In the method for producing a porous glass base material by setting the operations until returning to the initial position as one set and sequentially depositing the glass fine particles synthesized by the burner on the surface of the starting rod by sequentially repeating this operation. It is moved to the predetermined position by the movement, and thereafter, the reciprocating motion of the return path (B + 1) × A and the forward path B × A is repeated (A: one movement distance of the folding position, B: Natural number (1, 2, 3,...), A series of reciprocating motions returning to the first position is one set, and one set of average reciprocating distance D = 2 × (B + 1) × A is burner. It is less than twice the interval, and when each burner in one set returns to the initial position, the number of deposited layers in the stationary part is set to be uniform in the length direction. Manufacturing method of glass base material. 往復移動の往路から復路の折り返し位置の移動範囲がバーナ間隔のn倍(nは1〜3の整数)よりも1セットにおける折り返し位置の最小移動距離分短い距離であることを特徴とする請求項1又は2に記載の多孔質ガラス母材の製造方法。   The moving range of the return position of the return path from the forward path of the reciprocating movement is shorter than the burner interval by n times (n is an integer of 1 to 3) by the minimum movement distance of the return position in one set. A method for producing the porous glass preform according to 1 or 2. 1セットにおける往復運動の往路から復路の折り返し位置の1回の移動距離がバーナ間隔の(m+1)分の一(mは自然数)の長さであることを特徴とする請求項1〜3のいずれか1項に記載の多孔質ガラス母材の製造方法。   4. The method according to claim 1, wherein a moving distance of one turn from the forward path of the reciprocating movement to the return path in one set is a length of (m + 1) times the burner interval (m is a natural number). A method for producing a porous glass base material according to claim 1. 前記1セットにおける往復運動の往路から復路の折り返し位置の1回の移動距離をAmmとし、1セットの平均往復移動距離をDmmとし、Aが5〜60mmの範囲内にあり、かつ、Dが4×A≦D≦240の範囲内にあることを特徴とする請求項4に記載の多孔質ガラス母材の製造方法。   The distance of one reciprocating movement from the return path of the reciprocating motion in the one set to the return path is Amm, the average reciprocating distance of one set is Dmm, A is in the range of 5 to 60 mm, and D is 4 It exists in the range of * A <= D <= 240, The manufacturing method of the porous glass base material of Claim 4 characterized by the above-mentioned. 往復運動の速度とガラス微粒子堆積終了までの間に堆積するガラス微粒子の重量との関係から、前記ガラス微粒子堆積終了時期で目標とするガラス微粒子堆積量を達成できる往復移動速度を決定し、その速度でガラス微粒子の堆積を行うことによって、前記ガラス微粒子堆積終了時期で目標堆積量が達成できるようにすることを特徴とする請求項1〜5のいずれか1項に記載の多孔質ガラス母材の製造方法。   Based on the relationship between the speed of reciprocating motion and the weight of glass particles deposited before the end of the deposition of glass particles, the reciprocating speed at which the target glass particle deposition amount can be achieved at the end of the glass particle deposition is determined. The porous glass base material according to any one of claims 1 to 5, wherein a target deposition amount can be achieved at the end of the glass particulate deposition by depositing glass particulates at Production method.
JP2008305866A 2002-04-18 2008-12-01 Method for producing porous glass base material Expired - Lifetime JP4375493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305866A JP4375493B2 (en) 2002-04-18 2008-12-01 Method for producing porous glass base material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002115789 2002-04-18
JP2008305866A JP4375493B2 (en) 2002-04-18 2008-12-01 Method for producing porous glass base material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003111369A Division JP4370798B2 (en) 2002-04-18 2003-04-16 Method for producing porous glass base material

Publications (2)

Publication Number Publication Date
JP2009057280A JP2009057280A (en) 2009-03-19
JP4375493B2 true JP4375493B2 (en) 2009-12-02

Family

ID=40553359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305866A Expired - Lifetime JP4375493B2 (en) 2002-04-18 2008-12-01 Method for producing porous glass base material

Country Status (1)

Country Link
JP (1) JP4375493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200223736A1 (en) * 2017-08-29 2020-07-16 Sumitomo Electric Industries, Ltd. Method for producing glass fine particle deposit, method for producing glass base material, and glass fine particle deposit

Also Published As

Publication number Publication date
JP2009057280A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4370798B2 (en) Method for producing porous glass base material
WO2005077849A1 (en) Method for manufacturing article comprising deposited fine glass particles
JP4375493B2 (en) Method for producing porous glass base material
JP2002167228A (en) Method of producing optical fiber preform
JP3512027B2 (en) Method for producing porous base material
KR20020073332A (en) Method for producing glass particulate deposit and device used in this method
JP2002338258A (en) Method and apparatus for manufacturing glass particulate deposit
JP3521897B2 (en) Method and apparatus for producing porous glass base material
WO2003037809A1 (en) Method for producing optical fiber base material
JPH1081537A (en) Production of porous optical fiber preform
JP2003048722A (en) Method for manufacturing porous glass preform
JP4049365B2 (en) Method and apparatus for producing porous glass preform for optical fiber
JP2007210829A (en) Method for producing glass microparticle deposit and method for producing glass body
JP2002338256A (en) Method and apparatus for manufacturing glass particulate deposit
CN107428590B (en) Method for manufacturing porous glass base material for optical fiber
JP2004269284A (en) Method of manufacturing porous glass material and glass material less in fluctuation of outside diameter
JP2002137924A (en) Making method for fine glass particle heap
JP2001031431A (en) Method and apparatus for producing porous glass preform
JP3525922B2 (en) Manufacturing method of optical fiber preform
JP2005162541A (en) Method of manufacturing glass preform
JP3521898B2 (en) Method for producing porous glass base material
JP2002137924A5 (en)
JP2005145798A (en) Optical fiber preform and its manufacturing method
JP2005194133A (en) Method for producing glass preform
JP2003040625A (en) Method for producing fine glass particle heap and fine glass particle heap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Ref document number: 4375493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term