JP4365125B2 - Adaptive equalization method - Google Patents

Adaptive equalization method Download PDF

Info

Publication number
JP4365125B2
JP4365125B2 JP2003088335A JP2003088335A JP4365125B2 JP 4365125 B2 JP4365125 B2 JP 4365125B2 JP 2003088335 A JP2003088335 A JP 2003088335A JP 2003088335 A JP2003088335 A JP 2003088335A JP 4365125 B2 JP4365125 B2 JP 4365125B2
Authority
JP
Japan
Prior art keywords
training
equalization
unit
data
training signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003088335A
Other languages
Japanese (ja)
Other versions
JP2004297536A (en
Inventor
文明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003088335A priority Critical patent/JP4365125B2/en
Publication of JP2004297536A publication Critical patent/JP2004297536A/en
Application granted granted Critical
Publication of JP4365125B2 publication Critical patent/JP4365125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、陸上通信等に用いられる適応等化方法に係り、特に高速データ伝送を行う際に発生するマルチパスフェージングを補償するための適応等化方式に関するものである。
【0002】
【従来の技術】
従来、マルチパスフエージング対策のための適応等化方式としては、判定帰還型等化器(DFE:Decision Feedback Equalizer)などが有効であることが一般に知られている。DFEは比較的小規模で実現でき、遅延時間が大きな場合でも等化可能である。
【0003】
DFEについて図3を用いて説明する。図3は、従来のDFEの構成ブロック図である。従来のDFEは、図3に示すように、FFフィルタ(Feed Forward Filter )150と、FBフィルタ(Feed Back Filter)160と、複素加算器112と、データ判定器113と、スイッチ115と、トレーニング信号発生器114と、タップ係数更新部121から構成されている。
【0004】
入力信号(受信ベースバンド信号)がFFフィルタ150に入力されると、FFフィルタ150は、直接波と遅延波を取り込んだダイバーシチ効果を得るための整合処理を実行する。遅延レジスタ101〜105は、伝送データ信号を1/2シンボル間隔で記憶し、複素乗算器107〜111は、各々が対応する遅延レジスタ101〜105の出力に対して、各々が対応する等化用複素タップ係数ww(n)で複素乗算を行う。
【0005】
また、FBフィルタ160は、前シンボルの判定出力もしくはトレーニング信号発生器120からの参照トレーニング信号が入力されるが、これは等化するべき入力信号がトレーニング信号かデータ信号かによってSW115で切り替えられる。
【0006】
FBフィルタ160は、判定出力または参照トレーニング信号を帰還し、複素加算器112で演算処理を行うことにより、残留遅延波の除去を行う。遅延レジスタ116,117は、伝搬路において発生するマルチパス遅延波の最大遅延時間に相当するシンボル数を遅延させ、複素乗算器118,119は、それぞれが対応する遅延レジスタ116,117の出力に対し、それぞれが対応する等化用複素タップ係数ww(n)で複素乗算を行う。
【0007】
FFフィルタ150の出力信号とFBフィルタ160の出力信号は、複素加算器112へ入力され、複素加算器112で両信号の加算処理が行われ、この結果の出力信号がデータ判定部113へ入力される。データ判定部113は、複素加算器112からの信号を引き込んだ信号点(マッピング値)に対応する1点のマッピング値を選択するものであり、この出力信号は、そのシンボルの等化処理の結果である復調データとして出力されるとともに、FBフィルタ160ヘの判定帰還値として用いられる。
【0008】
複素加算器120は、SW115の出力と複素加算器112の出力である等化出力との差分を求め、等化誤差として出力する。タップ係数更新部121は、RLSやLMS等のMMSE(Minimum Mean Square Error)アルゴリズムにより、等化用複素タップ係数ww(n)を更新し、等化誤差の最小化を図る。
【0009】
このように、適時更新される等化用複素タップ係数ww(n)で複素乗算を行うことにより、多重波成分のダイバーシチ合成やキャンセル動作を行い、等化機能を実現している。
【0010】
【発明が解決しようとする課題】
以上のような従来の等化方式では、伝送データの先頭にあるトレーニング信号に対して行うが、トレーニング信号のトレーニングが十分でないため、等化誤差の収束時間が大きくなり、完全に収束しないうちにデータ信号の等化が行われてしまい、誤って判定された等化結果が出力されてしまうという問題点があった。
【0011】
本発明の目的は、適応等化を実現しつつ、伝送品質の向上を図ることができる適応等化方式を提供することにある。
【0012】
【課題を解決するための手段】
従来の適応等化方式でのトレーニングの等化処理は、伝送データの先頭から1回のみの実施であるが、本発明では、トレーニングのための等化処理を複数回行うことにより、トレーニング時の等化誤差を小さくすることで、伝送品質の向上を図る。
【0013】
【発明の実施の形態】
次に、本発明について図面を参照して説明する。
【0014】
図1は、本発明によるマルチトレーニング適応等化方式に供する伝送データのフレーム構成を示す。本発明によるフレーム構成は、トレーニング信号の後にデータが配置されている。
【0015】
図2は、本発明の一実施形態に係るマルチトレーニング適応等化方式の構成を示す。
【0016】
フレーム検出部10は、入力信号(受信ベースバンド信号)が入力されると、フレーム中のトレーニング信号(同期ワード)を検出することにより、受信タイミングを捕捉する。フレーム検出部10は、当該捕捉された受信タイミングに基づき、トレーニング信号をトレーニング信号メモリ11に、データ信号をデータメモリ13に出力し、それぞれ格納させる。
【0017】
FFフィルタ14は、トレーニング時に、トレーニング信号メモリ11に格納されたトレーニング信号が入力される。FFフィルタ14は、タップ係数wwFFを用いてフィルタ演算を行う。当該タップ係数wwFFは、タップ係数更新部18に記憶されている値を用いる。
【0018】
FBフィルタ15は、トレーニング信号発生器19より出力される参照トレーニング信号が入力される。FFフィルタ15は、タップ係数wwFBを用いてフィルタ演算を行う。当該タップ係数wwFBは、タップ係数更新部18に記憶されている値を用いる。
【0019】
複素加算器16は、FFフィルタ14およびFBフィルタ15のフィルタ出力を加算し、等化出力を得る。複素加算器17は、複素加算器16の等化出力と参照トレーニング信号とが加算され、等化誤差電力和の算出を行う。
【0020】
タップ係数更新部18は、複素加算器17算出された等化誤差電力和において、算出値が最小となるように、最適なタップ係数(タップ係数wwFFおよびタップ係数wwFB)を算出する。タップ係数更新部18は、当該最適なタップ係数を算出した場合、旧タップ係数に替えて新たなタップ係数を更新し、記憶する。当該新たなタップ係数により、FFフィルタ14およびFBフィルタ15は、それぞれのフィルタ演算を行う。
【0021】
等化誤差閾値判定部22は、複素加算器17算出された等化誤差電力和が入力される,。等化誤差閾値判定部22は、等化誤差電力和に、トレーニングシンボル分を累積加算して、トレーニング等化誤差を算出する。
【0022】
等化誤差閾値判定部22は、トレーニング等化誤差が十分収束するような閾値として、予め決められた所定の値を備えていて、算出されたトレーニング等化誤差電力和と前記閾値との大小の比較を行い、比較結果に基づき、トレーニング等化/データ等化の切り替え制御を行う。
【0023】
トレーニング/データ等化切替制御部23は、当該比較結果に基づき、FFフィルタ入力信号選択器12およびFBフィルタ入力信号選択器20の切り替え制御を行う。当該算出されたトレーニング等化誤差が、予め決められた閾値以下になるまで、トレーニング等化処理を複数回繰り返し、データ等化に最適なタップ係数の算出を行う。
【0024】
FFフィルタ入力信号選択器12は、トレーニング等化誤差が予め決められた閾値以下と判定されると、データメモリ13に格納されたデータを選択し出力する。FBフィルタ入力信号選択器20は、当該判定がされると、データ判定部21より出力される等化結果判定値を選択し、復調データとして出力する。
【0025】
【発明の効果】
以上説明したように、本発明の適応等化方式は、トレーニングのための等化を繰り返し行う方式により、より確実に等化誤差を小さくし等化結果の判定を確実に行えるため、伝送品質を向上させることができる。また、繰り返しトレーニングを行うことにより、1フレーム内におけるトレーニング信号長を減らし情報信号長を増やすことが可能となるため、1フレームあたりの情報信号伝送量を増やすことが可能となる。さらに、トレーニング信号長を減らすことにより、変動の速い環境下での無線通信において、伝送環境の変動に十分追従可能となるため、伝送品質の向上が図れる。
【図面の簡単な説明】
【図1】本発明によるマルチトレーニング適応等化方式に供するフレーム構成を示す。
【図2】本発明の一実施形態に係るマルチトレーニング適応等化方式の構成を示す。
【図3】従来の一実施形態に係るDFE方式(Decision Feedback Equalizer)の構成を示す。
【符号の説明】
10:フレーム検出部、11:トレーニング信号メモリ、12:FFフィルタ入力信号選択器、13:データメモリ、14:FFフィルタ、15:FBフィルタ、16,17:複素加算器、18:タップ係数更新部、19:レーニング信号発生器、20:FBフィルタ入力信号選択器、21:データ判定部、22:等化誤差閾値判定部、23:トレーニング/データ等化切替制御部
101,102,103,104:1/2シンボル遅延素子、107,108,109,110,111:複素乗算器、112:複素加算器、113:データ判定部、114:トレーニング信号発生器、115:FBフィルタ入力信号選択器、116,117:1シンボル遅延素子、118,119:複素乗算器、120:複素加算器、121:タップ係数更新部、150:FFフィルタ、160:FBフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adaptive equalization method used for land communication and the like, and more particularly to an adaptive equalization method for compensating for multipath fading that occurs when performing high-speed data transmission.
[0002]
[Prior art]
Conventionally, it is generally known that a decision feedback equalizer (DFE: Decision Feedback Equalizer) or the like is effective as an adaptive equalization method for countermeasures against multipath fading. DFE can be realized on a relatively small scale, and can be equalized even when the delay time is large.
[0003]
DFE will be described with reference to FIG. FIG. 3 is a configuration block diagram of a conventional DFE. As shown in FIG. 3, the conventional DFE includes an FF filter (Feed Forward Filter) 150, an FB filter (Feed Back Filter) 160, a complex adder 112, a data determiner 113, a switch 115, a training signal, and the like. It comprises a generator 114 and a tap coefficient update unit 121.
[0004]
When an input signal (received baseband signal) is input to the FF filter 150, the FF filter 150 executes a matching process for obtaining a diversity effect incorporating a direct wave and a delayed wave. Delay registers 101 to 105 store transmission data signals at ½ symbol intervals, and complex multipliers 107 to 111 are used for equalization corresponding to outputs of delay registers 101 to 105, respectively. Complex multiplication is performed with the complex tap coefficient ww (n).
[0005]
The FB filter 160 receives the determination output of the previous symbol or the reference training signal from the training signal generator 120, which is switched by the SW 115 depending on whether the input signal to be equalized is a training signal or a data signal.
[0006]
The FB filter 160 feeds back a determination output or a reference training signal, and performs arithmetic processing in the complex adder 112 to remove residual delayed waves. The delay registers 116 and 117 delay the number of symbols corresponding to the maximum delay time of the multipath delay wave generated in the propagation path, and the complex multipliers 118 and 119 respectively correspond to the outputs of the delay registers 116 and 117 to which they correspond, respectively. Complex multiplication is performed with the complex tap coefficient ww (n).
[0007]
The output signal of the FF filter 150 and the output signal of the FB filter 160 are input to the complex adder 112, and both signals are added by the complex adder 112, and the resulting output signal is input to the data determination unit 113. The The data determination unit 113 selects one mapping value corresponding to the signal point (mapping value) from which the signal from the complex adder 112 is drawn, and this output signal is the result of the equalization processing of the symbol. Is output as demodulated data and used as a decision feedback value to the FB filter 160.
[0008]
The complex adder 120 calculates a difference between the output of the SW 115 and the equalized output that is the output of the complex adder 112, and outputs the difference as an equalization error. The tap coefficient updating unit 121 updates the equalization complex tap coefficient ww (n) by an MMSE (Minimum Mean Square Error) algorithm such as RLS or LMS, and minimizes the equalization error.
[0009]
In this way, by performing complex multiplication with the complex tap coefficient for equalization ww (n) that is updated in a timely manner, multi-wave component diversity combining and canceling operations are performed to realize an equalization function.
[0010]
[Problems to be solved by the invention]
In the conventional equalization method as described above, the training signal at the head of the transmission data is performed, but since the training of the training signal is not sufficient, the convergence time of the equalization error becomes long and the convergence is not completed completely. There is a problem in that equalization of data signals is performed and an equalized result that is erroneously determined is output.
[0011]
An object of the present invention is to provide an adaptive equalization method capable of improving transmission quality while realizing adaptive equalization.
[0012]
[Means for Solving the Problems]
The training equalization process in the conventional adaptive equalization method is performed only once from the beginning of the transmission data.In the present invention, the equalization process for training is performed a plurality of times, so that The transmission quality is improved by reducing the equalization error.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described with reference to the drawings.
[0014]
FIG. 1 shows a frame structure of transmission data used for a multi-training adaptive equalization method according to the present invention. In the frame configuration according to the present invention, data is arranged after the training signal.
[0015]
FIG. 2 shows a configuration of a multi-training adaptive equalization method according to an embodiment of the present invention.
[0016]
When an input signal (reception baseband signal) is input, the frame detection unit 10 captures reception timing by detecting a training signal (synchronization word) in the frame. Based on the captured reception timing, the frame detection unit 10 outputs a training signal to the training signal memory 11 and a data signal to the data memory 13, and stores them.
[0017]
The training signal stored in the training signal memory 11 is input to the FF filter 14 during training. The FF filter 14 performs a filter operation using the tap coefficient wwFF. As the tap coefficient wwFF, a value stored in the tap coefficient update unit 18 is used.
[0018]
The reference training signal output from the training signal generator 19 is input to the FB filter 15. The FF filter 15 performs a filter operation using the tap coefficient wwFB. As the tap coefficient wwFB, a value stored in the tap coefficient update unit 18 is used.
[0019]
The complex adder 16 adds the filter outputs of the FF filter 14 and the FB filter 15 to obtain an equalized output. The complex adder 17 adds the equalized output of the complex adder 16 and the reference training signal, and calculates the equalization error power sum.
[0020]
The tap coefficient updating unit 18 calculates the optimum tap coefficients (tap coefficient wwFF and tap coefficient wwFB) so that the calculated value is minimized in the equalization error power sum calculated by the complex adder 17. When the optimum tap coefficient is calculated, the tap coefficient updating unit 18 updates and stores a new tap coefficient instead of the old tap coefficient. With the new tap coefficient, the FF filter 14 and the FB filter 15 perform respective filter operations.
[0021]
The equalization error threshold value determination unit 22 receives the equalization error power sum calculated by the complex adder 17. The equalization error threshold determination unit 22 calculates a training equalization error by cumulatively adding the training symbol to the equalization error power sum.
[0022]
The equalization error threshold determination unit 22 has a predetermined value as a threshold for sufficiently converging the training equalization error, and the magnitude of the calculated training equalization error power sum and the threshold is large or small. Comparison is performed, and training equalization / data equalization switching control is performed based on the comparison result.
[0023]
The training / data equalization switching control unit 23 performs switching control of the FF filter input signal selector 12 and the FB filter input signal selector 20 based on the comparison result. The training equalization process is repeated a plurality of times until the calculated training equalization error is equal to or less than a predetermined threshold value, and the tap coefficient optimum for data equalization is calculated.
[0024]
The FF filter input signal selector 12 selects and outputs the data stored in the data memory 13 when it is determined that the training equalization error is not more than a predetermined threshold value. When the determination is made, the FB filter input signal selector 20 selects the equalization result determination value output from the data determination unit 21 and outputs it as demodulated data.
[0025]
【The invention's effect】
As described above, the adaptive equalization method of the present invention is a method of repeatedly performing equalization for training, so that the equalization error can be reduced more reliably and the equalization result can be determined more reliably. Can be improved. In addition, by repeatedly performing training, it is possible to reduce the training signal length in one frame and increase the information signal length, and thus it is possible to increase the amount of information signal transmission per frame. Furthermore, by reducing the length of the training signal, it is possible to sufficiently follow the change in the transmission environment in the wireless communication under the environment where the change is fast, so that the transmission quality can be improved.
[Brief description of the drawings]
FIG. 1 shows a frame configuration used for a multi-training adaptive equalization method according to the present invention.
FIG. 2 shows a configuration of a multi-training adaptive equalization method according to an embodiment of the present invention.
FIG. 3 shows a configuration of a DFE method (Decision Feedback Equalizer) according to a conventional embodiment.
[Explanation of symbols]
10: Frame detection unit, 11: Training signal memory, 12: FF filter input signal selector, 13: Data memory, 14: FF filter, 15: FB filter, 16, 17: Complex adder, 18: Tap coefficient update unit , 19: training signal generator, 20: FB filter input signal selector, 21: data judgment unit, 22: equalization error threshold judgment unit, 23: training / data equalization switching control unit
101, 102, 103, 104: 1/2 symbol delay element, 107, 108, 109, 110, 111: complex multiplier, 112: complex adder, 113: data decision unit, 114: training signal generator, 115: FB filter input signal selector, 116, 117: 1 symbol delay element, 118,119: Complex multiplier, 120: Complex adder, 121: Tap coefficient update unit, 150: FF filter, 160: FB filter

Claims (1)

受信したフレームを検出して当該フレームに含まれるトレーニング信号部とデータ部とを分離するフレーム検出部と、A frame detection unit that detects a received frame and separates a training signal unit and a data unit included in the frame;
前記トレーニング信号部を格納するトレーニング信号メモリ部と、A training signal memory unit for storing the training signal unit;
前記データ部を格納するデータメモリ部と、A data memory unit for storing the data unit;
前記トレーニング信号メモリ部又は前記データメモリ部から信号を入力して等化処理を行う等化処理手段と、Equalization processing means for performing equalization processing by inputting a signal from the training signal memory unit or the data memory unit;
入力端の一方に前記トレーニング信号メモリ部が接続され、入力端の他方に前記データメモリ部が接続され、出力端に前記等化処理手段が接続されるスイッチと、The training signal memory unit is connected to one of the input terminals, the data memory unit is connected to the other input terminal, and the equalization processing means is connected to the output terminal,
を備え、前記等化処理手段は、The equalization processing means comprises:
前記フレームの受信時に前記トレーニング信号メモリ部に格納されたトレーニング信号部を前記スイッチを介して入力して等化器タップ係数トレーニングを行い、トレーニング終了時に等化誤差を閾値と比較し、前記等化誤差が前記閾値よりも大きいときは前記トレーニング信号メモリ部に格納されたトレーニング信号部を再度入力して前記等化器タップ係数トレーニングを繰り返す一方、前記等化誤差が前記閾値以下のときは前記スイッチを切り替えて前記データメモリ部に格納された前記データ部を入力して前記データ部に対する等化処理を実行することを特徴とする適応等化器。When receiving the frame, the training signal unit stored in the training signal memory unit is input via the switch to perform equalizer tap coefficient training, and at the end of training, the equalization error is compared with a threshold value, and the equalization is performed. When the error is larger than the threshold value, the training signal unit stored in the training signal memory unit is input again and the equalizer tap coefficient training is repeated. On the other hand, when the equalization error is less than the threshold value, the switch The adaptive equalizer is characterized in that the data part stored in the data memory part is switched and the data part is subjected to equalization processing.
JP2003088335A 2003-03-27 2003-03-27 Adaptive equalization method Expired - Fee Related JP4365125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088335A JP4365125B2 (en) 2003-03-27 2003-03-27 Adaptive equalization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088335A JP4365125B2 (en) 2003-03-27 2003-03-27 Adaptive equalization method

Publications (2)

Publication Number Publication Date
JP2004297536A JP2004297536A (en) 2004-10-21
JP4365125B2 true JP4365125B2 (en) 2009-11-18

Family

ID=33402493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088335A Expired - Fee Related JP4365125B2 (en) 2003-03-27 2003-03-27 Adaptive equalization method

Country Status (1)

Country Link
JP (1) JP4365125B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019032B2 (en) * 2005-02-04 2011-09-13 Qualcomm Incorporated Method and system for channel equalization
JP2008135912A (en) * 2006-11-28 2008-06-12 Hitachi Kokusai Electric Inc Communication system and equalization processing method
JP5107745B2 (en) * 2007-05-29 2012-12-26 株式会社日立国際電気 Equalizer
US8300726B2 (en) * 2007-11-02 2012-10-30 Alcatel Lucent Interpolation method and apparatus for increasing efficiency of crosstalk estimation
JP4686562B2 (en) * 2008-03-17 2011-05-25 株式会社日立国際電気 Communications system
JP4735747B2 (en) 2008-11-21 2011-07-27 ソニー株式会社 COMMUNICATION DEVICE, COMMUNICATION FRAME FORMAT, AND SIGNAL PROCESSING METHOD
JP5460539B2 (en) * 2010-09-27 2014-04-02 三菱電機株式会社 Signal control apparatus and signal control method
WO2014192269A1 (en) * 2013-05-29 2014-12-04 Necネットワーク・センサ株式会社 Adaptive equalization processing circuit and adaptive equalization processing method
CN116455708B (en) * 2023-06-13 2023-08-25 成都星联芯通科技有限公司 Signal distortion compensation method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP2004297536A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP1158694B1 (en) Spatial and temporal equalizer and equalization method
JPH1198066A (en) Demodulator and demodulating method
JPH11261452A (en) Adaptive equalizer
JPH09186634A (en) Data receiving device
JP4365125B2 (en) Adaptive equalization method
JP3625205B2 (en) Adaptive equalizer and receiver
JPH11261457A (en) Waveform equalizing processing method
JP4822946B2 (en) Adaptive equalizer
EP1102419A1 (en) Receiving device and method of generating replica signal
JP2000124840A (en) Adaptive equalizer
JP3866049B2 (en) Time-space equalization apparatus and equalization method
JP2503715B2 (en) Adaptive receiver
JP3061108B2 (en) Receiving device and receiving method
JP2001196978A (en) Adaptive equalization system, diversity reception system, and adaptive equalizer
JP3739597B2 (en) Radio receiving apparatus and equalization processing method
KR100556387B1 (en) apparatus and method for time domain equalizer
JP2862082B1 (en) Receiving method and receiving device
JP4822945B2 (en) Adaptive equalizer
JPH0736537B2 (en) Equalizer
JP5375801B2 (en) Diversity receiving apparatus, diversity receiving system, and diversity receiving method used therefor
JP3162003B2 (en) Communication method and communication device
JP2862083B1 (en) Receiving method and receiving device
JP2000091965A (en) Equalizer and equalizing method
JP3436647B2 (en) Diversity receiver and diversity receiving method
WO2014192269A1 (en) Adaptive equalization processing circuit and adaptive equalization processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4365125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140828

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees