JP4374173B2 - Leak sensor - Google Patents

Leak sensor Download PDF

Info

Publication number
JP4374173B2
JP4374173B2 JP2002215090A JP2002215090A JP4374173B2 JP 4374173 B2 JP4374173 B2 JP 4374173B2 JP 2002215090 A JP2002215090 A JP 2002215090A JP 2002215090 A JP2002215090 A JP 2002215090A JP 4374173 B2 JP4374173 B2 JP 4374173B2
Authority
JP
Japan
Prior art keywords
light
liquid leakage
leak
contact surface
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215090A
Other languages
Japanese (ja)
Other versions
JP2004053560A (en
Inventor
雅博 藤田
Original Assignee
サンクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社 filed Critical サンクス株式会社
Priority to JP2002215090A priority Critical patent/JP4374173B2/en
Publication of JP2004053560A publication Critical patent/JP2004053560A/en
Application granted granted Critical
Publication of JP4374173B2 publication Critical patent/JP4374173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、漏液を検出する漏液センサに関する。
【0002】
【従来の技術】
従来から、漏液センサとして図16に示すものがある。このものは、配管下の床面等の被浸水面Fに対向配置される透光部材7の外面に互いに対称的に傾いた一対の検出面71,72を有し、投光部81からの光を検出面71に照射し、検出面71,72を反射した光を受光部82で受光するように構成されている。また、検出面71,72の間には、底面73が設けられており、被浸水面Fに対して密着するようにされている。
【0003】
漏液がない状態では検出面71,72を介して投光部81から出射した光のほとんどが受光部82にて受光される。一方、漏液が発生して、例えば検出面71に漏液が接触すると、投光部81からの出射光が検出面71を透過することにより、受光部82に至る投光部81からの出射光が減少する。従って、漏液の状態とそうでない状態とでは、受光部82での受光量が異なり、この違いから漏液であるか否かが判断されるのである。
【0004】
【発明が解決しようとする課題】
ところで、投光部81からの光は、拡散することから底面Fにも照射され、これを透過し、被浸水面Fで反射して受光部82に受光されることがある。被浸水面Fはその場所によって色や材質等が相違して、光の反射率が異なっているから、底面73を介して受光部82にて受光される投光部81からの光の光量は、漏液センサの設置場所によってまちまちである。従って、漏液検出の検出精度を保つため、設置場所に応じて漏液センサの感度調整を行なわねばならない。通常、漏液センサは、例えば装置と装置との隙間であったり、有害な液体が漏れる危険のある場所のような作業者が容易に踏み込むことができない場所に設置されることから、漏液センサ側で感度調整を行なわなければならない場合には、作業者の作業負担が激増することが懸念される。
【0005】
本発明は上記のような事情に基づいて完成されたものであって、被浸水面からの反射光の影響を回避することができる漏液センサを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するための手段として、請求項1の発明は、被浸水面上に発生した漏液が接触する漏液接触面が形成された凹部を有する透光部材と、投光した光を、前記透光部材の内側から外側に向けて前記漏液接触面に対して、臨界角より小さい入射角度で斜めに透過させるように配された投光部と、前記漏液接触面に漏液が接触していないときに前記漏液接触面を透過した光を前記凹部を介しつつ前記被浸水面を介さずに受光可能に配された受光部と、前記受光部における受光量に基づいて漏液を検出する検出手段とからなるところに特徴を有する。
【0007】
請求項2の発明は、被浸水面上に発生した漏液が接触する漏液接触面が形成された凹部を有する透光部材と、投光した光を、前記透光部材の外側から内側に向けて前記漏液接触面に対して、斜めに透過させるように配された投光部と、前記漏液接触面が漏液に接触していないときに前記漏液接触面を透過した光を前記凹部を介しつつ前記被浸水面を介さずに受光可能に配された受光部と、前記受光部における受光量に基づいて漏液を検出する検出手段とからなるところに特徴を有する。
【0008】
請求項3の発明は、請求項1又は請求項2に記載のものにおいて、前記透光部材には、外側に向かって拡大するように開口された漏液検出用の凹部が設けられ、この凹部のうち一の端面により前記漏液接触面が形成されているところに特徴を有する。
【0009】
請求項4の発明は、被浸水面上に発生した漏液が接触する第1の漏液接触面と、この第1の漏液接触面と漏液が浸水し得る空間を隔てて配され、かつ、漏液が接触する第2の漏液接触面とが形成された凹部を有する透光部材と、投光した光を、前記透光部材の内側から外側へ前記漏液が浸水し得る空間に向けて前記第1の漏液接触面に対して、臨界角より小さい入射角度で前記第1の漏液接触面を斜めに透過させると共に、前記第2の漏液接触面に対して斜めに透過させるように配された投光部と、前記第1及び第2の漏液接触面に漏液が接触していないときに、前記第1の漏液接触面を透過し前記凹部を介しつつ前記被浸水面を介さずに前記第2の漏液接触面を透過した光を受光可能に配された受光部と、前記受光部における受光量に基づいて漏液を検出する検出手段とからなるところに特徴を有する。
【0010】
請求項5の発明は、請求項4に記載の発明において、前記透光部材には、外側に向かって拡大するように開口された漏液検出用の凹部が設けられ、この凹部を構成する端面により前記第1及び第2の漏液接触面が形成されているところに特徴を有する。
【0011】
請求項6の発明は、請求項1ないし請求項3に記載の発明において、前記投光部は投光素子に一端を対向させた光ファイバの他端部からなり、前記受光部は受光素子に一端を対向させた光ファイバの他端部とから構成されているところに特徴を有する。
【0012】
【発明の作用及び効果】
<請求項1の発明>
漏液が発生していないときには、投光部からの出射光は漏液接触面を透過する際に、所定の屈折角で屈折し、この漏液接触面からの透過光が受光部にて受光される。一方、漏液が発生して、漏液接触面に漏液が接触すると、この漏液接触面での屈折角が変わって、投光部からの出射光の光路が変化して受光部に至る光が減少することにより、その受光量が減少し、検出手段はこの受光量に基づいて漏液であると判断する。従って、漏液が発生していないときには、投光部からの出射光は、漏液が浸水し得る被浸水面で反射することなく受光部に至るから、被浸水面の反射率に関係無く安定した受光量を得ることができる。
【0013】
<請求項2の発明>
漏液が発生していないときには、投光部からの出射光は漏液接触面を透過する際に、所定の屈折角で屈折し、この漏液接触面からの透過光が受光部にて受光される。一方、漏液が発生して、漏液接触面に漏液が接触すると、この漏液接触面での屈折角が変わって、投光部からの出射光の光路が変化して受光部に至る光が減少することによりその受光量が減少し、検出手段はこの受光量に基づいて漏液であると判断する。従って、漏液が発生していないときには、投光部からの出射光は、漏液が浸水し得る被浸水面に照射することなく受光部に至るから、被浸水面の反射率に関係無く安定した受光量を得ることができる。
【0014】
<請求項4の発明>
漏液が発生していないときには、投光部からの出射光は第1漏液接触面を透過する際に、所定の屈折角で屈折し、漏液が浸水し得る空間を通って第2漏液接触面に向かう。そして、第2漏液接触面を透過する際にも所定の屈折角で屈折して受光部に至る。一方、漏液が発生して、第1漏液接触面及び第2漏液接触面に漏液が接触すると、これら漏液接触面での屈折角が変わって、投光部からの出射光の光路が変化して受光部に至る光が減少することによりその受光量が減少し、検出手段はこの受光量に基づいて漏液であると判断する。
このようにすると、漏液が発生したときの光路を漏液が発生していないときの光路よりも一層大きく異ならせることができるから、漏液検出の検出精度を向上させることができる。
【0015】
<請求項3及び請求項5の発明>
請求項3及び請求項5の発明によれば、ウエス等の清掃具が漏液接触面全体に届くようになる。これによれば、例えば、漏液がふき取り易くなるから、メンテナンスの際の作業性を向上させることができる。
また、請求項5の発明において、例えば凹部に天井面を設け、その断面形状を台形形状に形成すれば、両漏液接触面のうち透光部材の内側部分の空間を広げることができる。このようにすれば、ウエス等の清掃具等が奥まで入れやすくなり、メンテナンスの際の作業性を一層向上させることができる。
【0016】
<請求項6の発明>
請求項6の発明によれば、投光部及び受光部に、細径である光ファイバを用いているから、出射面及び入射面周りを省スペース化することができる。
【0017】
【発明の実施の形態】
<第1実施形態>
本発明に係る漏液センサの第1実施形態について図1ないし図8を参照して説明する。尚、図1において矢印Xの方向を前方とする。
本実施形態の漏液センサは、例えば液体貯蔵用タンク(図示せず)の下側に備えた液受けパン(容器)の被浸水面Fに取りつけられている。この漏液センサはセンサ本体1と保持具2とから構成されており、被浸水面Fに固定した保持具2にセンサ本体1を保持するようになっている。
【0018】
保持具2は2つの輪状の基台部21から立ち上がり壁部22を垂直に立ち上げた略L字状をなしており、基台部21がボルト(図示せず)により被浸水面Fに固定されると共に、立ち上がり壁部22の側面に接してセンサ本体1を固定するようになっている。立ち上がり壁部22は前方から見て概ねT字状に形成されており、その上部から前方に向かって保持片23が延設されている。保持片23のうち互いに対向する面には、後述するケース本体11Aの係合凸条12(後述する)と係合する係合溝24,24がその中央部分を残して上下方向に形成されている。また、立ち上がり壁部22の後側には角型容器状の収容凹部25が形成されて、ここに永久磁石4が収容されている。
【0019】
センサ本体1は、図7に示す電気回路を実装した略矩形のセンサ基板5と透光性樹脂により形成されたセンサケース11とから構成されている。センサケース11のうち偏平箱状をなすケース本体11A(請求項に記載の透光部材に相当)にはセンサ基板5が収容されており、このセンサ基板5から導出されている信号線Cがケース本体11Aの開放上面を塞ぐ蓋部11Bを貫通して外部に引き出されている。
【0020】
また、ケース本体11Aの左右両側には、その略中央から上下方向に向かって立ち上がり壁部22の係合凹部24と係合する係合凸条12,12が形成されており、両者が係合したところで、ケース本体11A下面が被浸水面Fに接触した位置(正規位置)に保持されるようになっている。
【0021】
センサ基板5に実装された電気回路は、図7に示す通りの構成である。センサ基板5の表面の下側には投光素子51(請求項に記載の投光部に相当)及び受光素子52(請求項に記載の受光部に相当)が配されている一方、裏面には正規位置において永久磁石4に対して真正面に対向する位置にホールIC53が取付けられている。
【0022】
投光素子51は投光回路54により駆動され、受光素子52からの受光信号は同期回路55にて同期を取りながら受光回路56にて増幅される。受光回路56が受光素子52の受光量に応じた受光信号を出力すると、これが積分回路57を介して漏液検出回路58(請求項に記載の検出手段に相当)に与えられ、ここで所定の基準レベルと比較した結果を異常検出回路60に与えることにより漏液の検出が行なわれる。
【0023】
また、ホールIC53は、永久磁石4から受ける磁界が所定の磁界強度となったときにハイレベルの信号を出力するようになっており、本実施形態では、センサ本体1が正規位置に取り付けられたときに、ハイレベルの信号を出力する。このホールIC53の出力は、図7に示すように取付検出回路59に与えられるようになっている。取付検出回路59はホールIC53の出力がハイレベルの信号かロウレベルの信号かを判断し、その結果を異常検出回路60に与えることにより取付け異常の検出が行なわれる。
【0024】
図6に示すように、ケース本体11A下面の中央部分には天井面と、この天井面から外部方向に向かって互いに離れる方向に傾斜する2つの傾斜面とからなる凹部13が設けられており、その断面形状は略台形とされている。これらの傾斜面は出射面13A(請求項4に記載の第1漏液接触面に相当)及び入射面13B(請求項4に記載の第2漏液接触面に相当)を構成している。また、凹部13とは反対側のケース本体11A内には、凹部13に対応する位置にその内部方向に隆起した凸部14が形成されており、この凸部14の左右両端に形成された段部15A,15Bにはスリット16A,16Bが設けられている。
【0025】
次に、投光素子51、受光素子52、出射面13A及び入射面13Bの配置関係について説明する。まず、投光素子51はその出射光が出射面13Aに対して全反射の臨界角(出射面13Aに漏液が接触していない状態における臨界角)より小さい入射角度で斜めに入射するように配置されている。そして、入射面13Bは漏液が接触していないときの出射面13Aからの透過光が、斜めに入射するように配置されており、受光素子52は漏液に接触していないときの入射面13Bを透過した投光素子51からの出射光を受光する位置に配置されている。
【0026】
従って、漏液が発生していないとき、即ち、漏液が両検出面13A,13Bに接触していないときには、投光素子51からの出射光は出射面13Aを透過する際に、所定の屈折角で屈折されて入射面13Bに向かい、入射面13Bを透過する際にも、所定の屈折角で屈折されて受光素子52に到達する光路Lが形成される(図6参照)。また、漏液が発生したときには、出射面又13A、入射面13Bを透過する際の屈折角が異なり、光路Lから逸れて投光素子51からの出射光は受光素子52に到達しない(図8参照)。
尚、スリット16Aは投光素子51からの出射光を所定範囲に絞って、光路Lから逸れる光を排除する役割を果たしており、スリット16Bは入射面13Bからの透過光のうち光路L以外からケース本体11A内に入射してくる光を排除する役割を果たしている。
【0027】
次に、本実施形態の漏液センサの作用について説明する。
まず、保持具2を被浸水面Fに取りつけておき、ケース本体11Aの係合凸条12を係合溝24に係合するように上から下に押しこんで、正規位置に保持させる。ここで、万一、センサケース11が正規位置に保持されていなければ、ホールIC53からの信号レベルはロウレベルとなり、異常検出回路60が取付検出回路59からこの結果を受けて異常検出信号を出力することにより、取付け異常が検出される。
【0028】
さて、漏液が発生していないときには、投光素子51からの出射光は光路Lを通ることにより、出射面13A及び入射面13Bを透過して受光素子52に到達する(図6参照)。すると、投光素子51からの出射光のほとんどは受光素子52に受光されるから、その受光量の受光レベルは漏液検出回路58に設定された基準レベルを上回り、この結果を受けて異常検出回路60は漏液でないと判断する。
【0029】
ここで、何らかの原因により、漏液が発生すると、出射面13A及び入射面13Bに漏液が接触する。すると、投光素子51からの出射光は出射面13Aを透過する際の屈折角が漏液が接触していないときの屈折角と異なるから、出射面13Aを透過した光は被浸水面Fを反射して入射面13Bに向かい、又は直接入射面13Bに向かって進行する。また、入射面13Bでも屈折角が異なるから、受光素子52に到達することはなく、さらに、光路Lから逸れたところから入射してくる光はスリット16Bによりケース本体11Aへの入射が禁止されるから受光素子52には到達しない(図8参照)。
これによって、受光素子52からの受光レベルは漏液が発生していない状態に比べて、遥かに小さくなり、漏液検出回路58では、基準レベルを下回っていると判断し、この結果を受けた異常検出回路60が漏液の発生を検出する。
【0030】
このように、本実施形態の漏液センサによれば、漏液が発生していないときには、投光素子51からの出射光は被浸水面Fを介することなく受光素子52にて受光されるから、被浸水面Fの光の反射率に関係無く安定した受光量が得られる。
また、漏液が発生した状態では、投光素子51からの出射光は、両検出面13A,13Bにより、受光素子52へ向かう光路Lから逸れた方向に進むから、受光素子52にて受光されることがなく、これに基づいて精度良く漏液が検出される。また、光路L以外からの光は、スリット16A,16Bにより受光素子52へ至ることが阻止されるので、その検出精度はより高いものとなる。
【0031】
さらに、凹部13をその断面形状が台形形状となるように形成していることから、メンテナンス等で出射面13A及び入射面13Bを清掃する際に、清掃具等が両面13A,13B全体に届きやすいという利点もある。
【0032】
<第2実施形態>
次に、本発明の第2実施形態を図9を参照して説明する。尚、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果の説明についても省略する。
本実施形態の漏液センサは、投光部及び受光部を光ファイバ61,62の開口端61A,62Aで構成したものである。即ち、投光素子51からの出射光を光ファイバ61を介してその開口端61Aから出射面13Aに向けて出射し、入射面13Bを透過した開口端61Aからの光を光ファイバ62の開口端62Aに入射して受光素子52に導く構成としたものである。このようにすれば、ケース本体11A内で出射面13A及び入射面13B周りを省スペース化することが可能であり、特に、出射面13A及び入射面13B周りのスペースが制限される場合には好適である。
【0033】
<第3実施形態>
本発明の第3実施形態について図10を参照して説明する。尚、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果の説明についても省略する。
本実施形態の漏液センサでは、被浸水面Fに対して出射面13A(請求項1に記載の漏液接触面に相当)を斜めに傾けて形成し、入射面13Bを垂直となるように形成している。詳しくは、投光素子51はその出射光が出射面13Aに対して全反射の臨界角(出射面13Aに漏液が接触していない状態における臨界角)より小さい入射角で斜めに入射するように、かつ、漏液が接触していないときの透過光が入射面13Bに垂直に入射するように配置されており、受光素子52は入射面13Bからの透過光を受光する位置に配置されている。これによって、投光素子51と受光素子52との間に光路Lが形成される(図10(A)参照)。
【0034】
以下、本実施形態の作用について説明する。
漏液が発生していない状態では、投光素子51からの出射光は光路Lに沿って受光素子52に至る。一方、漏液が発生した状態では、出射面13Aに漏液が接触しすることにより、出射面13Aでの屈折角が漏液が接触していないときと異なる。従って、受光素子51に向かう光路Lから逸れるため、受光素子52には受光されない(図10(B)参照)。
【0035】
<第4実施形態>
以下、本発明の第4本実施形態について図11を参照して説明する。尚、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果の説明についても省略する。
本実施形態の漏液センサでは、被浸水面Fに対して出射面13Aを垂直となるように形成し、入射面13B(請求項2に記載の漏液接触面に相当)を斜めに傾けて形成している。詳しくは、投光素子51はその出射光が出射面13Aに垂直に入射するように配置され、入射面13Bは出射面13Aからの透過光が全反射の臨界角(入射面13Bに漏液が接触していない状態における臨界角)より小さい入射角で斜めに入射するように配置されている。また、受光素子52は入射面13Bからの透過光を受光する位置に配置されている。これによって、投光素子51と受光素子52との間に光路Lが形成される(図11(A)参照)。
【0036】
以下、本実施形態の作用について説明する。
漏液が発生していない状態では、投光素子51からの出射光は光路Lに沿って受光素子52に至る。一方、漏液が発生した状態では、入射面13Bに漏液が接触することにより、入射面13Bでの屈折角が漏液が接触していないときと異なる。従って、受光素子52に向かう光路Lから逸れるため、受光素子52には受光されない(図11(B)参照)。
【0037】
<第5実施形態>
以下、本発明の第5本実施形態について図12を参照して説明する。尚、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果の説明についても省略する。
本実施形態の漏液センサでは、出射面13A(請求項4に記載の第1の漏液接触面に相当)と入射面13B(請求項4に記載の第2の漏液接触面に相当)とが向かい合わせられており、出射面13Aと入射面13Bとが被浸水面Fから遠ざかる方向に向かって互いに離れるように傾けられている。本実施形態でも、投光素子51と受光素子52との間に光路Lが形成される。漏液が発生していないときは投光素子51からの光は受光素子52にて受光され(図12(A)参照)、漏液が発生したときには、光路Lから逸れて受光素子52には受光されない(図12(B)参照)。
【0038】
<第6実施形態>
以下、本発明の第6本実施形態について図13を参照して説明する。尚、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果の説明についても省略する。
本実施形態の漏液センサは、出射面13A(請求項4に記載の第1の漏液接触面に相当)が被浸水面Fと平行に設けられ、入射面13B(請求項4に記載の第2の漏液接触面に相当)が被浸水面Fに対して斜めに傾いて設けられている。本実施形態でも、投光素子51と受光素子52との間に光路Lが形成される。これによって、漏液が発生していないときは投光素子51からの光は受光素子52にて受光され(図13(A)参照)、漏液が発生したときには、光路Lから逸れて受光素子52には受光されない(図13(B)参照)。
【0039】
<第7実施形態>
以下、本発明の第7本実施形態について図14を参照して説明する。尚、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果の説明についても省略する。
本実施形態の漏液センサでは、互いに向かい合わせにされた出射面13A(請求項4に記載の第1漏液接触面に相当)及び入射面13B(請求項4に記載の第2漏液接触面に相当)が被浸水面Fに対して平行に設けられており、出射面13Aが入射面13Bよりも被浸水面Fから離れて位置している。本実施形態でも、投光素子51と受光素子52との間に光路Lが形成される。これによって、漏液が発生していないときは投光素子51からの光は受光素子52にて受光され(図14(A)参照)、漏液が発生したときには、光路Lから逸れて受光素子52には受光されない(図14(B)参照)。
【0040】
<第8実施形態>
以下、第8実施形態について図15を参照して説明する。尚、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果の説明についても省略する。
本実施形態の漏液センサは、図14に示すように、保持具2の基台部21が図示しない壁面から突設された板面Pの裏側にボルトにより固定されており、この保持具2にセンサ本体1がケース本体11Aの下面を下に向けて保持されている。
このようにすれば、たとえ漏液が発生しても、保持具2は漏液に接触しないから、漏液をふき取るというような手間を省くことができる。
【0041】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記第3実施形態から第7実施形態では投光素子51及び受光素子52を用いた構成を示したが、例えば光ファイバを用いても良い。特に、第5及び第7実施形態のように入出射面周りのスペースが制限される場合には好適である。
【図面の簡単な説明】
【図1】第1実施形態に係る漏液センサの斜視図
【図2】漏液センサの上側面図
【図3】漏液センサの側面図
【図4】漏液センサの正面図
【図5】漏液センサのA−A側断面図
【図6】非漏液状態での光路を示した漏液センサのB−B断面図
【図7】漏液センサの電気回路の構成を示した図
【図8】漏液状態での光路を示した漏液センサのB−B断面図
【図9】第2実施形態に係る漏液センサの模式図
(A)非漏液状態における光路
(B)漏液状態における光路
【図10】第3実施形態に係る漏液センサの模式図
(A)非漏液状態における光路
(B)漏液状態における光路
【図11】第4実施形態に係る漏液センサの模式図
(A)非漏液状態における光路
(B)漏液状態における光路
【図12】第5実施形態に係る漏液センサの模式図
(A)非漏液状態における光路
(B)漏液状態における光路
【図13】第6実施形態に係る漏液センサの模式図
(A)非漏液状態における光路
(B)漏液状態における光路
【図14】第7実施形態に係る漏液センサの模式図
(A)非漏液状態における光路
(B)漏液状態における光路
【図15】第8実施形態に係る漏液センサの斜視図
【図16】従来の漏液センサの模式図
【符号の説明】
1…センサ本体
13A…出射面
13B…入射面
51…投光素子
52…受光素子
58…漏液検出回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid leakage sensor that detects liquid leakage.
[0002]
[Prior art]
Conventionally, there is a liquid leakage sensor shown in FIG. This has a pair of detection surfaces 71, 72 that are symmetrically inclined with respect to the outer surface of the translucent member 7 that is disposed opposite to the surface to be submerged F such as the floor surface under the pipe, and from the light projecting unit 81. The detection surface 71 is irradiated with light, and the light reflected by the detection surfaces 71 and 72 is received by the light receiving unit 82. In addition, a bottom surface 73 is provided between the detection surfaces 71 and 72 so as to be in close contact with the surface to be submerged F.
[0003]
When there is no liquid leakage, most of the light emitted from the light projecting unit 81 via the detection surfaces 71 and 72 is received by the light receiving unit 82. On the other hand, when leakage occurs and, for example, the leakage comes into contact with the detection surface 71, the light emitted from the light projecting unit 81 passes through the detection surface 71, thereby exiting the light projecting unit 81 reaching the light receiving unit 82. The light is reduced. Therefore, the amount of light received by the light receiving unit 82 differs between the leaked state and the non-leakage state, and it is determined from this difference whether the liquid leaks.
[0004]
[Problems to be solved by the invention]
By the way, the light from the light projecting unit 81 is diffused so that it also irradiates the bottom surface F, passes through it, is reflected by the surface to be immersed F, and may be received by the light receiving unit 82. The surface to be submerged F is different in color, material, etc. depending on its location, and has a different light reflectance. Therefore, the amount of light from the light projecting unit 81 received by the light receiving unit 82 through the bottom surface 73 is as follows. Depending on the location of the leak sensor, it varies. Therefore, in order to maintain the detection accuracy of leak detection, the sensitivity of the leak sensor must be adjusted according to the installation location. Normally, a leak sensor is installed in a place where an operator cannot easily step in, for example, a gap between apparatuses, or a place where there is a risk that harmful liquid leaks. When the sensitivity adjustment must be performed on the side, there is a concern that the work burden on the worker will increase drastically.
[0005]
The present invention has been completed based on the above circumstances, and an object thereof is to provide a liquid leakage sensor that can avoid the influence of reflected light from the surface to be submerged.
[0006]
[Means for Solving the Problems]
As means for achieving the above object, a first aspect of the invention, a translucent member which have a recess leakage contact surface which contacts the liquid leakage occurred on the flooded surface is formed, and projected A light projecting portion arranged to transmit light obliquely at an incident angle smaller than a critical angle with respect to the liquid leakage contact surface from the inside to the outside of the light transmitting member, and the liquid leakage contact surface Based on the light receiving part arranged so that the light transmitted through the liquid leakage contact surface can be received without passing through the water immersion surface through the recess when the liquid leakage is not in contact, and the amount of light received by the light receiving part And a detecting means for detecting leakage.
[0007]
A second aspect of the present invention, a translucent member which have a recess leakage contact surface which contacts the liquid leakage occurred on the flooded surface is formed, the light projected, the inside from the outside of the translucent member A light projecting portion arranged so as to be transmitted obliquely with respect to the liquid leakage contact surface, and light transmitted through the liquid leakage contact surface when the liquid leakage contact surface is not in contact with liquid leakage The light receiving unit is arranged so as to be able to receive light without passing through the submerged surface while passing through the concave portion, and detection means for detecting leakage based on the amount of light received by the light receiving unit.
[0008]
According to a third aspect of the present invention, in the liquid crystal display device according to the first or second aspect, the light transmitting member is provided with a concave portion for detecting a leak that is opened so as to expand outward. Of these, the liquid leakage contact surface is formed by one end surface.
[0009]
The invention according to claim 4 is arranged with a first leak contact surface in contact with the leak generated on the surface to be submerged, and a space in which the first leak contact surface and the leak can be immersed, and a translucent member that have a second leakage contact surface leakage contacts and are formed recesses, the light projected, the leakage from the inside of the translucent member to the outside can be flooded The first liquid leakage contact surface is obliquely transmitted through the first liquid leakage contact surface at an incident angle smaller than a critical angle toward the space, and is oblique with respect to the second liquid leakage contact surface. through a light projecting unit arranged a to transmit, when said first and second leak to leak contact surface is not in contact, the recess passes through the first leakage contact surface And a light receiving portion arranged so as to be able to receive light that has passed through the second liquid leakage contact surface without passing through the surface to be submerged, and a light receiving amount in the light receiving portion. Characterized in place comprising a detecting means for detecting liquid leakage Te.
[0010]
According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the translucent member is provided with a concave portion for detecting a leak that is opened so as to expand outward, and an end surface constituting the concave portion. Is characterized in that the first and second liquid leakage contact surfaces are formed.
[0011]
According to a sixth aspect of the present invention, in the first to third aspects of the present invention, the light projecting portion is composed of the other end portion of an optical fiber having one end opposed to the light projecting device, and the light receiving portion serves as the light receiving device. It is characterized in that it is composed of the other end of the optical fiber with one end opposed.
[0012]
[Action and effect of the invention]
<Invention of Claim 1>
When no liquid leakage occurs, the light emitted from the light projecting unit is refracted at a predetermined refraction angle when passing through the liquid leakage contact surface, and the light transmitted from the liquid leakage contact surface is received by the light receiving unit. Is done. On the other hand, when a leak occurs and the leak comes into contact with the leak contact surface, the refraction angle at the leak contact surface changes, and the optical path of the emitted light from the light projecting unit changes to reach the light receiving unit. As the amount of light decreases, the amount of received light decreases, and the detection means determines that the liquid is leaking based on the amount of received light. Therefore, when no liquid leakage occurs, the light emitted from the light projecting unit reaches the light receiving unit without being reflected by the submerged surface where the liquid can be submerged. Therefore, the light is stable regardless of the reflectivity of the submerged surface. The received light amount can be obtained.
[0013]
<Invention of Claim 2>
When no liquid leakage occurs, the light emitted from the light projecting unit is refracted at a predetermined refraction angle when passing through the liquid leakage contact surface, and the light transmitted from the liquid leakage contact surface is received by the light receiving unit. Is done. On the other hand, when a leak occurs and the leak comes into contact with the leak contact surface, the refraction angle at the leak contact surface changes, and the optical path of the emitted light from the light projecting unit changes to reach the light receiving unit. As the amount of light decreases, the amount of light received decreases, and the detection means determines that the liquid is leaking based on the amount of light received. Therefore, when there is no leakage, the light emitted from the light projecting unit reaches the light receiving unit without irradiating the surface to be submerged where the leakage can be submerged, so that it is stable regardless of the reflectance of the surface to be submerged. The received light amount can be obtained.
[0014]
<Invention of Claim 4>
When no liquid leakage occurs, the light emitted from the light projecting unit is refracted at a predetermined refraction angle when passing through the first liquid leakage contact surface, and passes through the space where the liquid leakage can be submerged to pass through the second leakage. Head to the liquid contact surface. And even when it passes through the second liquid leakage contact surface, it is refracted at a predetermined refraction angle and reaches the light receiving portion. On the other hand, when a leak occurs and the leak comes into contact with the first leak contact surface and the second leak contact surface, the refraction angle at these leak contact surfaces changes, and the emitted light from the light projecting unit changes. The amount of received light decreases as the light path changes and the light reaching the light receiving portion decreases, and the detection means determines that the liquid is leaking based on the amount of received light.
In this way, the optical path when the liquid leak occurs can be made much different from the optical path when the liquid leak does not occur, so that the detection accuracy of the liquid leak detection can be improved.
[0015]
<Invention of Claim 3 and Claim 5>
According to invention of Claim 3 and Claim 5, cleaning tools, such as a waste, come to reach the whole leak contact surface. According to this, for example, since it becomes easy to wipe off the liquid leakage, workability at the time of maintenance can be improved.
In the invention of claim 5, for example, if a ceiling surface is provided in the recess and the cross-sectional shape thereof is formed in a trapezoidal shape, the space of the inner part of the translucent member of both liquid leakage contact surfaces can be expanded. If it does in this way, it will become easy to put cleaning tools, such as waste cloth, in the back, and workability at the time of maintenance can be improved further.
[0016]
<Invention of Claim 6>
According to the sixth aspect of the invention, since the optical fiber having a small diameter is used for the light projecting unit and the light receiving unit, the space around the exit surface and the entrance surface can be saved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
A first embodiment of a liquid leakage sensor according to the present invention will be described with reference to FIGS. In FIG. 1, the direction of arrow X is the front.
The liquid leakage sensor of the present embodiment is attached to a surface to be submerged F of a liquid receiving pan (container) provided below a liquid storage tank (not shown), for example. This liquid leakage sensor is composed of a sensor body 1 and a holder 2, and the sensor body 1 is held by a holder 2 fixed to the surface to be submerged F.
[0018]
The holder 2 has a substantially L shape in which a rising wall portion 22 is vertically raised from two ring-shaped base portions 21, and the base portion 21 is fixed to the surface to be submerged F with bolts (not shown). In addition, the sensor main body 1 is fixed in contact with the side surface of the rising wall portion 22. The rising wall portion 22 is generally T-shaped when viewed from the front, and a holding piece 23 extends from the upper portion toward the front. Engaging grooves 24, 24 that engage with engaging ridges 12 (described later) of the case main body 11 </ b> A (described later) are formed on the opposing surfaces of the holding piece 23 in the vertical direction, leaving the central portion. Yes. In addition, a rectangular container-like accommodation recess 25 is formed on the rear side of the rising wall portion 22, and the permanent magnet 4 is accommodated therein.
[0019]
The sensor body 1 includes a substantially rectangular sensor substrate 5 on which the electric circuit shown in FIG. 7 is mounted, and a sensor case 11 formed of a translucent resin. A sensor substrate 5 is accommodated in a case main body 11A (corresponding to the translucent member described in the claims) of the sensor case 11 having a flat box shape, and a signal line C led out from the sensor substrate 5 is a case. The lid 11 </ b> B that closes the open upper surface of the main body 11 </ b> A is passed through and pulled out to the outside.
[0020]
Engagement ridges 12 and 12 are formed on the left and right sides of the case main body 11A so as to engage with the engagement recesses 24 of the rising wall portion 22 from the substantially center toward the vertical direction. As a result, the lower surface of the case main body 11A is held at a position (normal position) in contact with the surface to be submerged F.
[0021]
The electric circuit mounted on the sensor substrate 5 has a configuration as shown in FIG. A light projecting element 51 (corresponding to the light projecting part described in the claims) and a light receiving element 52 (corresponding to the light receiving part described in the claims) are arranged below the front surface of the sensor substrate 5, while The Hall IC 53 is mounted at a position facing the permanent magnet 4 directly in front at the normal position.
[0022]
The light projecting element 51 is driven by the light projecting circuit 54, and the light receiving signal from the light receiving element 52 is amplified by the light receiving circuit 56 while being synchronized by the synchronizing circuit 55. When the light receiving circuit 56 outputs a light receiving signal corresponding to the amount of light received by the light receiving element 52, this is provided to the liquid leakage detecting circuit 58 (corresponding to the detecting means described in the claims) via the integrating circuit 57, where The liquid leakage is detected by giving the result of comparison with the reference level to the abnormality detection circuit 60.
[0023]
The Hall IC 53 outputs a high level signal when the magnetic field received from the permanent magnet 4 reaches a predetermined magnetic field strength. In this embodiment, the sensor main body 1 is attached to the normal position. Sometimes a high level signal is output. The output of the Hall IC 53 is given to the attachment detection circuit 59 as shown in FIG. The attachment detection circuit 59 determines whether the output of the Hall IC 53 is a high level signal or a low level signal, and gives the result to the abnormality detection circuit 60, thereby detecting the attachment abnormality.
[0024]
As shown in FIG. 6, the central portion of the lower surface of the case main body 11A is provided with a recess 13 composed of a ceiling surface and two inclined surfaces inclined in a direction away from each other toward the outside from the ceiling surface. The cross-sectional shape is substantially trapezoidal. These inclined surfaces constitute an exit surface 13A (corresponding to a first liquid leak contact surface described in claim 4) and an incident surface 13B (corresponding to a second liquid leak contact surface described in claim 4). Further, in the case main body 11A on the opposite side to the concave portion 13, a convex portion 14 is formed in a position corresponding to the concave portion 13 so as to protrude in the inner direction, and the steps formed at the left and right ends of the convex portion 14 are formed. The portions 15A and 15B are provided with slits 16A and 16B.
[0025]
Next, the arrangement relationship among the light projecting element 51, the light receiving element 52, the exit surface 13A, and the entrance surface 13B will be described. First, the light projecting element 51 is obliquely incident at an incident angle smaller than the critical angle of total reflection with respect to the outgoing surface 13A (the critical angle in a state where no liquid leaks in contact with the outgoing surface 13A). Has been placed. The incident surface 13B is arranged so that the transmitted light from the exit surface 13A when the liquid leakage is not in contact is incident obliquely, and the light receiving element 52 is the incident surface when the liquid leakage element is not in contact with the liquid leakage. It arrange | positions in the position which receives the emitted light from the light projection element 51 which permeate | transmitted 13B.
[0026]
Therefore, when no liquid leak occurs, that is, when the liquid leak does not contact both the detection surfaces 13A and 13B, the light emitted from the light projecting element 51 has a predetermined refraction when passing through the light emission surface 13A. An optical path L that is refracted at a predetermined refraction angle and reaches the light receiving element 52 is also formed when the light is refracted at an angle toward the incident surface 13B and transmitted through the incident surface 13B (see FIG. 6). Further, when liquid leakage occurs, the refraction angle when passing through the exit surface or 13A and the entrance surface 13B is different, and the light emitted from the light projecting element 51 deviates from the optical path L and does not reach the light receiving element 52 (FIG. 8). reference).
The slit 16A plays a role of narrowing the light emitted from the light projecting element 51 within a predetermined range and eliminating light deviating from the optical path L. The slit 16B is a case where the transmitted light from the incident surface 13B is other than the optical path L. It plays the role of removing light incident on the main body 11A.
[0027]
Next, the operation of the liquid leakage sensor of this embodiment will be described.
First, the holder 2 is attached to the surface to be submerged F, and the engaging ridges 12 of the case main body 11A are pushed down from above so as to engage with the engaging grooves 24, and are held in the normal position. If the sensor case 11 is not held at the normal position, the signal level from the Hall IC 53 becomes a low level, and the abnormality detection circuit 60 receives this result from the attachment detection circuit 59 and outputs an abnormality detection signal. As a result, a mounting abnormality is detected.
[0028]
When no liquid leakage occurs, the light emitted from the light projecting element 51 passes through the optical path L, passes through the light exit surface 13A and the light incident surface 13B, and reaches the light receiving element 52 (see FIG. 6). Then, since most of the light emitted from the light projecting element 51 is received by the light receiving element 52, the light receiving level of the amount of received light exceeds the reference level set in the leakage detection circuit 58, and this result is detected as an abnormality. The circuit 60 determines that there is no leakage.
[0029]
Here, when a leak occurs for some reason, the leak comes into contact with the exit surface 13A and the entrance surface 13B. Then, since the light emitted from the light projecting element 51 has a refraction angle different from the refraction angle when the leaked liquid is not in contact with the light exiting surface 13A, the light transmitted through the light exiting surface 13A passes through the submerged surface F. It is reflected and travels toward the incident surface 13B or directly toward the incident surface 13B. Further, since the refraction angle is different also on the incident surface 13B, the light does not reach the light receiving element 52, and the light incident from the point deviating from the optical path L is prohibited from entering the case main body 11A by the slit 16B. Does not reach the light receiving element 52 (see FIG. 8).
As a result, the level of light received from the light receiving element 52 is much lower than that in the case where no leakage occurs, and the leakage detection circuit 58 determines that the level is below the reference level and receives this result. The abnormality detection circuit 60 detects the occurrence of leakage.
[0030]
As described above, according to the liquid leakage sensor of the present embodiment, when no liquid leakage occurs, the light emitted from the light projecting element 51 is received by the light receiving element 52 without passing through the immersion surface F. Thus, a stable amount of received light can be obtained regardless of the light reflectance of the surface F to be immersed.
Further, in a state where liquid leakage has occurred, the light emitted from the light projecting element 51 travels in a direction deviating from the optical path L toward the light receiving element 52 by both the detection surfaces 13A and 13B. The liquid leakage is detected accurately based on this. Further, since light from other than the optical path L is prevented from reaching the light receiving element 52 by the slits 16A and 16B, the detection accuracy is higher.
[0031]
Furthermore, since the recess 13 is formed so that the cross-sectional shape thereof becomes a trapezoidal shape, the cleaning tool or the like can easily reach the entire surfaces 13A and 13B when cleaning the exit surface 13A and the entrance surface 13B for maintenance or the like. There is also an advantage.
[0032]
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, the overlapping description is abbreviate | omitted, and description of the same effect | action and effect is also abbreviate | omitted.
In the liquid leakage sensor of this embodiment, the light projecting unit and the light receiving unit are configured by the open ends 61A and 62A of the optical fibers 61 and 62, respectively. That is, the light emitted from the light projecting element 51 is emitted from the opening end 61A toward the emitting surface 13A via the optical fiber 61, and the light from the opening end 61A that has passed through the incident surface 13B is emitted from the opening end of the optical fiber 62. In this configuration, the light enters the light receiving element 52 and enters the light receiving element 52. In this way, it is possible to save the space around the exit surface 13A and the entrance surface 13B in the case body 11A, and is particularly suitable when the space around the exit surface 13A and the entrance surface 13B is limited. It is.
[0033]
<Third Embodiment>
A third embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, the overlapping description is abbreviate | omitted, and description of the same effect | action and effect is also abbreviate | omitted.
In the liquid leakage sensor of the present embodiment, the light exit surface 13A (corresponding to the liquid leakage contact surface according to claim 1) is formed obliquely with respect to the surface to be submerged F so that the incident surface 13B is vertical. Forming. Specifically, the light projecting element 51 obliquely enters the emitted light with an incident angle smaller than the critical angle of total reflection with respect to the outgoing surface 13A (the critical angle in a state where no liquid leakage is in contact with the outgoing surface 13A). In addition, the transmitted light when the liquid leakage is not in contact is disposed so as to be perpendicularly incident on the incident surface 13B, and the light receiving element 52 is disposed at a position for receiving the transmitted light from the incident surface 13B. Yes. Thus, an optical path L is formed between the light projecting element 51 and the light receiving element 52 (see FIG. 10A).
[0034]
Hereinafter, the operation of the present embodiment will be described.
In a state where no liquid leakage occurs, the light emitted from the light projecting element 51 reaches the light receiving element 52 along the optical path L. On the other hand, in the state where liquid leakage has occurred, the refraction angle at the light exit surface 13A differs from that when the liquid leak is not in contact with the liquid leak coming into contact with the light exit surface 13A. Accordingly, since the light path L deviates from the light receiving element 51, the light receiving element 52 does not receive light (see FIG. 10B).
[0035]
<Fourth embodiment>
The fourth embodiment of the present invention will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, the overlapping description is abbreviate | omitted, and description of the same effect | action and effect is also abbreviate | omitted.
In the liquid leakage sensor of the present embodiment, the exit surface 13A is formed to be perpendicular to the surface to be submerged F, and the incident surface 13B (corresponding to the liquid contact surface according to claim 2) is inclined obliquely. Forming. Specifically, the light projecting element 51 is arranged so that the emitted light is perpendicularly incident on the exit surface 13A, and the incident surface 13B has a critical angle of total reflection of the transmitted light from the exit surface 13A (leakage is caused on the entrance surface 13B). It is arranged so that it is incident obliquely at an incident angle smaller than the critical angle in a non-contact state. The light receiving element 52 is disposed at a position for receiving the transmitted light from the incident surface 13B. Thus, an optical path L is formed between the light projecting element 51 and the light receiving element 52 (see FIG. 11A).
[0036]
Hereinafter, the operation of the present embodiment will be described.
In a state where no liquid leakage occurs, the light emitted from the light projecting element 51 reaches the light receiving element 52 along the optical path L. On the other hand, in a state in which leakage has occurred, by leakage to the incident surface 13B contacts, the refraction angle of the incident surface 13B is different from when the leak is not in contact. Therefore, since the light path L deviates from the light receiving element 52 , the light receiving element 52 does not receive light (see FIG. 11B).
[0037]
<Fifth Embodiment>
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, the overlapping description is abbreviate | omitted, and description of the same effect | action and effect is also abbreviate | omitted.
In the liquid leakage sensor of the present embodiment, the exit surface 13A (corresponding to the first liquid leakage contact surface described in claim 4) and the incident surface 13B (corresponding to the second liquid leakage contact surface described in claim 4). And the exit surface 13A and the entrance surface 13B are inclined so as to be separated from each other in the direction away from the surface to be submerged F. Also in this embodiment, an optical path L is formed between the light projecting element 51 and the light receiving element 52. When no liquid leakage occurs, the light from the light projecting element 51 is received by the light receiving element 52 (see FIG. 12A). When the liquid leakage occurs, the light receiving element 52 deviates from the optical path L. Light is not received (see FIG. 12B).
[0038]
<Sixth Embodiment>
The sixth embodiment of the present invention will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, the overlapping description is abbreviate | omitted, and description of the same effect | action and effect is also abbreviate | omitted.
In the liquid leakage sensor according to the present embodiment, the emission surface 13A (corresponding to the first liquid leakage contact surface described in claim 4) is provided in parallel with the immersion surface F, and the incident surface 13B (claim 4). (Corresponding to the second liquid leakage contact surface) is provided obliquely with respect to the surface to be submerged F. Also in this embodiment, an optical path L is formed between the light projecting element 51 and the light receiving element 52. Thus, when no liquid leakage occurs, the light from the light projecting element 51 is received by the light receiving element 52 (see FIG. 13A), and when liquid leakage occurs, the light receiving element deviates from the optical path L. 52 does not receive light (see FIG. 13B).
[0039]
<Seventh embodiment>
The seventh embodiment of the present invention will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, the overlapping description is abbreviate | omitted, and description of the same effect | action and effect is also abbreviate | omitted.
In the liquid leakage sensor according to the present embodiment, the emission surface 13A (corresponding to the first liquid leakage contact surface according to claim 4) and the incident surface 13B (second liquid leakage contact according to claim 4) face each other. (Corresponding to the surface) is provided in parallel with the surface to be submerged F, and the exit surface 13A is located farther from the surface to be submerged F than the incident surface 13B. Also in this embodiment, an optical path L is formed between the light projecting element 51 and the light receiving element 52. Thus, when no liquid leakage occurs, the light from the light projecting element 51 is received by the light receiving element 52 (see FIG. 14A), and when liquid leakage occurs, the light receiving element deviates from the optical path L. 52 does not receive light (see FIG. 14B).
[0040]
<Eighth Embodiment>
Hereinafter, an eighth embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment, the overlapping description is abbreviate | omitted, and description of the same effect | action and effect is also abbreviate | omitted.
In the liquid leakage sensor of the present embodiment, as shown in FIG. 14, the base portion 21 of the holder 2 is fixed by a bolt to the back side of the plate surface P projecting from a wall surface (not shown). The sensor body 1 is held with the lower surface of the case body 11A facing downward.
In this way, even if leakage occurs, the holder 2 does not come into contact with the leakage, so that it is possible to save the trouble of wiping off the leakage.
[0041]
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the third to seventh embodiments, the configuration using the light projecting element 51 and the light receiving element 52 is shown. However, for example, an optical fiber may be used. It is particularly suitable when the space around the entrance / exit surface is limited as in the fifth and seventh embodiments.
[Brief description of the drawings]
FIG. 1 is a perspective view of a leak sensor according to the first embodiment. FIG. 2 is a top side view of the leak sensor. FIG. 3 is a side view of the leak sensor. ] AA side sectional view of the leak sensor [FIG. 6] BB sectional view of the leak sensor showing the optical path in a non-leakage state [FIG. 7] A diagram showing the configuration of the electric circuit of the leak sensor FIG. 8 is a cross-sectional view of the leak sensor BB showing the optical path in the leaked state. FIG. 9 is a schematic diagram of the leak sensor according to the second embodiment. FIG. 10 is a schematic diagram of a liquid leakage sensor according to the third embodiment. FIG. 11A is a light path in a non-leakage state. FIG. 10B is a light path in a liquid leakage state. Schematic diagram of sensor (A) Optical path in non-leakage state (B) Optical path in liquid leakage state [FIG. 12] Schematic diagram of liquid leakage sensor according to the fifth embodiment (A) Optical path in liquid leakage state (B) Optical path in liquid leakage state [FIG. 13] Schematic diagram of liquid leakage sensor according to the sixth embodiment (A) Optical path in non-leakage state (B) Optical path in liquid leakage state [FIG. Schematic diagram of leak sensor according to seventh embodiment (A) Optical path in non-leak state (B) Optical path in leak state [FIG. 15] Perspective view of leak sensor according to eighth embodiment [FIG. Schematic diagram of liquid leakage sensor [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sensor main body 13A ... Outgoing surface 13B ... Incident surface 51 ... Light projecting element 52 ... Light receiving element 58 ... Liquid leak detection circuit

Claims (6)

被浸水面上に発生した漏液が接触する漏液接触面が形成された凹部を有する透光部材と、
投光した光を、前記透光部材の内側から外側に向けて前記漏液接触面に対して、臨界角より小さい入射角度で斜めに透過させるように配された投光部と、
前記漏液接触面に漏液が接触していないときに前記漏液接触面を透過した光を前記凹部を介しつつ前記被浸水面を介さずに受光可能に配された受光部と、
前記受光部における受光量に基づいて漏液を検出する検出手段とからなることを特徴とする漏液センサ。
And a translucent member to have a recess leakage contact surface leakage occurring on the flooded surfaces are in contact is formed,
A light projecting portion arranged to transmit the projected light obliquely at an incident angle smaller than a critical angle with respect to the liquid leakage contact surface from the inside to the outside of the light transmitting member;
A light receiving portion disposed so as to be able to receive the light transmitted through the liquid leakage contact surface when the liquid leakage contact surface is not in contact with the liquid immersion surface without passing through the water immersion surface while passing through the concave portion;
A liquid leakage sensor comprising: a detecting means for detecting liquid leakage based on the amount of light received by the light receiving unit.
被浸水面上に発生した漏液が接触する漏液接触面が形成された凹部を有する透光部材と、
投光した光を、前記透光部材の外側から内側に向けて前記漏液接触面に対して、斜めに透過させるように配された投光部と、
前記漏液接触面が漏液に接触していないときに前記漏液接触面を透過した光を前記凹部を介しつつ前記被浸水面を介さずに受光可能に配された受光部と、
前記受光部における受光量に基づいて漏液を検出する検出手段とからなることを特徴とする漏液センサ。
And a translucent member to have a recess leakage contact surface leakage occurring on the flooded surfaces are in contact is formed,
A light projecting unit arranged to transmit the projected light obliquely with respect to the liquid leakage contact surface from the outside to the inside of the translucent member;
A light receiving portion disposed so as to be able to receive the light transmitted through the liquid leakage contact surface when the liquid leakage contact surface is not in contact with the liquid leakage without passing through the water immersion surface through the recess;
A liquid leakage sensor comprising: a detecting means for detecting liquid leakage based on the amount of light received by the light receiving unit.
前記透光部材には、外側に向かって拡大するように開口された漏液検出用の凹部が設けられ、この凹部のうち一の端面により前記漏液接触面が形成されていることを特徴とする請求項1又は請求項2に記載の漏液センサ。  The translucent member is provided with a recess for detecting a leak that is opened so as to expand outward, and the leak contact surface is formed by one end face of the recess. The liquid leakage sensor according to claim 1 or 2. 被浸水面上に発生した漏液が接触する第1の漏液接触面と、この第1の漏液接触面と漏液が浸水し得る空間を隔てて配され、かつ、漏液が接触する第2の漏液接触面とが形成された凹部を備え透光部材と、
投光した光を、前記透光部材の内側から外側へ前記漏液が浸水し得る空間に向けて前記第1の漏液接触面に対して、臨界角より小さい入射角度で前記第1の漏液接触面を斜めに透過させると共に、前記第2の漏液接触面に対して斜めに透過させるように配された投光部と、
前記第1及び第2の漏液接触面に漏液が接触していないときに、前記第1の漏液接触面を透過し前記凹部を介しつつ前記被浸水面を介さずに前記第2の漏液接触面を透過した光を受光可能に配された受光部と、
前記受光部における受光量に基づいて漏液を検出する検出手段とからなることを特徴とする漏液センサ。
The first leak contact surface that contacts the leak generated on the surface to be submerged, and the first leak contact surface and the space where the leak can be immersed are arranged, and the leak contacts. and a translucent member Ru with a recess in which the second leak contact surface is formed,
The projected light is directed toward the space where the liquid leakage can be submerged from the inside to the outside of the translucent member, with respect to the first liquid leakage contact surface at an incident angle smaller than a critical angle. A light projecting unit arranged to transmit obliquely through the liquid contact surface and to transmit obliquely with respect to the second liquid leakage contact surface;
When no liquid leaks in contact with the first and second liquid leak contact surfaces, the second liquid leaks through the first liquid leak contact surface, passes through the recess, and does not pass through the submerged surface. A light receiving portion arranged to be able to receive light transmitted through the leakage contact surface;
A liquid leakage sensor comprising: a detecting means for detecting liquid leakage based on the amount of light received by the light receiving unit.
前記透光部材には、外側に向かって拡大するように開口された漏液検出用の凹部が設けられ、この凹部を構成する端面により前記第1及び第2の漏液接触面が形成されていることを特徴とする請求項4に記載の漏液センサ。  The translucent member is provided with a recess for detecting a leak that is opened so as to expand outward, and the first and second leak contact surfaces are formed by the end surfaces constituting the recess. The liquid leakage sensor according to claim 4, wherein: 前記投光部は投光素子に一端を対向させた光ファイバの他端部からなり、
前記受光部は受光素子に一端を対向させた光ファイバの他端部とから構成されていることを特徴とする請求項1ないし請求項5のいずれかに記載の漏液センサ。
The light projecting part is composed of the other end of the optical fiber with one end facing the light projecting element,
The liquid leakage sensor according to any one of claims 1 to 5, wherein the light receiving portion is configured with an other end portion of an optical fiber having one end opposed to the light receiving element.
JP2002215090A 2002-07-24 2002-07-24 Leak sensor Expired - Fee Related JP4374173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215090A JP4374173B2 (en) 2002-07-24 2002-07-24 Leak sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215090A JP4374173B2 (en) 2002-07-24 2002-07-24 Leak sensor

Publications (2)

Publication Number Publication Date
JP2004053560A JP2004053560A (en) 2004-02-19
JP4374173B2 true JP4374173B2 (en) 2009-12-02

Family

ID=31937206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215090A Expired - Fee Related JP4374173B2 (en) 2002-07-24 2002-07-24 Leak sensor

Country Status (1)

Country Link
JP (1) JP4374173B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631138B1 (en) * 2009-09-30 2016-06-17 파나소닉 디바이스 썬크스 주식회사 Liquid leakage detection device
KR101706658B1 (en) 2010-07-30 2017-02-14 파나소닉 디바이스 썬크스 주식회사 Detecting sensor
JP5745325B2 (en) * 2011-04-28 2015-07-08 パナソニック デバイスSunx株式会社 Leak detection device and base of leak detection device
TWI458953B (en) * 2011-12-29 2014-11-01 Chunghwa Telecom Co Ltd A remote water sensing system with optical fiber

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867761U (en) * 1971-11-29 1973-08-28
JPS50137566A (en) * 1974-04-18 1975-10-31
JPH0614971U (en) * 1992-07-24 1994-02-25 株式会社イナックス Leakage detector
JPH1130547A (en) * 1997-07-10 1999-02-02 Sekisui Plant Syst Kk Photoelectric liquid level-detecting apparatus
JP2000221100A (en) * 1999-01-29 2000-08-11 Tsuuden:Kk Leakage liquid sensor
JP2001027678A (en) * 1999-07-13 2001-01-30 Toray Ind Inc Sensor for detecting liquid body and manufacture of frp structural body
JP2001050856A (en) * 1999-08-16 2001-02-23 Tsuuden:Kk Liquid leak sensor
JP3477429B2 (en) * 2000-05-29 2003-12-10 サンクス株式会社 Liquid leak sensor
JP3477430B2 (en) * 2000-05-29 2003-12-10 サンクス株式会社 Liquid leak sensor
JP3500351B2 (en) * 2000-07-31 2004-02-23 サンクス株式会社 Liquid leak sensor
JP3719130B2 (en) * 2000-11-10 2005-11-24 株式会社山武 Liquid level monitoring device

Also Published As

Publication number Publication date
JP2004053560A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US8201973B2 (en) Flame detector
US8994812B2 (en) Optical sensor for detecting the liquid level in a container, in particular for a removable container for an electric household appliance and associated lens and method
US20190003873A1 (en) Optical System and Method for Measuring Fluid Level
US7158039B2 (en) Liquid leakage sensor and liquid leakage detecting system
JP4374173B2 (en) Leak sensor
US9854945B2 (en) Kitchen machine
JP2012063328A (en) Liquid sensor
JP3719130B2 (en) Liquid level monitoring device
CN102853879B (en) Fluid sensor
JP4537568B2 (en) Leak sensor
JP2012063329A (en) Liquid sensor
JP4571352B2 (en) Leak sensor
US6259370B1 (en) Leak sensor
CN218635934U (en) Water tank and cleaning equipment
CN216696715U (en) Rubber buckle inspection device
JP4663861B2 (en) Leak sensor
KR102040640B1 (en) Sensor for sensing leak
JP3500350B2 (en) Liquid leak sensor
JP3532511B2 (en) Liquid leak sensor
JP3597486B2 (en) Liquid leak sensor
JP3295585B2 (en) Liquid leak detection device
JP3119570B2 (en) Non-contact liquid detection method and detection device
JP3500349B2 (en) Liquid leak sensor
JP2010002203A (en) Optical liquid detector
JP3818366B2 (en) Optical unit for liquid detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080204

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4374173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees